
 
 

 

  

Abstract—In this paper, a novel single hidden layer 
feedforward neural network, called Constrained Extreme 
Learning Machine (CELM), is proposed based on Extreme 
Learning Machine (ELM). In CELM, the connection weights 
between the input layer and hidden neurons are randomly 
drawn from a constrained set of difference vectors of 
between-class samples, rather than an open set of arbitrary 
vectors. Therefore, the CELM is expected to be more suitable 
for discriminative tasks, whilst retaining other advantages of 
ELM. The experimental results are presented to show the high 
efficiency of the CELM, compared with ELM and some other 
related learning machines. 

I. INTRODUCTION 
ANY neural network architectures have been proposed 
during the past two decades. The feedforward neural 
networks are the most popular ones studied by 

researchers. It has been proved that multilayer feedforward 
networks with non-polynomial activation functions can 
approximate any continuous function [1]. Single hidden layer 
feedforward neural networks (SLFNs) were studied 
extensively because of their relatively fast learning speed and 
simple neural network structure. It is shown that the SLFNs 
have the same approximate capabilities as multi-layer feed 
forward neural networks [2, 3]. Moreover, Tamura et al. [2] 
showed that the weights from the input layer to the hidden 
layer of SLFNs can be randomly generated. Huang et al. [4] 
further proved the above theory rigorously, and proposed a 
new type of SLFNs called ELM. 

ELM can be considered as a linear system after the 
nonlinear feature mapping of the hidden layer [5]. Therefore, 
ELM has a closed form of solution due to the simple network 
structure and randomness of hidden layer parameters. The 
essence of linear system used by ELM is to minimize the 
training error and the norm of connection weights from the 
hidden layer to the output layer at the same time. Hence ELM 
has a good generalization performance according to 
feedforward neural network theory [6]. As a consequence, 
ELM has some desirable features, such as that hidden layer 
parameters need not be tuned, fast learning speed and good 
generalization performance. These advantages lead to the 
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popularity of ELM both for researchers and engineers. 
However, the random selection of hidden layer parameters 

makes quite inefficient use of hidden nodes [7]. ELM usually 
has to randomly generate a great number of hidden nodes to 
achieve desirable performance. This leads to time consuming 
in test process, which is not helpful in real applications. Large 
numbers of hidden nodes also easily lead to over fitting in 
training. There are mainly three ways to solve the problem: 

1. Use online incremental learning methods to add hidden 
layer nodes dynamically [7, 8]. These methods 
randomly generate parts or all of the hidden layer 
nodes, and then select the candidate hidden nodes one 
by one or chunk by chunk with fixed or varying chunk 
size. Whether the hidden layer node is added or not is 
usually depending on the output layer objective 
function. 

2. Use pruning methods to select the candidate hidden 
layer nodes [9, 10]. These methods start with a large 
neural network using the traditional ELM, and then 
apply some metrics, such as statistical criteria and 
multi-response sparse regression, to rank these hidden 
nodes. Finally, eliminate those low relevance hidden 
nodes to form a more compact neural network 
structure. 

3. Use gradient based methods to update the weights from 
the input layer to the hidden layer in ELM [11]. These 
methods study the mathematical model of ELM, and 
then find the derivation of ELM optimal function with 
respect to hidden parameters. After randomly initialize 
the weights from the input layer to the hidden layer 
and use a close-form least square solution to calculate 
the weights from the hidden layer to the output layer, 
these methods use the gradient descending method to 
update the weights from the input layer to the hidden 
layer in ELM iteratively. 

The above methods can overcome the drawbacks of the 
traditional ELM to some degree. However, they do not solve 
the problem directly from the essence of hidden nodes. 
Besides, these methods are somewhat time-consuming. 

Actually, the essence of hidden layer functions is to map 
the data into a feature space, where the output layer can use a 
classifier to separate the feature-mapped data perfectly. 
Therefore, the hidden layer should extract discriminative 
features for data classification tasks. 

