
A Trajectory Splicing Approach to Concretizing Counterexamples for
Hybrid Systems

Aditya Zutshi Sriram Sankaranarayanan Jyotirmoy V. Deshmukh James Kapinski

Abstract— This paper examines techniques for finding falsi-
fying trajectories of hybrid systems using an approach that we
call trajectory splicing. Many formal verification techniques for
hybrid systems, including flowpipe construction, can identify
plausible abstract counterexamples for property violations.
However, there is often a gap between the reported abstract
counterexamples and the concrete system trajectories. Our
approach starts with a candidate sequence of disconnected
trajectory segments, each segment lying inside a discrete mode.
However, such disconnected segments do not form concrete
violations due to the gaps that exist between the ending
state of one segment and the starting state of the subsequent
segment. Therefore, trajectory splicing uses local optimization
to minimize the gap between these segments, effectively splicing
them together to form a concrete trajectory.

We demonstrate the use of our approach for falsifying safety
properties of hybrid systems using standard optimization tech-
niques. As such, our approach is not restricted to linear systems.
We compare our approach with other falsification approaches
including uniform random sampling and a robustness guided
falsification approach used in the tool S-Taliro. Our preliminary
evaluation clearly shows the potential of our approach to search
for candidate trajectory segments and use them to find concrete
property violations.

I. INTRODUCTION

Hybrid automata serve as computational models for dy-
namical systems that combine the continuous evolution of
state variables interspersed with discrete mode transitions.
Such systems naturally arise by composing discrete-time
control systems and continuous-time physical plants. This
paper address the problem of falsifying safety properties
of hybrid systems. A safety property specifies that the
continuous state of a hybrid automaton starting from some
initial region does not reach a pre-specified unsafe region.
The verification problem asks whether the hybrid system
satisfies a given safety property.

Whereas the term “verification” (from the Latin root verus
for truth) often indicates a pre-supposition that the property
in question is most likely satisfied by the system under
consideration, we use its opposite “falsification” to pre-
suppose that the property in question is not satisfied by
the system. Therefore, falsification seeks to find a counter-
example trajectory to demonstrate the violation of a property.
Unfortunately, checking if a dynamical system (discrete, con-

S. Sankaranarayanan is affiliated with faculty of Computer Science,
University of Colorado, Boulder, CO srirams@colorado.edu

A. Zutshi is affiliated with department of Electrical, Computer and Energy
Engineering (ECEE) Department, University of Colorado, Boulder, CO
aditya.zutshi@colorado.edu

J. V. Deshmukh and J. Kapinski are affiliated with the Toyota Technical
Center, CA {jyotirmoy.deshmukh, jim.kapinski}@tema.toyota.com

Unsafe

Init

Unsafe

Init

π0

π1
π2

Fig. 1. Illustration of a forward search approach (left), contrasted with our
approach using trajectory splicing (right).

tinuous or hybrid) satisfies a safety property is undecidable
for all but the simplest of cases.

A number of verification tools for hybrid automata con-
servatively estimate the set of reachable behaviors (reach set
estimation) for establishing safety properties of hybrid sys-
tems [4], [5], [12], [24], [30], [34], [36]. If the unsafe region
is reachable, these techniques report a plausible abstract error
trajectory. However, due to the over-approximations per-
formed at each step of the reach set estimation, the abstract
counterexamples obtained may be spurious. In practice, it is
important to provide concrete error trajectories that can be
examined by a control engineer. Therefore, in this paper, we
focus on the problem of identifying concrete trajectories from
a given sequence of modes and transitions. Our approach
performs a best-effort search for a concrete trajectory using
optimization.

Fig. 1 presents an illustration of our approach. The in-
put to our approach consists of a hybrid automaton along
with a sequence of discrete modes and transitions m0

τ1−→
m1 . . .

τN−−→ mN , the first of which (m0) contains the initial
region (set of initial conditions), and the last of which (mN)
contains the unsafe region. Our approach attempts to find
an actual system trajectory observing this discrete mode
sequence. This is achieved by viewing the gaps between the
trajectory segments as a cost function and attempting to find
segments that minimize this function. As a result, standard
numerical optimization techniques are used to iteratively
narrow these gaps using gradient and Hessian information
from a sensitivity analysis of the system trajectories in each
mode. If the optimal cost (sum of gaps between segments) is
zero, our approach yields a concrete trajectory of the system
exhibiting a violation. Often, in practice, a very small gap (
10−6 or less) suffices to observe a falsification.

As opposed to other, related techniques, we consider a

search over the space of disconnected trajectory segments.
Searching over multiple trajectory segments is advantageous
for hybrid trajectories: Our approach exploits continuous
sensitivity to initial conditions for each mode. This enables
the application of gradient descent techniques. Likewise, the
use of trajectory segments separated by different discrete
modes allows us to naturally handle the discontinuities that
arise through discrete transitions. Secondly, our approach
also separates the search for an abstract violation that can
be carried out using tools like SpaceEx [24] or Flow* [12]
from the problem of concretizing these violations.
Contributions: We setup a general optimization framework
for performing concrete counterexample search through tra-
jectory splicing. For hybrid systems the optimization is
shown to be non-linear and non-convex, in general. Next, we
present a natural approach of partitioning the problem into
independent sub-problems. For a given system, this fixes the
size of each sub-problem, irrespective of the length of the
counterexample.

