Khác biệt giữa bản sửa đổi của “John Tate”
(Không hiển thị 14 phiên bản của 9 người dùng ở giữa) | |||
Dòng 1: | Dòng 1: | ||
{{Infobox Scientist |
{{Infobox Scientist |
||
|name |
|name = John Tate |
||
|box_width |
|box_width = 250px |
||
|image |
|image = John Tate.jpg |
||
|image_width |
|image_width = |
||
|caption |
|caption = |
||
|birth_date |
|birth_date = {{Birth date and age|1925|3|13}} |
||
|birth_place |
|birth_place = [[Minneapolis, Minnesota|Minneapolis]], [[Minnesota]], [[Hoa Kỳ]] |
||
|death_date = {{death date and age|2019|10|16|1925|3|13}} |
|||
|nationality |
|nationality = Mỹ |
||
|field |
|field = [[Toán học]] |
||
|work_institutions = [[Đại học Harvard]], [[Đại học Texas, Austin]] |
|work_institutions = [[Đại học Harvard]], [[Đại học Texas, Austin]] |
||
|alma_mater |
|alma_mater = [[Đại học Princeton]]<br />Đại học Harvard |
||
|doctoral_advisor |
|doctoral_advisor = [[Emil Artin]] |
||
|doctoral_students = [[Kenneth Alan Ribet]]<br />[[Joseph H. Silverman]]<br />[[Dinesh Thakur (mathematician)|Dinesh Thakur]] |
|doctoral_students = [[Kenneth Alan Ribet]]<br />[[Joseph H. Silverman]]<br />[[Dinesh Thakur (mathematician)|Dinesh Thakur]] |
||
|known_for |
|known_for = [[Phỏng đoán Tate]]<br />[[Module Tate]] |
||
|prizes |
|prizes = [[Giải Abel]] (2010)<br />[[Giải Wolf về Toán học]] (2002/03) |
||
}} |
}} |
||
'''John Torrence Tate Jr.''' (sinh ngày 13/3/1925) là một [[danh sách nhà toán học|nhà toán học]] người [[Hoa Kỳ|Mỹ]], với những đóng góp nền tảng trong lĩnh vực [[lý thuyết số đại số]] và các lĩnh vực liên quan đến [[hình học đại số]]. Năm 2010, ông giành giải thưởng [[Giải Abel|Abel]], một trong những giải thưởng lớn nhất của ngành [[toán học]]. Tate từng được miêu tả là "một trong những nhà toán học có ảnh hưởng cho nửa cuối thế kỉ" bởi nhà toán học William Beckner, trưởng khoa toán của [[Đại học Texas]].<ref name="stat">{{chú thích web|url=http://www.statesman.com/news/local/retired-ut-mathematician-wins-prestigious-abel-prize-441915.html|title=Retired UT mathematician wins prestigious Abel Prize|author=Ralph K.M. Haurwitz|date= |
'''John Torrence Tate Jr.''' (sinh ngày 13/3/1925 - mất ngày 16/10/2019<ref>{{Chú thích web|url=https://news.harvard.edu/gazette/story/2020/10/john-tate-94/|tựa đề=John Tate, 94|ngày=2020-10-07|website=Harvard Gazette|ngôn ngữ=en-US|ngày truy cập=2022-05-19}}</ref>) là một [[danh sách nhà toán học|nhà toán học]] người [[Hoa Kỳ|Mỹ]], với những đóng góp nền tảng trong lĩnh vực [[lý thuyết số đại số]] và các lĩnh vực liên quan đến [[hình học đại số]]. Năm 2010, ông giành giải thưởng [[Giải Abel|Abel]], một trong những giải thưởng lớn nhất của ngành [[toán học]]. Tate từng được miêu tả là "một trong những nhà toán học có ảnh hưởng cho nửa cuối thế kỉ" bởi nhà toán học William Beckner, trưởng khoa toán của [[Đại học Texas]].