LDA [12] is probably the most commonly used methods to 
extract discriminative features. However, LDA has some 
drawbacks, such as that the number of feature-mapped 
dimensions is less than the number of classes, “Small Sample 
Size” (SSS) problem and Gaussian distribution assumption of 
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equal covariance and different means. Su et al. [13] proposed 
a projection pursuit based LDA method to overcome these 
problems. The method showed that the difference vectors of 
between-class samples have a strong discriminative property 
for classification tasks, but this method is rather complex with 
many embedded trivial tricks. 

In this work, to balance between the high discriminative 
feature learning and the simplicity and fast training speed of 
the ELM, we propose a novel model, called Constrained 
Extreme Learning Machine (CELM), which utilizes a random 
subset of difference vectors of between-class samples to 
replace the completely random connection weights from the 
input layer to the hidden layer in ELM. Experimental results 
show that, CELM has better generalization ability than ELM 
and other related methods. We also compared the CELM 
algorithm with SVM and ELM related algorithms [14, 15] on 
CIFAR-10 data set [16]. The results show that the CELM 
algorithm outperforms these methods. 

The remaining part of the paper is organized as follows: in 
section Ⅱ, we firstly review the traditional ELM algorithm, 
and then propose the CELM algorithms. Experiments are 
presented in section Ⅲ. Conclusion and discussion are given 
in section Ⅳ. 

II. CONSTRAINED EXTREME LEARNING MACHINE 
In this section, we firstly review the traditional ELM 

algorithm. Then we introduce the CELM algorithm with the 
idea of using difference vectors to generate discriminative 
hidden nodes into the traditional ELM. 

A. Review of Extreme Learning Machine 
ELM is a type of SLFNs. The hidden layer parameters, i.e., 

the connection weights from the input layer to the hidden 
nodes, are randomly generated in ELM. The output layer is a 
linear system, where the connection weights from the hidden 
layer to the output layer are learned by computing the 
Moore-Penrose generalized inverse [5]. The ELM network 
has extreme fast learning speed due to the simple network 
structure and its closed form solution. Additionally, the 
randomness makes ELM not necessarily tune these hidden 
layer parameters iteratively. 

Given the training samples and class labels 
={( , )| , , 1, , }n m

i i i i i Nℵ ∈ ∈ = …x t x R t R , the number of 
hidden nodes L  and activation function ( , , )G ba x , where 

n∈x R  is the input vector, n∈a R  is the associated 
connection weight vector and b ∈ R  is the bias, the algorithm 
of ELM network can be concluded as the following three 
steps: 

Step 1: Assign the parameters {( , ) | 1, , }j jb j L=a … of 
hidden nodes with randomly generated values. 

Step 2: Calculate the hidden layer output matrix H for all 
the training samples: 
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, where ( , , )i i jG ba x is the activation function of ith hidden 
node for jth sample.

  
Step 3: Calculate the hidden layer’s output connection 

weights β  by solving the least squares problem: 
†=β H T  

, where †H is the generalized inverse matrix of the matrix H , 

and 
1

=

T

T
N N m×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

t
T

t
# . 

As analyzed in theory and further verified by the 
simulation results in [17], ELM for classification tends to 
achieve better generalization performance than traditional 
SVM. ELM can also overcome the local minimal problem 
that BP neural nets faced, due to its convex model structure. 
The learning speed of ELM is extremely fast at the same time. 

B. Constrained Extreme Learning Machine 
The completely random parameters in the hidden layer of 

ELM do not always represent discriminative features. Such 
unconstrained random parameters may make ELM has to 
generate a great number of hidden nodes to meet desirable 
generalization performance. More hidden nodes mean more 
processing time, more computational resource and more 
easily over fitting. These problems in ELM should be solved.  

Although the method [13] is rather complex with many 
embedded trivial tricks, it shows that the difference vectors of 
between-class samples are effective to classification tasks. 
Considering the simplicity and the extreme fast learning 
speed of the ELM, we extend the ELM model to Constrained 
ELM (CELM) by constraining the weight vector parameters 
{ | 1, , }j j L=a … of ELM to be randomly drawn from the 
closed set of difference vectors of between-class samples 
instead of from the open set of arbitrary vectors to tackle the 
problem of generation of discriminative hidden nodes. We 
use a simple case to illustrate the idea of difference vectors of 
between-class samples. 

