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Abstract We describe a numerical technique for discovering forward invari-
ant sets for discrete-time nonlinear dynamical systems. Given a region of
interest in the state-space, our technique uses simulation traces originating
at states within this region to construct candidate Lyapunov functions, which
are in turn used to obtain candidate forward invariant sets. To vet a candi-
date invariant set, our technique samples a finite number of states from the
set and tests them. We derive sufficient conditions on the sample density
that formally guarantee that the candidate invariant set is indeed forward
invariant. Finally, we present a numerical example illustrating the efficacy of
the technique.

1 Introduction

Model-based design (MBD) is a mathematical and visual process for de-
signing, implementing, and testing embedded software designs for real-time
control systems. MBD is rapidly becoming the pervasive design paradigm in
many sectors such as automotive and avionics, but the problem of checking
correctness of such designs is a highly challenging task. Of particular interest
is the problem of ensuring that the system satisfies safety constraints, which
are usually associated with a region of the state space. Analysis techniques
from dynamical systems theory can be applied to such designs to verify sys-
tem properties, such as those for checking stability or estimating performance
bounds (see, for example, Ch. 4 of [3]); however, these are rarely used in any
but the earliest stages of the MBD process.

It is well-known that a sub-level set of a Lyapunov function, is a forward
invariant set. The existence of a forward invariant set that properly contains
the set of initial states, while excluding the unsafe region proves that the
system is safe for all time. Thus, it is clear that identifying such invariant
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sets helps us address the safety verification problem. A significant obstacle to
this approach is that Lyapunov functions of arbitrary (nonlinear or hybrid)
systems are notoriously hard to discover. Further, industrial models are often
in formats lacking an analytic representation of the dynamics.

We now give a brief overview of our technique. We use an iterative pro-
cedure to construct candidate Lyapunov functions using simulation traces.
The candidate Lyapunov functions are restricted to the class of polynomial
functions, similar to the Sum of Squares (SoS) techniques described in [5].
This restriction allows us to compute a candidate forward invariant set by
solving a linear program (LP). We then verify the validity of the candidate
invariant set by testing over a finite number of system states. Note that, al-
ternatively, if an analytic representation of the dynamics is given, one could
verify the validity of the candidate invariant set using arithmetic solvers, as
we describe in [2].

Our work builds largely on [6], where forward orbits (which are often called
simulations or simulation traces) are used to seed a procedure to estimate the
region of attraction (ROA) for a dynamical system. We provide the following
extensions to that work: a.) We provide an procedure that uses a global opti-
mizer to iteratively improve the quality of the candidate Lyapunov functions
(by seeking initial conditions that falsify each intermediate candidate), and
b.) Our technique is not restricted to the class of systems with polynomial
dynamics.

2 Problem Statement

We consider autonomous nonlinear discrete-time dynamical systems of the
form:

xk+1 = f(xk). (1)

Here x represents state variables that take values in Rn and f is a nonlinear,
locally Lipschitz-continuous vector field. We call x̂ the successor of x if x̂ =
f(x). We assume the system has a stable equilibrium point, which is, without
loss of generality, at the origin. We address the following problem. Given the
dynamical system (1), and a closed and bounded domain of interest D ⊆ Rn,
identify a forward invariant set S ⊆ D such that for all x ∈ S, f(x) ∈ S. We
present a procedure that can identify such a set, without explicit knowledge
of the vector field f(·). The following section describes the procedure.

3 Algorithm for computing invariant sets

The procedure consists of three steps: (1) identify a candidate Lyapunov
function for (1) within D; (2) use the candidate Lyapunov function to com-
pute a candidate invariant set; (3) certify that the candidate invariant set is
a forward invariant set. We now describe each step in the process.



