
Economical Transformations of Structured Data
(Extended Version)

Jyotirmoy V. Deshmukh, E. Allen Emerson, and Roopsha Samanta

Computer Engineering Research Centre and Dept. of Computer Sciences
The University of Texas at Austin, Austin TX 78712, USA

{deshmukh, emerson, roopsha}@cs.utexas.edu

Abstract. Reliability of large-scale hardware and software systems of-
ten depends on the correctness of the underlying structured data. Ex-
amples of structured data include heap-allocated linked data structures,
files, and program states in software, and netlists and simulator states
for modeling hardware. In this paper, we focus on automatically trans-
forming structured data to make it satisfy certain properties of interest.
In particular, we consider tree-like structured data (i.e. trees and lists),
and finite state properties of such structures (e.g. acyclicity, sorted-ness).
We address two separate problems: (1) given an input structure, trans-
forming it in a minimal fashion to obtain a desired output structure,
and (2) given an input property and an output property, synthesizing a
(small) update program that transforms any input satisfying the input
property to some desired output. Our approach uses automata-theoretic
constructions to enable efficient reasoning. The practical utility of our
approach is in its ability to scale to input structures of arbitrary sizes,
as illustrated by our prototype tool.

1 Introduction

Large-scale hardware and software systems often manipulate various kinds of
structured data. In hardware models, examples of structured data include net-
lists and simulator states. In software systems, structured data manifests explic-
itly as heap-allocated linked data structures and files, or implicitly as program
states, control-flow graphs and synchronization skeletons (for concurrent pro-
grams). High-level tasks in such systems often involve transforming structured
data to satisfy certain properties of interest. For instance, certain net-lists can
be modeled as directed graphs, and transformations for power and timing opti-
mizations can be expressed as graph manipulation procedures [1, 2]. In software,
for a rich class of programs [3, 4], the program state can be modeled as a tree.
For such programs, static repair of the program can be reduced to static re-
pair of program states, which in turn can be modeled as a tree transformation
problem. In some ongoing programs like mail-servers and real-time life support
systems, it is crucial to ensure data structure consistency for continued execution
of the program [5, 6]. Here, the objective is to repair a given faulty data struc-
ture at run-time. Other examples include file recovery and repair, and compiler

optimizations. Typically, procedures for implementing such transformations are
highly tailored to the application and are often developed manually.

In this paper, we present a uniform methodology to automatically gener-
ate transformations for a broad class of applications. In particular, we focus on
structured data that can be modeled as trees (or lists). We target finite state
properties for such structures, e.g., acyclicity, sorted-ness, reachability of spec-
ified data, bounds on out-degree (fan-out), arbitrary regular patterns on data,
etc. We assume that a transformation can be expressed as an update procedure
that iteratively traverses a given input structure and applies localized updates,
i.e., updates restricted to small neighborhoods within the structure. We allow
specification of a set of permissible localized updates and a cost associated with
each update. The cost of an update procedure is the sum of the costs of the
localized updates used by the procedure. Associating costs with updates enables
us to choose between multiple update procedures. For instance, consider the
problem of transforming a string so that it satisfies the regular property (ab)∗.
Candidate outputs: ε, ab, abab . . . , all satisfy this property. However, if the input
is the string abcabcabc, then the update procedures that convert it to ε or ab
potentially lose information, and may be less preferred.

Within the automatic transformation generation paradigm, we identify two
separate sub-problems.

Sub-Problem 1. Given a single input structure, we wish to minimally modify
it to obtain an output structure that satisfies properties of interest. Real-world
instantiations of this problem include: repair of a faulty linked list to satisfy some
invariant, repair of a file to satisfy its syntax, transformation of a given net-list so
that it meets some design constraints, and repair of the synchronization skeleton
of a concurrent program.

Sub-Problem 2. Given an input property and an output property, we wish to
automatically synthesize a (small) update program that transforms any input
satisfying the input property into some output satisfying the output property.
Real-world instantiations of this problem include: synthesis of a program that
repairs all faulty linked lists, synthesis of a program that can repair syntax errors
in all faulty files, and repair of a program where the program states are trees.

We propose an automata-theoretic framework to address both of the above
problems. We encode all possible update procedures composed of sequences of
permissible updates in an update automaton AU . We express the desired output
properties as a property automaton Aϕ. We encode the given input structure
(first case) or the given input property (second case) as an input automaton.
We construct the synchronous product of these automata, denoted as A⊗. In-
tuitively, A⊗ captures all update procedures that transform the given inputs to
desired outputs. Depending on the sub-problem, we use A⊗ to yield a desired
output structure or a small update program.

In the first case, we extract the output structure that satisfies the properties
of interest and can be obtained using the least cost update procedure. In the
second case, we extract a small set of update procedures that can transform

2

any input satisfying the input property to a desired output. This set of update
procedures can be statically translated to a high-level program that implements
the desired transformations.

Our key contributions in this paper are as follows: (1) We formulate an
automata-theoretic framework to formally reason about automatic transforma-
tion of structured data, and present the necessary constructions and algorithms
required. (2) We address two useful sub-problems that encompass numerous ap-
plication scenarios within the above framework. (3) We provide the ability to
choose transformations in a cost-aware manner. (4) We demonstrate that our
framework naturally scales to transformations of input structures of arbitrary
sizes.

The paper is organized as follows: We provide definitions and notation in
Sec. 2. We address the first sub-problem outlined above in Sec. 3, and the sec-
ond sub-problem in Sec. 4. Experimental results with our prototype tool are
presented in Sec. 5. We end with a discussion of related work and extensions.

2 Preliminaries

In what follows, we introduce required terminology for our framework. We as-
sume that all structures encountered are finite.

Rooted Digraphs, Trees. A rooted digraph (directed graph) is defined as a tuple
(V,E), where V is a set of vertices with a designated vertex known as the root
vertex r and E ∈ V × V is a set of edges. If (v1, v2) ∈ E, then we say that v1 is
a parent of v2, and v2 is a child of v1. The root vertex has no parent. In the rest
of the presentation we use the term digraph to mean a rooted digraph.

A tree t is a digraph (V,E), with the property that each vertex (except the
root vertex) has a unique parent. We say that a vertex is terminal (denoted ⊥)
if it has no children. All non-terminal vertices have at least one child. A sub-tree
st of a tree t is a rooted, connected digraph (V ′, E′), such that V ′ ⊆ V , and
E′ ⊆ E. We say that a tree is finite if every path in the tree ends in a terminal
vertex. The height of a finite tree is the length of the longest path in the tree
that begins at the root vertex.

Every finite digraph can be unwound into a finite tree1. For an input digraph
ti and an output tree to, we define a composite structure tc = ti ◦ to, obtained
by super-imposing to on the unwound ti.