 
(a) 

Class1 

Class 2 
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(c) 

Fig. 1.  Illustration of difference vectors of between-class samples. How to 
generate the difference vectors is illustrated in (a). The completely random 
connection weight vectors from the input layer to the hidden layer of ELM 
are illustrated in (b). The constrained random weight vectors of CELM are 
illustrated in (c). 

 
The essence of the weight vectors from the input layer to 

the neurons in the hidden layer is to map the original samples 
into a discriminative feature space spanned by these vectors, 
where the samples can be classified. The weight vectors are 
helpful for classification if the directions of the weight 
vectors are from class 1 to class 2 or reversely, as illustrated 
in Fig. 1(a). The blocks in the figure represent the samples in 
class 1, and the circles represent the samples in class 2. As a 
comparison, the weight vectors from the input layer to the 
hidden nodes in ELM are completely random without 
constraints, as illustrated in Fig. 1(b). It can be inferred the 
weight vectors which do not follow the direction from class 1 
to class 2 are less discriminative for classification tasks. This 
is the reason why not all the hidden nodes in ELM are 
efficient or discriminative. 

We randomly generate the weight vectors from the input 
layer to the hidden layer with the differences of between-class 
samples as illustrated in Fig. 1(a). The difference vectors of 
between-class samples can map the samples to a higher 
discriminative feature space than ELM. The weight vectors 
from the input layer to the hidden layer in CELM are 
illustrated in Fig. 1(c). The directions of these weight vectors 
are close to the direction from class 1 to class 2, which are 
more discriminative for the classification tasks intuitively. 

 
Two pre-processing operations are utilized to delete noise 

and too relevant difference vectors for better generalization of 
CELM. First, delete the small difference vectors. When the 
between-class samples are located in the overlapped area of 
two classes as illustrated in Fig. 2, the deference vectors are 
small and may contain non-discriminative or noise 
information. So deleting the small deference vectors is 
helpful for classification tasks. Second, delete the nearly 
parallel difference vectors. Nearly parallel vectors are so 
relevant that they will make the data repeatedly projected to 
near points in the feature space, which may risk error 
accumulating [22]. If some vectors are nearly parallel, only 
one vector is retained.  

In addition to these two operations, we normalize the rest 
difference vectors as the weights from the input layer to the 
hidden layer. The reason why normalize these weights and 
how to normalize will be introduced in the following 
discussion. 

In CELM, the prior information of samples’ class 
distribution is utilized to generate the weights from the input 
layer to the hidden layer. The aim is to split different classes’ 
samples into different areas in the feature space. The ideal 
case is that, for example, class 1 is mapped into negative semi 
axis and class 2 is mapped into positive semi axis in the 
feature space. Hence the bias must be set as the middle point 
of the two selected samples from the geometric sense 
intuitively. As a result, the biases to the hidden neurons can be 
determined by assuming that the samples from one class are 
mapped to -1 and the samples from another class are mapped 
1 respectively. Denote 1cx  and 2cx  as the samples drawn 
from two classes. Then the weight vector w  from the input 
layer to one hidden neuron can be generated with 

2 1( )c cα −x x , where α  is the normalized factor. The original 
data x is transformed to 2 1( )T T

c cb bα+ = − +x w x x x  by 
feature mapping, where b is the bias with respect to the 
weight vector w  in ELM model. The assumption that 1cx  
and 2cx  are mapped to -1 and 1 can be written as 

1 2 1( ) 1T
c c c bα − + = −x x x , and 

2 2 1( ) 1T
c c c bα − + =x x x . 

