Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunct... more Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis method...
This study uses desirability function analysis to optimize the process parameters namely layer th... more This study uses desirability function analysis to optimize the process parameters namely layer thickness, fill pattern, fill density, and build orientation for fused deposition modelling on polyethylene terephthalate glycol material. The Taguchi-desirability function analysis is one of the optimization techniques for the multi-objective decision-making process. Taguchi L9 orthogonal array is employed in the test trials during the fused deposition modelling process. The output responses measured are dimension error, ductility, and tensile strength. The goal of process parameter optimization is to attain the best of the trials for minimal dimension error and maximum tensile strength and ductility. The best feasible amalgamation of input variables is discovered for the investigated and assessed response features utilizing desirability function analysis. As per the results obtained from experiments, it is concluded that the optimal combination of parameters is layer thickness of 0.1 mm,...
Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in t... more Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in the form of liquid–vapor system, i.e., receiving heat from one end and transferring it to other end by a pulsating action of the liquid–vapor system. Pulsating heat pipes have more advantages than other heat pipes. The problem identified is, to calculate the performance of the pulsating heat pipes with respect to different inclinations using various parameters. In this paper, experiment on performance of closed single loop pulsating heat pipe (CLPHP) using water as a working fluid is considered. The parameters such as thermal resistance (Rth), heat transfer coefficient (h), and variation of temperature with respect to time for the given input at different inclinations such as 0°, 45°, and 90° are taken for the present work. Water is used as the working fluid and is subjected to 50% filling ratio and vacuumed at a pressure of 2300Pa. The performance is calculated at different inclinations of the CLPHP with single turn/loop. The factors such as heat transfer coefficient, thermal resistance, time taken for heating the pulsating heat pipe with the given input are calculated. Finally, it has been concluded that is preferable orientation for PHP and it was found be at vertical orientation i.e., at 90° inclination, because more pulsating action is taken place at this inclination and henceforth, heat transfer rate is faster at this inclination.
International journal of ambient energy, Feb 7, 2016
ABSTRACT The present work deals with an experimental evaluation of the existing diesel engine wit... more ABSTRACT The present work deals with an experimental evaluation of the existing diesel engine with a blend of methyl esters of palm stearin (PS) oil and petro-diesel under varying injection pressures and compression ratios (CRs). It was observed that the brake thermal efficiency of engine was high with PSME40 at an injection pressure of 210 bar and CR of 16.5 when compared to other fuel injection pressures of 190 and 230 bar. However, the engine performance was superior with CR 19 at the rated injection pressure of 190 bar. Higher peak pressures are observed with higher CR. The engine emissions in terms of hydrocarbons, carbon monoxide and smoke opacity were lower but the nitrogen oxides were found to be increased due to the better combustion. It is observed that CR and fuel injection pressure simultaneously played a vital role in the reduction of emissions. The study revealed that PS could be explored as a source for producing biodiesel effectively with environmental concerns.
2016 21st Century Energy Needs - Materials, Systems and Applications (ICTFCEN), 2016
In this present work focused on combination of two different biodiesel blends with diesel. The pr... more In this present work focused on combination of two different biodiesel blends with diesel. The present study brings out an experiment of two bio diesels from jatropha oil (B20J), Mahua oil (B20M) and Dual biodiesel(B10M+B10J) they are blended with diesel. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 1500 rpm. Results showed that at full load conditions the brake thermal efficiency B20J is higher than other blends. BSFC lowest for diesel compare to other blends. The emissions of CO and HC of dual biodiesel are lower than that of diesel. But NOx is higher in dual biodiesel compare diesel.
Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in t... more Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in the form of liquid–vapor system, i.e., receiving heat from one end and transferring it to other end by a pulsating action of the liquid–vapor system. Pulsating heat pipes have more advantages than other heat pipes. The problem identified is, to calculate the performance of the pulsating heat pipes with respect to different inclinations using various parameters. In this paper, experiment on performance of closed single loop pulsating heat pipe (CLPHP) using water as a working fluid is considered. The parameters such as thermal resistance (Rth), heat transfer coefficient (h), and variation of temperature with respect to time for the given input at different inclinations such as 0°, 45°, and 90° are taken for the present work. Water is used as the working fluid and is subjected to 50% filling ratio and vacuumed at a pressure of 2300Pa. The performance is calculated at different inclinations ...
