
Symbolic Deadlock Analysis for Concurrent Libraries
and their Clients

Jyotirmoy V. Deshmukh1 E. Allen Emerson1 Sriram Sankaranarayanan2

{deshmukh,emerson}@cs.utexas.edu, srirams@colorado.edu

1University of Texas at Austin

2University of Colorado at Boulder

Automated Software Engineering 2009

Deshmukh Symbolic Deadlockability Analysis 1 / 27

Thread Safety

Deshmukh Symbolic Deadlockability Analysis 2 / 27

Thread Safety

Deshmukh Symbolic Deadlockability Analysis 2 / 27

Thread Safety

Deadlocks increasingly important

Deshmukh Symbolic Deadlockability Analysis 2 / 27

Thread Safety

Deadlocks increasingly important

Deshmukh Symbolic Deadlockability Analysis 2 / 27

Thread Safety

Deadlocks increasingly important

Library-level deadlocks abundant

Deshmukh Symbolic Deadlockability Analysis 2 / 27

Concurrent Software is Modular

Concurrent Library: methods concurrently invokable.
Multi-threaded Client: each thread invokes library methods.
“Whole-program approach” too expensive.

Deshmukh Symbolic Deadlockability Analysis 3 / 27

Deadlockability Analysis: Goals

Predict concurrent method invocations potentially leading to
deadlock. [Williams et. al, ECOOP ’05]

Aliasing information for improved accuracy.
Interface Contracts on methods to ensure deadlock-freedom.
Use interface contracts when analyzing Client code.

Deshmukh Symbolic Deadlockability Analysis 4 / 27

Deadlockability Analysis: Goals

Predict concurrent method invocations potentially leading to
deadlock. [Williams et. al, ECOOP ’05]
Aliasing information for improved accuracy.

Interface Contracts on methods to ensure deadlock-freedom.
Use interface contracts when analyzing Client code.

Deshmukh Symbolic Deadlockability Analysis 4 / 27

Deadlockability Analysis: Goals

Predict concurrent method invocations potentially leading to
deadlock. [Williams et. al, ECOOP ’05]
Aliasing information for improved accuracy.
Interface Contracts on methods to ensure deadlock-freedom.

Use interface contracts when analyzing Client code.

Deshmukh Symbolic Deadlockability Analysis 4 / 27

Deadlockability Analysis: Goals

Predict concurrent method invocations potentially leading to
deadlock. [Williams et. al, ECOOP ’05]
Aliasing information for improved accuracy.
Interface Contracts on methods to ensure deadlock-freedom.
Use interface contracts when analyzing Client code.

Deshmukh Symbolic Deadlockability Analysis 4 / 27

Outline

1 Deadlockability Analysis

2 Problem Size Reduction

3 Symbolic Computation

4 Results

Deshmukh Symbolic Deadlockability Analysis 5 / 27

Deadlockability Analysis

Outline

1 Deadlockability Analysis

2 Problem Size Reduction

3 Symbolic Computation

4 Results

Deshmukh Symbolic Deadlockability Analysis 6 / 27

Deadlockability Analysis

java.awt.EventQueue

EventQueue nextQueue;
...
void postEventPrivate (Event e) { void wakeup(boolean f) {

.
synchronized (this) { synchronized (this) {

.
nextQueue.postEventPrivate(e); nextQueue.wakeup(f);
.

} }
.

} }

Deshmukh Symbolic Deadlockability Analysis 7 / 27

Deadlockability Analysis

Lock-Order Graphs

void postEventPrivate (Event e) {
. . .
synchronized (this) {

nextQueue.postEventPrivate(e);
. . .

}
. . .

}

ob1 ob1.nextQueue

lg(postEventPrivate)

T1

void wakeup (boolean f) {
. . .
synchronized (this) {

nextQueue.wakeup(f);
. . .

}
. . .

}

ob2 ob2.nextQueue

lg(wakeup)

T2

Deshmukh Symbolic Deadlockability Analysis 8 / 27

Deadlockability Analysis

Aliasing Pattern leading to Deadlock?

ob1 = ob2.nextQueue, ob2 = ob1.nextQueue

void postEventPrivate (Event e) {
. . .
synchronized (this) {

nextQueue.postEventPrivate(e);
. . .

}
. . .

}
void wakeup (boolean f) {

. . .
synchronized (this) {

nextQueue.wakeup(f);
. . .

}
. . .

}

ob1,ob2.nextQueue

ob2,ob1.nextQueue

lg(wakeup)S
lg(postEventPrivate)

T1T2

Deshmukh Symbolic Deadlockability Analysis 9 / 27

Deadlockability Analysis

Such weird aliasing comes from...

EventQueue nextQueue;
void push (EventQueue eq) {

. . .
nextQueue = eq;
. . .

