

Abstract—In this paper, a novel single hidden layer
feedforward neural network, called Constrained Extreme
Learning Machine (CELM), is proposed based on Extreme
Learning Machine (ELM). In CELM, the connection weights
between the input layer and hidden neurons are randomly
drawn from a constrained set of difference vectors of
between-class samples, rather than an open set of arbitrary
vectors. Therefore, the CELM is expected to be more suitable
for discriminative tasks, whilst retaining other advantages of
ELM. The experimental results are presented to show the high
efficiency of the CELM, compared with ELM and some other
related learning machines.

I. INTRODUCTION
ANY neural network architectures have been proposed
during the past two decades. The feedforward neural
networks are the most popular ones studied by

researchers. It has been proved that multilayer feedforward
networks with non-polynomial activation functions can
approximate any continuous function [1]. Single hidden layer
feedforward neural networks (SLFNs) were studied
extensively because of their relatively fast learning speed and
simple neural network structure. It is shown that the SLFNs
have the same approximate capabilities as multi-layer feed
forward neural networks [2, 3]. Moreover, Tamura et al. [2]
showed that the weights from the input layer to the hidden
layer of SLFNs can be randomly generated. Huang et al. [4]
further proved the above theory rigorously, and proposed a
new type of SLFNs called ELM.

ELM can be considered as a linear system after the
nonlinear feature mapping of the hidden layer [5]. Therefore,
ELM has a closed form of solution due to the simple network
structure and randomness of hidden layer parameters. The
essence of linear system used by ELM is to minimize the
training error and the norm of connection weights from the
hidden layer to the output layer at the same time. Hence ELM
has a good generalization performance according to
feedforward neural network theory [6]. As a consequence,
ELM has some desirable features, such as that hidden layer
parameters need not be tuned, fast learning speed and good
generalization performance. These advantages lead to the

W. Zhu and J. Miao are with the Key Lab of Intelligent Information

Processing of Chinese Academy of Sciences (CAS), Institute of Computing
Technology, CAS, Beijing 100190, China (e-mail: wentao.zhu@
vipl.ict.ac.cn; jmiao@ict.ac.cn).

L. Qing is with School of Computer and Control Engineering, University
of Chinese Academy of Sciences, Beijing 100049, China (e-mail:
lyqing@ucas.ac.cn).

This work was supported in part by Natural Science Foundation of China
(Nos. 61175115 and 61272320) and President Fund of Graduate University
of Chinese Academy of Sciences (No. Y35101CY00).

popularity of ELM both for researchers and engineers.
However, the random selection of hidden layer parameters

makes quite inefficient use of hidden nodes [7]. ELM usually
has to randomly generate a great number of hidden nodes to
achieve desirable performance. This leads to time consuming
in test process, which is not helpful in real applications. Large
numbers of hidden nodes also easily lead to over fitting in
training. There are mainly three ways to solve the problem:

1. Use online incremental learning methods to add hidden
layer nodes dynamically [7, 8]. These methods
randomly generate parts or all of the hidden layer
nodes, and then select the candidate hidden nodes one
by one or chunk by chunk with fixed or varying chunk
size. Whether the hidden layer node is added or not is
usually depending on the output layer objective
function.

2. Use pruning methods to select the candidate hidden
layer nodes [9, 10]. These methods start with a large
neural network using the traditional ELM, and then
apply some metrics, such as statistical criteria and
multi-response sparse regression, to rank these hidden
nodes. Finally, eliminate those low relevance hidden
nodes to form a more compact neural network
structure.

3. Use gradient based methods to update the weights from
the input layer to the hidden layer in ELM [11]. These
methods study the mathematical model of ELM, and
then find the derivation of ELM optimal function with
respect to hidden parameters. After randomly initialize
the weights from the input layer to the hidden layer
and use a close-form least square solution to calculate
the weights from the hidden layer to the output layer,
these methods use the gradient descending method to
update the weights from the input layer to the hidden
layer in ELM iteratively.

The above methods can overcome the drawbacks of the
traditional ELM to some degree. However, they do not solve
the problem directly from the essence of hidden nodes.
Besides, these methods are somewhat time-consuming.

Actually, the essence of hidden layer functions is to map
the data into a feature space, where the output layer can use a
classifier to separate the feature-mapped data perfectly.
Therefore, the hidden layer should extract discriminative
features for data classification tasks.