We can obtain that the normalization factor
2

2
2 1

2

c c L

α =
−x x

 

Class 1 Class 2

Fig. 2.  Illustration of noise difference vectors of between-class samples 
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Algorithm 1: Training of the Constrained Extreme 
Learning Machine (CELM) 
Input: the training 
samples ={( , )| , , 1, , }n m

i i i i i Nℵ ∈ ∈ = …x t x R t R , the 
hidden node number L  and the activation 
function ( , , )G bw x . 
Output: the model parameters of CELM, i.e., the weight 
matrix n L×W  and the bias vector 1 L×b  from the input 
layer to the hidden layer, the weight matrix L mβ × from the 
hidden layer to the output layer. 
1) While the number of chose difference vectors is less 
than L  

a) Randomly draw training samples 1cx  and 2cx  from 
any two different classes respectively and generate 
the difference vector 2 1c c−x x ; 

b) If the norm of vector is small enough, delete it and 
go to a); 

c) If the vector is nearly parallel with the previous 
generated vectors, delete it and go to a); 

d) Normalize the difference vector by 

2

2 1
2

2 1

2( )c c

c c L

−
=

−
x x

w
x x

, and calculate the corresponding 

bias 
2

1 2 1 2
2

2 1

( ) ( )T
c c c c

c c L

b
+ −

=
−

x x x x
x x

. 

e) Use the vector w  and bias b  to construct the 
weight matrix n L×W  and bias vector 1 L×b . 

2) Calculate the hidden layer output matrix H as 
1 1 1 1 1

1 1

( ) ( , , ) ( , , )

( ) ( , , ) ( , , )

L L

N N L L N N L

G b G b

G b G b
×
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

h x a x a x
H

h x a x a x

"
# # " #

"
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3) Calculate the hidden layer’s output weight matrix L mβ ×  
by solving the least squares problem: 

†=β H T  
, where †H is the generalized inverse matrix 

and
1

=

T

T
N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

t
T

t
# . 

and the corresponding bias 
2

1 2 1 2
2

2 1

( ) ( )T
c c c c

c c L

b
+ −

=
−

x x x x
x x

 by 

solving the above two equation constraints. 
The commonly used activation function for hidden neurons 

is sigmoid function 1( )
1 xf x

e−=
+

. The output layer in 

CELM is a simple linear system as same as that of ELM. 

From the above discussion, the training algorithm for 
CELM can be concluded in the Algorithm 1. The essence of 
CELM is to constrain the hidden neuron’s input connection 
weights to be consistent with the directions from one class to 

another class. So the random weights are constrained to be 
chosen from the set that is composed of the difference vectors 
of between-class samples. 

III. PERFORMANCE EVALUATION 
In this section, we evaluate the proposed CELM and 

compare it with some classifiers, such as ELM, SVM and 
some related deep learning methods, on both synthetic and 
real-world datasets. Ten round experiments are conducted for 
each data set. In each experiment, the training set and the test 
set are randomly generated using the samples from synthetic 
datasets and UCI database [18]. The samples from UCI 
database are normalized to be of zero means and unit 
variances. The performances are recorded with the means and 
the standard deviations of classification accuracies. 

In these experiments, we also compare the CELM with the 
normalized ELM, which deletes small, nearly parallel weight 
vectors and normalize them in ELM. The only difference 
between CELM and the normalized ELM is that, CELM 
utilizes the difference vectors to construct the hidden nodes. 
The aim of this comparison is to verify the effect of the 
difference vectors sufficiently. The code of ELM used in the 
experiments was downloaded from [4]. 

A. Experiments on Synthetic Dataset 

   We first evaluate our CELM algorithm on the synthetic 
dataset of the spiral data. It is illustrated in Fig. 3. To retain 
the symmetrical shape of the spiral, we normalize the samples 
into the range [-1, 1] as same as that in [4]. The total 
generated number of such spiral data is 5000. The training set 
contains 4000 samples and the test set contains 1000 samples. 
The two sets are randomly generated in each one of the total 
ten round experiments. 
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Fig. 3.  The spiral synthetic dataset is illustrated in the top side. The 
performance comparisons are shown in the down side. 
 

We compare the performances of CELM with ELM and 
normalized ELM. The number of hidden nodes is selected 
from 10 to 300 at a step 10. The performances of these models 
are illustrated in Fig. 3. The solid line represents the 
performance of CELM. The dotted line with circles 
represents that of ELM and the dashed line with triangles 
represents the normalized ELM. 