We have implemented the ideas presented in this paper in a
prototype tool in MATLABTM. We present the results of our
approach over a set of benchmarks of varying difficulty, and
compare against other approaches including uniform random
testing and the tool S-Taliro that uses robustness-guided
optimization to search for concrete counterexamples. We find
that our approach can find falsifications of properties using a
small fraction of the time required to perform uniform ran-
dom simulations or robustness-guided optimization. In cases
where our approach successfully finds concrete violations, it
is able to narrow the gaps between trajectory segments to a
small value that can be compared to the integration errors
that occur during numerical simulations.

A. Related Work

Our approach in this paper is closely related to ideas
that arise from hybrid systems verification, optimal control
theory (direct multiple shooting), robotic motion planning
(probabilistic roadmaps and RRT).

1) Hybrid System Falsification Techniques: Often, hybrid
systems fail to conform to their correctness specifications
in many unforeseen ways. As a result, the problem of
automatically finding falsifications for hybrid systems is of
great importance. Approaches to falsification can be broadly
categorized into (a) the use of constraint solvers to find
concrete violations, (b) adapting motion planning approaches
such as RRTs (reviewed elsewhere in this section), and (c)
using optimization to systematically search for falsifications.

The use of constraint solvers is a natural and promising
approach to falsification. Research on constraint solvers
has produced efficient Satisfiability Modulo Theory (SMT)
solvers for disjunctive linear constraints such as Z3
and solvers for non-linear constraints such as iSAT and
dREAL [16], [23], [27]. As such, the problem of finding
falsifications for hybrid systems can be reduced to a con-
straint solving problem using the Bounded Model Checking
(BMC) approach [13]. However, doing so requires a dis-
cretization of the continuous dynamics assuming a fixed time

Fig. 2. (Top) Flowpipe constructed by the Flow* tool, (Bottom) Violation
found by our approach.

Mode: `
I : y ≥ 0

F :

 dx
dt = vx
dy
dt = vy
dvx
dt = 0

dvy
dt = −1

vy < 0 ∧ y ≤ 0
→

v′y := −0.75vy

X0 :

(
x ∈ [−.1, .1]
y ∈ [3, 4]
vx ∈ [4, 10]
vy ∈ [−5, 5]

)

Xf :

(
x ∈ [330, 330.1]
y ∈ [1, 1.1]

)
Fig. 3. The hybrid automaton for a bouncing ball with initial set X0 and
unsafe set Xf . The goal is to find whether a trajectory starting from the
initial set X0 can reach the specified unsafe set Xf within 40s.

step. Furthermore, the resulting constraints are non linear
involving trigonometric terms, even if the underlying hybrid
systems are linear. Our approach is very much related to
constraint solving. However, rather than perform symbolic
manipulations to achieve a guaranteed feasible solution that
represents a violation, we add an objective function and use
numerical optimization techniques based on gradient descent.
As a result, our approach results in “optimal” segmented
trajectories that may still be disconnected but exhibit gaps
that are smaller than a threshold (say 10−6). Nevertheless,
we find that such very low cost trajectories are almost always
confirmed as real violations through simulation.

The robustness-guided falsification proposed by Fainekos
et al. associates each trajectory with a robustness metric that
measures how close a given trajectory is to a violation and
uses robustness as a cost function in a global optimization
framework [2]. Robustness metrics for trajectories have been

defined for Metric Temporal Logic (MTL) by Fainekos et
al. [20] and for Signal Temporal Logic (STL) by Donze et
al [19]. Falsification is achieved by using robustness metrics
in conjunction with global optimization techniques such as
simulated annealing or the cross-entropy method to search
for violations. This approach is implemented in the tool S-
Taliro for falsifying MTL properties for Simulink/Stateflow
diagrams [3]. Donze et al. also implement a closely related
approach that uses robustness and sensitivity analysis to find
violations [17]. Like S-Taliro, their approach also searches
over the space of single trajectories that form a violation
from start to finish. In contrast, our approach minimizes
the gaps between trajectory segments. As a result, our
approach can exploit the continuous sensitivity to the initial
conditions in each mode, while at the same time dealing
with discontinuities due to transitions. A recent extension
of the robustness-guided falsification approach uses sub-
gradient methods to find descent directions for the robustness
metric [1]. However, this approach is currently restricted to
purely continuous systems.

2) Direct Multiple Shooting: The problem of finding
falsifying trajectories is closely related to optimal control. A
key distinction lies in the cost functions that are traditionally
studied in optimal control problems. Often, the cost functions
used exhibits the Bellman optimality principle that allows
for a dynamic programming solution. However, work on
optimal control has also considered more general trajectory
optimization problems [25] that define cost functions over
the trajectories of a continuous system subject to constraints.
A standard approach to trajectory optimization reformulates
the problem as a non-linear optimization, and uses numerical
optimization techniques [8], [9]. In this regard, the ideas
in this paper closely resemble the so-called “direct multiple
shooting” approach [11]. The key differences arise from the
actual application domains: optimal control problems typi-
cally consider non autonomous continuous systems, whereas
our work addresses falsification of hybrid systems.

3) Motion Planning and State Space Exploration: As
mentioned earlier, techniques from robotic motion planning
have been used in the past to find falsifications for hybrid
systems [31], [32]. These methods rely on variations of
Rapidly-exploring Random Trees (RRT) to iteratively grow
from the initial state set towards the final state set (or
vice versa and some times employ bi-directional trees).
Using a suitable metric for distance and a sampling scheme,
simulations are used to find an error trajectory of the system.
These approaches have been successful in the case of linear
systems, and a few hybrid systems [10], [14], [29], [33],
[35]. Hybrid systems pose interesting problems to sequential
search because directional information available from the
dynamics in each mode need not be useful in the presence
of mode switches.

