
Verification of Recursive Methods on
Tree-like Data Structures

Jyotirmoy Deshmukh
Dept. of Electrical and Computer Engineering,

University of Texas at Austin.
jyotirmoy@cerc.utexas.edu

E. Allen Emerson
Dept. of Computer Science,

University of Texas at Austin.
emerson@cs.utexas.edu

Abstract—Programs that manipulate heap-allocated data
structures present a formidable challenge for algorithmic verifi-
cation. Recursive procedures (methods) in such software libraries
are used for a large number of tasks ranging from simple
traversals to complex structural transformations. Verification
of such methods is undecidable in general. Hence, we present
a programming language fragment with a syntax similar to
that of C for which correctness can be algorithmically checked.
For methods written in our fragment, and specifications in the
form of tree automata, verification is efficient in most cases, as
illustrated by our prototype tool. Our framework can be used to
verify methods such as insertion and deletion of nodes in k-ary
trees, binary search trees, linked lists, linked list reversal, and
rotations in balanced trees, with respect to specifications such
as acyclicity, sortedness, list-ness, tree-ness, and absence of null
pointer dereferences.

I. INTRODUCTION

Methods that manipulate heap-allocated, linked data struc-
tures such as linked lists, queues, binary search trees and
balanced trees are important components of software. Exhaus-
tive verification of such methods requires reasoning about
a potentially infinite-state system, which is intractable with
conventional model checking. Formally, given a method M,
and specifications in the form of pre/post-conditions ϕ and
ψ, correctness of M implies that if each input data structure
of M satisfies ϕ, then the corresponding output data structure
satisfies ψ. Though push-button verification of such methods is
highly desirable, there are theoretical limits as to what can be
achieved. Methods that manipulate common data structures are
often written as recursive programs, and checking correctness
of arbitrary recursive methods operating on unbounded data
structures is an undecidable problem. However, in this paper
we show how certain practical recursive methods can be
algorithmically verified.

The underlying framework for verification draws on previ-
ous work in [1], which presents an automata theoretic frame-
work for verifying iterative methods that manipulate directed
graphs. The main steps in such an approach involve: a) spec-
ification of data structure invariants and pre/post-conditions,
i.e.properties of data structures, using tree automata (cf. [1–
4]), b) construction of an exact abstraction for a method M
that we term as the method automaton AM, and c) emptiness
checking for the product of AM with the input property
automaton and a negation of the output property automaton.

Essentially, correctness ofM is reduced to checking emptiness
of the product. In this paper, we use a similar automata-
theoretic approach.

The key contributions in this paper are as follows: Com-
pared to previous work that dealt with iterative, non-recursive,
methods on general graphs, in this paper, we focus on recur-
sive methods that manipulate trees. Secondly, we present a
syntactic fragment for such recursive methods, and algorithms
to compile methods in this fragment to method automata. The
syntax of our fragment is similar to that of C, and a method in
our fragment can be compiled using any standard C compiler,
after a small amount of syntactic sugaring. Thirdly, we provide
mathematical conditions that ensure that every method in our
fragment can always be compiled into a meaningful method
automaton, and can thus be verified. This is in stark contrast
with prior work that assumes an oracle to provide auxiliary
proofs about a method’s behavior for verification to succeed.
For instance, the technique in [1] relies upon a proof that a
given method performs only a bounded number of destructive
updates to the underlying data structure; in this paper, our
syntactic fragment obviates this need. Finally, our techniques
can enable verification of practical methods including depth-
first insertion and deletion of nodes, search and replace of
data in k-ary and binary search trees, linked-list reversal, and
tree rotations. Early results with our prototype tool indicate
good run-times in verifying useful methods on linked lists and
binary trees. Optimizations such as symbolic representations
for the automata constructed by our technique would make
our approach highly scalable.