As shown in Fig. 3, CELM has a perfect performance when 
the number of hidden nodes reaches 50, while normalized 
ELM needs 100 hidden nodes to reach the same perfect 
performance. The test accuracy of ELM is less than 0.8 even 
when the number of hidden nodes is 300. The test accuracies 
of CELM are above those of normalized ELM and ELM all 
the time. The result shows that CELM has the better 
generalization ability than normalized ELM. Therefore, the 
difference vectors really work from the performance 
comparison between CELM and normalized ELM. 
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B. Experiments on UCI Datasets 
Six datasets from UCI database [18], including Wisconsin 

diagnostic breast cancer dataset (WDBC) and five multi 
feature digit datasets (MDD-fac, fou, kar, pix, zer), are used 
for evaluating the proposed CELM. CELM is compared with 
ELM and normalized ELM. In MDD dataset, five different 
feature sets are used.  

In the first experiment, the number of training samples is 
4/5 size of the total samples, and the rest is used as test 
samples. These samples are randomly divided into training 
and test sets. The comparison of ELM, CELM and 
normalized ELM in the first experiment are illustrated in Fig. 
4. The performances of these models are displayed 
sufficiently from the trends of these curves in the figure. It 
can be seen that the test accuracy curves of CELM are above 
those of other two methods in all the experiments and so the 
generalization ability of the proposed CELM is better than 
other two models on these real world datasets. The samples’ 
distribution prior we introduced makes the efficient use of 
hidden nodes in CELM and really helps the classification 
tasks. 

In the second experiment, a benchmark performance 
evaluation is conducted on the six datasets. The size of 
training set is half of the total number of samples just as other 
methods usually do on these datasets. The training set and the 
test set are randomly generated in each of ten rounds of 
experiments. The mean of test accuracies are recorded in 
Table I. It can be seen the performances of CELM always 
outperform those of ELM. The CELM improves the ELM’s 
performance greatly. 

C. Experiments on Large Scale Datasets 
We also evaluate the CELM and ELM on two large size 

datasets, i.e., MNIST [19] and CIFAR-10 [16]. The MNIST 
database of handwritten digits contains a training set of 
60,000 samples, and a test set of 10,000 samples. It consists of 
binary images of ten classes and the size of these digits is 28
×28 pixels. The samples are normalized and input into the 
CELM and ELM to compare their performances. The 
CIFAR-10 dataset contains 60,000 color images in 10 classes, 
with 6000 image per class. The training set and the test set 
consist of 50,000 images and 10,000 images respectively. In 
CIFAR-10 dataset, the standard pipeline defined in [20] is 

used. First, extract dense 6 6×  local patches with ZCA 
whitening and the stride is 1. Second, use threshold coding 
with =0.25α  to encode. The codebook is trained with 
OMP-1 [23] and the codebook size is 50 in the experiment. 
Third, average-pool the features on a 2 2× grid to form the 
global image representation. 

Due to large number of samples, we only use 1/5 instances 
in CIFAR-10 dataset and 1/10 instances in MNIST dataset for 
experiments. These instances are uniformly sampled from the 
two datasets respectively. The performances of CELM, ELM 
and normalized ELM are illustrated in Fig. 5. 
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   From Fig. 5, it can be learned the performances of CELM 
are 10 percentages higher than those of ELM averagely on the 
two datasets. The efficiency of the difference vectors can be 
evaluated as follows. When the same numbers of vectors are 
used, the method with higher test accuracy means more 
efficient. In Fig. 5, the performance of CELM is higher than 
that of normalized ELM when they are not converged. The 
gap between the performance of CELM and normalized ELM 
shows that the difference vector is effective. The curve of 
CELM’s performance is always above those of normalized 
ELM and ELM in all these datasets, which shows that 
difference vectors really help the efficient use of hidden 
nodes. 

The CELM is also compared with SVM related methods, 
e.g., Linear SVM and R2SVM [14], and deep ELM related 
method, e.g., DCN [15], on CIFAR-10 dataset. The R2SVM is 

Fig. 5.  Experimental results of ELM, CELM and normalized ELM on 
the subsets of MNIST and CIFAR-10 datasets. 

Fig. 4.  Experimental results of ELM, CELM and normalized ELM on 
the six UCI datasets. 