<ref name="stat">{{chú thích web|url=http://www.statesman.com/news/local/retired-ut-mathematician-wins-prestigious-abel-prize-441915.html|title=Retired UT mathematician wins prestigious Abel Prize|author=Ralph K.M. Haurwitz|date=ngày 24 tháng 3 năm 2010|publisher=Statesman.com|ngày truy cập=2010-03-27|archive-date=2010-03-26|archive-url=https://web.archive.org/web/20100326222752/http://www.statesman.com/news/local/retired-ut-mathematician-wins-prestigious-abel-prize-441915.html|url-status=dead}}</ref> |
||
== Tiểu sử == |
== Tiểu sử == |
||
Dòng 22: | Dòng 23: | ||
== Nghiên cứu Toán học == |
== Nghiên cứu Toán học == |
||
[[Tate's thesis|Luận văn của Tate]] (1950) trên [[giải tích Fourier]] trong [[Trường số đại số|trường số]] đã cho trở thành một trong những nguyên liệu quan trọng cho lý thuyết hiện đại của các [[dạng tự đẳng cấu]] và các [[L-hàm số]] của chúng, đặc biệt là các ứng dụng của nó [[Vành Adele|vành adele]], tính tự đối ngẫu và giải tích điều hoà trên đó; được chứng minh độc lập và cũng mới trước đó không lâu, [[Kenkichi Iwasawa]] cũng thu về được lý thuyết tương tự. Cùng với người thầy [[Emil Artin]], Tate đã bàn về [[Lý thuyết trường lớp|lý thuyết trường các lớp toàn cục]] bằng đối điều điều, sử dụng các kỹ thuật trong [[đối đồng điều nhóm]] áp dụng cho [[Nhóm đại số Adele|nhóm lớp idele]] và [[đối đồng điều Galois]].<ref name="xin">{{Cite web|url=http://news.xinhuanet.com/english2010/sci/2010-03/25/c_13223596.htm|title=American mathematician John Tate wins 2010 Abel Prize|publisher=Xinhua.net|date=2010-03-25|url-status=dead|archive-url=https://web.archive.org/web/20100822035034/http://news.xinhuanet.com/english2010/sci/2010-03/25/c_13223596.htm|archive-date=2010-08-22}}</ref> Bài luận giúp làm rõ hơn một số cấu trúc đại số so với các tiếp cận trước kia với lý thuyết trường các lớp, cách tiếp cận trước sử dụng đại số chia tâm để tính [[nhóm Brauer]] của trường toàn cục. |
|||
Sau đó, Tate đã giới thiệu các [[nhóm đối đồng điều Tate]].Trong các thập kỷ sau sự phát hiện này, ông mở rộng đối đồng điều của Galois với [[Đối ngẫu Tate|đối ngẫu Poitou–Tate]], [[nhóm Tate–Shafarevich]], và các quan hệ với [[K-lý thuyết đại số]]. Cùng với [[Jonathan Lubin]], ông viết lại [[local class field theory|lý thuyết trường lớp địa phương]] bằng cách dùng các [[nhóm hình thức]], [[Lubin–Tate formal group law|lý thuyết địa phương Lubin–Tate]] của [[phép nhân phức]]. |
|||
Ông cũng tạo ra nhiều cống hiến cho lý thuyết [[Số p-adic|''p''-adic]]; chẳng hạn như, phát minh [[không gian giải tích cứng]] của Tate có thể được cho là đã sinh ra toàn bộ trường [[hình học giải tích cứng]]. Ông tìm ra lý thuyết ''p''-adic tương tự với [[lý thuyết Hodge]],nay gọi là [[Hodge–Tate module|lý thuyết Hodge–Tate]], trở thành một trong những kỹ thuật quan trọng của [[lý thuyết số đại số]].<ref name="xin" /> Các phát minh khác của ông bao gồm tham số hoá "[[Tate curve|đường cong Tate]]" cho một số [[đường cong elliptic]] ''p''-adic và các [[Nhóm Barsotti–Tate|nhóm ''p''-chia được (Tate–Barsotti)]]. |