Tree Automata over Finite Trees. A non-deterministic finite state tree automa-
ton A running over a finite tree t of maximum out-degree K, is a tuple A
= (Σ,Q, δ, q0, F) where Σ is a finite, non-empty input alphabet labeling the
nodes of t, Q is a finite, non-empty set of states, δ : Q×Σ → 2Q

K

is the non-
deterministic transition function, q0 ∈ Q is the initial state, and F is a set of
final states. The run ρ of A on a Σ-labeled t is an annotation of t with the states
in Q, compatible with δ. We say that ρ is an accepting run if every path in ρ

1 If the digraph has cycles, we unwind it only a bounded number of times.

3

contains a node labeled with a state from F . We say that a tree t is accepted
by A if there exists an accepting run of A on t. The language of A (denoted
L(A)) is the set of all trees accepted by A. Note that a tree automaton can be
meaningfully defined to operate over an arbitrary digraph [7].

Window, Local Updates. A procedure that updates a rooted digraph can be
typically visualized as traversing the digraph starting at the root vertex, and
iteratively applying updates to each vertex. We wish to focus on procedures in
which each such update is local, i.e., restricted to a small neighborhood of a
vertex. To formally define a local update, we introduce the notion of a window.

For a given digraph/tree t, a window w(v) is a rooted subgraph/sub-tree of
t of some fixed height h, rooted at the vertex v. In effect, a window of height h
rooted at v1 contains all vertices v2 s.t. (v1, v2) ∈ E or (v1, v2) ∈ E2 or . . . or
(v1, v2) ∈ Eh. We denote a window by just w, when v is obvious from the context.
We define the functions root(w) and ht(w) to denote the root node of w and
the height of w, respectively. A terminal window is either a window with ⊥ as
its root node or a window with a blank symbol as its root node, denoted by w⊥
and w∅, respectively.

An update primitive is a statement that could (a) change the data value of
a vertex, (b) add or delete edges between vertices, (c) delete an existing vertex,
or (d) add a new vertex. A local update u is any finite composition of update
primitives that are constrained such that: (1) the vertices and edges that any
constituent primitive refers to are (strictly) contained within the window w,
and (2) any new vertex that is added is inserted as a child of a vertex in the
original w. The first condition, for instance, disallows adding an edge to a vertex
outside the window. The second condition precludes a possible long sequence of
insertions where vertices keep getting added as children of newly added vertices.
Thus, (2) ensures that the height of the window is only increased by a constant
factor by any finite composition of update primitives. The attractive feature of
local updates is that changes are confined to a local region, and do not affect
other parts of the tree. In the rest of the presentation, we assume that all updates
are local.

Permissible Updates, Update Procedure. We allow users to specify a set of per-
missible updates, U = {u1, u2, . . . , uN , uI}. Each update un ∈ U can be viewed
as a code snippet composed of a combination of update primitives defined be-
fore. The update un maps an input window wi to an output window wo. Let
hi, ho be the heights of input windows and output windows respectively. Let
W (h) denote the set of all windows of height h. Thus, every update un is the set
{(w1i, w1o), . . . , (wMi, wMo)}, where each wmi ∈W (hi), and each wmo ∈W (ho).
The identity update uI maps a window to itself. Since the global objective is to
modify a rooted digraph to obtain a tree, we impose certain basic conditions
on each un that ensure that the modified window is a connected sub-tree. For
instance, an update cannot cause wi to become disconnected (i.e. no garbage),
and cannot introduce sharing or cycles in wo.

4

Let ti be a given input digraph. An update procedure P iteratively visits
each vertex v in ti starting from the root node, choosing and applying some
permissible update to w(v). An update procedure thus yields an output tree to
upon execution on an input digraph ti. We write to = P(ti).

Update Costs. To enable a quantitative comparison of updates and corresponding
modified trees obtained by an iterative application of such updates, we define
a cost function c : U → N that associates a positive integer cost c(un) with
each un ∈ U . Thus, the cost of any (wi, wo) pair in un is c(un). The cost of an
update is typically a function of the system resources and complexity required
to implement the low-level update. For instance, updates that involve a greater
number of changes within a window are likely to be more expensive, updates
involving insertion of nodes may be assigned higher costs, and so on. The identity
update is assigned a cost of 0.

Let uv be the short hand for the update chosen by procedure P for the
window w(v) rooted at the vertex v in the input digraph ti. The total update
cost for P (denoted as C(P)) is the sum of update costs over all vertices v in ti,
i.e., C(P) =

∑
v∈ti

c(uv).

Regular Tree Properties. We say that a property ψ over trees is a regular tree
property if there is an equivalent non-deterministic tree automaton (with final
state acceptance) Aψ such that every tree t satisfying ψ is accepted by Aψ, and
conversely every tree accepted by Aψ satisfies ψ. In the rest of the presentation,
we assume that properties of interest are specified as tree automata of the form
described above. Note that a regular tree property is a well-defined notion for
digraphs, [7].

Windowed Trees/Digraphs. In order to facilitate the view of an update procedure
as a sequence of local updates on windows, we define a a special representation
called a windowed tree/digraph (denoted by t̃) for a given tree/digraph t. Each
vertex in t̃ is a window w(v) rooted at vertex v in t, and each edge (w(v1), w(v2))
in t̃ corresponds to an edge (v1, v2) between the root vertices of w(v1) and
w(v2). We illustrate this representation pictorially in Fig. 1 in lieu of a rigorous
definition.

Special Case: Linear structures. Observe that when the desired output is a linear
structure, the above definitions become considerably simpler. A digraph with
a maximum out-degree of 1 is termed a linear digraph. We call a tree with
maximum out-degree 1 a list. In the case of linear digraphs, a window is a linear
sub-graph (or sub-list) of t of fixed height h. The definition of a finite state
non-deterministic tree automaton with final state acceptance reduces to the well-
known non-deterministic finite state string automaton (nfa), when K = 1. Thus,
regular properties for lists are simply specified as regular expressions or in the
equivalent formalism of nfas.

5

a b a ⊥

a b b a a ⊥ ⊥

(a)

(b)

a

b

a

⊥ ⊥

⊥

c

b

⊥ ⊥

e

⊥ ⊥

a

b c

b

a ⊥

c

b e

a

⊥ ⊥

⊥ b

⊥ ⊥

e

⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

(c) (d)

Fig. 1: Windowed Representation. (a) List li, (b) Windowed List l̃i, (c) Tree ti, (d)
Windowed Tree eti

6

3 Transforming an Input Structure

In this section, we address Sub-Problem 1 from Sec. 1 in which the objective is
to minimally modify a single input digraph to obtain a desired output tree. We
present all the necessary steps in our methodology for achieving this goal.

