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Abstract

Transferring the surface texture from an image of an ob-
ject to a 3D model of an object is a long-standing problem
at the intersection of vision and graphics. One new technol-
ogy that has recently been applied to this problem is neural
implicit fields: learning a neural network which takes as in-
put the 3D object to be textured, the image, and a point in
space, and returns an RGB texture value at that point. How-
ever, current texture field methods produce low-frequency
output textures which do not faithfully represent the input
image. In this paper, we present an improved method for
generating implicit texture fields based on an input image.
We leverage the power of modern single-image 3D recon-
struction methods to unproject pixels from the conditioning
image into points in 3D. As the image object may be geomet-
rically different from the 3D object, we leverage unsuper-
vised implicit dense correspondences to warp these points
toward the shape of the 3D object. Our method then makes
use of these points in two ways. First, it defines an initial
texture field as an average of nearby image points, which
gives high quality texture in regions that are visible in the
input image. We improve coverage further by evaluating
distances in a feature space produced by a shape segmenta-
tion network, in which points on semantically-related parts
of an object (e.g. symmetric parts) tend to be close. To pro-
duce texture in uncovered regions, it then trains a neural
implicit network to predict a residual texture field on top of
the initial field. We compare our method to the prior state-
of-the-art in image-based implicit texture field generation,
showing that it produces texture fields that more faithfully
reflect the input image and adhere to the object’s local ge-
ometry.

1. Introduction

Demand for high-quality 3D models is increasing in
many fields: from games and virtual reality, to interior de-
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Figure 1. Given an input 3D object and a single image depict-
ing an object of the same semantic class, our method transfers the
appearance of the object in the image to the input 3D object by
generating an implicit texture field.

sign and retail, to synthetic training data for computer vi-
sion and robotics applications. Creating this content from
scratch is time-consuming and requires considerable exper-
tise. Thus, graphics and vision researchers are seeking new
data-driven techniques to augment human abilities and ac-
celerate the process.

One problem of interest is how to ease the process of
applying surface texture to 3D objects. An appealing idea is
to develop a method that can automatically transfer texture
from a single reference image of an object to a 3D model
of the same type of object. This is an ill-posed problem:
the system has to understand the 3D structure of the object
depicted in the image, deal with shape differences between
the object in the image and the object to be textured, rectify
distortions in textures and ‘hallucinate’ plausible texture in
regions occluded in the input image.

Recently, the surge in popularity of neural implicit fields
as representations for computer vision problems has led to
their application in image-based texture transfer. Given an
input reference image, an input shape to be textured, and
a point in space in the coordinate frame of that object, a
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neural network can predict a color at that point [9]. This
implicit field formulation is appealing, as it avoids the need
to define a consistent surface parameterization of the object
(which is itself still something of an open research problem,
in general). However, prior work on implicit texture fields
has been limited to producing blurry, low-frequency surface
texture with poor part-level correspondences between the
image and the input mesh.

In this paper, we present an improved system for gen-
erating an implicit texture field from a single image. Our
key insight is that rather than task a neural network with
predicting an entire texture field from an image, it is bet-
ter to use knowledge of the image formation process to take
texture directly from the image where possible, and only
task a network with predicting what remains to be filled in.
To that end, we leverage recent advances in single-image
3D reconstruction (specifically, Normalized Object Coor-
dinate Space (NOCS) maps [16]) to unproject 2D image
pixels to 3D colored points. To account for shape differ-
ences between the input image and object to be textured,
our system computes a dense correspondence between the
unprojected image points and the object, and warps the for-
mer toward the latter. Armed with an aligned set of colored
image points and object points, our system produces an im-
plicit texture field via a two-step process. First, it defines an
initial non-parametric texture field whose value at any point
is an average of nearby image point colors. This field pro-
vides accurate texture for regions of the object covered by
visible image regions. We further improve this coverage
by computing distances not in R3-space but in a higher-
dimensional feature space where points on semantically-
related parts of the object are closer though they may be
further away in Euclidean space (e.g. points on two differ-
ent arms of a chair). Second, our system fills in the remain-
ing uncovered regions of the object using a learned neural
texture field network. This module is designed as a residual
network, predicting the difference in color that should be
added to the output of the first non-parametric field.