|||
Rất nhiều kết quả của ông chưa được xuất bản ngay lập tích và một vài trong số đó được viết được nhắc tới bởi [[Serge Lang]], [[Jean-Pierre Serre]], [[Joseph H. Silverman]] và một số nhà toán học khác. Tate và Serre đã cộng tác với nhau để nghiên cứu về [[Glossary of arithmetic and diophantine geometry#G|rút gọn tốt]] của các [[đa tạp abel]]. Phân loại các đa tạp abel trên [[trường hữu hạn]] được thực hiện bởi [[Taira Honda]] và Tate (thành [[định lý Honda–Tate]]).<ref>J.T. Tate, "Classes d'isogénie des variétés abéliennes sur un corps fini (d' après T. Honda)", Sem. Bourbaki Exp. 352, Lect. notes in math., 179, Springer (1971)</ref> |
|||
Các [[giả thuyết Tate]] đều tương tự với [[Đối đồng điều Étale|đối đồng điều étale]] của [[Hodge conjecture|giả thuyết Hodge]].Chúng đều liên quan đến việc tác động Galois trên đối đồng điều ℓ-adic của đa tạp đại số, chỉ ra một không gian của các "[[chu trình Tate]]" (các chu trình đã được cố định cho tác động xoắn Tate) có thể chọn ra các chu trình đại số. Hiện nay bài toán này vẫn là bài toán mở. Một trường hợp đặc biệt của giải thuyết này có trong bài chứng minh cho [[Định lý Faltings|giả thuyết Mordell]] bởi [[Gerd Faltings]]. |
|||
Tate ngoài ra cũng có ảnh hướng lên cho lý thuyết số nhờ vai trò làm cố vấn cho luận văn tiến sĩ. Các nghiên cứu sinh của ông bao gồm [[George Bergman]], [[Ted Chinburg]], [[Bernard Dwork]], [[Benedict Gross]], [[Robert Kottwitz]], [[Jonathan Lubin]], [[Stephen Lichtenbaum]], [[James Milne (mathematician)|James Milne]], [[V. Kumar Murty]], [[Carl Pomerance]], [[Ken Ribet]], [[Joseph H. Silverman]], và [[Dinesh Thakur (mathematician)|Dinesh Thakur]]. |
|||
== Các giải thưởng và vinh danh == |
== Các giải thưởng và vinh danh == |
||
Abel 2010 |
|||
== Các bài báo, sách nổi tiếng == |
== Các bài báo, sách nổi tiếng == |
||
Dòng 148: | Dòng 161: | ||
{{người đoạt giải Abel}} |
{{người đoạt giải Abel}} |
||
{{Authority control}} |
|||
{{DEFAULTSORT:Tate, John}} |
|||
[[Thể loại:Sinh 1925]] |
[[Thể loại:Sinh năm 1925]] |
||
[[Thể loại:Người đoạt giải Abel]] |
[[Thể loại:Người đoạt giải Abel]] |
||
[[Thể loại:Nhà toán học Mỹ]] |
[[Thể loại:Nhà toán học Mỹ]] |
||
[[Thể loại:Người đoạt giải Wolf Toán học]] |
[[Thể loại:Người đoạt giải Wolf Toán học]] |
||
[[Thể loại:Nhà toán học thế kỷ 20]] |
|||
[[Thể loại:Nhà toán học thế kỷ 21]] |
|||
[[Thể loại:Viện sĩ Viện Hàn lâm Khoa học Pháp]] |
|||
[[Thể loại:Cựu sinh viên Đại học Harvard]] |
|||
[[Thể loại:Cựu sinh viên Đại học Princeton]] |
|||
[[Thể loại:Nhà lý thuyết số]] |
|||
[[Thể loại:Mất năm 2019]] |
Bản mới nhất lúc 05:30, ngày 8 tháng 11 năm 2023
John Tate | |
---|---|
Sinh | 13 tháng 3, 1925 Minneapolis, Minnesota, Hoa Kỳ |
Mất | 16 tháng 10, 2019 | (94 tuổi)
Quốc tịch | Mỹ |
Trường lớp | Đại học Princeton Đại học Harvard |
Nổi tiếng vì | Phỏng đoán Tate Module Tate |