Discovering Forward Invariant Sets for Nonlinear Dynamical Systems 3

Identifying a Candidate Lyapunov Function. Ideally, we want to dis-
cover a differentiable function v that ∀x ∈ D satisfies:

v(x) � 0 (2)

v(x)− v(x̂) > 0, ∀x ∈ D \ {0}, v(0) = 0. (3)

Here, v(x) � 0 means that v is positive definite, i.e., ∀x 6= 0, v(x) > 0,
and v(0) = 0. The problem of identifying such a function v for the general
case is of infinite dimension. We relax the problem by restricting the form
of v as v(x) = zTPz, where z is some vector of m monomials in x (e.g.,
z = [x1 x

2
1x2 x

2
2]T ) and P ∈ Rm×Rm. We use a collection of state/successor

pairs to automatically produce candidate Lyapunov functions for the system.
Given M pairs of points xi, x̂i, where i ∈ {1, 2, . . . ,M} and xi 6= 0 for all i,
we formulate the following linear program (LP):

max
P,γ

γ (4)

s.t. γ > 0, and ∀i ∈ {1, . . . ,M},
v(xi) > 0

v(xi)− v(x̂i) > γ‖xi‖2.

Any feasible solution to (4) results in a candidate Lyapunov function v
that satisfies M necessary conditions for (2) and (3). We note that we could
strictly enforce (2) by requiring that P � 0, but this would require that a
more expensive semidefinite program (SDP) be solved instead of an LP.

Once a candidate Lyapunov function is obtained from (4), we employ
a falsifier to select state/successor pairs that can be used to improve the
candidate Lyapunov function. The falsifier is a global optimizer that attempts
to solve the following optimization problem:

min
x∈D

v(x)− v(x̂) (5)

s.t. x̂ = f(x).

If the solution to (5) is less than zero, then the optimal x is a witness that
falsifies the Lyapunov condition (3) This witness is added to the collection
of state/successor pairs and (4) is solved again. This procedure continues
until no falsifying witness can be found by solving (5). For our experiments,
we use a simulated annealing algorithm to implement the falsifier. Figure 1
illustrates our iterative procedure.

We note that if both (a) the falsifier is capable of computing a global min-
imum and (b) the procedure in Figure 1 halts, then the resulting candidate
Lyapunov function v(·) is a Lyapunov function for (1). Practical falsifiers
cannot reliably find a global minimum in general. Hence, we still need to
verify the soundness of the forward invariant set computed using a candidate
Lyapunov function obtained from this procedure, and we present a technique
to do so later in this section.
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Fig. 1: Procedure to create a candidate Lyapunov function for system (1).

Computing a Candidate Invariant Set. Once we obtain a candidate
Lyapunov function for (1), we can use it to obtain a forward invariant set.
We formulate a convex optimization problem to maximize l such that the
sublevel set S = {x|v(x) ≤ l} is within D. If we assume that D is a sublevel
set of a polynomial, then standard numerical techniques can be used to obtain
the optimal l, as in [1].

Verifying Soundness of the Candidate Invariant Set. Below we show
how to verify the soundness of the candidate invariant set computed in the
previous step. The technique requires that a Lyapunov-like condition be sat-
isfied at a finite sampling of the points in the set. First, we define a notion
of sampling for a set.

Definition 1 (Delta Sampling). Given a δ ∈ R>0, a δ-sampling of set
S ⊂ Rn is a finite set Sδ such that the following holds: Sδ ⊂ S; for any
x ∈ S, there exists a xδ ∈ Sδ such that ‖x− xδ‖ < δ.

The following theorem allows us to test whether a given set is forward
invariant by testing a finite subset of points within the set.

Theorem 1. [Invariant Soundness] Consider system (1), where f is locally
Lipschitz with constant Kf over D. Let S = {x|g(x) ≤ l}, where g : Rn →
R≥0 is a C1 function that is locally Lipschitz with constant Kg over S, and
let Sδ be a δ-sampling of S. If there exists a γ ∈ R>0 such that δ < γ

Kg·Kf
and ∀xδ ∈ Sδ, g(f(xδ)) ≤ l − γ, then S is a forward invariant set.