Techniques such as [15], [18], [28] use simulation based
approaches to address the problem of uniformly exploring a

continuous state space. These techniques typically1 explore
the trajectories in one direction: forward from the initial set,
or backwards from the error set.

B. Motivation

We motivate our approach by considering a simple exam-
ple of bouncing ball hybrid system shown in Fig. 3. Our goal
is to find a trajectory that reaches an “unsafe region” Xf as
the hyper-rectangle bounded defined by the corners (330, 1)
and (330.1, 1.1), starting from the initial set of states, as
specified in Fig. 3. Fig. 2 an over-approximation of the set
of reachable states computed by the tool Flow* [12]. This
over-approximation has a non-empty intersection with Xf ,
allowing us to conclude a potential violation. However, since
Flow* over-approximates the actual reachable set of states,
we cannot conclude whether a violating trajectory exists,
that leads the system from an initial state to an unsafe state.
Nevertheless, the reachable set approximation allows us to
place bounds on the number of bounces needed (in this case
exactly 5 bounces), if at all a violation is to be found.

We used MATLABTMto perform 100, 000 random simula-
tions requiring roughly 21 minutes on four parallel cores. We
found just 3 trajectories violating the property. Likewise, the
tool S-Taliro does not find a concrete violation after running
for an hour. At best, S-Taliro finds a trajectory with a small
positive robustness value using simulation annealing-based
optimization, but not a concrete violation.

Our approach assumes a fixed number of bounces (5) and
searches for a violation with the mode sequence 〈`, `, `, `, `〉.
We use a set of trajectory segments π0, π1, π2, π3, π4 corre-
sponding to this sequence. We setup an optimization that
minimizes the sum of the Euclidean distances between
the end point of segment πi and the starting point of
segment πi+1.Using random simulations to find an initial
seed, the optimization terminates within 2 seconds, providing
a fully concrete violation with the initial states: x(0) =
−0.09996, y(0) = 3.999, vx(0) = 9.8672, vy(0) = 4.968.

II. PRELIMINARIES

We use hybrid automata to model systems that combine
discrete and continuous behavior, providing a brief descrip-
tion of its syntax and semantics. More details on this model
are available elsewhere [26].

Given a system of Lipschitz continuous, ordinary differ-
ential equations (ODEs) ẋ = f(x), we denote its solution
at time t by its flowmap FLOW(f,x0, t). In practice, the
ODEs encountered seldom have closed-form analytic so-
lutions. Nevertheless, in most cases, we may approximate
FLOW using a numerical ODE solver to a desired degree of
precision.

Definition 2.1 (Hybrid Automata): Formally, a hybrid au-
tomaton A is a tuple (L, X,F , I,G,R,∆,X0), where:
• L is a finite set of discrete modes.
• X ⊆ Rn is the n-dimensional continuous state space.

The state space of the hybrid system is X ⊆ L×X .

1Some variants of RRT-based techniques explore the state-space in a
directionless manner, like the techniques proposed here.

• F maps each mode ` ∈ L with an ODE ẋ = f`(x),
where x ∈ X .

• I maps each mode ` with a mode invariant I(`) ⊆ X .
• G is a set of predicates over X .
• R is a set of functions from X to X .
• ∆ ⊆ L × G ×R× L, is a finite set of transitions. For

each transition δ : (`, gδ, rδ, `′) ∈ ∆, gδ ∈ G is its guard
predicate, and rδ ∈ R its reset map.

• X0 ⊆ L×X is the set of possible initial states.
The hybrid automaton model, and the techniques presented

in this paper, generalize to non-autonomous systems allowing
external inputs and time-varying dynamics. However, for
simplicity, we restrict our attention to autonomous hybrid
automata. The full algorithm will be described in our ex-
tended version, available upon request.

A state of the hybrid automaton is a pair (`,x) ∈ X
wherein ` ∈ L and x ∈ I(`). The state evolves over time by
interleaving two actions: flows and jumps.

A flow from (`,x) to (`,y) in time τ ≥ 0, denoted by
(`,x) ;τ (`,y), wherein y = FLOW(F(`),x, τ), and (∀ t ∈
[0, τ)) FLOW(F(`),x, t) ∈ I(`).

A jump from (`,x) to (`′,x′) is due to a discrete transition
δ : (`, gδ, rδ, `′) ∈ ∆, denoted (`,x) δ−→ (`′,x′). We require
that (a) the transition δ leads from ` to `′, (b) x satisfies
gδ , (c) x′ = rδ(x) and (d) x′ satisfies I(`′). Jumps are
considered instantaneous, i.e, no time is assumed to elapse
during a jump.

In this work we will consider the problem of finding finite,
time bounded counter-examples to safety properties. Let `f
be a distinguished error mode of the hybrid automaton A
and Xf ⊆ I(`f).

Definition 2.2 (Concrete Counterexample): A time-
bounded concrete counterexample for a safety property
(`f , Xf) is a finite trajectory:

(`0,x0) ;τ0 (`0,y0) δ0−→ (`1,x1) ;τ1 (`1,y1) δ1−→
· · · δN−−→ (`N ,xN) ;τN

(`N ,yN)

such that (a) (`0,x0) belongs to the initial states X0, (b)
yN ∈ Xf , and (c)

∑N
j=0 τj ≤ T .