Fossil fuels are exhausting quickly because of incremental utilization rate due to increase popul... more Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promisi...
Bio-diesel manufactured from vegetable oils, animal fats and used cooking oils is an alternative ... more Bio-diesel manufactured from vegetable oils, animal fats and used cooking oils is an alternative fuel for diesel engines. It offers many advantages such as renewable, energy efficient, nontoxic, sulfur free and bio-degradable, and also offers cleaner combustion and reduces global warming gas emissions. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG blends. The engine is properly modified to operate under dual fuel operation using LPG as the mixed fuel along with Diesel and TME as ignition source. The brake thermal efficiency of TME with LPG (2LPM) blend is increased at an average of 5%.HC emissions of TME with LPG (2LPM) blend is reduced by about at an average 21%. CO emissions of TME with LPG (2LPM) blends are reduced at an average of 33.6%. NOx emissions of TME with LPG (2LPM) blend are reduced at an average of 4.4%. Smoke Opacity of TME with LPG (2LPM) blend is reduced at an average of 10%. Keywords Biodiesel, diesel engine, alternate fuels, tall...
Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunct... more Cu2ZnSnS4 (CZTS) is a promising quaternary semiconducting absorber layer in thin film heterojunction solar cells. All the elements of this compound semiconductor were abundant, inexpensive, and non-toxic, hence CZTS is an alternative emerging optoelectronic material for Cu(In,Ga)Se2 and CdTe solar cells. Using the traditional spray approach, these films were effectively grown at an ideal substrate temperature of 643 K. The deposited films are found to be a kesterite structure using X-ray diffraction studies. The lattice parameters are calculated from the XRD spectrum and are found to be a = b = 5.44 Å and c = 10.86 Å. The energy band gap and optical absorption coefficient are found to be 1.50 eV and above 104 cm-1 respectively. The material exhibits p-type conductivity. After the chemical spray pyrolysis is completed, the deposited films remain on the hot plate, thus improving the films' crystallinity. A Cu2ZnSnS4 solar cell is fabricated using entirely chemical synthesis method...
This study uses desirability function analysis to optimize the process parameters namely layer th... more This study uses desirability function analysis to optimize the process parameters namely layer thickness, fill pattern, fill density, and build orientation for fused deposition modelling on polyethylene terephthalate glycol material. The Taguchi-desirability function analysis is one of the optimization techniques for the multi-objective decision-making process. Taguchi L9 orthogonal array is employed in the test trials during the fused deposition modelling process. The output responses measured are dimension error, ductility, and tensile strength. The goal of process parameter optimization is to attain the best of the trials for minimal dimension error and maximum tensile strength and ductility. The best feasible amalgamation of input variables is discovered for the investigated and assessed response features utilizing desirability function analysis. As per the results obtained from experiments, it is concluded that the optimal combination of parameters is layer thickness of 0.1 mm,...
Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in t... more Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in the form of liquid–vapor system, i.e., receiving heat from one end and transferring it to other end by a pulsating action of the liquid–vapor system. Pulsating heat pipes have more advantages than other heat pipes. The problem identified is, to calculate the performance of the pulsating heat pipes with respect to different inclinations using various parameters. In this paper, experiment on performance of closed single loop pulsating heat pipe (CLPHP) using water as a working fluid is considered. The parameters such as thermal resistance (Rth), heat transfer coefficient (h), and variation of temperature with respect to time for the given input at different inclinations such as 0°, 45°, and 90° are taken for the present work. Water is used as the working fluid and is subjected to 50% filling ratio and vacuumed at a pressure of 2300Pa. The performance is calculated at different inclinations of the CLPHP with single turn/loop. The factors such as heat transfer coefficient, thermal resistance, time taken for heating the pulsating heat pipe with the given input are calculated. Finally, it has been concluded that is preferable orientation for PHP and it was found be at vertical orientation i.e., at 90° inclination, because more pulsating action is taken place at this inclination and henceforth, heat transfer rate is faster at this inclination.