LDA [12] is probably the most commonly used methods to
extract discriminative features. However, LDA has some
drawbacks, such as that the number of feature-mapped
dimensions is less than the number of classes, “Small Sample
Size” (SSS) problem and Gaussian distribution assumption of

Constrained Extreme Learning Machine: a Novel Highly
Discriminative Random Feedforward Neural Network

Wentao Zhu, Jun Miao and Laiyun Qing

M

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 800

equal covariance and different means. Su et al. [13] proposed
a projection pursuit based LDA method to overcome these
problems. The method showed that the difference vectors of
between-class samples have a strong discriminative property
for classification tasks, but this method is rather complex with
many embedded trivial tricks.

In this work, to balance between the high discriminative
feature learning and the simplicity and fast training speed of
the ELM, we propose a novel model, called Constrained
Extreme Learning Machine (CELM), which utilizes a random
subset of difference vectors of between-class samples to
replace the completely random connection weights from the
input layer to the hidden layer in ELM. Experimental results
show that, CELM has better generalization ability than ELM
and other related methods. We also compared the CELM
algorithm with SVM and ELM related algorithms [14, 15] on
CIFAR-10 data set [16]. The results show that the CELM
algorithm outperforms these methods.

The remaining part of the paper is organized as follows: in
section Ⅱ, we firstly review the traditional ELM algorithm,
and then propose the CELM algorithms. Experiments are
presented in section Ⅲ. Conclusion and discussion are given
in section Ⅳ.

II. CONSTRAINED EXTREME LEARNING MACHINE
In this section, we firstly review the traditional ELM

algorithm. Then we introduce the CELM algorithm with the
idea of using difference vectors to generate discriminative
hidden nodes into the traditional ELM.

A. Review of Extreme Learning Machine
ELM is a type of SLFNs. The hidden layer parameters, i.e.,

the connection weights from the input layer to the hidden
nodes, are randomly generated in ELM. The output layer is a
linear system, where the connection weights from the hidden
layer to the output layer are learned by computing the
Moore-Penrose generalized inverse [5]. The ELM network
has extreme fast learning speed due to the simple network
structure and its closed form solution. Additionally, the
randomness makes ELM not necessarily tune these hidden
layer parameters iteratively.

Given the training samples and class labels
={(,)| , , 1, , }n m

i i i i i Nℵ ∈ ∈ = …x t x R t R , the number of
hidden nodes L and activation function (, ,)G ba x , where

n∈x R is the input vector, n∈a R is the associated
connection weight vector and b ∈ R is the bias, the algorithm
of ELM network can be concluded as the following three
steps:

Step 1: Assign the parameters {(,) | 1, , }j jb j L=a … of
hidden nodes with randomly generated values.

Step 2: Calculate the hidden layer output matrix H for all
the training samples:

1 1 1 1 1

1 1

() (, ,) (, ,)

() (, ,) (, ,)

L L

N N L L N N L

G b G b

G b G b
×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

h x a x a x
H

h x a x a x

"
"

"

, where (, ,)i i jG ba x is the activation function of ith hidden
node for jth sample.

Step 3: Calculate the hidden layer’s output connection

weights β by solving the least squares problem:
†=β H T

, where †H is the generalized inverse matrix of the matrix H ,

and
1

=

T

T
N N m×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

t
T

t
.

As analyzed in theory and further verified by the
simulation results in [17], ELM for classification tends to
achieve better generalization performance than traditional
SVM. ELM can also overcome the local minimal problem
that BP neural nets faced, due to its convex model structure.
The learning speed of ELM is extremely fast at the same time.

B. Constrained Extreme Learning Machine
The completely random parameters in the hidden layer of

ELM do not always represent discriminative features. Such
unconstrained random parameters may make ELM has to
generate a great number of hidden nodes to meet desirable
generalization performance. More hidden nodes mean more
processing time, more computational resource and more
easily over fitting. These problems in ELM should be solved.

Although the method [13] is rather complex with many
embedded trivial tricks, it shows that the difference vectors of
between-class samples are effective to classification tasks.
Considering the simplicity and the extreme fast learning
speed of the ELM, we extend the ELM model to Constrained
ELM (CELM) by constraining the weight vector parameters
{ | 1, , }j j L=a … of ELM to be randomly drawn from the
closed set of difference vectors of between-class samples
instead of from the open set of arbitrary vectors to tackle the
problem of generation of discriminative hidden nodes. We
use a simple case to illustrate the idea of difference vectors of
between-class samples.