We evaluate our system by comparing it to the prior
state-of-the-art, TextureFields, on generating texture for 3D
chair objects from the 3D FUTURE dataset [3]. Our sys-
tem quantitatively outperforms TextureFields on the task
of recovering the ground-truth textures of these objects,
and it also produces qualitatively better textures for novel
image-to-object texture transfer settings for which there is
no ground truth.

In summary, our contributions are:

• A system for a non-parametric texture field constructed
directly from input pixels with a neural implicit field
via a residual prediction approach.

2. Related Work
Some prior work has addressed the problem of generat-

ing textures on 3D objects based on an image. One work in
this area detects rectified patches in the input image and ex-
tracts illumination-corrected textures from them to be trans-
ferred to the object [17]. This is limited to conditioning im-
ages with homogeneous texture patterns, uv-parameterized
input mesh, assumes input mesh and geometry of condi-
tioning image are similar and does not have any data-driven
prior for occluded regions. The TM-NET [4] system is de-
signed to generate novel textures without image condition-
ing, but can be adapted for synthesis given a single-view
conditioning image. However, it has only demonstrated
relatively homogeneous textures (e.g. wood grain). An-
other system takes renderings of a synthetic object as input,
transforms each rendering to photorealistic appearance us-
ing cycle-consistent GANs, and then uses a differentiable
renderer to consolidate these images into a texture map for
the object [10]. The authors demonstrate the ability to
condition the model on the dominant color that the output
should have, but it cannot be conditioned on the complete
appearance of an object from another image. This method
also requires an explicit surface parameterization of the ob-
ject to be textured. A somewhat related work proposes a
generative model of textured meshes which can be learned
only from 2D image data [5]. In principle, one could trans-
fer the texture maps it produces for its synthesized meshes
to another target object; however, this system is limited to
genus zero shapes and also requires an explicit surface pa-
rameterization. As training 2D CNNs on spatially incon-
sistent uv maps can lead to irregular receptive fields, works
like TextureNet [6] have proposed neural architectures to
operate on locally consistent patches. But these have not
been applied to problems in texture transfer or synthesis.

Our work is most closely related to that of TextureFields,
which proposed the first neural implicit field for producing
3D object textures [9] (either conditioned on a single-view
image or unconditioned). The method displays an impres-
sive ability to transfer surface appearance features from a
2D image of one object to the 3D geometry of another, in-
cluding producing texture in occluded regions that is plau-
sible and consistent with the visible regions. However, its
output textures are low-frequency, sometimes reducing to
little more than a single average color for the entire object.

Other recent work has explored neural implicit fields for
modeling appearance in addition to geometry. The PIFu
sytsem aims at reconstructing the same geometry and ap-
pearance from the input image, whereas we seek to transfer
input image appearance to a different 3D geometry [11].
pi-GAN [1], scene representation networks [12], and neu-
ral radiance fields [8] can also represent textured objects
via neural implicit fields. They all produce representations
which must be rendered via some form of volumetric ray
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marching, whereas we seek a surface texture field.

3. Approach
Figure 2 shows an overview of our system. As input,

it takes a 3D object to be textured (represented as a point
cloud) and a single-view conditioning image depicting an
object of the same class from which texture should be bor-
rowed. As output, the system produces an implicit texture
field, ie. a continuous function f : R3 → R3 which maps a
point in space to an RGB color.

We divide our system into three stages. In the first stage,
the pixels from the conditioning image are unprojected to
points in the same 3D canonical space as the input object,
and then they are warped to align with the input object’s
points. The output of the first stage is a merged point cloud
consisting of both input object points and colored condi-
tioning image points.

The second stage then produces an initial non-
parametric texture field via averaging the values of nearby
conditioning image points for any given query point. This
non-parametric field is not well-defined in regions of space
that are occluded in the input conditioning image. To im-
prove the coverage of this field, we search for nearest neigh-
bors in a high-dimensional feature space produced by a pre-
trained shape segmentation network, in which points on
semantically-related shape parts are close (e.g. two arms
of an armchair). Evaluating distances in this space allows
for texture to be meaningfully interpolated to some regions
which are not visible in the conditioning image.

Finally, the third stage deals with regions of the input
object that remain uncovered by the non-parametric texture
field from stage two. No content from the conditioning im-
age could be applied to these regions, so we instead rely on
a data-driven prior learned from a large dataset of textured
3D objects to ‘hallucinate’ plausible texture here. Specifi-
cally, we train a neural implicit field model to output tex-
ture for points in space, given the conditioning image and
object to be textured as input. We train the network to out-
put a residual field of differences from the non-parametric
texture field of stage two, allowing the network to correct
issues with that field as well as fill in occluded regions.