In a certain sense, our core methodology can be viewed as
an extension of conventional model checking. The most attrac-
tive aspect of model checking, i.e., fully automatic verification,
given a set of specifications, is preserved by our approach. One
of the main criticisms of an automata-based approach is that
its success hinges on the specification of sufficiently detailed
pre/post-conditions. However, a large number of pre/post-
conditions are shape properties, and are typically generic,
i.e., independent of the specific data structure implementation,
operating platform, or data values. While we do not focus on
specifications in this paper, we argue that by providing such
specifications pre-encoded as tree automata (or any suitable
logic that can be translated to tree automata), the burden
of writing good specifications is lessened. Hence, similar

to [1–4], we use tree automata as a specification language.
Examples include: acyclicity, sharing, list-ness, sortedness,
absence of null pointer dereferences, absence of dangling
pointers, and absence of double deletion. The key advantage
of our technique is that it does not require annotations such as
loop invariants or inductive invariants, and thereby minimizes
human input.

The paper is laid out as follows: We introduce the required
notation in Sec. II. We discuss the verification framework
using automata in Sec. III. In Sec. IV, we provide the syntactic
class of recursive methods for which verification is decidable.
Experimental results are discussed in Sec. V, and we conclude
with related and future work in Sec. VI.

II. PRELIMINARIES

In the programs that we wish to verify, we assume that
all program variables belong to only one of two types: a
variable over some finite set D (referred to as a D-variable),
and a pointer variable. D is also termed as the data
domain. Typical examples of D include: set of alphanumeric
characters, set of integers up to a particular byte-width, set of
strings up to a constant length over a finite alphabet, etc. To
define a pointer variable, we first introduce the memory model.

Memory Model: A heap H is an array of memory cells,
where each memory cell contains the value of some program
variable. The index of a memory cell is a positive integer
known as the address of that cell. A pointer variable (or
simply pointer) p is a variable that evaluates to an address
or to 0 (null). A node n consists of contiguous memory
locations that contain the tuple (d, l1, . . . , lK). Here, d ∈ D,
and each li is some address. We use addr(n) to denote the
address of the first memory location within n. We use n.d
(resp. n.li) to denote the value d (resp. pointer li) contained
in n. The value n.d is also called the data value of n, and
n.li is also referred to as a link of n. We say that a pointer
p points to n if p = addr(n). If p = addr(n), then the
expression deref(p), also called dereference of p evaluates
to n. The expression deref(p) is undefined and generates an
error known as a null pointer dereference if the value of p
is null. We assume that all pointers p are either null, or
that deref(p) evaluates to a valid node, i.e. we do not allow
pointer variables to be explicitly assigned integers, or any
form of pointer arithmetic. We assume that the number of
links K, is fixed and is part of the definition for a node.

Data Structure: A data structure is defined as an arbitrary
set of nodes. In this paper, we wish to focus on rooted and
connected tree-like data structures. Such a data structure
(say D) has a one-to-one correspondence with a rooted,
labeled, directed tree1 T (V,E,LV ,LE). Here, V is the
set of vertices, E is the set of edges, LV : V → D is a
function that maps each vertex to some data value in D,

1A tree is defined in standard fashion as a rooted directed graph in which
each node except the root has exactly one predecessor, and the root node has
no predecessor.

and LE : E → {1, . . . ,K} is a function that maps each
out-going edge of a given node to a unique positive integer.
Each node n in D corresponds to a vertex vn, such that
LV (vn) = n.d, and for every n′, s.t. n.li = addr(n′), the
edge e : (vn, vn′) belongs to E, and LE(e) = i. We call every
v′ s.t. (v, v′) ∈ E, a successor of v, and analogously call
v a predecessor of v′. We assume that there is a designated
unique root vertex r ∈ V (corresponding to the root node of
the data structure) with the property that r has no predecessor.

Methods: A method M is a procedure with an associated
signature sig(M) that defines its inputs and return values.
For simplicity, we assume that the methods have a void return
value, i.e. methods do not return anything. Thus, sig(M)
effectively defines inputs to M, that are: a) a finite list of
pointers p1, . . . , pn, and b) a finite list of values x1, . . . , xm ∈
D. The body of M may define a finite number of local
pointer variables and D-variables. M may additionally access
any number of global pointer variables and D-variables. A
recursive method is a method that calls itself. In this paper,
we focus on recursive methods that use depth-first traversal
to manipulate tree-like data structures. Such a M satisfies the
property that: it is invoked with a pointer to the root r of the
tree T as an argument, and for every node n in T , before
returning back to the predecessor of n, M is invoked on all
nodes within the sub-tree rooted at n. M terminates once it
returns from recursive invocations on all successors of r.