(a)

Class1

Class 2

801

(b)

(c)

Fig. 1. Illustration of difference vectors of between-class samples. How to
generate the difference vectors is illustrated in (a). The completely random
connection weight vectors from the input layer to the hidden layer of ELM
are illustrated in (b). The constrained random weight vectors of CELM are
illustrated in (c).

The essence of the weight vectors from the input layer to

the neurons in the hidden layer is to map the original samples
into a discriminative feature space spanned by these vectors,
where the samples can be classified. The weight vectors are
helpful for classification if the directions of the weight
vectors are from class 1 to class 2 or reversely, as illustrated
in Fig. 1(a). The blocks in the figure represent the samples in
class 1, and the circles represent the samples in class 2. As a
comparison, the weight vectors from the input layer to the
hidden nodes in ELM are completely random without
constraints, as illustrated in Fig. 1(b). It can be inferred the
weight vectors which do not follow the direction from class 1
to class 2 are less discriminative for classification tasks. This
is the reason why not all the hidden nodes in ELM are
efficient or discriminative.

We randomly generate the weight vectors from the input
layer to the hidden layer with the differences of between-class
samples as illustrated in Fig. 1(a). The difference vectors of
between-class samples can map the samples to a higher
discriminative feature space than ELM. The weight vectors
from the input layer to the hidden layer in CELM are
illustrated in Fig. 1(c). The directions of these weight vectors
are close to the direction from class 1 to class 2, which are
more discriminative for the classification tasks intuitively.

Two pre-processing operations are utilized to delete noise

and too relevant difference vectors for better generalization of
CELM. First, delete the small difference vectors. When the
between-class samples are located in the overlapped area of
two classes as illustrated in Fig. 2, the deference vectors are
small and may contain non-discriminative or noise
information. So deleting the small deference vectors is
helpful for classification tasks. Second, delete the nearly
parallel difference vectors. Nearly parallel vectors are so
relevant that they will make the data repeatedly projected to
near points in the feature space, which may risk error
accumulating [22]. If some vectors are nearly parallel, only
one vector is retained.

In addition to these two operations, we normalize the rest
difference vectors as the weights from the input layer to the
hidden layer. The reason why normalize these weights and
how to normalize will be introduced in the following
discussion.

In CELM, the prior information of samples’ class
distribution is utilized to generate the weights from the input
layer to the hidden layer. The aim is to split different classes’
samples into different areas in the feature space. The ideal
case is that, for example, class 1 is mapped into negative semi
axis and class 2 is mapped into positive semi axis in the
feature space. Hence the bias must be set as the middle point
of the two selected samples from the geometric sense
intuitively. As a result, the biases to the hidden neurons can be
determined by assuming that the samples from one class are
mapped to -1 and the samples from another class are mapped
1 respectively. Denote 1cx and 2cx as the samples drawn
from two classes. Then the weight vector w from the input
layer to one hidden neuron can be generated with

2 1()c cα −x x , where α is the normalized factor. The original
data x is transformed to 2 1()T T

c cb bα+ = − +x w x x x by
feature mapping, where b is the bias with respect to the
weight vector w in ELM model. The assumption that 1cx
and 2cx are mapped to -1 and 1 can be written as

1 2 1() 1T
c c c bα − + = −x x x , and

2 2 1() 1T
c c c bα − + =x x x .

We can obtain that the normalization factor
2

2
2 1

2

c c L

α =
−x x

Class 1 Class 2

Fig. 2. Illustration of noise difference vectors of between-class samples

802

Algorithm 1: Training of the Constrained Extreme
Learning Machine (CELM)
Input: the training
samples ={(,)| , , 1, , }n m

i i i i i Nℵ ∈ ∈ = …x t x R t R , the
hidden node number L and the activation
function (, ,)G bw x .
Output: the model parameters of CELM, i.e., the weight
matrix n L×W and the bias vector 1 L×b from the input
layer to the hidden layer, the weight matrix L mβ × from the
hidden layer to the output layer.
1) While the number of chose difference vectors is less
than L

a) Randomly draw training samples 1cx and 2cx from
any two different classes respectively and generate
the difference vector 2 1c c−x x ;

b) If the norm of vector is small enough, delete it and
go to a);

c) If the vector is nearly parallel with the previous
generated vectors, delete it and go to a);

d) Normalize the difference vector by

2

2 1
2

2 1

2()c c

c c L

−
=

−
x x

w
x x

, and calculate the corresponding

bias
2

1 2 1 2
2

2 1

() ()T
c c c c

c c L

b
+ −

=
−

x x x x
x x

.

e) Use the vector w and bias b to construct the
weight matrix n L×W and bias vector 1 L×b .