}

Sequence of method calls

eq1.push(eq2); eq2.push(eq1);
...

...
eq1.wakeup(...); eq2.postEventPrivate(...);
...

...

Deshmukh Symbolic Deadlockability Analysis 10 / 27

Deadlockability Analysis

Deadlock-causing Aliasing Pattern

Aliasing Pattern between lg(postEventPrivate), lg(wakeup)

α =isAliased(ob1,ob2.nextQueue) ∧
isAliased(ob2,ob2.nextQueue)

Deshmukh Symbolic Deadlockability Analysis 11 / 27

Deadlockability Analysis

Interface Contract

void postEventPrivate (Event e) { void wakeup(boolean f) {
.
synchronized (this) { synchronized (this) {

.
nextQueue.postEventPrivate(e); nextQueue.wakeup(f);
.

} }
.

} }

For postEventPrivate, wakeup

¬isAliased(ob1,ob2.nextQueue)∨
¬isAliased(ob2,ob1.nextQueue)

Call-site |= I ⇒ postEventPrivate ‖ wakeup is deadlock-free.

Deshmukh Symbolic Deadlockability Analysis 12 / 27

Deadlockability Analysis

Approach: View from 10,000 feet

Compute:
Lock-graphs for library methods (static analysis)
DL-causing patterns for combinations of 2 or more methods.
Derive Interface Contracts.

Deshmukh Symbolic Deadlockability Analysis 13 / 27

Problem Size Reduction

Outline

1 Deadlockability Analysis

2 Problem Size Reduction
Lock-graph Size Reduction
Smarter Enumeration

3 Symbolic Computation

4 Results

Deshmukh Symbolic Deadlockability Analysis 14 / 27

Problem Size Reduction Lock-graph Size Reduction

Prune Lock-graphs:
Remove nodes that cannot be part of cycle

a (T1)

b (T2)

c (T1)

A (T1)

B (T2)

d (T3)

C (T3)

Terminal nodes that may alias only to
other terminal nodes.

Initial nodes that may alias only to other
initial nodes.

Deshmukh Symbolic Deadlockability Analysis 15 / 27

Problem Size Reduction Lock-graph Size Reduction

Prune Lock-graphs:
Remove nodes that cannot be part of cycle

a (T1)

b (T2)

c (T1)

A (T1)

B (T2)

dd (T3)

CC (T3)

Terminal nodes that may alias only to
other terminal nodes.

Initial nodes that may alias only to other
initial nodes.

Deshmukh Symbolic Deadlockability Analysis 15 / 27

Problem Size Reduction Lock-graph Size Reduction

Prune Lock-graphs:
Remove nodes that cannot be part of cycle

a (T1)

b (T2)

c (T1)

A (T1)

B (T2)

dd (T3)

CC (T3)

Terminal nodes that may alias only to
other terminal nodes.
Initial nodes that may alias only to other
initial nodes.

Deshmukh Symbolic Deadlockability Analysis 15 / 27

Problem Size Reduction Smarter Enumeration

Smarter Enumeration by Subsumption

a (T1)

b (T2)

c (T1)

x (T1)

y (T2)

z (T2)

Deshmukh Symbolic Deadlockability Analysis 16 / 27

Problem Size Reduction Smarter Enumeration

Smarter Enumeration by Subsumption

a (T1)

b (T2)

c (T1)

x (T1)

y (T2)

z (T2)

a (T1) c,x (T1)

b, y(T2)

z (T2)

Deadlock-causing Aliasing Pattern (α1)

isAliased(b,y)∧
isAliased(c,x)

Deshmukh Symbolic Deadlockability Analysis 16 / 27

Problem Size Reduction Smarter Enumeration

Smarter Enumeration by Subsumption

a (T1)

b (T2)

c (T1)

x (T1)

y (T2)

z (T2)

b, y(T2)

z (T2)

a,c,x (T1)

Deadlock-causing Aliasing Pattern (α2)

isAliased(b,y)∧
isAliased(c,x)∧
isAliased(a,x)

Deshmukh Symbolic Deadlockability Analysis 16 / 27

Problem Size Reduction Smarter Enumeration

Subsumption

α2 subsumes α1 : α2 has more aliasing.
DL with lesser aliasing⇒ DL with more aliasing.
Only enumerate “minimally” unsafe patterns.
Disregard subsuming patterns.

Deshmukh Symbolic Deadlockability Analysis 17 / 27

Problem Size Reduction Smarter Enumeration

Explicit Enumeration

Is U
empty?U

Pick α
Is α . G
acyclic?