3.1 Problem Definition.

The inputs to our framework are: a regular tree property ϕ, an input digraph ti
(that does not satisfy ϕ), and a set of permissible updates U with an associated
cost function c. We wish to obtain an output tree to such that:

1. to satisfies ϕ,
2. there exists an update procedure P s.t. P(ti) = to, and,
3. for every update procedure P ′ which yields an output tree t′o = P ′(ti) that

satisfies ϕ, C(P) ≤ C(P ′).

In other words, we wish to obtain a suitable output tree to that can be
obtained from ti with the least cost2.

3.2 Solution Outline.

The key steps in our approach are as follows:

1. Construct an input automaton AI that encodes the windowed digraph t̃i
corresponding to ti.

2. Construct an update automaton AU that encodes all possible update proce-
dures using updates from U .

3. Construct a property automaton Aϕ that encodes the windowed trees t̃o that
correspond to output trees to that satisfy ϕ.

4. Construct a query automaton A⊗, defined as the synchronous product AI ⊗
AU ⊗Aϕ.

5. Check if there exists any update procedure P s.t. P(t̃i) = t̃o, and t̃o is ac-
cepted byAϕ. In effect, this check is equivalent to checking the non-emptiness
of the language of A⊗.

6. If the previous step succeeds, extract the least-cost update procedure, and
the corresponding output tree to from A⊗.

In the rest of this section, we use the following example to illustrate our
methodology.
Example 1. We are given the list ti from Fig. 1(a) as our input. The desired
output property (ϕ) is sorted-ness of the list elements. If there are only two
data values a, b allowed in the list, with a < b, we can express ϕ as the regular
2 With an appropriate cost function c, one may expect the output to obtained from the

least cost update procedure to correspond to a minimal perturbation of the original
input ti.

7

expression a∗b∗. We wish to obtain an output list to that satisfies ϕ, given the
following set of updates over windows of height 2: U = {us, ur, uI}, where us =
{(ba , ab)} swaps the list elements in the window ba , ur = {(ab , aa)} sets both
list elements to a in the window ab , and uI is the identity update. The costs of
the updates are: c(us) = 1, c(ur) = 10 and cuI

= 0.

3.3 Automata Constructions

We first discuss the construction of the automata outlined above. For simplicity,
we explain each construction assuming that the heights of windows in input
and output structures are the same, i.e., hi = ho = h. Note that this does not
compromise the generality of our framework. When hi < ho, i.e., when there exist
updates that insert nodes within a window, we can pad the relevant positions in
the input window with a special placeholder symbol, say −, such that the size
of the input window equals the size of the output window. Also, we can ensure
that updates that delete nodes within a window never decrease the size of the
window, by similarly marking all deleted nodes with another special symbol.

qab qba qa⊥ q⊥
(ab ,*) (ba ,*) (a⊥ ,*)

(b)

ab ba a⊥ ⊥

(a)

Fig. 2: (a) Windowed list from Fig. 1(b), (b) Input Automaton AI

Input Automaton, AI . Given an input digraph ti, we encode it as a tree automa-
ton that effectively accepts the corresponding windowed digraph t̃i. In particular,
the input automaton AI only accepts composite structures t̃c = t̃i ◦ t̃o, where t̃i
is the input windowed digraph and t̃o is some arbitrary output structure.

Let ω0, ω1, ω2, . . . denote the vertices of t̃i, where ω0 is the root node. Addi-
tionally, let w⊥ and w∅ be terminal vertices as defined in Sec. 2. If ti has cycles,
let us assume that each cycle has diameter less than or equal to the window-
height h. In this case, we can observe each cycle within a window, termed a
cycle-containing window. We denote cycle-containing windows where the root
vertex is part of some cycle using a special notation: w	

1 , w
	
2 , Note that the

root vertex of a window w	
j may be a part of cycles along multiple successors.

We denote the cycle along the kth successor of root(w	
j) as 	kj .

We encode each (windowed) vertex in t̃i into a state of AI and each edge in t̃i
into the transition relation of AI . Let the states of AI corresponding to vertices
ωj be qωj

, vertices w	
j be q	j

, vertex w⊥ be q⊥ and vertex w∅ be q∅. We denote

8

the kth successor of a vertex ωj (or w	
j) in t̃i as succ(k, ωj) (or succ(k,w	

j)).
Note that if root(w	

j) is part of the cycle 	kj , then succ(k,w	
j) is some w	

m such
that root(w	

j) and root(w	
m) are successive vertices in the cycle 	kj . When AI is

in a state corresponding to vertex wi in t̃i, it transitions to the K-tuple of states
corresponding to the K successors of wi in t̃i upon reading the vertex (wi, ∗) of
t̃c. If AI reads a window with the special symbol −, it reconstructs the window
without any occurences of the special symbol, and transitions accordingly. The
accepting states of AI depend on the structure of t̃i. If t̃i is acyclic, AI transitions
to an accepting state upon reading the terminal window w⊥, and stays in the
accepting state henceforth. If t̃i has cycles, AI transitions to a special accepting
state, denoted as q	, the first time upon revisiting a vertex in a cycle. To enforce
this, for each cycle, we focus on the vertex in the cycle that is the furthest
distance from the root node of ti. When AI reads the corresponding windowed
vertex w	

j , it transitions to q	 along the relevant successor.
Formally, AI is the tuple (Σ,Q, q0, δ, acc), where Σ = Wi × Wo, Q =

{qω0 , qω1 , . . . , q⊥, q∅, q	, q	1, q	2, . . . , rej}, q0 = qω0 , acc = {q∅, q	}, and δ is
described as follows:

δ(qωj , (wi, ∗)) =

(
(qsucc(1,ωj), . . . , qsucc(K,ωj)) if ωj = wi,

(rej, . . . , rej) otherwise

δ(q	j , (wi, ∗)) =

(
(q
succ(1,w	

j)
, . . . , q

succ(K,w	
j)

) if w	
j = wi,

(rej, . . . , rej) otherwise

δ(q⊥ , (wi, ∗)) =

(
(q∅, . . . , q∅) if wi = w⊥,
(rej, . . . , rej) otherwise

δ(q∅ , (wi, ∗)) =

(
(q∅, . . . , q∅) if wi is blank

(rej, . . . , rej) otherwise

δ(q	 , (wi, ∗)) =
n

(q	, . . . , q)

δ(rej , (wi, ∗)) = (rej, . . . , rej).

In the above definition of δ, if succ(k, ωj) or succ(k,w	
j) is w⊥, the next state along

the kth successor is q⊥. Similarly, if succ(k, ωj) or succ(k,w	
j) is w	

m, the next state

along the kth successor is q	m . Finally, if root(w	
j) is part of the cycle 	kj and is the

furthest distance from the root node of ti amongst all vertices that are part of 	kj , then
succ(k,w	

j) = q	. If ti is a linear digraph, i.e. K = 1, upon reading (wi, wo), each state
transitions to only the first state in the K-tuple of states shown above. See Fig. 2 for an
illustration of AI for Example 1 (AI encodes eti from Fig. 1(b)). For simplicity in the
diagram, we do not show the rejecting or accepting states. Essentially, q⊥ transitions
to the final accepting state q∅ upon reading the symbol (w∅, ∗).