III. TRAJECTORY SPLICING

In this section, we explain the idea of trajectory splicing
and the setup of the basic optimization problem to achieve
perfect splicing. Let d : X×X → R≥0 denote a metric over
the continuous states. Common metrics include the L1, L2

and L∞ norms.

Problem Setup. Assume that A is a hybrid automaton and
let φ : (`f , Xf) represent a safety property of interest. We
assume that we are given an abstract counterexample C that
is simply a sequence of modes and transitions:

C : 〈`0, δ0, `1, δ1, · · · , δN−1, `N 〉 (1)

wherein `N = `f . Our goal is to find a concrete counter-
example to this property.

δ0

δ1

π0 π1

π2

(`0,x0) (`0,y0)

(`1,x1)

(`1,y1)

(`2,x2)

(`2,y2)

Fig. 4. Illustration of a trajectory segment: initial set is shown shaded in
blue and the unsafe set in red.

Trajectory Splicing. We now describe the trajectory splicing
approach to this problem. Given the abstract counterexample
C, we seek a concrete counterexample

(`0,x0) ;τ0 (`0,y0) δ0−→ · · · δN−1−−−→ (`N ,xN) ;τN
(`N ,yN)

(2)

that satisfies the conditions in Def. 2.2. Our approach
searches over segmented trajectories.

Definition 3.1 (Segmented Trajectories): Given an
abstract counterexample C = 〈`0, δ0, `1, δ1, · · · , δN−1, `N 〉,
we define a segmented trajectory S to be a sequence of
N + 1 trajectory segments 〈π0, . . . , πN 〉:

S =

π0 : (`0,x0) ;τ0 (`0,y0)
π1 : (`1,x1) ;τ1 (`1,y1)

· · ·
πN : (`N ,xN) ;τN

(`N ,yN)

 (3)

wherein (i) the mode sequence is specified by C :
〈`0, `1, . . . , `N 〉, (ii) (`0,x0) ∈ X0, (iii) (`N ,yN) ∈ Xf ,
and (iv) yi ∈ gδi

for i = {0, . . . , N − 1}.
Remark: A segmented trajectory is not, in general, a

trajectory of the hybrid automaton. For that to happen, the
condition xj+1 = rδj (yj) must be satisfied.

The cost of a segmented trajectory is defined as the sum of
“gaps” between the end points of its consecutive segments.

Definition 3.2 (Cost of a Segmented Trajectory): The
cost of a segmented trajectory S is given by the expression:

COST(S) :
N−1∑
j=0

d(rδj
(yj),xj+1)︸ ︷︷ ︸

COST(πj ,πj+1)

Note that d(x,y) ≥ 0 for all x,y. Hence, for any
segmented trajectory, COST(S) ≥ 0. Clearly, segmented
trajectories with zero cost are, in fact, trajectories of A.

Our goal is to setup the search for a zero cost segmented
trajectory, as an optimization problem. For a hybrid automa-
ton A, safety property ϕ : (`f , Xf), and sequence of modes
and transitions C, let SegTrajs(A, ϕ, C) denote the set of
segmented trajectories. We wish to find an S with minimum
cost using the optimization,

min COST(S) s.t. S ∈ SegTrajs(A, ϕ, C)

min
x0,τ0,...,xN ,τN

N−1∑
i=0

COST(πi, πi+1) s.t. (4)

COST(πi, πi+1) = d(rδi(yi),xi+1), i = {0 . . . N − 1} (5)
τmin ≤ τi ≤ τmax, i = {0 . . . N} (6)

(`0,x0) ∈ X0 (7)
xi,yi ∈ I(`i), i = {0 . . . N} (8)

yi = FLOW(F(`i),xi, τi), i = {0 . . . N} (9)
(∀ t ∈ [0, τi)) FLOW(F(`i),xi, t) ∈ I(`i), i = {0 . . . N} (10)

(`N ,yN) ∈ Xf (11)
yi ∈ gδi , i = {0 . . . N − 1} (12)

Fig. 5. The optimization problem.

If the resulting cost is 0 then a violation exists for the
property along the given sequence C. Otherwise, the result
is strictly positive indicating that no such trajectory exists.

Optimizing Segmented Trajectory Cost. We now consider
the problem of optimizing the cost function over set of
segmented trajectories. As noted earlier, a segmented tra-
jectory for a given C is entirely determined by the initial
segment points x0, . . . ,xN and the dwell times τ0, . . . , τN .
The overall optimization setup is as shown in Fig. 5 . The
objective function represents the total cost of the segmented
trajectory S. Constraint (6) states that the dwell times are
non-negative and bounded by τmin and τmax. Constraint (7)
enforces that the initial point of the trajectory is in the initial
set, (8) states that xi,yi are within the mode invariants of
the respective mode, (9) enforces that yi is the continuous
state obtained starting from xi in time τi, (10) states that all
intermediate states of the trajectory segments lie inside the
mode invariant of `i, (11) describes that the safety property
is violated by the end point, the constraint (12) states that
yi satisfies the guard of transition δi and finally (5) defines
the cost COST(πi, πi+1) as the gaps between the segments.