The following sections describe each of these three
stages in more detail.

4. Lifting Input Image Pixels to 3D
Prior work on image-based implicit texture field gener-

ation applied 2D image-space processing to the condition-
ing image to produce texture features which are then com-
bined with geometric features from the input object to be
textured [9]. We hypothesize that image-based implicit tex-
tured field generation is better solved by first lifting the 2D
conditioning image into 3D and jointly processing this in-

formation with the input object geometry in the same space.
To perform this 2D to 3D lifting, we use a normalized

object coordinates (NOCS) map of the conditioning im-
age [16]. A NOCS map for an image contains the 3D co-
ordinates of each pixel in a category-canonical coordinate
space. In our experiments, we assume that the input object
to be textured is provided in this coordinate system, though
it is possible to ‘canonicalize’ objects that are not provided
as such [16]. We also use ground-truth NOCS maps for our
conditioning images, though again, it is possible to learn to
predict them with high accuracy [16] [13]. The NOCS map
also implicitly provides a foreground/background segmen-
tation, which we use to lift only foreground pixels to 3D
points.

Because the conditioning image may depict an object of
different geometry from the input object to be textured, we
cannot directly merge these unprojected pixels with points
from the input object, as they may not align. Instead, we
must first warp the conditioning image points to align with
the input object points. We accomplish this warp by com-
puting a dense correspondence between the conditioning
image points and the input object points using ShapeFlow
[7]. Specifically, we perform latent space optimization to
embed both these point clouds into ShapeFlow’s learned
latent space and deform both source (conditioning image
points) and target points (input object points) to the zero
latent code corresponding to the hub, which is an aligned
canonical space giving us dense correspondence. Figure 3
shows an example of this correspondence-based warping.

5. Non-parametric Field for Visible Regions
The output of the previous stage is a point cloud con-

sisting of points from both the input object and the con-
ditioning image. The approximately-aligned conditioning
image points provide a strong signal for what texture our
output implicit texture field should contain, at least in the
the regions of space corresponding to visible regions in the
image. Thus, this stage constructs an initial implicit tex-
ture field by interpolating between the colors of the con-
ditioning image points. As this field requires no learnable
parameters, we call it the non-parametric field. We define
the non-parametric field by averaging nearby image points.
Specifically, for a query point q, the texture field is defined
as the unweighted average of the colors of the five nearest
neighbor points in the conditioning image point cloud (see
Figure 5).

This field has well-defined texture only in regions of
space which are close to at least one of the image points.
We can increase the coverage of this field by changing our
distance metric for nearest neighbor lookup to one in which
spatially-distant points can still be close if they are semanti-
cally related. For example, two symmetric parts of an object
very likely should have the same texture: even if they are
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Figure 2. An overview of our approach. Given an input 3D object and conditioning image, we first lift the input image pixels to colored 3D
points and warp them to align with the geometry of the input object. These points are then used to define an initial, non-parametric texture
field based on averaging their values. Since this initial field only defines texture for regions of space visible in the conditioning image, we
also train a neural residual texture field to fill in these regions.

Conditioning Image Image Points

Input Object Points Warped Image Points

Figure 3. The effect of warping conditioning image points using
dense correspondences from ShapeFlow. Clockwise from top left:
the conditioning image, the unprojected 3D points from the image,
unprojected points after being warped toward the input object, the
input object.

spatially far apart, we would like the non-parametric field
to interpolate texture from points on one part to its symmet-
ric counterpart (especially if the counterpart is not visible in
the conditioning image and has no image points near it).

To construct such a distance metric, we lift points to a
higher dimensional feature space in which Euclidean dis-
tance has the properties we desire. To do this, we pass all
points through a DGCNN [18] pre-trained on a semantic
part segmentation task and take the penultimate (third layer)
features as R128 per-point descriptors. Figure 4 compares
how much of the input object is ‘covered’ by nearby con-
ditioning image points in 3-space vs. the 128-dimensional
DGCNN feature space. Distances are not directly compa-

Input Object Conditioning Image Points

Coverage (R3) Coverage (R128)

Figure 4. Visualizing how ‘covered’ the input object is by the con-
ditioning image points under different distance metrics (R3 Eu-
clidean space or the R128 space of a pre-trained shape classifier).
In the coverage images, points on the object are colored by their
distance to their nearest conditioning image point.

rable between the two spaces: points become sparser in
higher-dimensional spaces, and thus average point-to-point
distances are higher. Still, it is clear that the regions of the
chair which are severely uncovered (the feet) are reduced in
the higher dimensional space.