Update Automaton, AU . An update automaton AU is an encoding of all iterative up-
date procedures that transform a given input digraph ti to a desired output tree to.
AU operates on a composite structure etc = eti ◦ eto, where every vertex of etc is a pair
of windows (wi, wo). The states of AU are designed to check the following: (1) is ev-
ery input/output window (wi, wo) read in a state q consistent with those read in the
previous state? (2) does (wi, wo) read in state q correspond to some valid update in
U? If the checks are successful, then the transition labeled with (wi, wo)/u is enabled
in state q. We illustrate the way in which AU encodes these checks in its transition

9

diagram with an example. For simplicity, consider the case where the input digraph is
linear (i.e. the expected output is a list). Suppose,

q1
(xi,xo)/u1−−−−−−−→ q2

(yi,yo)/u2−−−−−−−→ q3

is a pair of consecutive transitions in AU . Since xi and yi are consecutive windows of
the input digraph, recall that xi and yi have an overlapping portion. If xi and yi have
height h, then the overlap consists of h− 1 vertices.

qo

qbb

qaa

qab

qba

q⊥

(aa
, aa

)/u
I ,

(ba
, ba

)/u
I

(b
a
, a

b
)/
us

(ab
, aa)/u

r

(b
b
, b

b
)/
u I

,
(a

b
, a

b
)/
u I

(aa , aa)/uI (ab , aa)/ur

(bb , bb)/uI (aa , ab)/us

(ba , ab)/us

(ab , aa)/ur

(
b
a

,
b
a

)/
u

I

(
a
b

,
a
b

)/
u

I

(ba , aa)/uI

(ba , aa)/uI

(
b
b
, a

b
)/
u

I

(
a
a
, b

a
)/
u

I

(a⊥
, b⊥

)/u
I

(b⊥ , b⊥)/u
I

(a
⊥ , a

⊥)/
uI

(b
⊥
, a
⊥
)/
u I

(a⊥ , a⊥)/uI ,
(b⊥ , b⊥)/uI ,

(⊥⊥ ,⊥⊥)/uI

Paths:
1:
2:

Fig. 3: Update Automaton AU

When in state q2, the first check tries to ascertain that the overlapping portions
are identical; in the above example, AU can check for consistency by “remembering”
the trailing h− 1 vertices of xi (denoted ri) in q2 and checking if it matches the first
h− 1 vertices in yi (denoted head(yi)). The second check in state q2 tries to ascertain

10

if (yi, yo) corresponds to the update u2. Note that when AU is in state q1, AU applies
the update u1 to possibly change the overlapping portion of xi and yi. Thus, yi is
now changed to a modified window, say y′i, in which the first h− 1 vertices of yi (i.e.
head(yi)) are replaced by the trailing h− 1 vertices of xo (denoted ro). Hence, instead of
checking if (yi, yo) ∈ u2, we check if (y′i, yo) ∈ u2. We write y′i = ((ro yi) to emphasize
how y′i is obtained from yi. To be able to do this check, AU has to also remember the
trailing h− 1 vertices of xo (i.e. ro) in state q2. See Fig. 3 for an illustration of AU
for Example 1. As before, we do not show rejecting states and accepting states for
simplicity in the diagram. The state q⊥ transitions to the accepting state accU upon
seeing a (wi, wo) where both wi, wo are w⊥ or one is w∅ while the other is w⊥.

For branching structures, where the windows are sub-trees of height h, there are
K sub-trees of height h− 1, each corresponding to an overlapping portion along one
of the K successors. Each state of AU thus remembers a pair of windows (sub-trees) of
height h− 1 (denoted as rki, rko along the kth successor), and AU ’s transitions mimic
the two checks outlined above.

Let QΣ denote the set of all input-output pairs of windows of height h− 1. States
of AU have a one-to-one correspondence with elements of QΣ , and we use them inter-
changeably. Formally, AU is defined as the tuple (Σ,Q, q0, δ, accU), where:

– Σ = Wi ×Wo, is a finite, non-empty set of updates,

– q0 is a designated initial state,

– Q = {q0, accU , rej} ∪QΣ is a finite, non-empty set of states,

– δ : Q×Σ → Qk is a deterministic transition function, defined below3,4:

δ(q0 , (wi, wo)/un) =

8>>><>>>:
(accU , . . . , accU) if wi,wo = w⊥ or w∅,
((r1i, r1o), . . . , (rKi, rKo)) if wi,wo 6= w⊥ or w∅

and (wi, wo) ∈ un,
(rej, . . . , rej) otherwise

δ(qri,ro , (wi, wo)/un) =

8>>>>>><>>>>>>:

(accU , . . . , accU) if wi,wo = w⊥ or w∅,
((r1i, r1o), . . . , (rKi, rKo)) if wi,wo 6= w⊥ or w∅,

head(wi) = ri and

((ro wi), wo) ∈ un
(rej, . . . , rej) otherwise

δ(accU , (wi, wo)) =

(
(accU , . . . , accU) if (wi, wo) = (w∅, w∅),
(rej, . . . , rej) otherwise.

δ(rej , (wi, wo)) = (rej, . . . , rej)

– accU is the accepting state.

Property Automaton, Aϕ. We wish to define the property automaton Aϕ to run on a
composite structure etc = eti ◦eto, where eti is an arbitrary input structure and eto contains
some desired output tree. Note that updates in successive windows may over-write

3 We define transitions enabled on blank symbols, i.e. w∅, to help reason about updates
that change the size of the input structure.

4 To each transition that is enabled on reading the symbol (wi, wo), we add a label
un corresponding to the underlying update to help with the extraction of an update
procedure later. We emphasize that these labels can be inferred from each transition,
and hence, should not be viewed as additional symbols read by AU .