Def. 1 (Correctness of M). For every input tree Ti that
satisfies the pre-condition ϕ for M, the tree To resulting from
the action of M satisfies ψ.

A procedure that can decide the truth or falsehood of
the above statement can decide the correctness of M.
Unfortunately, this is an undecidable problem. However, in
this paper, we argue that by restricting the programming
language we can obtain efficiently decidable fragments.

Tree Automata Basics: A K-ary tree has the property that
the maximum out-degree of any node in the tree is K. A
tree automaton A running over an infinite K-ary tree T (for
some fixed K) is a tuple A = (Σ, Q, δ, q0,Φ) where Σ is
a finite, nonempty input alphabet labeling the nodes of T ,
Q is a finite, nonempty set of states, δ : Q× Σ → 2Q

K

is
the nondeterministic transition function, q0 ∈ Q is the initial
state, and Φ describes a specific acceptance condition [5]. The
run ρ of A on a Σ-labeled T is an annotation of T with the
states Q compatible with δ. The acceptance of T by A is
defined as a specific property of ρ, as described by Φ. For
instance, the Büchi condition specifies a set of states (say
Qa) and requires that some state in Qa appear along every
path in ρ infinitely often. The language of A (denoted L(A)
is the set of all trees accepted by A. Given two automata
A1 = (Σ1, Q1, δ2, q01,Φ1) and A2 = (Σ2, Q2, δ2, q02,Φ2),
the synchronous product Ap = A1 ⊗A2 is defined if Σ1 =
Σ2. The components of Ap are defined in in terms of
A1 and A2 as follows: Σp = Σ1 = Σ2, Qp = Q1 ×Q2,

q0p = (q01, q02), Φp = Φ1 × Φ2. Further, let qp = (q1, q2) be
a state of Ap. We define δp(qp, σ) as the Cartesian product of
each next-state tuple in δ1(q1, σ) and δ2(q2, σ).

III. VERIFICATION USING AUTOMATA

In this section, we formally define a method automaton
AM to serve as an exact abstraction for a given method M.
We denote the maximum out-degree of any node in a tree T
by K (also termed branching-arity). We recursively define a
ranking function rk that maps each vertex of a tree T to a
unique string from {1, . . . ,K}∗, as follows: rk(root) = 1 and
rk(n.lj) = rk(n) • j, where • denotes string concatenation.
Thus, rk(root.l2) = 12, rk(root.l2.l1) = 121, and so on. We
define a composite tree Tc as the superposition of trees Ti and
To, and denote the superposition operation as Tc = Ti ◦ To.
Essentially, a vertex vc in Tc is a pair of vertices (v, v′), s.t.
v ∈ Ti, v′ ∈ To, and rk(vc) = rk(v) = rk(v′). For any v in Ti
if there is no v′ such that rk(v) = rk(v′), we let v′ = ⊥ (and
similarly for a v′ ∈ To corresponding to a missing v ∈ Ti). We
define the method automaton AM to run on Tc and accept it
if the components of Tc, i.e., Ti and To are valid input/output
trees for M.

Def. 2 (Mimics). We say that AM mimics a method M
(denoted AM on M), if for all input trees Ti, AM accepts
(Ti, To) if and only if To = M(Ti).

Recall from Sec. I that our verification technique combines
such AM with the (finite-state) automata for the pre/post-
conditions (Aϕ and A¬ψ) and checks the product Ap for non-
emptiness. For verification to be solvable, we require that:
(a) each of AM, Aϕ, and A¬ψ have a decidable emptiness
problem, (b) the product operator ⊗ for combining these
automata is well-defined, and (c) the resulting product Ap
has decidable non-emptiness. In this paper, we restrict our
attention to properties specifiable as finite state tree automata;
examples can be found in [1]. Aϕ and A¬ψ thus trivially
satisfy the requirement in (a) and (b). However, an arbitrary
recursive method M using the underlying data structure like
a tape, is able to read, write, and move on this tape in either
direction, and is able to test if a tape location was previously
visited. Machines that have these capabilities are, in general,
as powerful as Turing machines. However, Turing machines
are not useful abstractions for recursive methods, as most
interesting problems for them are undecidable. To overcome
this problem, in Lem. 1, we show that if a method M
performs only a “bounded amount of work” on its input data
structure, then there exists a finite state tree automaton AM,
s.t. AM on M. Such an AM is of value, as it clearly satisfies
the requirements in (a), (b) and (c). To precisely explain the
notion of bounded work, we first define a destructive update.