Add (u, v) to α
till maximally safe

U = U - {β|β ⊆ α}

Restrict α to
cycle-edges in G

D = D ∪ α′

U = U - {β|α′ ⊆ β}

Output
D

no

yes

yes

no

Deshmukh Symbolic Deadlockability Analysis 18 / 27

Symbolic Computation

Outline

1 Deadlockability Analysis

2 Problem Size Reduction

3 Symbolic Computation

4 Results

Deshmukh Symbolic Deadlockability Analysis 19 / 27

Symbolic Computation

Aliasing Pattern Enumeration with SMT

Theorem
Enumerating all deadlock-causing aliasing patterns is NP-complete.

Symbolic Computation
Encode Lock-Order Graphs as Inequality Constraints.
Encode Aliasing as Equality Constraints.
Transform Cycle Detection in a Graph to SAT of a Constraint.
Use SMT solvers to check SAT.

Deshmukh Symbolic Deadlockability Analysis 20 / 27

Symbolic Computation

Symbolic Encoding

a

b

c

(a < b ∧ b < c)

& (x < y ∧ y < z)

& (c = x ∧ b = y)

Deshmukh Symbolic Deadlockability Analysis 21 / 27

Symbolic Computation

Symbolic Encoding

a

b

c

x

y

z

(a < b ∧ b < c)

& (x < y ∧ y < z)

& (c = x ∧ b = y)

Deshmukh Symbolic Deadlockability Analysis 21 / 27

Symbolic Computation

Symbolic Encoding

a

b

c

x

y

z

(a < b ∧ b < c)

& (x < y ∧ y < z)

& (c = x ∧ b = y)

Deshmukh Symbolic Deadlockability Analysis 21 / 27

Symbolic Computation

Symbolic Encoding

a

b

c

x

y

z

a

b, y

c,x

z

(a < b ∧ b < c)

& (x < y ∧ y < z)

& (c = x ∧ b = y)

Cycle ≡ UNSAT ≡ deadlock!

Deshmukh Symbolic Deadlockability Analysis 21 / 27

Symbolic Computation

Symbolic Algorithm

Is ΨU
unSAT?

ΨU

α=
solution
of ΨU

Is
Ψ(α,G)

SAT?

α = α∧(x(u) = x(v))
till maximally safe

ΨU = ΨU ∧W
(ei ,ej) 6∈α(x(ei) = x(ej))

Restrict α to
UnSAT core
of Ψ(α,G)

D = D ∪ α

ΨU = ΨU ∧W
(ei ,ej)∈α(x(ei) 6= x(ej))

Output
D

no

yes

yes

no

Deshmukh Symbolic Deadlockability Analysis 22 / 27

Results

Outline

1 Deadlockability Analysis

2 Problem Size Reduction

3 Symbolic Computation

4 Results

Deshmukh Symbolic Deadlockability Analysis 23 / 27

Results

Experimental Results

Library Name LOC Time Taken False Potential
(secs) + ves Deadlocks

ftpproxy (ftp proxy) 1.0K 13.0 - -
JavaFTP (ftp client) 2.6K 9.0 - -
cache4j (object cache) 2.6K 15.0 - -
netty (network app f/w) 11.0K 14.0 - -
apache-log4j (logging service) 33.3K 130.1 1 1
oddjob (job scheduler) 41.3K 250.0 - -
hsqldb (database engine) 157.6K 806.8 3 3
javax 1.6 sdk 534.3K 629.0 6 2
java 1.6 sdk 551.8K 1011.6 14 12

> 1.3M < 2880 24 18

Deshmukh Symbolic Deadlockability Analysis 24 / 27

Results

Vindication

Most deadlocks identified correspond to real, live bug reports by developers!

Library Name Method names Bug Report

java.awt postEventPrivate, Sun Bug DB ids: 4913324,
(EventQueue) wakeup 6424157,

6542185.

java.awt removeAll, OS-dir mail archive.
(Container) addPropertyChangeListener

java.util addLogger Sun Bug DB id: 6487638.
(LogManager) getLogger
(Logger)

javax.swing setFont Bug in Jajuk player
(JComponent) paintChildren

hsqldb isAutoCommit OS-dir mail archive
(Session) close

Deshmukh Symbolic Deadlockability Analysis 25 / 27

Results

With Interface Contracts, we get . . .

better specification of (deadlock-free) thread-safe behavior,
useful documentation for client developers,
plug-in for statically analyzing existing client code, and,
compositional flavor in reasoning about deadlocks.

Deshmukh Symbolic Deadlockability Analysis 26 / 27

Results

Thank You!

Deshmukh Symbolic Deadlockability Analysis 27 / 27

Backup Slides

Lock-order Graphs

Definition
Access Expression (a.e.): ob or sequence of nested fields of ob.