11

the overlapping portions of the windows. In particular, if the height of a window is
h, any vertex v (and its outgoing edges) may be over-written as many as h− 1 times.
As a result, the output component of etc, in general, does not directly correspond to
the windowed representation of some output tree. Nevertheless, we observe that once
a vertex is at the root of an output window it cannot be changed any further, and can
exploit this to suitably construct an Aϕ that accepts a eto iff the contained to satisfies
ϕ.

q0

q1,a

q1,b

q2,b qn q⊥

ε

ε

ε

(*, a*)

(*, a*)

(*, b*)

(*, b*) (*,⊥)

(*, b*)

Fig. 4: Property Automaton Aϕ

We note that at any vertex, information about the sub-trees rooted at the sibling
vertices (other children of a vertex’s parent) is not available. To mitigate this, we use
non-determinism. At every vertex, Aϕ “guesses” the sub-tree (of height h− 1) rooted
at each of its K children. It then transitions to the K next states that in addition
to the transition rules in ϕ, “remember” the corresponding guess. When Aϕ reads a
new output window, it first checks if it had guessed the sub-tree correctly when at the
parent node, failing which it transitions to a reject state. For instance, in the example
below, some ϕ specifies that upon reading the window as shown in state q, the expected
transitions are to states q1 and q2 along the left and right successors of this window.
To mimic this in Aϕ we add transitions from all states qz that have guessed the value
of a correctly in the previous step (i.e. z = a), to states q1 and q2. States q1 and q2 in
turn remember the next pair of guesses of Aϕ for the root nodes of the child windows
(i.e. x and y).

q (q1, q2)

a

b c

Rule in ϕ

qz (q1x, q2y)

a

x y

Matching Rule in Aϕ
z = a

Thus, every path along which Aϕ guesses the next sub-tree correctly, and which
reaches an accepting state according to the rules in ϕ is accepted. Note that for a givenetc, the run of Aϕ on etc is deterministic, and Aϕ accepts some eto if and only if the
contained output tree to satisfies ϕ. See Fig. 4 for an illustration of Aϕ for Example
1. As before, we omit the accepting and rejecting states for simplicity. The state q⊥
transitions to the accepting state q∅ upon reading any symbol (∗, w∅).

12

We now formally define Aϕ. Recall that ϕ is itself specified as an automaton
(Σϕ, Qϕ, δϕ, Fϕ), where each component is defined in standard fashion. The transi-
tion upon reading a window w in ϕ (i.e. δϕ(q, w)), is a K-tuple of next states. We
denote by δϕ(q, w)[j] the jth component of this tuple. Let (ch1, ch2, . . . , g1, g2, . . .) de-
note elements of W (h − 1), i.e., windows of height h− 1 (g denotes “guess”, and ch
denotes “check”). Let Qo = Qϕ ×W (h − 1). This set, along with the initial and final
states defines the set of states of Aϕ. Essentially, each state in Qo is a pair (q, chj),
where: q ∈ Qϕ and chj is a “memorized” window in the state.

Recall from our informal discussion that in every state (q, ch) in Qo, upon reading
the symbol (wi, wo) Aϕ does the following: (1) checks if ch matches the sub-tree of
height h− 1 rooted at wo, rejects if not, (2) makes a guess for the sub-trees of height
h− 1 rooted at the successors of (wi, wo), (3) constructs a guessed window (say wo,g)
by splicing the root node of wo with the K guessed sub-trees, (4) computes the first
component of the next state according to δϕ(q, wo,g), (5) sets the second component of
the next state along the jth successor in accordance with its guess for the jth sub-tree
of the current node.

Formally, let G = {(g11, . . . , gK1), . . . , (g1L, . . . , gKL)} denote the set of the L pos-
sible, distinct, “guess-tuples”. We use G[`][j] to denote the jth state in the `th guess
in the set G. Let wo,` denote the window where root(wo,`) = root(wo) and for each
j, 1 ≤ j ≤ K, succ(j, wo,`) = G[`][j]. Thus, in state (q, ch), upon reading (wi, wo),
Aϕ non-deterministically transitions to a tuple of states {(q′1, ch′1,`), . . . , (q′K , ch′K,`)},
where: q′j = δϕ(q, wo,`)[j], and, ch′j,` = G[`][j].

We use ∆ij(q, wo) as short-hand to denote the next-state (δϕ(q, wo,`)[j], G[`][j]).
Finally, Aϕ is defined as the tuple (Σ,Q, q0, δ, q∅), where:

– Σ = Wi ×Wo, is a finite, non-empty set of updates,

– q0 is a designated initial state,

– Q = {q0, rej} ∪Qo is a finite, non-empty set of states,

– δ : Q×Σ → 2Q
k

is a non-deterministic transition function, defined below:

δ(q0 , (wi, wo)) =

8>><>>:
{(q∅, . . . , q∅)} if wo = w⊥ or w∅,
{(∆11(q0, wo), . . . ,∆K1(q0, wo)),
. . . ,
(∆1L(q0, wo) . . . ,∆KL(q0, wo))} otherwise

δ((q, ch) , (wi, wo)) =

8>>>><>>>>:
{(q∅, . . . , q∅)} if wo = w⊥ or w∅,
{(∆11(q0, wo), . . . ,∆K1(q0, wo)),
. . . ,
(∆1L(q0, wo) . . . ,∆KL(q0, wo))} if head(wo) = ch,
{(rej, . . . , rej)} otherwise

δ(rej , (wi, wo)) = {(rej, . . . , rej)}
– q∅ is the accepting state.

Query automaton, A⊗. We construct a query automaton A⊗ as the synchronous prod-
uct AI ⊗ AU ⊗ Aϕ. Thus, A⊗ accepts a composite structure etc = eti ◦ eto iff (eti, ∗)
is accepted by AI , (∗,eto) is accepted by Aϕ and (eti,eto) is accepted by AU . In other
words, A⊗ automaton encodes all windowed output trees which can be obtained from
the given windowed digraph eti using an update procedure based on updates from U
and which satisfy ϕ.

13

Handling Cycles of Arbitrary Diameter. To encode an input digraph with cycles of
diameter greater than the window-height, we can design an input automaton that has
Büchi acceptance. Essentially, every state of the input automaton that corresponds to
a vertex in the windowed input digraph is made accepting, and final states are made
into “trap” states by adding self-transitions. Thus, the automaton accepts even if it
gets “stuck” in a cycle, by virtue of seeing an accepting state infinitely often. Note that
the Büchi condition only makes sense if the input digraph is an infinite tree; when the
input digraph has cycles, the infinite unwinding of each cycle is a desired infinite tree,
thus enabling the use of Büchi acceptance.

However, defining the input automaton to accept infinite trees is not enough; we
would require modifications to the update and the property automata as well. Without
going into specifics, at a high-level, a complication arises in product construction as
the update and property automata are defined to run over finite trees with final state
acceptance, while the input automaton is defined to run over infinite trees with Büchi
acceptance. This can be resolved by defining the update and property automata to
accept “pseudo-trees”, i.e., trees that are cycle-free except for the leaf-nodes that have
self-loops. We can show that if the product automaton accepts a composite structure
that is the superposition of input digraph with cycles and a pseudo-tree, then there is
a corresponding finite tree (obtained by erasing self-loops on the leaf nodes) that is the
desired output. We avoid the full formal treatment of this case as it requires significant
additional terminology and notation.