Def. 3. A destructive update (du) is a modification to a data
structure node n (directly by accessing n or indirectly through
a pointer p to n). Let x be some element of D, and let pi’s
be pointers, then du has one of the following forms:
• n.d = x or p->d = x (changing the data value of n),

• n.li = pj or p->li = pj (changing a link of n),
• delete(p) (marking the node pointed to by p as free),
• p->lj = new(x, p1, . . . , pK) (inserting a new node as a

successor of deref(p)).

Lemma 1. Let the maximum number of destructive updates
performed by M on any node of the input data structure Di,
before it terminates, be r. If r ≤ c for some constant c, then
there exists a finite state automaton AM, such that AM on M.

Proof: For simplicity, consider the case where r = 1. Let
Tc = Ti ◦To. Each vertex nc in Tc is the pair (ni, no). We can
now define AM to run on Tc, starting at the root of Tc in state
q0. We can view the single destructive update performed by
M on ni as a function fdu that maps each ni to some output
node no. AM transitions to a reject state rej if no 6= fdu(ni),
otherwise it remains in the state q0 along all successors of ni.
Finally, if AM reaches a terminal vertex (i.e., no successors)
in Tc, it transitions to acc, and stays in that state. If AM
accepts Tc (i.e., reaches a terminal node along every path in
Tc) then it must be true that each (ni, no) encodes a valid
action of M. In other words, if Tc = Ti ◦ To is accepted by
AM, then To = M(Ti). If r > 1, then we can define Tc =
T 0 ◦ T 1 . . . ◦ T r, where T 0 = Ti and T r = To, and AM
accepts Tc if for each pair (T j , T j+1), T j+1 = fduj (T

j). By
construction, if r is a constant, we can define AM that can
mimic M using only a finite input alphabet that is proportional
to the arity of the tree K and r, and uses only a finite number
of states. Thus, if M performs only r (≤ some c) destructive
updates to each node in Ti, there always exists a finite AM
such that AM on M.

We refer to Lem. 1 as the bounded updates property.
Unfortunately, we can show that it is impossible to determine
whether an arbitrary recursive method satisfies the bounded
updates property. The proof is based on a reduction from
Rice’s theorem [6], and we skip it for brevity. While Lem. 1
shows that for any M that has the bounded updates property,
there is some AM s.t. AM on M, it does not provide a
recipe for extracting AM from M. Also, trying to compile an
AM from an arbitrary M is futile, due to the undecidability
barrier. In this paper, we identify a syntactic class of methods
obtained by restricting the recursive calling patterns and the
pointer usage by these methods, such that for any method
M belonging to this fragment, we can automatically obtain
a finite state tree automaton AM. Before we inspect this
class, we introduce window-based abstraction, which helps in
defining the input alphabet for method automata.

Window-based Abstraction: A window w is a finite encoding
of a node n and a bounded number of nodes that succeed n,
similar to the finite encodings developed in [1, 2]. A window
is obtained by mapping arbitrary integer addresses to a small,
finite subset of integers. For the window-based abstraction to
be applicable, we need the following assumptions: 1) M does
not access global pointer variables, and, 2) sig(M) has exactly
one pointer argument denoted by I (short for iterator), and a
finite number of D-valued arguments. Let vI denote the node

pointed to by I, i.e., vI = deref(I). In a given invocation
of M, since I is the only pointer passed as an input to M,
other nodes have to be accessed by following the links of
vI. In any reasonable syntax, this limits M to accessing a
small set of nodes. Borrowing notation from C, we use I->li
to denote vI.li. Similarly, I->li->lj denotes deref(vI.li).lj .
Each expression of the form I->li->lj . . . is called a pointer
expression. Any method body contains a finite number of
such pointer expressions, which can be statically identified.
Let PEM denote this set.