Giải thưởng | Giải Abel (2010) Giải Wolf về Toán học (2002/03) |
Sự nghiệp khoa học | |
Ngành | Toán học |
Nơi công tác | Đại học Harvard, Đại học Texas, Austin |
Người hướng dẫn luận án tiến sĩ | Emil Artin |
Các nghiên cứu sinh nổi tiếng | Kenneth Alan Ribet Joseph H. Silverman Dinesh Thakur |
John Torrence Tate Jr. (sinh ngày 13/3/1925 - mất ngày 16/10/2019[1]) là một nhà toán học người Mỹ, với những đóng góp nền tảng trong lĩnh vực lý thuyết số đại số và các lĩnh vực liên quan đến hình học đại số. Năm 2010, ông giành giải thưởng Abel, một trong những giải thưởng lớn nhất của ngành toán học. Tate từng được miêu tả là "một trong những nhà toán học có ảnh hưởng cho nửa cuối thế kỉ" bởi nhà toán học William Beckner, trưởng khoa toán của Đại học Texas.[2]
Tiểu sử
[sửa | sửa mã nguồn]John Tate sinh ra tại Minneapolis. Ông nhận bằng cử nhân toán học tại Đại học Harvard, và bằng tiến sĩ tại Đại học Princeton năm 1950 dưới sự hướng dẫn của Emil Artin. Tate dạy toán tại Harvard trong 36 năm trước khi chuyển đến khoa Toán Đại học Texas năm 1990. Ông đã nghỉ hưu năm 2009, và hiện tại ông đang sống ở Cambridge, Massachusetts. John Tate có một vợ, bà Carol và ba con gái.[2]
Nghiên cứu Toán học
[sửa | sửa mã nguồn]Luận văn của Tate (1950) trên giải tích Fourier trong trường số đã cho trở thành một trong những nguyên liệu quan trọng cho lý thuyết hiện đại của các dạng tự đẳng cấu và các L-hàm số của chúng, đặc biệt là các ứng dụng của nó vành adele, tính tự đối ngẫu và giải tích điều hoà trên đó; được chứng minh độc lập và cũng mới trước đó không lâu, Kenkichi Iwasawa cũng thu về được lý thuyết tương tự. Cùng với người thầy Emil Artin, Tate đã bàn về lý thuyết trường các lớp toàn cục bằng đối điều điều, sử dụng các kỹ thuật trong đối đồng điều nhóm áp dụng cho nhóm lớp idele và đối đồng điều Galois.[3] Bài luận giúp làm rõ hơn một số cấu trúc đại số so với các tiếp cận trước kia với lý thuyết trường các lớp, cách tiếp cận trước sử dụng đại số chia tâm để tính nhóm Brauer của trường toàn cục.
Sau đó, Tate đã giới thiệu các nhóm đối đồng điều Tate.Trong các thập kỷ sau sự phát hiện này, ông mở rộng đối đồng điều của Galois với đối ngẫu Poitou–Tate, nhóm Tate–Shafarevich, và các quan hệ với K-lý thuyết đại số. Cùng với Jonathan Lubin, ông viết lại lý thuyết trường lớp địa phương bằng cách dùng các nhóm hình thức, lý thuyết địa phương Lubin–Tate của phép nhân phức.
Ông cũng tạo ra nhiều cống hiến cho lý thuyết p-adic; chẳng hạn như, phát minh không gian giải tích cứng của Tate có thể được cho là đã sinh ra toàn bộ trường hình học giải tích cứng. Ông tìm ra lý thuyết p-adic tương tự với lý thuyết Hodge,nay gọi là lý thuyết Hodge–Tate, trở thành một trong những kỹ thuật quan trọng của lý thuyết số đại số.[3] Các phát minh khác của ông bao gồm tham số hoá "đường cong Tate" cho một số đường cong elliptic p-adic và các nhóm p-chia được (Tate–Barsotti).