805



 
 

 

a deep learning model and its building block is a linear SVM 
model. The outputs of the previous layer are transformed by a 
random matrix, and then the transformed outputs are added to 
the original features. The modified features are input into the 
next layer after transformed by a sigmoid function. The DCN 
is also a deep learning model, but its building block is an 
ELM based model, in which parts of the hidden nodes are 
built with random projection and the other part of hidden 
nodes are built with RBM weights [15, 24]. Instead of the way 
that adds the output of previous layer as a bias to the next 
layer, the outputs of the previous layer are concatenated with 
the original features sequentially and are input into the next 
layer in DCN model.  

In this experiment, all the 50,000 training samples are used 
to train the model, and all the 10,000 test samples are used to 
evaluate the performance. Table Ⅱ shows the performances 
of CELM, linear-SVM, R2SVM [14] and DCN [15] methods. 
Note the performances of linear SVM, R2SVM and DCN are 
cited from [14]. And the experimental conditions of CELM, 
such as the feature exaction and the number of used training 
and test sets, are the same with [14].  

 
TABLE I 

AVERAGE CLASSIFICATION ACCURACIES OF CELM AND ELM 

Datasets CELM ELM 

WDBC 0.972 0.971 
MDD-fac 0.982 0.964 
MDD-fou 0.837 0.797
MDD-kar 0.972 0.900 
MDD-pix 0.977 0.858 
MDD-zer 0.844 0.805 

 
TABLE Ⅱ 

PERFORMANCE ON CIFAR-10 DATASET 

Algorithms No. of  hidden layers 
/nodes Test accuracy 

Linear   SVM - 0.647 
R2SVM 35 Layers 0.693

DCN - 0.672 
CELM 7000 nodes 0.723 

 
From the Table Ⅱ, the CELM can be found to have the 

best performance than that of linear-SVM, DCN and R2SVM. 
The CELM has the test accuracy of 8 percentages higher than 
that of linear SVM. In [14], the R2SVM has 35 layers, and 
each layer is a linear SVM after sigmoid transformation and 
random projection. Although R2SVM and DCN have many 
layers, the CELM of one layer has the test accuracy of 3 
percentages higher than that of these discriminative deep 
learning methods. Besides, the CELM can train a model on a 
case of 50,000 training data well, which suggests that the 
proposed CELM can tackle large scale data effectively. 

IV. CONCLUSION AND DISCUSSION 
To address the inefficient use of hidden nodes in ELM, this 

paper proposed a novel learning model, CELM. The CELM 
constrains its random weights’ generation from a smaller 
space than that of the ELM, i.e., replacing the completely 
random weight vectors with ones that are randomly drawn 

from the set of difference vectors of between-classes samples. 
The main contribution of CELM is that it introduces sample 
distribution prior into the construction of the hidden layer to 
make a better discriminative feature mapping. The effective 
feature mapping greatly contributes the efficient use of 
hidden nodes in ELM. Extensive comparisons between 
CELM and some related methods on both synthetic and 
real-world datasets showed that CELM always has a better 
performance. 

However, the CELM still has some problems that ELM 
owned. One is that CELM faces over fitting problem when 
the number of hidden nodes is very large, although CELM 
improves the efficient use of discriminative hidden nodes. To 
our relief, the method in [21] can tackle the problem 
effectively. Incorporating the idea of this method into CELM 
is expected to improve the performance and robustness of 
CELM. Another problem is that the generation speed of 
difference vectors will be much slower when we want to 
obtain more than 10,000 hidden nodes. This is because the 
anti-correlation operation involving vector direction 
comparisons is time consuming. At last, the solving of the 
weights from the hidden layer to the output layer is 
time-consuming when the number of hidden nodes is very 
large. This case is much common in large scale applications. 
Some gradient based solving methods for linear system can 
tackle the problem iteratively.  

The further research will include the study of invariant 
feature generating and other measures for the improvement of 
CELM and the experimental verification on CELM’s 
application to regression problems. The analyses on what 
kinds of problems that the CELM will work with and such 
related theories are also expected to be studied in the future.  
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