2) Calculate the hidden layer output matrix H as
1 1 1 1 1

1 1

() (, ,) (, ,)

() (, ,) (, ,)

L L

N N L L N N L

G b G b

G b G b
×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

h x a x a x
H

h x a x a x

"
"

"
.

3) Calculate the hidden layer’s output weight matrix L mβ ×
by solving the least squares problem:

†=β H T
, where †H is the generalized inverse matrix

and
1

=

T

T
N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

t
T

t
.

and the corresponding bias
2

1 2 1 2
2

2 1

() ()T
c c c c

c c L

b
+ −

=
−

x x x x
x x

 by

solving the above two equation constraints.
The commonly used activation function for hidden neurons

is sigmoid function 1()
1 xf x

e−=
+

. The output layer in

CELM is a simple linear system as same as that of ELM.

From the above discussion, the training algorithm for
CELM can be concluded in the Algorithm 1. The essence of
CELM is to constrain the hidden neuron’s input connection
weights to be consistent with the directions from one class to

another class. So the random weights are constrained to be
chosen from the set that is composed of the difference vectors
of between-class samples.

III. PERFORMANCE EVALUATION
In this section, we evaluate the proposed CELM and

compare it with some classifiers, such as ELM, SVM and
some related deep learning methods, on both synthetic and
real-world datasets. Ten round experiments are conducted for
each data set. In each experiment, the training set and the test
set are randomly generated using the samples from synthetic
datasets and UCI database [18]. The samples from UCI
database are normalized to be of zero means and unit
variances. The performances are recorded with the means and
the standard deviations of classification accuracies.

In these experiments, we also compare the CELM with the
normalized ELM, which deletes small, nearly parallel weight
vectors and normalize them in ELM. The only difference
between CELM and the normalized ELM is that, CELM
utilizes the difference vectors to construct the hidden nodes.
The aim of this comparison is to verify the effect of the
difference vectors sufficiently. The code of ELM used in the
experiments was downloaded from [4].

A. Experiments on Synthetic Dataset

 We first evaluate our CELM algorithm on the synthetic
dataset of the spiral data. It is illustrated in Fig. 3. To retain
the symmetrical shape of the spiral, we normalize the samples
into the range [-1, 1] as same as that in [4]. The total
generated number of such spiral data is 5000. The training set
contains 4000 samples and the test set contains 1000 samples.
The two sets are randomly generated in each one of the total
ten round experiments.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

803

0 50 100 150
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

The number of hidden nodes

T
es

tin
g

ac
cu

ra
cy

Spirals

ELM
CELM
Normalized ELM

Fig. 3. The spiral synthetic dataset is illustrated in the top side. The
performance comparisons are shown in the down side.

We compare the performances of CELM with ELM and
normalized ELM. The number of hidden nodes is selected
from 10 to 300 at a step 10. The performances of these models
are illustrated in Fig. 3. The solid line represents the
performance of CELM. The dotted line with circles
represents that of ELM and the dashed line with triangles
represents the normalized ELM.

As shown in Fig. 3, CELM has a perfect performance when
the number of hidden nodes reaches 50, while normalized
ELM needs 100 hidden nodes to reach the same perfect
performance. The test accuracy of ELM is less than 0.8 even
when the number of hidden nodes is 300. The test accuracies
of CELM are above those of normalized ELM and ELM all
the time. The result shows that CELM has the better
generalization ability than normalized ELM. Therefore, the
difference vectors really work from the performance
comparison between CELM and normalized ELM.