Fig. 5 shows a complex optimization problem, which in
general is non-linear and non-convex. However, if initialized
properly, it can be solved using numerical solvers such as the
fmincon optimization function available in MATLABTM.
To do so, we may numerically approximate the FLOW func-
tion using standard ODE solvers. Also, standard sensitivity
analysis approaches can be used to compute derivatives ∇yi
(w.r.t. xi) and ∂yi/∂τi. This enables the use of gradient-
descent and quasi-Newton methods to solve the problem.
Furthermore, such a technique places relatively few restric-
tions on the nature of the automaton A and the property. We
have implemented this basic technique and augmented it to
provide derivatives for the objective function and constraints.

The non-linear optimization problem can be directly given
to an off the shelf NLP solver such as the fmincon func-
tion in MATLABTM. Doing so requires a few modifications,
however. Significantly, the constraint (10), which enforces
the mode invariant, requires special treatment as described
at the end of this section.

min
xi,τi

COST(πi−1, πi) + COST(πi, πi+1) subject to: (13)

COST(πi−1, πi) = d(rδi−1(yi−1),xi) (14)
COST(πi, πi+1) = d(rδi(yi),xi+1) (15)

τmin ≤ τi ≤ τmax (16)
xi,yi ∈ I(`i) (17)

yi = FLOW(F(`i),xi, τi) (18)
(∀ t ∈ [0, τi)) FLOW(F(`i),xi, t) ∈ I(`i) (19)

yi ∈ gδi (20)

Fig. 6. Optimization instance Pj of trajectory segment πj for 1 < j < N .
Note that problems P1, PN will involve a slightly modified setup.

While directly posing the problem to an off-the-shelf
solver is convenient, it may sometimes be inefficient to do so.
The size of the optimization problem in terms of the number
of decision variables and constraints, depends linearly on
the number of state variables in A and the length of the
counter-example sequence. Dependence on the sequence
length can be problematic, if the specified sequence is long.
We now describe an iterative scheme that decomposes the
optimization problem into multiple smaller ones to reduce
the number of decision variables and constraints. We show
that if the iterative, decomposed scheme converges, it does
so to a KKT point of the original optimization problem.

A. Decomposed Scheme

We partition the optimization problem into smaller
sub-problems P0, . . . , PN corresponding to the segments
π0, . . . , πN . Specifically, problem Pj is allowed to modify
the starting point xj and the dwell time τj of segment πj ,
while fixing the decisions for every other segment to their
current value. In effect, we optimize the cost of each segment
one at a time rather than all together. This reduces the size
of each sub-problem Pi to involve just (xi, τi), and is thus
independent of the length of the counter-example N .

Fig. 6 shows the formulation of Pi involving the trajectory
segment πi in mode `i. The formulation of each sub-problem
Pi is quite similar to that in Fig. 5 with the exception of
constraints (7) and (11), which are present only for the first
and the last segments π0, πN respectively.

Definition 3.3 (Fixed Point Solution): A solution
(x∗0, τ

∗
0 , . . . , x

∗
N , τ

∗
N) is said to be a fixed point solution

for the system of decomposed optimization problems
(P0, . . . , PN) iff for each j ∈ [0, N], (x∗j , τ

∗
j) is a

local optimal solution (KKT point) for Pj , after setting
(xl, τl) = (x∗l , τ

∗
l) for all l 6= j.

To find a fixed point solution, we solve the decomposed
problems P0, . . . , PN in some order, until we converge to
a solution. In other words, the solutions for the individual
optimization instances Pj remain invariant upon further
iterations. We now show an important property that relates
each KKT point for the original problem in Fig. 5 and to
fixed points of the decomposed problem.

We can write the optimization problem in Fig. 5 as

min f(x1, τ1,x2) + f(x2, τ2,x3) + · · ·+ f(xN−1, τN ,xN)
s.t. ui,j(xj , τj) ≤ 0, 1 ≤ j ≤ N, ui,j ∈ Ineqj

vk,j(xj , τj) = 0, 1 ≤ j ≤ N, vk,j ∈ Eqk
(21)

The key observation is that every single equality/inequality
in the original problem (Fig. 5) involves decision variables
(xj , τj) from the same segment j ∈ [0, N]. Therefore, let
Ineqj and Eqj represent the set of LHS of inequalities and
equalities that involve the decision variables (xj , τj) for the
jth segment. Also, we conclude by analyzing the constraints
in the original problem that the functions ui,j , vk,j involved
in these constraints are differentiable.

Let (x∗, τ∗) : (x∗0, τ
∗
0 , . . . ,x

∗
i , τ
∗
i , . . . ,x

∗
n−1, τ

∗
n−1) be

a KKT point (local optimum) for the joint optimization
problem (Fig. 5, as denoted by (21)). Therefore, we note
the existence of dual Lagrange multipliers, λ∗i,j , µ

∗
i,j corre-

sponding to uij ∈ Ineqj , vkj ∈ Eqj , respectively. We write
the KKT conditions as:

∇jfj(x∗j , τ∗j ,x∗j+1)+
∇jfj−1(x

∗
j−1, τ

∗
j−1,x

∗
j)+∑

ui,j∈Ineqj
λ∗i,j∇jui,j(x∗j , τ∗j)+∑

vk,j∈Eqj
µ∗i,j∇jvi,j(x∗j , τ∗j)

 = 0,

ui,j(x
∗
j , τ
∗
j) ≤ 0, ui,j ∈ Ineqj

vk,j(x
∗
j , τ
∗
j) = 0 vk,j ∈ Eqj
λ∗i,j ≥ 0 ui,j ∈ Ineqj

λ∗i,jui,j(x
∗
j , τ
∗
j) = 0 ui,j ∈ Ineqj

. . . 0 ≤ j ≤ N
(22)