3.4 Update Extraction

Our construction of A⊗ ensures that if L(A⊗) is empty, then there is no update pro-
cedure that can transform the given input tree ti to a desired output. Hence, the first
step is to check A⊗ for non-emptiness, failing which our update attempt terminates,
reporting failure to modify ti using updates from U . If L(A⊗) is non-empty, then each
accepting run of A⊗ is a pair (eti,eto) such that eto is an acceptable transformation of eti
under the given U . In our current framework, we choose the transformation that mini-
mizes the total update cost using Algo. 1, which is an adaptation of Knuth’s extension
of Dijkstra’s shortest path algorithm [8] to our framework.

The run of A⊗ on a Σ-labeled tree etc is an annotated tree ρ(etc) in which the root
vertex of etc is labeled with the initial state q0, and each successive vertex σ is annotated
with a state q compatible with the transitions in A⊗. We denote a vertex σ labeled with
state q as the labeled vertex (q, σ). The run ρ(etc) is an accepting run for A⊗ if each path
in ρ(etc) terminates in a vertex labeled with some final state, and the corresponding
Σ-labeled tree is termed as a witness to the non-emptiness of A⊗. A sub-tree of an
accepting run rooted at (q, σ) is denoted by et(q,σ), and is termed as a witness sub-tree.

We say that the state labeling the root of et(q,σ), i.e. q, has the witness property. Note
that A⊗ is non-empty iff q0 labels the root vertex of some witness sub-tree.

Recall that a transition in AU from state q which is enabled on symbol σ is labeled
σ/u and is associated with a cost c(u) corresponding to the update u. Thus each
labeled vertex, (q, σ), in ρ(etc) has an underlying update u, and can be assigned a cost
c(q, σ) = c(u). The cumulative update cost for a sub-tree et(q,σ) is the sum of c(q, σ)
and the cumulative update costs for the sub-trees rooted at each successor of (q, σ).
The update cost for the vertices labeled with final states is set to 0.

Our algorithm traverses A⊗ starting from the final states, and maintains a set D of
(roots of) witness sub-trees for which the minimum cumulative update cost has been

14

Algorithm 1: Extract Repair From Query Automaton
Input: Query automaton A⊗
Output: Output tree eto with least update cost
begin1

foreach q in F do2

cmin(q) := 03

D := F4

/* Obtain optimal witness etc */
while (q0 6∈ D) do5

foreach q in D do6

pre(q) := ∅7

foreach ((q′ predecessor of q) ∧ (q′ 6∈ D)) do8

if ((δ(q′, σ′) = (q1, . . . , qK)) ∧ (∀k ∈ [1,K] : qk ∈ D)) then9

pre(q) := pre(q) ∪ {(q′, σ′)}10

foreach q′such that (q′, σ′) ∈ pre(q) do11

/* δ(q′, σ′) = (qσ′1, . . . , qσ′K) */

cm(q′) := minσ′

c(q′, σ′) +

KX
k=1

cmin(qσ′k)

!
12

σm(q′) := σ′ for least cm(q′)13

qmin := q′ with least cm(q′)14

cmin(qmin) := cm(qmin); σmin(qmin) := σm(qmin)15

D := D ∪ {qmin}16

/* Breadth-first traversal for extracting eto = (eVo, eEo) */
/* Each σmin(q) = (wimin(q), womin(q)). */eVo := womin(q0), eEo := ∅17

stack := ∅, push q0 on stack18

while (stack 6= ∅) do19

q = top of stack, σ := σmin(q)20

pop stack21

if q 6∈ F then22 eVo := eVo ∪ {womin(q)}23

/* δ(q, σ) = (q1, . . . , qK) */
foreach qk in δ(q, σ) do24

push qk on stack25 eEo := eEo ∪ (womin(q), womin(qk))26

end27

computed, along with the corresponding minimum cost. In each iteration, it traverses
every transition into a state within D backwards, trying to discover new states q′

which satisfy the witness property (Line 10). For all such q′, it computes the following
(Lines 12-13):

15

– σm(q′): the transition symbol corresponding to the witness sub-tree et(q′,σm) with
the least cumulative update cost among all witness sub-trees rooted at q′.

– cm(q′): the minimum cumulative update cost for et(q′,σm).

It then inspects all such newly obtained states q′, and determines the state qmin
that has the least cm(q′), records the values of σmin(qmin) and cmin(qmin) (Line 15),
and adds qmin to D (Line 16). The algorithm stops computing D once the root node
q0 is added to D. Finally, it extracts the desired composite tree etc by traversing the
states q in D in a breadth-first fashion, starting at q0, using the information recorded
in σmin(q) along the way. It simultaneously obtains the windowed output tree eto by
eliding the input-component of etc for each σmin. Once we obtain eto, we can obtain to
by linking the root vertices of the windows corresponding to the vertices of eto using
the edges of eto5.
Example 2. Consider A⊗ for Example 1, constructed from AI , AU and Aϕ from
Figs. 2,3,4, resp. The paths in AU corresponding to the witnesses of A⊗ are high-
lighted in Fig. 3. Path 2 corresponds to the update procedure ur;uI ;uI ; of cumulative
cost 10, and yields the output list a→ a→ a→ ⊥. Path 1 corresponds to the update
procedure uI ;us;uI ; of cumulative cost 1, and yields the output list a→ a→ b→ ⊥.
Algo. 1 chooses Path 1 as the least cost witness and yields the list a→ a→ b→ ⊥ as
the desired output.

Lemma 1 (Completeness). If there exists an output tree eto such that eti can be
transformed to eto using some sequence of updates from U , and the corresponding to |= ϕ,
then Algo. 1 finds it.

4 Transforming a Class of Input Structures

In this section, we address Sub-Problem 2 from Sec. 1. Here, the objective is to obtain
an update program to transform every input digraph from a given class to some output
tree that satisfies the output property. We assume that the class of input structures is
specified as some regular tree property, termed the input property.

In general, automatically synthesized programs should be comparable in size and
performance to manually written code, without compromising on their readability by
a human. We hope to make appropriate choices in our formal problem definition and
in each step of our solution to achieve this implicit goal. For simplicity, we restrict our
attention to linear structures.

Problem Definition. The inputs to our framework are: regular expressions ı and ϕ
that respectively specify a given input class of linear digraphs and a desired class of
output lists, a set of permissible updates U , and a cost function c that assigns costs
to updates in U . We define an update program P = {P1, . . . ,PZ}, as a collection of
update procedures P1, . . . ,PZ . We use |P| to denote the number of update procedures
in P. The cost of an update program C(P) =

P
z C(Pz), is the sum of costs of its

constituent procedures. We wish to obtain an update program P such that:

1. for each linear digraph ti accepted by Aı, there exists an update procedure Pz ∈ P
such that Pz(ti) = to, and to satisfies ϕ,

5 Note that for certain U , A⊗ may accept an update procedure that transforms an
input to an empty output. However, the cumulative cost of such an update procedure
can prevent it from being selected as the least-cost procedure.