International journal of ambient energy, Feb 7, 2016
ABSTRACT The present work deals with an experimental evaluation of the existing diesel engine wit... more ABSTRACT The present work deals with an experimental evaluation of the existing diesel engine with a blend of methyl esters of palm stearin (PS) oil and petro-diesel under varying injection pressures and compression ratios (CRs). It was observed that the brake thermal efficiency of engine was high with PSME40 at an injection pressure of 210 bar and CR of 16.5 when compared to other fuel injection pressures of 190 and 230 bar. However, the engine performance was superior with CR 19 at the rated injection pressure of 190 bar. Higher peak pressures are observed with higher CR. The engine emissions in terms of hydrocarbons, carbon monoxide and smoke opacity were lower but the nitrogen oxides were found to be increased due to the better combustion. It is observed that CR and fuel injection pressure simultaneously played a vital role in the reduction of emissions. The study revealed that PS could be explored as a source for producing biodiesel effectively with environmental concerns.
2016 21st Century Energy Needs - Materials, Systems and Applications (ICTFCEN), 2016
In this present work focused on combination of two different biodiesel blends with diesel. The pr... more In this present work focused on combination of two different biodiesel blends with diesel. The present study brings out an experiment of two bio diesels from jatropha oil (B20J), Mahua oil (B20M) and Dual biodiesel(B10M+B10J) they are blended with diesel. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 1500 rpm. Results showed that at full load conditions the brake thermal efficiency B20J is higher than other blends. BSFC lowest for diesel compare to other blends. The emissions of CO and HC of dual biodiesel are lower than that of diesel. But NOx is higher in dual biodiesel compare diesel.
Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in t... more Pulsating heat pipes (PHP) receives heat from the working fluid distributes itself naturally in the form of liquid–vapor system, i.e., receiving heat from one end and transferring it to other end by a pulsating action of the liquid–vapor system. Pulsating heat pipes have more advantages than other heat pipes. The problem identified is, to calculate the performance of the pulsating heat pipes with respect to different inclinations using various parameters. In this paper, experiment on performance of closed single loop pulsating heat pipe (CLPHP) using water as a working fluid is considered. The parameters such as thermal resistance (Rth), heat transfer coefficient (h), and variation of temperature with respect to time for the given input at different inclinations such as 0°, 45°, and 90° are taken for the present work. Water is used as the working fluid and is subjected to 50% filling ratio and vacuumed at a pressure of 2300Pa. The performance is calculated at different inclinations ...
Fossil fuels are exhausting quickly because of incremental utilization rate due to increase popul... more Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promisi...
Bio-diesel manufactured from vegetable oils, animal fats and used cooking oils is an alternative ... more Bio-diesel manufactured from vegetable oils, animal fats and used cooking oils is an alternative fuel for diesel engines. It offers many advantages such as renewable, energy efficient, nontoxic, sulfur free and bio-degradable, and also offers cleaner combustion and reduces global warming gas emissions. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG blends. The engine is properly modified to operate under dual fuel operation using LPG as the mixed fuel along with Diesel and TME as ignition source. The brake thermal efficiency of TME with LPG (2LPM) blend is increased at an average of 5%.HC emissions of TME with LPG (2LPM) blend is reduced by about at an average 21%. CO emissions of TME with LPG (2LPM) blends are reduced at an average of 33.6%. NOx emissions of TME with LPG (2LPM) blend are reduced at an average of 4.4%. Smoke Opacity of TME with LPG (2LPM) blend is reduced at an average of 10%. Keywords Biodiesel, diesel engine, alternate fuels, tall...
Uploads
Papers by Dr. Hariprasad Tarigonda