Here ∇j refers to the gradient w.r.t (xj , τj).
We now separately consider the solution sj : (x∗j , τ

∗
j)

for the decomposed problem Pj (see Fig. 6) having fixed
the solutions for all other segments πl for j 6= l to xl =
x∗l , τl = τ∗l . Following the form in Eq. (21), we obtain Pj
as follows (j = 0, N have a slightly different form):

min fj−1(x∗j−1, τ
∗
j−1,xj) + fj(xj , τj ,x∗j+1)

s.t. ui,j(xj , τj) ≤ 0, ui,j ∈ Ineqj
vk,j(xj , τj) = 0, vk,j ∈ Eqk

(23)

We can now write down the KKT constraints for this problem
and note that (a) the KKT conditions from Eq. (22) can be
decomposed into N set of contraints by fixing j = 0, . . . , N
and yields the KKT conditions for each Pj , and (b) the KKT
conditions expressing a fixed point solution for (P0, . . . , PN)
are conjoined to yield a KKT condition in Eq. (22).

Theorem 3.1 (Equivalence of KKT Points): (x∗, τ∗) is a
KKT point for the problem Fig. 5 iff (x∗, τ∗) is a fixed
point for the decomposed problem in Fig. 6

In summary, the decomposed problem when solved itera-
tively for its constituent sub-problems converges to a (local)
minimum of the original problem, if the optimization of each
of its sub-problem converges.

Remarks. Instead of splitting for every trajectory segment,
several segments can be group together as a sub-problem; the
tradeoff being the problem size and the number of iterations

needed for convergence. Also, such a formulation can be
easily parallelized.

B. Handling Mode Invariants

Finally, we consider the problem of dealing with con-
straint (10). The constraint can (a) either be entirely dropped,
(b) relaxed, or (c) handled directly on the fly. Dropping the
constraint may result in solutions that are unacceptable; this
can be remedied by multiple re-initialization of the problem
until an acceptable solution is found. Though this approach
is the simplest, it may be unsatisfactory, depending on the
problem. Relaxing the constraint by enforcing only the end
points of a trajectory segment to satisfy the mode invariant is
another option. This relaxation can be tightened arbitrarily by
further discretizing the trajectory space (splitting a trajectory
segment into multiple segments) and letting more than one
trajectory segment to be inside a mode, while enforcing
the end points to satisfy the respective mode invariants.
The constraint can also be directly handled by using a
combination of a simulator and a zero crossing detector as
the constraint function. It should be noted that such a direct
formulation can be highly non-linear, discontinuous and lead
to poor performance.

IV. EXPERIMENTAL RESULTS

We present a prototype implementation and a preliminary
evaluation of the various ideas presented in this paper.

A. Implementation

The techniques presented were implemented using
MATLABTM. Given the description of a hybrid system A,
a safety property ϕ, and an abstract counter-example C as
a sequence of modes/transitions, the falsification problem
is reformulated as an optimization problem. The abstract
counter-example C may be obtained by running the flowpipe
construction tool such as SpaceEx [24], or alternatively by
enumerating all likely mode/transition sequences up to a
given length. Our implementation uses the latter combined
with some user guidance to narrow the search space. For
each mode sequence, an optimization problem is initialized
through random simulation in each mode; which may not
be feasible to begin with. Our approach utilizes the generic
fmincon optimization function available in MATLABTM.

The gradients of the objective function and constraints
are supplied to fmincon in order to improve the speed of
convergence. Given K mode sequences C1, . . . , CK , we run
the optimization instances for each Ci in parallel. For all
practical purposes, a violation is concluded within a small
tolerance ε = 10−3 for the cost. The found counterexamples
are confirmed by simulating from the initial condition x0

with the obtained mode dwell times(τi).

B. Benchmarks

We test our approach on the NAV benchmarks that
are commonly used to evaluate hybrid system verification
tools [21]. These benchmarks model a particle traveling on
a 2 dimensional grid of cells. The continuous dynamics of

Fig. 7. 10,000 Simulations and the target cells P,Q,R and S.

each cell are described by set of affine ODEs. A transition
is taken when the particle crosses over from one cell to its
neighbor. All instances of the benchmark designate an initial
set of states and an error cell. To test our approach we focus
on the “NAV-30” instance which has 25 × 25 = 625 cells
or discrete modes and roughly 2500 transitions. To make the
falsification more challenging, we modify initial set of states
to X0 : x ∈ [4, 5], y ∈ [21, 22], vx ∈ [−1, 1], vy ∈ [−1, 1].

We carefully choose safety properties P , Q, R and S,
wherein each safety property is simply a cell in the grid. The
cells P,Q,R and S are detailed in Table I. We characterize
the difficulty of violating each property by a “degree of
difficulty” (DoD) metric by running N = 100, 000 random
simulations and recording the number of error trajectories
(plotted in Fig. 7). We note that P was violated by 3, Q
by 2, R by 1 and S by 105 simulation traces, respectively.
The challenge lies in whether our optimization scheme can
discover the violations given some likely mode sequences.

TABLE I
EXPERIMENTAL RESULTS

Property DOD Time1

S-Taliro Direct Decomp.
(Iters.)