6. Neural Residual Field

As shown in Figure 4, some regions of the input object
may remain uncovered by any conditioning image point,
even when distances are evaluated in the DGCNN feature
space. For instance, this happens in cases where there is an
occluded part of the input object that is not semantically re-
lated to any visible region in the conditioning image (e.g. a
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Figure 5. Our pipeline for generating implicit texture fields from images. It takes as input a conditioning image and shape points sampled
from an object to be textured. Pixels from the conditioning image are unprojected to 3D space using NOCS maps [16] and then warped to
align with the input shape points using ShapeFlow [7]. These points are then passed to our non-parametric texture field model, which lifts
them to a higher dimensional space using a pre-trained segmentation DGCNN and then uses nearest neighbor lookups in this space to define
the color at any give query point q. The non-parametric model also provides two coverage maps indicating how well the conditioning image
overlaps with each point on the shape in 3-space and and higher-dimensional feature space. Finally, the outputs of the non-parametric field
are passed to an implicit decoder which estimates the residual between the non-parametric model’s predicted color and the ground truth.

top-down image of a chair does not show any of the chair’s
legs). To texture such regions, we instead rely on priors
learned from data. Specifically, we learn a neural residual
field that predicts differences from the non-parametric field.
The residual field uses the same architecture as the implicit
field network from TextureFields [9], which takes as input
a point in space and returns an RGB color. We concate-
nate to the input point location x some additional inputs:
(1) the color predicted by the non-parametric field at x, (2)
the R3 coverage at x, and (3) the R128 coverage at x. We
also transform x into a positional encoding using a Fourier
feature transform [15]. The network is then trained to pre-
dict the difference between the value of the non-parametric
field at x and the ground-truth texture value at that point.
Like TextureFields, we train only on points sampled from
the object’s surface, as ground truth texture values are only
defined there.

7. Results & Evaluation
Here we evaluate how well our model can transfer tex-

tures from 2D images to 3D shapes, investigate ablations,
and compare with the prior state of the art. All experiments
were run on a NVIDIA Quadro RTX 6000 and a GeForce
RTX 3090 both with 24GB RAM.

Dataset. For our experiments, we use 3D chair models
from the the 3D FUTURE Dataset [3], a dataset of high-
quality textured meshes of furniture objects. Prior works

Method L1 ↓ L2 ↓ LPIPS ↓ SSIM ↑

TextureFields 0.0316 0.0059 0.1246 0.9203
TextureFields + PE 0.0302 0.0061 0.1187 0.9216
Non-parametric Only 0.0325 0.0077 0.1139 0.9122
Residual 0.0292 0.0054 0.1093 0.9210
Residual + PE (Ours) 0.0281 0.0052 0.1053 0.9228

Table 1. Quantitative comparison between different model vari-
ants on the task of reconstructing the texture of an object given a
single rendering of that object. Gold/silver/bronze colors indicate
1st/2nd/3rd-best performing models for each metric.

have used ShapeNet [2] where textures are generally ho-
mogeneous and lack detail. We use a total of 968 chairs
(700 train, 140 validation, 128 test). We pre-process these
meshes into inputs for our system by transforming them into
the NOCS space [16] and then uniformly sampling 2048
points from the surface where each sample consists of a
point location, surface normal, and surface color. We ren-
der conditioning images for these meshes by sampling cam-
era viewpoints around the viewing hemisphere resulting in
pairs for ground truth supervision. We additionally render
NOCS, normals, and ground truth color maps of the input
mesh offline from various view points for visualization at
inference time, avoiding expensive online rendering. These
maps are also used for quantitative evaluations as discussed
in the next section.
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Condition (2D) TextureFields TextureFields + PE Nonparametric Only Residual Residual + PE (Ours) Ground Truth

Figure 6. Qualitative comparison between different texture field methods in cases where the conditioning image is a rendering of the input
object.