Proof. We prove by contradiction. Assume that δ < γ
Kg·Kf and for all

xδ ∈ Sδ, g(f(xδ)) ≤ l − γ holds, but S is not forward invariant. Then
it is true that for some x ∈ S, f(x) /∈ S. Consider the point xδ in
Sδ closest to x. The Lipschitz constant for the function composition g ◦
f is Kg · Kf . Applying the definition of Lipschitz continuity, we have
‖g(f(x))− g(f(xδ))‖ ≤ Kg ·Kf · ‖x− xδ‖. By the definition of δ-sampling,
‖x− xδ‖ < δ, thus we have

‖g(f(x))− g(f(xδ))‖ < δ ·Kg ·Kf . (6)

Since f(x) /∈ S, g(f(x)) > l, i.e., −g(f(x)) < −l. By assumption, g(f(xδ)) ≤
l − γ; adding the two inequalities, we get g(f(xδ)) − g(f(x)) < −γ. By the
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triangle inequality, we have ‖g(f(xδ))− g(f(x))‖ > γ. Combining with (6)
we get:

γ < ‖g(f(xδ))− g(f(x))‖ < δ ·Kg ·Kf . (7)

This contradicts our assumption that δ < γ
Kg·Kf . �

As both δ and γ cannot be selected simultaneously, we propose an iterative
procedure to determine whether the γ thus computed satisfies the condition
δ < γ

Kg·Kf . First, a δ value is selected randomly and used to create a δ-

sampling of the candidate forward invariant set S. Next, the minimum value
of γ = l − v(f(xδ)) over the finite set Sδ is computed:

γ∗ = min
xδ∈Sδ

l − v(f(xδ)). (8)

If the γ∗ < 0, then the candidate S is not a forward invariant set (since

the xδ that minimizes (8) is such that v(f(xδ)) > l). If γ∗ > 0 and δ < γ∗

K·Kf ,

then by Theorem 1 the candidate S is a forward invariant set. If γ∗ > 0 but

δ 6< γ∗

K·Kf , then we select a smaller δ such that δ < γ∗

K·Kf and repeat the
process.

4 Example for computing an invariant set

We now present an example demonstrating the technique in Section 3. The
following dynamical system was taken from LaSalle [4]:

f(x) =


α · x2

1 + x2
1

β · x1

1 + x2
2

 .
For this exercise, we fix α = 1.0, β = 0.9. Fig. 2a shows the result of the
procedure illustrated in Figure 1; for the selected quadratic Lyapunov func-
tion template (i.e., z = [x1 x2]T ), the procedure terminates in 5.59 seconds1,
giving the following candidate Lyapunov function:

vLaSalle(x) = [x1 x2]

[
368.0 −36.0
−36.0 396.0

] [
x1

x2

]
.

Next, the candidate Lyapunov function is used to construct the candidate
invariant S = vLaSalle(x) ≤ 343.3 (shown in Fig. 2a); the corresponding
convex program takes 2.22 seconds. Finally, S is shown to be invariant using
the iterative procedure from Sec. 3. The procedure halts after two iterations

1 Runtime measured on an Intel Xeon E5606 2.13GHz Dual Processor machine, with 24
GB RAM, running Windows 7, SP1.
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(a) Candidate invariant set from simulations (b) Verification of the forward invariant set

Fig. 2: LaSalle example results.

(i.e., γ∗ is computed twice), after 5.82 seconds and a cumulative total of
57, 877 sample points. Fig. 2b shows the results of this step for the example.

5 Conclusions

We describe a numerical technique for discovering forward invariant sets for
nonlinear dynamical systems using simulation traces, leveraging techniques
from Lyapunov analysis, global optimization and convex programming. The
set of samples from the candidate invariant set required for verifying validity
of the candidate can be prohibitively large. In future work, we will investi-
gate satisfiability modulo theories (SMT) and interval constraint propagation
solvers to symbolically test the validity of candidate invariants.
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