Definition (Lock-order Graph G(V ,E) for method m)

(v1, v2) ∈ E ⇔:
v1 aliased to some a.e. x ,
v2 aliased to some a.e. y ,
Path lock(x)→ . . .→ lock(y) in cfg(m)

Deshmukh Symbolic Deadlockability Analysis 1 / 12

Backup Slides

Computing Lock-order Graphs

Summary = State after each program statement

which locks currently held (ls)
lock-order graph (lg)
root nodes (rs), and,
aliasing information,

Deshmukh Symbolic Deadlockability Analysis 2 / 12

Backup Slides

Computing Lock-order Graphs

Standard interprocedural summary-based forward static analysis.
lock(x) = add x to ls, ∀y ∈ ls add (y , x) to lg.
unlock(x) = remove x from ls.
Branch merge = union of summaries.
Invocation of m = concatenate lg(m) to current lg.

Deshmukh Symbolic Deadlockability Analysis 3 / 12

Backup Slides

Deadlockability Analysis

Given library L = {C1, . . . ,Cm}
Methods m1, . . . ,mk spread across classes C1, . . . ,Cm.

Compute for all m1, . . . ,mk

Lock-order graphs lg(m1), . . . , lg(mk).

Check for each pair mi , mj

Is there any aliasing pattern s.t. lg(mi) ∪ lg(mj) has cycles?

Compute
D: set of all deadlock-causing aliasing patterns.

Deshmukh Symbolic Deadlockability Analysis 4 / 12

Backup Slides

So far . . .

Model Checking

Generate global state graph.
Explore all possible interleavings.

But...
May not scale after abstraction and partial order reduction.

Deshmukh Symbolic Deadlockability Analysis 5 / 12

Backup Slides

So far . . .

Static Analysis
Lock-acquisition order graph (lg) for each thread.
Conservatively merge lg for concurrent threads.
Cycle in merged graph⇒ possible deadlock.

But...
Too many false positives if analysis coarse, unscalable otherwise.

Deshmukh Symbolic Deadlockability Analysis 6 / 12

Backup Slides

Deadlock-causing Aliasing Pattern Enumeration

Definition (Subsumption)

α2 subsumes α1 (α1 ⊆ α2) iff ∀(u, v) : (u, v) ∈ α1 ⇒ (u, v) ∈ α2.

Lemma (Given α1 ⊆ α2)
α1 is deadlock-causing⇒ α2 is deadlock-causing.

Definition (Minimally Unsafe)

α minimally unsafe iff for any (u, v), α− (u, v) is safe.

We only need to consider minimally unsafe patterns.

Deshmukh Symbolic Deadlockability Analysis 7 / 12

Backup Slides

Deadlock-causing Aliasing Pattern Enumeration

Subsumption
α2 subsumes α1 ⇒ α2 has more aliasing than α1.
α1 ⊆ α2: α1 is deadlock-causing⇒ α2 is deadlock-causing.
α minimally unsafe if removing any aliasing makes it safe.

We only need to enumerate minimally unsafe patterns!

Deshmukh Symbolic Deadlockability Analysis 8 / 12

Backup Slides

Encoding Lock-Graph G(V ,E)

x(vi): topological rank of vi ∈ V .

Ψ(G) =
∧

(vi ,vj)∈E

(x(vi) < x(vj)).

Encoding Aliasing Pattern α

Ψ(α) =
∧

(vi ,vj)∈α

(x(vi) = x(vj))

Reduction to SAT
α .G has a cycle iff Ψ(α,G) = Ψ(G) ∧Ψ(α) is unsatisfiable.

Deshmukh Symbolic Deadlockability Analysis 9 / 12

Backup Slides

A few more (sound) filters...

Prune ...
locks corresponding to final fields.
private fields not accessed outside constructor/finalizer.
immutable constants.
private objects that cannot escape scope of methods.

Deshmukh Symbolic Deadlockability Analysis 10 / 12

Backup Slides

Joint Lock-Order Graph without Aliasing

void postEventPrivate (Event e) {
. . .
synchronized (this) {

nextQueue.postEventPrivate(e);
. . .

}
. . .

}
void wakeup (boolean f) {

. . .
synchronized (this) {

nextQueue.wakeup(f);
. . .

}
. . .

}

ob1 ob1.nextQueue

lg(postEventPrivate)

ob2 ob2.nextQueue

lg(wakeup)

T1

T2

Deshmukh Symbolic Deadlockability Analysis 11 / 12

Backup Slides

Derive Interface Contracts

Definition (Interface Contract)
Compute D: all deadlock-causing aliasing patterns.

I(mi ,mj):
∧
α∈D

∨
(ei ,ej)∈α

¬isAliased(ei ,ej).

Call-site of mi ,mj satisfies I ⇒ mi ‖ mj is deadlock-free.

Deshmukh Symbolic Deadlockability Analysis 12 / 12

	Deadlockability Analysis
	Problem Size Reduction
	Lock-graph Size Reduction
	Smarter Enumeration

	Symbolic Computation
	Results
	Appendix
	Backup Slides