Rất nhiều kết quả của ông chưa được xuất bản ngay lập tích và một vài trong số đó được viết được nhắc tới bởi Serge Lang, Jean-Pierre Serre, Joseph H. Silverman và một số nhà toán học khác. Tate và Serre đã cộng tác với nhau để nghiên cứu về rút gọn tốt của các đa tạp abel. Phân loại các đa tạp abel trên trường hữu hạn được thực hiện bởi Taira Honda và Tate (thành định lý Honda–Tate).[4]
Các giả thuyết Tate đều tương tự với đối đồng điều étale của giả thuyết Hodge.Chúng đều liên quan đến việc tác động Galois trên đối đồng điều ℓ-adic của đa tạp đại số, chỉ ra một không gian của các "chu trình Tate" (các chu trình đã được cố định cho tác động xoắn Tate) có thể chọn ra các chu trình đại số. Hiện nay bài toán này vẫn là bài toán mở. Một trường hợp đặc biệt của giải thuyết này có trong bài chứng minh cho giả thuyết Mordell bởi Gerd Faltings.
Tate ngoài ra cũng có ảnh hướng lên cho lý thuyết số nhờ vai trò làm cố vấn cho luận văn tiến sĩ. Các nghiên cứu sinh của ông bao gồm George Bergman, Ted Chinburg, Bernard Dwork, Benedict Gross, Robert Kottwitz, Jonathan Lubin, Stephen Lichtenbaum, James Milne, V. Kumar Murty, Carl Pomerance, Ken Ribet, Joseph H. Silverman, và Dinesh Thakur.
Các giải thưởng và vinh danh
[sửa | sửa mã nguồn]Abel 2010
Các bài báo, sách nổi tiếng
[sửa | sửa mã nguồn]- Tate, John (1950), Fourier analysis in number fields and Hecke's zeta functions, Princeton University Ph.D. thesis under Emil Artin. Reprinted in Cassels, J. W. S.; Fröhlich, Albrecht biên tập (1967), Algebraic number theory, London: Academic Press, tr. 305–347, MR0215665
- Lang, Serge; Tate, John (1958), “Principal homogeneous spaces over abelian varieties”, American Journal of Mathematics, 80: 659–684, MR0106226
- Lubin, Jonathan; Tate, John (1965), “Formal complex multiplication in local fields”, Annals of Mathematics, 81: 380–387, MR0172878
- Tate, John (1966), “Endomorphisms of abelian varieties over finite fields”, Inventiones Mathematicae, 2: 134–144, MR0206004
- Tate, John (1967), “p-divisible groups”, trong Springer, T. A. (biên tập), Proceedings of a Conference on Local Fields, Springer-Verlag, tr. 158–183, MR0231827
- Artin, Emil; Tate, John (2009) [1967], Class field theory, AMS Chelsea Publishing, ISBN 978-0-821-84426-7, MR2467155
- Serre, Jean-Pierre; Tate, John (1968), “Good reduction of abelian varieties”, Annals of Mathematics, 88: 462–517, MR0236190
- Tate, John (1971), “Rigid analytic spaces”, Inventiones Mathematicae, 12: 257–289, MR0306196
- Tate, John (1976), “Relations between K2 and Galois cohomology”, Inventiones Mathematicae, 36: 257–274, MR0429837
Tham khảo
[sửa | sửa mã nguồn]- ^ “John Tate, 94”. Harvard Gazette (bằng tiếng Anh). 7 tháng 10 năm 2020. Truy cập ngày 19 tháng 5 năm 2022.
- ^ a b Ralph K.M. Haurwitz (ngày 24 tháng 3 năm 2010). “Retired UT mathematician wins prestigious Abel Prize”. Statesman.com. Bản gốc lưu trữ ngày 26 tháng 3 năm 2010. Truy cập ngày 27 tháng 3 năm 2010.
- ^ a b “American mathematician John Tate wins 2010 Abel Prize”. Xinhua.net. 25 tháng 3 năm 2010. Bản gốc lưu trữ ngày 22 tháng 8 năm 2010.
- ^ J.T. Tate, "Classes d'isogénie des variétés abéliennes sur un corps fini (d' après T. Honda)", Sem. Bourbaki Exp. 352, Lect. notes in math., 179, Springer (1971)