0 10 20 30 40 50 60 70

0.8

0.85

0.9

0.95

The number of hidden nodes

T
es

tin
g

ac
cu

ra
cy

WDBC

ELM
CELM
Normalized ELM

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The number of hidden nodes

T
es

tin
g

ac
cu

ra
cy

MDD-fac

ELM
CELM
Normalized ELM

0 10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

The number of hidden nodes

T
es

tin
g

ac
cu

ra
cy

MDD-fou

ELM
CELM
Normalized ELM

0 10 20 30 40 50 60 70 80
0.2

0.4

0.6

0.8

1

The number of hidden nodes

T
es

tin
g

ac
cu

ra
cy

MDD-kar

ELM
CELM
Normalized ELM

0 50 100 150 200
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The number of hidden nodes

T
es

tin
g

 a
cc

ur
a

cy

MDD-pix

ELM
CELM
Normalized ELM

804

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

The number of hidden nodes

T
es

tin
g

ac
cu

ra
cy

MDD-zer

ELM
CELM
Normalized ELM

B. Experiments on UCI Datasets
Six datasets from UCI database [18], including Wisconsin

diagnostic breast cancer dataset (WDBC) and five multi
feature digit datasets (MDD-fac, fou, kar, pix, zer), are used
for evaluating the proposed CELM. CELM is compared with
ELM and normalized ELM. In MDD dataset, five different
feature sets are used.

In the first experiment, the number of training samples is
4/5 size of the total samples, and the rest is used as test
samples. These samples are randomly divided into training
and test sets. The comparison of ELM, CELM and
normalized ELM in the first experiment are illustrated in Fig.
4. The performances of these models are displayed
sufficiently from the trends of these curves in the figure. It
can be seen that the test accuracy curves of CELM are above
those of other two methods in all the experiments and so the
generalization ability of the proposed CELM is better than
other two models on these real world datasets. The samples’
distribution prior we introduced makes the efficient use of
hidden nodes in CELM and really helps the classification
tasks.

In the second experiment, a benchmark performance
evaluation is conducted on the six datasets. The size of
training set is half of the total number of samples just as other
methods usually do on these datasets. The training set and the
test set are randomly generated in each of ten rounds of
experiments. The mean of test accuracies are recorded in
Table I. It can be seen the performances of CELM always
outperform those of ELM. The CELM improves the ELM’s
performance greatly.

C. Experiments on Large Scale Datasets
We also evaluate the CELM and ELM on two large size

datasets, i.e., MNIST [19] and CIFAR-10 [16]. The MNIST
database of handwritten digits contains a training set of
60,000 samples, and a test set of 10,000 samples. It consists of
binary images of ten classes and the size of these digits is 28
×28 pixels. The samples are normalized and input into the
CELM and ELM to compare their performances. The
CIFAR-10 dataset contains 60,000 color images in 10 classes,
with 6000 image per class. The training set and the test set
consist of 50,000 images and 10,000 images respectively. In
CIFAR-10 dataset, the standard pipeline defined in [20] is

used. First, extract dense 6 6× local patches with ZCA
whitening and the stride is 1. Second, use threshold coding
with =0.25α to encode. The codebook is trained with
OMP-1 [23] and the codebook size is 50 in the experiment.
Third, average-pool the features on a 2 2× grid to form the
global image representation.

Due to large number of samples, we only use 1/5 instances
in CIFAR-10 dataset and 1/10 instances in MNIST dataset for
experiments. These instances are uniformly sampled from the
two datasets respectively. The performances of CELM, ELM
and normalized ELM are illustrated in Fig. 5.

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

The number of hidden nodes

T
es

tin
g

ac
cu

ra
cy

MNIST

ELM
CELM
Normalized ELM

(a)

0 100 200 300 400 500 600 700
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

The number of hidden nodes

T
es

tin
g

 a
cc

ur
ac

y

CIFAR-10

ELM
CELM
Normalized ELM

(b)

 From Fig. 5, it can be learned the performances of CELM
are 10 percentages higher than those of ELM averagely on the
two datasets. The efficiency of the difference vectors can be
evaluated as follows. When the same numbers of vectors are
used, the method with higher test accuracy means more
efficient. In Fig. 5, the performance of CELM is higher than
that of normalized ELM when they are not converged. The
gap between the performance of CELM and normalized ELM
shows that the difference vector is effective. The curve of
CELM’s performance is always above those of normalized
ELM and ELM in all these datasets, which shows that
difference vectors really help the efficient use of hidden
nodes.

The CELM is also compared with SVM related methods,
e.g., Linear SVM and R2SVM [14], and deep ELM related
method, e.g., DCN [15], on CIFAR-10 dataset. The R2SVM is

Fig. 5. Experimental results of ELM, CELM and normalized ELM on
the subsets of MNIST and CIFAR-10 datasets.