Evaluation protocol. To compare different methods, we
use both qualitative comparison of output texture fields as
well as quantitative evaluation. To perform quantitative
evaluation, we perform experiments where the condition-
ing image is a view of the input object, so we have a known
ground truth texture field for that object. We render the pre-
dicted textures from 10 viewpoints randomly sampled on
the hemisphere and measure the model’s performance by
computing four metrics: L1 distance, L2 distance, SSIM,
and LPIPS [19] between the rendered predicted image and
rendered ground truth image.

Experiments. Using these metrics, we compare the follow-
ing conditions:

• TextureFields: The implicit field model from Texture-
Fields [9].

• TextureFields + PE: Adding input positional encod-
ings to TextureFields.

• Nonparametric Only: Producing output texture using
only our non-parametric implicit field.

• Residual: The non-parametric field plus the residuals
predicted by our residual field network.

• Residual + PE: The residual field model with input
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Condition (2D) Input Object TextureFields + PE Nonparametric Only Residual + PE (Ours) Residual + PE
(No Def)

Figure 7. Qualitative comparison between different texture field methods in cases where the conditioning image depicts a different object
than the input object. In the third example, we also show a zoomed in section demonstrating the importance of dense correspondence -
which prevents color bleeding into different parts.

positional encodings.

Table 1 shows quantitative results. Our method dom-
inates TextureFields on all metrics. While positional en-
codings are an important component, the residual model
without positional encoding also outperforms the Texture-
Fields. Figure 6 shows qualitative results from this exper-
iment. While TextureFields exhibits some learned priors
(e.g. by correctly coloring the occluded chair-back in the
first row), it fails to reflect high-frequency details seen in the
conditioning image. By comparison, the textures estimated
by both residual models more accurately reflect these de-
tails while still leveraging learned priors. More qualitative
results are provided in supplemental.

We also conduct qualitative evaluation on examples
where the conditioning image depicts a different object than
the input object. In this case, we cannot conduct quantita-
tive comparisons because there is no ground truth. For this
experiment, we consider another condition, Residual + PE
(No Def), which omits the step of aligning the conditioning
image points to the input object using ShapeFlow deforma-
tions. Figure 7 shows this qualitative comparison. In the
first example, both the non-parametric and residual models
transfer the distinct colors of the conditioning chair’s back
and seat, highlighting the strength of the non-parametric
model’s use of the part-aware feature-space. In the second
example, the residual field is critical for correcting the ap-
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Input Object Conditioning Image Output Ground Truth

Figure 8. Typical failure cases of our method.

pearance of the chair back. Both the second and third exam-
ples illustrate the importance of aligning the conditioning
image points with the input shape points using ShapeFlow
deformations, preventing color leaking from the chair seat
to the back (2nd example) or from the seat to the legs (3rd
example). More qualitative results are provided in supple-
mental.

8. Conclusion
In this paper, we presented a new system for image-

based implicit texture field generation that improves upon
the prior state of the art. Our system leverages single-
image 3D reconstruction to lift conditioning image pixels
to the same 3D space as the object to be textured. It makes
use of these 3D colored points in two ways: first defin-
ing a non-parametric texture field through nearest-neighbor
averaging, and then completing occluded regions using a
neural residual field. On the challenging task of texturing
chairs from the 3D FUTURE dataset, our system outper-
forms prior work.

Our system does still have some limitations. Figure 8
shows some typical failure cases. While our model cap-
tures more high-frequency detail than TextureFields, it still
exhibits smoothing for very high frequencies (top row). In
addition, regions of the input object that are both occluded
in the input image and infrequent in the training data can
be hard to synthesize plausible texture for, as neither the
image-based non-parametric field nor the data-driven resid-
ual field have much information to draw on (e.g. the small
chair pillow in the bottom row).

In our current neural residual model, the implicit decoder
takes global geometric and conditioning-image features as
input. One interesting avenue of further research could en-
tail generating local features from the conditioning-image
and shape data to condition the implicit texture field. One
could image computing these features jointly, by process-
ing both input shape points and unprojected image points
in a common representation space; an approach along these
lines has been successful in learning to segment large-scale

point clouds [14]. Another avenue of further study would
be to incorporate a more comprehensive loss-function than
the current pixel-wise approach allows. For example, incor-
porating an adversarial loss may address some of the asym-
metric, unrealistic artifacts in the generated textures.
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