16

2. for each P′ that satisfies (1), |P′| ≥ |P|,
3. for each P′ that satisfies (1), and for which |P′| = |P|, C(P) ≤ C(P′).

Thus, we wish to obtain an update program consisting of a minimal set of update
procedures that can transform any linear digraph satisfying ı to a list satisfying ϕ.
This minimal program consists of the least number of update procedures among all
such programs, and, has the least cost among all programs with the same number of
update procedures.

Solution Outline. In what follows, we present the necessary steps required to adapt our
framework to address the above problem. We can proceed as before by constructing
suitable automata to encode the input property, all possible update procedures and
the desired output property. We then check the existence of an update program as be-
fore. Note that the product automaton, in general, contains (possibly multiple) update
programs that we desire. However, to realize our goal of minimizing the size and cost
of the update program, we need to be able to identify a suitable sub-automaton of the
product.

Automata Constructions. As before, all automata are defined to run over a composite
linear structure etc = eti ◦ eto. The update automaton, AU , and the property automaton
Aϕ, for encoding output lists can be defined as in Sec. 3. Here, the input automaton
Aı captures the input property ı. A query automaton A⊗, defined as the synchronous
product Aı ⊗AU ⊗Aϕ, encodes all update procedures that can collectively transform
linear digraphs satisfying ı to output lists satisfying ϕ.

Before we proceed, we clarify certain notions that will help reason over these au-
tomata. A path from the initial to a final state of an automaton may contain cycles,
which in turn could be unrolled finitely many times to obtain a large set of accepting
paths. However, all such accepting paths can be represented by a smallest irreducible
accepting path. It is easy to see that there are only a finite number of such irreducible
paths in a given finite state automaton. Each edge of an accepting path in Aı is la-
beled with some (wi, ∗) 6. Thus, each irreducible accepting path in Aı corresponds to
a finite-length linear digraph eti. We use such a path and its corresponding input struc-
ture interchangeably. Similarly, each irreducible accepting path of A⊗ corresponds to
a tuple (eti,eto)/P, where the update procedure P transforms the input eti to a suitable
output eto. We can also use an irreducible accepting path in A⊗ interchangeably with
its corresponding tuple.

Extraction of Update Program. As before, we first need to check if L(A⊗) is non-empty.
If L(A⊗) is empty, our update attempt would terminate, stating that no input in the
given class of inputs ti can be modified suitably using the given set of updates U . If
L(A⊗) is non-empty, we could extract the minimal update program in the following
three steps:

Step 1. The goal in Step 1 is to check if for each irreducible accepting path eti in Aı,
there exists some irreducible accepting path (eti,eto)/P in A⊗. In other words, we wish
to check if each input that satisfies ı can be transformed suitably by some permissible
update procedure. We can do this by constructing the synchronous product Aı⊗¬A⊗,
and checking its language for non-emptiness. If the language is non-empty, then there

6 In reality, this transition may correspond to multiple transitions labeled with
(wi, wo1), (wi, wo1) etc., all of which are enabled from the same state, and transition
into the same next state.

17

exists some accepting path eti in Aı for which there is no corresponding irreducible
accepting path (eti,eto)/P in A⊗. Our update attempt would terminate in this case,
stating that there is no update program that can transform the entire class of inputs
suitably. If the language is empty, we can proceed to Step 2.

Step 2. Multiple irreducible accepting paths inA⊗ may be labeled with the same update
procedure Pz. In other words, we can associate with Pz a set of inputs, each of which
labels some irreducible accepting path in Aı, and is successfully transformed by Pz. We
denote this set as Iz. Since there are only a finite number of irreducible accepting paths
in A⊗, there can only be a finite number, say Z, of distinct update procedures labeling
these paths in A⊗. Thus, there are Z sets I1, . . . , IZ , of (possibly overlapping) sets of
inputs which are successfully transformed by each of the Z update procedures captured
in A⊗. To obtain these sets, we can traverse each distinct irreducible accepting path
in A⊗, clustering paths labeled with the same update procedure Pz and extracting the
desired Iz from each cluster.

The goal in Step 2 is to find the smallest set covers7 for I1, . . . , IZ . A smallest set
cover represents the least number of distinct update procedures that can transform
all possible inputs to suitable outputs. We can compute the smallest set covers by
iteratively examining all possible subsets of the set {I1, . . . , IZ} of cardinality 1, 2, 3,
and so on, until we obtain a set cover. We remark that computing the smallest set cover
is a well-studied NP-hard problem [9], and several approximation algorithms have been
proposed over the years [10]. Thus, it is possible to substitute our naive algorithm with
some efficient approximation algorithm from the literature.

If there are more than one set covers of the smallest size, we can proceed to Step
3. If not, the update attempt should terminate successfully, and output the smallest
set cover as the minimal update program.

Step 3. The cost of a set cover is simply the sum of the costs of the update procedures
comprising it. Given a set of smallest set covers, each with an associated cost, we can
obtain the set cover with the minimum cost in this final step. We can then output this
smallest, least-cost set cover as the minimal update program.

Finally, we remark that as each update procedure in the update program consists
of a sequence of updates (as in Ex. 2), it can be coded using high-level programming
constructs. For instance, repeated sequences of updates are compiled to loops, and
choices between update procedures are compiled to guards.

Reasoning over Irreducible Accepting Paths.

We formalize the notion that it is enough to reason over irreducible accepting paths
in the following lemma:

Lemma 2. If there is an update program P = {P1, . . . ,PZ}, where each update proce-
dure Pz transforms an input corresponding to an irreducible accepting path in Aı, then
there is an update program P′ = {P ′1, . . . ,P ′Z} that transforms each input accepted by
AI .

Proof Outline. The steps of the proof are as follows:

7 Recall that a set cover for sets T1, T2, . . . TJ is a subset C of the set {T1, T2, . . . TJ}
such that C = ∪jTj . A smallest set cover is one with the least number of distinct
sets in it.

18

(a) Define an equivalence relation ≡π over strings - strings are equivalent if they are
accepted by the same path π (modulo repetitions) in the automaton. Show that
for each equivalence class there is a unique smallest string equivalent to all other
strings. Show that an irreducible accepting path is the same as the unique smallest
string for each such equivalence class.

(b) Each procedure can be viewed as a string of updates. Show that if inputs i1 and
i2 are ≡π-equivalent, P1 transforms i1 to a desired output, and P2 transforms i2
to a desired output, then P1 is ≡π-equivalent to P2.

(c) Combine (a) and (b) to show that given an input i, the procedure P ′z to transform i
is obtained by: obtain the irreducible accepting path eti to which i is ≡π-equivalent;
obtaining the corresponding Pz for eti, and repeating the updates in Pz correspond-
ing to the repeated symbols in i.