Fig. 4. Experimental results of ELM, CELM and normalized ELM on
the six UCI datasets.

805

a deep learning model and its building block is a linear SVM
model. The outputs of the previous layer are transformed by a
random matrix, and then the transformed outputs are added to
the original features. The modified features are input into the
next layer after transformed by a sigmoid function. The DCN
is also a deep learning model, but its building block is an
ELM based model, in which parts of the hidden nodes are
built with random projection and the other part of hidden
nodes are built with RBM weights [15, 24]. Instead of the way
that adds the output of previous layer as a bias to the next
layer, the outputs of the previous layer are concatenated with
the original features sequentially and are input into the next
layer in DCN model.

In this experiment, all the 50,000 training samples are used
to train the model, and all the 10,000 test samples are used to
evaluate the performance. Table Ⅱ shows the performances
of CELM, linear-SVM, R2SVM [14] and DCN [15] methods.
Note the performances of linear SVM, R2SVM and DCN are
cited from [14]. And the experimental conditions of CELM,
such as the feature exaction and the number of used training
and test sets, are the same with [14].

TABLE I

AVERAGE CLASSIFICATION ACCURACIES OF CELM AND ELM

Datasets CELM ELM

WDBC 0.972 0.971
MDD-fac 0.982 0.964
MDD-fou 0.837 0.797
MDD-kar 0.972 0.900
MDD-pix 0.977 0.858
MDD-zer 0.844 0.805

TABLE Ⅱ

PERFORMANCE ON CIFAR-10 DATASET

Algorithms No. of hidden layers
/nodes Test accuracy

Linear SVM - 0.647
R2SVM 35 Layers 0.693

DCN - 0.672
CELM 7000 nodes 0.723

From the Table Ⅱ, the CELM can be found to have the

best performance than that of linear-SVM, DCN and R2SVM.
The CELM has the test accuracy of 8 percentages higher than
that of linear SVM. In [14], the R2SVM has 35 layers, and
each layer is a linear SVM after sigmoid transformation and
random projection. Although R2SVM and DCN have many
layers, the CELM of one layer has the test accuracy of 3
percentages higher than that of these discriminative deep
learning methods. Besides, the CELM can train a model on a
case of 50,000 training data well, which suggests that the
proposed CELM can tackle large scale data effectively.

IV. CONCLUSION AND DISCUSSION
To address the inefficient use of hidden nodes in ELM, this

paper proposed a novel learning model, CELM. The CELM
constrains its random weights’ generation from a smaller
space than that of the ELM, i.e., replacing the completely
random weight vectors with ones that are randomly drawn

from the set of difference vectors of between-classes samples.
The main contribution of CELM is that it introduces sample
distribution prior into the construction of the hidden layer to
make a better discriminative feature mapping. The effective
feature mapping greatly contributes the efficient use of
hidden nodes in ELM. Extensive comparisons between
CELM and some related methods on both synthetic and
real-world datasets showed that CELM always has a better
performance.

However, the CELM still has some problems that ELM
owned. One is that CELM faces over fitting problem when
the number of hidden nodes is very large, although CELM
improves the efficient use of discriminative hidden nodes. To
our relief, the method in [21] can tackle the problem
effectively. Incorporating the idea of this method into CELM
is expected to improve the performance and robustness of
CELM. Another problem is that the generation speed of
difference vectors will be much slower when we want to
obtain more than 10,000 hidden nodes. This is because the
anti-correlation operation involving vector direction
comparisons is time consuming. At last, the solving of the
weights from the hidden layer to the output layer is
time-consuming when the number of hidden nodes is very
large. This case is much common in large scale applications.
Some gradient based solving methods for linear system can
tackle the problem iteratively.

The further research will include the study of invariant
feature generating and other measures for the improvement of
CELM and the experimental verification on CELM’s
application to regression problems. The analyses on what
kinds of problems that the CELM will work with and such
related theories are also expected to be studied in the future.

REFERENCES
[1] M. Leshno, V. Ya. Lin, A. Pinkus and S. Schocken, “Multilayer

feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural Networks, vol. 6(6), pp. 861–867,
1993.

[2] S. Tamura and M. Tateishi, “Capabilities of a four-layered feedforward
neural network: four layers versus three,” IEEE Trans. Neural
Networks, vol. 8(2), pp. 251–255, 1997.