Def. 4 (Window). A window w(vI) is a tuple =
{vI, u1, . . . , un}, where each ui is obtained by dereferencing
an element of PEM. I.e., each ui has the property that if
ui = deref(p) for some p ∈ PEM, then (vI, u) is an element
of one of : E, E2, . . ., Ez , for a finite z.

a
0xa0b

c
a

0
0
0

0
0

0x60 0x800x40

0x60

0x80

0xa0

(a) Layout in Memory

1
3

0

2

a,1,2
a,⊥,⊥

b,3,⊥

c,⊥,⊥

(b) Window

Fig. 1: Window-based Abstraction

Informally, each ui is a node that is some descendant of
vI. Given a set of concrete nodes, we define a function laddr
that maps each ui to i, and vI to 0. The local address function
laddr thus replaces each actual address with an “abstract
address”. For a node in the concrete data structure that has
a successor that lies outside the window, the corresponding
link is marked with a ‘∗’, and null pointers are marked with
‘⊥’. Fig. 1a shows the layout of four nodes of a binary tree
in the memory. A window of size 4 representing this heap
structure is shown in Fig. 1b, where the numbers above each
node indicate the laddr of that node.

By encoding an input tree T using windows, we can obtain
an equivalent tree Tw, s.t., every node vI in T maps to the
vertex w(vI) in Tw. In other words, every vertex of Tw is a
window; T is embedded within Tw, and can be extracted from
Tw by eliding all nodes, except the first, from each vertex in
Tw. We note that an arbitrary tree T ′w in which each vertex is
a window may not correspond to a valid tree. Since windows
encode sets of nodes in T , adjacent windows in T ′w may
contain different values for the same nodes in T . We say that
Tw is a consistent tree, if the overlapping portions of adjacent
windows in Tw are identical (except for the values marked
with ∗), and for the window corresponding to a terminal node
vI, all other nodes in the window are marked as null (⊥).

Example 1. Consider a node n of the form: n = (d, l1). Fig. 2
illustrates a list Tw in which every vertex is a window of size
2, and Tw is consistent with T .

Modeling destructive updates: A destructive update du to vI,

a

(b,1) (c,*) (c,1) (a,0) (a,0) (a,0)

c a

(a,1) (b,*)

bT :

Tw:

Fig. 2: Consistent Abstraction

either marks vI as deleted, or changes I->d or I->li (for
some i). We can view du as a function mapping an “input”
window wi to an “output” window wo, where wo is obtained
by performing the actions of du on wi. Thus for statement:
I->d = x; wo is identical to wi except for I->d, which
has the value x. When du modifies I->li, the expression
on the RHS of du is a pointer expression, or a new node.
The effect of statement I->li := p, is to set I->li in wo to
laddr(p). Insertion of a new node is modeled by adding a new
node to wo and setting I->li to the laddr of this new node.
Deleting a node is modeled by over-writing each field in the
corresponding node in wo with some special character (say
‘−’). Thus, for any destructive update du, we can compute a
function fdu that maps a given wi to some wo.

Example 2. Consider a node with the same layout as in Ex. 1.
Let w(vI) = {(a, 1), (b, ∗)}, where vI = (a, 1). Now consider
the action of the destructive update du: I->d := I->l1->d.
The resulting window w′(vI) is {(b, 1), (b, ∗)}. In this case,
fdu is a function mapping any window w to a window w′ in
which both nodes in w′ have the same data value as the data
value of the second node in w.

IV. SYNTACTIC CLASS FOR RECURSIVE METHODS

In this section, we present a syntactic class for depth-
first recursive methods on tree-like data structures for which
verification is efficiently decidable. We split this class into the
class of tail-recursive methods, and the more general class
allowing non-tail recursion. Tail recursive methods can be
converted into iterative methods, and one could argue that
these can then be verified using techniques developed in [1].
However, the purpose of discussing tail-recursive methods is
twofold: a) it displays how the syntax that we present ensures
the bounded updates property, which contrasts with [1], where
the bounded updates property had to be ensured by an oracle,
and b) it makes the exposition on the more general class easier
by introducing necessary terminology in the context of an
easier problem.