In simple terms, update procedures for the irreducible accepting paths can be
thought of as straight line code. Repeated parts of paths correspond to adding loops
in the update procedure for those symbols that repeat (i.e. loops in the product au-
tomaton).

Table 1: Experimental Results

Input Window Property AU A⊗ Extraction Selected

Size Size Time Mem. Time Mem. Time Updates
(Num. (ms) a (MB) (secs) (MB) (secs)
nodes)

10 2 Sorted-ness 35 0.3 0.01 0.09 0.008 swap

300 2 Sorted-ness 32 0.3 0.18 0.8 0.746 swap

1500 2 Sorted-ness 37 0.3 0.86 6.4 2.727 swap

10 3 Sorted-ness 561 0.9 0.21 6.8 0.011 swap2

300 3 Sorted-ness 575 0.9 4.94 14.1 0.390 swap2

1500 3 Sorted-ness 530 0.9 12.58 22.8 3.926 swap2

10 2 Acyclicity 50 0.3 0.01 0.1 0.010 removeEdge

10 3 Property A 167 0.3 0.02 1.3 0.010 u1, u2

a All experiments were performed on a Linux machine with an AMD Athlon 64x2 2.2
GHz processor, and 6GB RAM.

5 Experimental Results

We have implemented the first sub-problem discussed in this paper as a prototype tool
in Java. For now, we have focused on the problem instance where the desired output is
a list. Some of the key results obtained with this tool are shown in Table 1. One of the
highlights of our tool is its ability to scale to inputs of large sizes. We can combine the
two main steps in the solution: (a) checking non-emptiness of A⊗ and (b) extracting
an output tree from A⊗ into a single step, as the automaton A⊗ is empty if the initial

19

state q0 is not an element of the set D (in Algo. 1). The complexity of Algo. 1 is linear
in the size of A⊗, which in turn is linear in the size of the input, the update automaton
and the property. As we can see from Table 1, the time taken and memory consumption
for AU construction is a static cost for a given U , independent of the input length. The
times taken for constructing A⊗, checking it for emptiness and extracting the output
scale linearly with the input size - a desirable characteristic. The right-most column
indicates which of the updates from the library of updates were chosen by our tool to
obtain the least cost output list. The updates swap, swap2 essentially swap the data
values of vertices if they do not appear sorted, and removeEdge deletes an edge from a
cycle. In the last example, we check for a data-centric property: “every vertex labeled
b is followed by exactly two vertices, each labeled a”. To enforce this property, we use
two updates: u1 that removes undesirable trailing vertices, and u2 that changes one
label from b to a.

Our tool may report that an input cannot be repaired with a given set of permissible
updates U . Since U fixes a window size, it is possible to repair the same input by
considering a larger window size, and correspondingly, a larger set of updates U . Thus,
our tool could be used as a module in a loop that tries to find the cheapest fix by
increasing the window size in each iteration.

6 Discussion

Related Work. There has been work on computing the minimum tree-edit distance
between a given pair of labeled trees, and the corresponding edit script [11]. In contrast,
in our first sub-problem, we focus on computing an output tree satisfying some regular
tree property that can be obtained from an input digraph by a permissible set of
updates.

Approaches for program repair based on repairing Boolean abstractions of concrete
programs have been explored in [12, 13]. However, for programs with heap-allocated
data structures, Boolean abstractions are often too imprecise, and hence ineffective for
repairing such programs.

In [14, 5, 6], the authors focus on the dynamic repair of a single faulty data structure
to ensure certain consistency properties. Such properties are specified in a suitable
relational calculus, or are provided in the form of executable specifications (known as
repOk methods) built into the data structure. A common theme in these approaches is
to model the failure of a consistency property as a constraint that can be solved with
a theorem prover or a specific constraint solver. The solution to the first sub-problem
in this paper addresses a large subclass of data structures and consistency conditions,
and can be used for dynamic repair.

The problems considered in this paper can be interpreted as an instance of parame-
terized reasoning [15]. In [16, 17], the authors develop an automata-theoretic framework
for parameterized verification of data structure methods. While we use a similar frame-
work in this paper, we focus on parameterized transformations of structured data and
synthesis of methods.

Extensions and Future Work. The ultimate objective of synthesizing an update program
as outlined in Sec. 4 is to obtain a compact program, written using constructs from high-
level programming languages. We wish to explore different ways to steer our update
programs towards this goal. For instance, it may be preferable to use update procedures
with fewer number of distinct updates in them, and this could be incorporated into the

20

current framework by suitably changing the cost computation of an update procedure.
Further, our framework can be extended to synthesize transformations involving r
passes over the input structure (ArU).

References

1. Sait, S.M., Youssef, H.: VLSI Physical Design Automation. World Scientific (1999)
2. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Springer

(1996)
3. Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying programs with dy-

namic 1-selector-linked structures in regular model checking. In: Proc. of TACAS.
(2005) 13–29

4. Bouajjani, A., Habermehl, P., Rogalewicz, A.: Abstract regular tree model checking
of complex dynamic data structures. In: Proc. of SAS. (2006) 52–70

5. Elkarablieh, B., Khurshid, S.: Juzi: A tool for repairing complex data structures.
In: Proc. of ICSE, ACM (2008) 855–858

6. Demsky, B., Rinard, M.C.: Goal-directed reasoning for specification-based data
structure repair. IEEE Tran. on Soft. Eng. 32 (2006) 931–951

7. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. Vol. 29 (1999) 132–158

8. Knuth, D.E.: A generalization of Dijkstra’s algorithm. Inf. Process. Lett. 6 (1977)
1–5

9. Karp, R., Miller, R., Thatcher, J.: Reducibility among combinatorial problems.
In: Complexity of Computer Computations. Plenum Press (1972) 103, 85

10. Vazirani, V.V.: Approximation algorithms. Springer (2001)
11. Bille, P.: A survey on tree edit distance and related problems. THEOR. COMPUT.

SCI 337 (2005) 217—239
12. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local re-

pairs for Boolean programs. In: Proc. of FMCAD. (2008) 213–222
13. Griesmayer, A., Bloem, R., Cook, B.: Repair of Boolean programs with an appli-

cation to C. In: Proc. of CAV. (2006) 358–371
14. Elkarablieh, B., Garcia, I., Suen, Y.L., Khurshid, S.: Assertion-based repair of

complex data structures. In: Proc. of ASE. (2007) 64–73
15. Emerson, E.A., Kahlon, V.: Model checking large-scale and parameterized resource

allocation systems. In: Proc. of TACAS. (2002) 251–265
16. Deshmukh, J., Emerson, E., Gupta, P.: Automatic verification of parameterized

data structures. In: Proc. of TACAS. (2006) 27–41
17. Deshmukh, J., Emerson, E.A.: Verification of recursive methods on tree-like data

structures. Accepted for publication in Proc. of FMCAD (2009)

21