[3] G.-B. Huang and H.A. Babri, “Upper bounds on the number of hidden
neurons in feedforward networks with arbitrary bounded nonlinear
activation functions,” IEEE Trans. Neural Networks, vol. 9(1), pp.
224–229, 1998.

[4] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70 (1–3), pp. 489–
501, Dec. 2006, [Code: http://www.ntu.edu.sg/home/egbhuang/elm_
random_hidden_nodes.html].

[5] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in
Proceedings of International Joint Conference on Neural Networks
(IJCNN2004), vol. 2, (Budapest, Hungary), pp. 985–990, 25-29 Jul.,
2004.

[6] P.L. Bartlett, “The sample complexity of pattern classification with
neural networks: the size of the weights is more important than the size
of the network,” IEEE Trans. Inf. Theory, vol. 44(2), pp. 525–536,
1998.

[7] Q.-Y. Zhu, A.K. Qin, P.N. Suganthan and G.-B. Huang, “Evolutionary
extreme learning machine,” Pattern Recognition, vol. 38(10), pp. 1759
–1763, Oct. 2005.

806

[8] L. Yuan, Y. C. Soh, and G.-B. Huang, "A constructive enhancement for
online sequential extreme learning machine," in Proceedings of
International Joint Conference on Neural Networks (IJCNN2009), pp.
1708–1713, 14-19 Jun., 2009.

[9] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten and A. Lendasse,
A., “OP-ELM: optimally pruned extreme learning machine,” Neural
Networks, IEEE Transactions on, vol. 21(1), pp. 158-162, 2010.

[10] H. J. Rong, Y. S. Ong, A. H. Tan and Z. Zhu, “A fast pruned-extreme
learning machine for classification problem,” Neurocomputing, vol.
72(1), pp. 359-366, 2008.

[11] D. Yu and L. Deng, “Efficient and effective algorithms for training
single-hidden-layer neural networks,” Pattern Recognition Letters, vol.
33(5), pp. 554–558, 1 Apr. 2012.

[12] K. P. Murphy, “Machine learning: a probabilistic perspective,” The
MIT Press, 2012.

[13] Y. Su, S. Shan, X. Chen and W. Gao, “Classifiability-based
discriminatory projection pursuit,” IEEE Trans. Neural Networks, vol.
22(12), pp. 2050-2061, 2011.

[14] O. Vinyals, Y. Jia, L. Deng and T. Darrell, “Learning with recursive
perceptual representations,” In Advances in Neural Information
Processing Systems, pp. 2834-2842, 2012.

[15] L. Deng and D. Yu, “Deep convex net: A scalable architecture for
speech pattern classification,” In Proceedings of the Interspeech 2011.

[16] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Master's thesis, Department of Computer Science,
University of Toronto, 2009, [http://www.cs.toronto.edu/~kriz/
cifar.html].

[17] G.-B. Huang, X. Ding and H. Zhou, “Optimization method based
extreme learning machine for classification,” Neurocomputing, vol.
74(1), pp. 155-163, 2010.

[18] C. L. Blake and C. J. Merz, “UCI Repository of machine learning
databases”, 1998, [http://www.ics.uci.edu/~mlearn/MLRepository.
html]. Irvine, CA: University of California. Department of Information
and Computer Science, 460.

[19] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86(11), pp. 2278-2324, 1998, [Online]. Available:
http://yann.lecun.com/exdb/mnist.

[20] A. Coates and A. Ng, “The importance of encoding versus training with
sparse coding and vector quantization,” In Proceedings of the 28th
International Conference on Machine Learning (ICML-11) (pp.
921-928), 2011.

[21] W. Zhu, J. Miao and L. Qing, “Extreme support vector regression,” in
Proceedings of International Conference on Extreme Learning
Machines (ELM2013), Beijing, China, Springer-Verlag, 15-17 Oct.
2013.

[22] C. M. Bishop and N. M. Nasrabadi, N. M., “Pattern recognition and
machine learning”, New York: springer, 2006.

[23] T. Blumensath and M. E. Davies, “On the difference between
orthogonal matching pursuit and orthogonal least squares,”
unpublished manuscript, 2007, [http://www.see.ed.ac.uk/~tblumens/
papers/BD OMPvsOLS07.pdf].

[24] G. E. Hinton, S. Osindero and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18(7), pp. 1527-1554, 2006.

807