We say that a method M visits a node vI when it is invoked
with I as its pointer argument. The control-flow structure of a
general recursive method M is as follows: M first visits the
root node. Any other node vI is visited following a recursive
invocation from vI’s parent. M re-visits vI interleaved with
recursive invocations with successors of vI as arguments,
before it finally returns back to the parent of vI from which
it was invoked. In a tail recursive method all recursive calls
are the final operations in the method body, before it returns.

Tail-Recursive Methods: We formally present the syntax
for tail-recursive methods in Fig. 3. Each M has a signature

sig and a body. M’s body is sub-divided into base case
blocks (baseblks), and a recursive block. The semantics are
as follows: M first evaluates bcondj over the nodes in w(vI),
and if true, performs the actions within bblockj followed by
a return. If none of the bcondj evaluate to true, then M
performs the destructive updates specified by rblock0 over the
nodes within w(vI), followed by recursive visits to successors
of vI for which rcondj evaluates to true over the possi-
bly updated w(vI). Block statements (block) are recursively
defined to consist of conditional statements (ifstmt), local
assignments (local), destructive update statements (du), or
empty statements (skip). We omit the syntax for assignments
to local variables (local), and the syntax for du statements
is specified in Def. 3. The expressions exp, bcondj and
rcondj are Boolean-valued equality or disequality expressions
comparing: a) two pointers, b) a pointer with the null value
(⊥), or c) data variables. We assume that any calls to methods
other than M are inlined within the body of M. In contrast
to standard programming languages, we specifically disallow
loops and pointer arithmetic.

M ::= sig { baseblks rblock0 calls return }
sig ::= (I) | (I, x1, . . . , xn)
baseblks ::= baseblk | baseblks baseblk
baseblk ::= if (bcondj) { bblockj return}
∀j : bblockj ::= block
rblock0 ::= block
calls ::= call | calls call
call ::= if (rcondj) M(I->lj)

a

block ::= stmt | block stmt
stmt ::= ifstmt | du | skip | local
ifstmt ::= if (exp) { block } else { block }

aNote: We statically enforce that for any two invocations of the form
M(I->lj) and M(I->lk), I->lj 6= I->lk , failing which is a syntax error.

Fig. 3: Syntax for Tail-Recursive methods

Lemma 2. Methods that respect the syntax specified in Fig. 3
satisfy the bounded updates property.

The correctness of Lem. 2 follows from the observation that
our syntax ensures that M recursively visits each successor
of any node vI at most once2 - when it is recursively invoked
from the parent of vI. Moreover, as no destructive update
is performed when M returns, effectively, M destructively
updates any vI at most once. From Lem. 1, we know that there
exists some finite state automaton AM such that AM on M.
We show how we can derive the desired AM in Algo. 1.

Recall that AM is defined to run on a composite tree Tc,
where the set of nodes of Tc (i.e. the input alphabet for AM) is
a set of pairs of windows, i.e., Σ = {σ|σ = (win, wout)}. The
required size and form of each of the windows can be statically
computed in a single pass over M by inspecting the set
PEM (pointer expressions within M). Note that our syntax

2Of special note is the case where M visits the l1-successor of vI, followed
by updating vI so that vI.l2 = vI.l1, followed by visiting vI.l2 (which is
now the same as vI.l1). Such a scenario is detected at compile-time and
disallowed, as specified by the footnote in Fig. 3.

Algorithm 1: CompileTailRecursive
begin1

W := all windows (computed by inspecting PEM),2
Σ:=W × W , q0:=init, Q:={init, acc, rej} ∪ QΣ,
Φ:={acc}, H :={}
/* Note that σ = (win, wout) */
foreach σ in Σ, q in QΣ do3

/* Reject inconsistent (q, σ) */
H :=H ∪ {(σ, init)}4
if (consistent(σ,q)) then H :=H ∪ (σ, q)5
else reject(q,σ)6

RS:=Σ7
foreach baseblk in baseblks, σ in Σ do8

if (σ |= bcondj) then9
RS :=RS \ {σ}10
fbblockj := computeBlock(bblockj)11
if (wout == fbblockj (win)) then12