P : x∈ [6, 7], y∈ [7, 8] 3 482 0.3 290 (848)
Q: x∈ [7, 8], y∈ [9, 10] 5 2443 0.5 113 (341)
R: x∈ [1, 2], y∈ [6, 7] 1 474 3 285 (704)
S: x∈ [22, 23], y∈ [11, 12] 110 564 8 1721 (2680)

1All times were measured in seconds on a laptop with Intel Core i7-2820Q
2.30GHz processor (x86 64 arch) and 8GB RAM running Ubuntu 11.04
Linux 3.2.0-34. Each falsification was verified using simulations. Time for
100,000 simulations running in parallel was 200 mins.

Table I summarizes the results of running our approaches
and the comparison with S-Taliro [3]. We compare two
optimization schemes on the benchmarks: the direct for-
mulation using fmincon (direct) function, and the de-
composed per mode formulation fmincon (decomposed).
Within fmincon, SQP is selected as the algorithm of
choice. Each falsification instance considers multiple mode
sequences. The table reports only the results over sequences

that led to error trajectories. Other mode sequences yielded
final costs in the range [0.5, 1], markedly higher than the
successful sequences. In most instances, a small number of
gradient descent iterations sufficed to distinguish a plausible
mode sequence from a spurious one, suggesting a a fast
heuristic for detecting such sequences.

The results also suggest that the direct optimization using
an off-the-shelf solver (fmincon with SQP) outperforms the
decomposed method. This is mainly due to the large number
of iterations required by the decomposed method to achieve
convergence. We posit that the efficacy of the decomposed
scheme may be evident on counter-examples with long mode
sequences, and merits further investigation. . We are currently
working to confirm this by trying our approach on a wider
variety of systems. Finally, better methods for reducing the
number of iterations, and thus accelerting the convergence
of the decomposed method remain to be investigated.

We also use S-Taliro for comparison and tabulate its
results alongside. The S-Taliro column in Table I describes
the least time taken for falsification for two runs (with the
simulated Annealing algorithm and 10,000 simulations).The
obtained trajectory is verified in all cases using a simulator.
As discussed above, the table also includes a DOD column
for every property, that is the number of randomly selected
samples succeeding in falsifying the property against a total
of 100,000 samples. Clearly, the smaller this number, the
more difficult it is to test the property using random testing.

C. Case Study: Insulin-Glucose Control

In this section we study an artificial pancreas controller
that seeks to maintain safe levels of plasma blood glucose
in type I diabetic patients. The insulin-glucose dynamics
are modeled using the Bergman minimal model with 3
state variables G, I,X [6], denoting the plasma glucose,
plasma insulin and remote chamber insulin concentrations,
respectively. We use two hybrid automata models for the
closed loop system, for our study. The controller design was
originally proposed by Fisher [22]. The two models used in
our evaluation differ in their treatment of glucose absorption
dynamics. Model-A uses linear hybrid glucose gut absorption
dynamics, and is taken from our previous work [12]. This
is a 6 mode hybrid automaton. Model-B has two discrete
modes, uses an exponential glucose absorption sub-model,
and is taken from Fisher’s original paper [22].

Using both models, we search for scenarios of hyper-
glycemia, where the plasma blood glucose levels increases
beyond 22 mmol/L and hypoglycemia, where it dips be-
low −0.9 mmol/L. Each model consists of upto 7 patient
parameters. The parameters for model-A are described by
Chen et al. [12]. However, we extend the ranges of some
parameters for our study here Model-B is evaluated over
parameter sets describing 18 different subjects, as described
by Bergman [7]. Our model included an uncertainty interval
for each of the patient parameters. We report results, for
cases where we could find a falsification.The models used
and the full results are available upon request.

TABLE II
CASE STUDY

Prop. ID time2 DOD {G0, I0}, {B, k}

G ≥ 22

6 0.5 0 {19.73,56.67},{0.69,0.03}
14 8.0 0 {14.93,170.98},{0.7,0.03}
16 0.6 6 {17.79,198.41},{0.68,0.038}
17 0.6 293 {16.13,20.02},{0.63,0.037}
18 0.6 84 {16.93,0,13.28},{0.63,0.034}

G ≤ −0.9 1 1 0 {15.17,399.6},{0.2,0.07}

2Time taken by fmincon. Time to compute DoD (on 4 parallel cores)
took approximately 1 hour. In all cases X0 = 0.

Results. For Model-B, Table II lists the initial values and
parameters which lead to hyperglycemia (G ≥ 22 mmol/L)
for five subjects and hypoglycemia for one subject The
table also reports te degree of difficulty (DoD) for each of
these falsification problems. In two cases, 10,000 random
simulations were unable to find the violation in question,
whereas our technique does.

For Model-A, we found a possible hyperglycemia sce-
nario. The search for this scenario terminated in 2.7s with
DoD = 294. In this instance, the 10,000 random simulations
took 7470 mins, many times slower than our approach.

V. CONCLUSION AND FUTURE WORK

To conclude, we have presented the general framework of
trajectory splicing, specialized it to linear hybrid automata
and demonstrated a promising preliminary evaluation of
our approach against existing falsification tools such as S-
Taliro. Our future work, will further explore the space of
optimization approaches for this problem over a larger set
of linear as well as non-linear benchmarks. Extensions to
handle non-autonomous systems are also planned.

VI. ACKNOWLEDGMENTS

This work was supported in part by the US National Sci-
ence Foundation (NSF) under award numbers CNS-0953941,
CNS-1016994 and CPS-1035845. All opinions expressed are
those of the authors and not necessarily of the NSF.

REFERENCES

[1] H. Abbas and G. Fainekos. Computing descent direction of mtl
robustness for non-linear systems. In American Control Conference.
IEEE Press, 2013.

[2] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivancic, and A. Gupta.
Probabilistic temporal logic falsification of cyber-physical systems.
Trans. on Embedded Computing Systems (TECS), 12(2s):95, 2012.

[3] Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. S-
taliro: A tool for temporal logic falsification for hybrid systems. Proc.
TACAS, pages 254–257, 2011.

[4] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL.
In SFM-RT 200 (Revised Lectures), volume 3185 of LNCS, pages
200–237. Springer Verlag, 2004.

[5] L. Benvenuti, D. Bresolin, A. Casagrande, P. Collins, A. Ferrari,
E. Mazzi, A. Sangiovanni-Vincentelli, and R. Villa. Reachability
computation for hybrid systems with Ariadne. In Proc. the 17th IFAC
World Congress, 2008.

[6] R. N. Bergman. Toward physiological understanding of glucose
tolerance: minimal-model approach. Diabetes, 38(12):1512–1527,
1989.

[7] R. N. Bergman, L. S. Phillips, and C. Cobelli. Physiologic evaluation
of factors controlling glucose tolerance in man: measurement of
insulin sensitivity and beta-cell glucose sensitivity from the response
to intravenous glucose. Journal of Clinical Investigation, 68(6):1456,
1981.

[8] J. T. Betts. Survey of numerical methods for trajectory optimization.
Journal of guidance, control, and dynamics, 21(2):193–207, 1998.

[9] J. T. Betts. Practical methods for optimal control and estimation using
nonlinear programming, volume 19. Siam, 2010.

[10] A. Bhatia and E. Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. Proc. of HSCC, page
451–471, 2004.

[11] H. G. Bock and K.-J. Plitt. A multiple shooting algorithm for direct
solution of optimal control problems. 1983.

[12] X. Chen, E. Abrahám, and S. Sankaranarayanan. Taylor model
flowpipe construction for non-linear hybrid systems. In Real-Time
Systems Symposium (RTSS), pages 183–192. IEEE, 2012.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[14] T. Dang, A. Donzé, O. Maler, and N. Shalev. Sensitive state-space
exploration. In Proc. CDC’08, pages 4049–4054. IEEE, 2008.

[15] T. Dang and T. Nahhal. Coverage-guided test generation for continu-
ous and hybrid systems. Formal Methods in System Design, 34(2):183–
213, 2009.

[16] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[17] A. Donzé. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In Proc. CAV, pages 167–170, 2010.

[18] A. Donzé and O. Maler. Systematic simulation using sensitivity
analysis. Proc. of HSCC, pages 174–189, 2007.

[19] A. Donzé and O. Maler. Robust satisfaction of temporal logic over
real-valued signals. In Proc. FORMATS, pages 92–106, 2010.

[20] G. E. Fainekos, A. Girard, and G. J. Pappas. Temporal logic
verification using simulation. In FORMATS, volume 4202 of LNCS,
pages 171–186. Springer, 2006.

[21] A. Fehnker and F. Ivanĉić. Benchmarks for hybrid systems verification.
In Proc. of HSCC, volume 2993, pages 326–341, 2004.

[22] M. E. Fisher. A semiclosed-loop algorithm for the control of blood
glucose levels in diabetics. Biomedical Engineering, IEEE Transac-
tions on, 38(1):57–61, 1991.

[23] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. Efficient
solving of large non-linear arithmetic constraint systems with complex
Boolean structure. Journal on Satisfiability (JSAT), 1:209–236, 2007.

[24] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable
verification of hybrid systems. In Proc. CAV, LNCS. Springer, 2011.

[25] C. R. Hargraves and S. Paris. Direct trajectory optimization using
nonlinear programming and collocation. Journal of Guidance, Control,
and Dynamics, 10(4):338–342, 1987.

[26] T. A. Henzinger. The theory of hybrid automata. In LICS’96, pages
278–292. IEEE, 1996.

[27] C. Herde, A. Eggers, and T. Franzle, M. Teige. Analysis of hybrid
systems using HySAT. In Proc. ICONS 08., pages 13–18. IEEE, 2008.

[28] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg. On systematic
simulation of open continuous systems. In HSCC, pages 283–297,
2003.

[29] J. Kim, J. M. Esposito, and V. Kumar. An RRT-based algorithm for
testing and validating multi-robot controllers. Technical report, DTIC
Document, 2005.

[30] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox. Technical
Report UCB/EECS-2006-46, EECS Department, University of Cali-
fornia, Berkeley, May 2006.

[31] S. M. LaValle. Rapidly-exploring random trees a new tool for path
planning. Technical Report TR 98-11, CS Dept., Iowa State University,
1998.

[32] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning.
In Proc. ICRA, volume 1, pages 473–479. IEEE, 1999.

[33] T. Nahhal and T. Dang. Test coverage for continuous and hybrid
systems. In Computer Aided Verification, page 449–462, 2007.

[34] N. S. Nedialkov and M. von Mohrenschildt. Rigorous simulation of
hybrid dynamic systems with symbolic and interval methods. In Proc.
of ACC, pages 140–146. IEEE, 2002.

[35] E. Plaku, L. Kavraki, and M. Vardi. Falsification of LTL safety
properties in hybrid systems. Proc. TACAS, page 368–382, 2009.

[36] A. Tiwari. Hybridsal relational abstracter. In Computer Aided
Verification, CAV’12, pages 725–731. Springer-Verlag, 2012.