/* σ mimics bblockj */
foreach q in H(σ) do accept(q,σ)13

else14
/* σ does not mimic bblockj */
foreach q in H(σ) do reject(q,σ)15

foreach σ in RS do16
frblock0 :=computeBlock(rblock0)17
if (wout == frblock0(win)) then18

/* σ mimics rblock0 */
foreach q in H(σ) do19

foreach j in {1, . . . , K} do20
if (σ |= rcondj) then21

next[j]:= computeState(σ)22

else23
next[j]:=acc24

δ:= δ ∪ {(q, σ, next)}25

else26
/* σ does not mimic rblock0 */
foreach q in H(σ) do reject(q,σ)27

end28

guarantees that the size and number of possible windows is
finite, and bounded by the largest expression in PEM; thus,
the size of Σ (which is simply the set of all pairs of windows)
is finite. The set of states Q = {acc, rej, init} have their usual
meanings as an accept state, a reject state, and an initial state
respectively. The states in QΣ are used to check if w(vI) is
consistent with the window(s) read at predecessors of vI. If
|w(vI)| = 1, then QΣ is empty, and then Lines 2-6 are skipped.
Otherwise, we reject those state/symbol pairs that correspond
to an inconsistent annotation at neighboring nodes in Tc. As
Σ is finite, the set of states Q is also finite. If a state/symbol
pair is consistent, we add it to the map H in Line 5.

We then identify those symbols σ that correspond to M
entering any of the base cases. For the bblockj block of
statements within the jth base case, we compute fbblockj that
is the composition of the functions for the statements within
bblockj . If the update encoded by σ is faithful to fbblockj ,
i.e. wout = fbblockj (win), we accept all consistent states for

this symbol (Line 13), else we reject them (Line 15). Once
all baseblk statements are processed, the remaining symbols
(in the set RS) correspond to symbols for which M enters
the recursive case. For each symbol σ ∈ RS, we check if the
update encoded by σ is faithful to frblock0 . If not, we reject all
consistent states for that σ (Line 27). If yes, we identify the
successors of vI within wout(vI) that M would visit (by virtue
of rcondj evaluating to true), and transition to the appropriate
state (in QΣ) for those successors (Line 22). The remaining
successors are not visited by M, and hence, we simply
transition to acc for these (Line 24). We use reject (q,σ)
as a macro that adds the transition: (q, σ, (rej, . . . , rej)) to
δ (similarly accept). The function computeBlock composes
the functions fs for individual statements s within a block
statement. getState returns the state in QΣ that encodes the
value of the current pair of windows (σ). consistent checks
if a given q ∈ QΣ that encodes the values in some preced-
ing window, is consistent with the window being currently
processed. As a final step (not shown in the algorithm), we
add self-loops to the acc and rej states, making them “trap”
states. Note that by construction, our algorithm guarantees that
Lem. 3 is true. The description presented above gives a proof
sketch; we omit the details for brevity.

Lemma 3. AM derived using Algo. 1 has the following
properties: a) AM is a finite tree automaton, i.e., a finite Q
and Σ, b) if AM accepts a composite tree Tc = Ti ◦ To, then
To = M(Ti), i.e., AM on M.

General Recursive Methods: In contrast to tail-recursive
methods, a non-tail-recursive method can re-visit a node
between recursive calls to its successors, and perform de-
structive updates. We make the same assumptions as for tail-
recursive methods that: a) methods do not use global pointers,
b) methods use a single pointer argument during recursive
invocation, and c) at any node, for any given successor s, M
is invoked with s as an argument at most once. The syntax
for the general class of recursive methods is presented in
Fig. 4. Instead of a single destructive update block rblock0

as in Fig. 3, we allow up to K cblockj statements, where
each cblockj statement consists of a recursive call to the
jth successor of vI, followed by a destructive update block
rblockj . We only show the differing parts in this description,
as all other definitions remain the same (except calls/call,
which is no longer relevant).

M ::= sig { baseblks rblock0 cblocks return }
cblocks ::= cblockj | cblocks cblockj

cblockj ::= callj rblockj

rblockj ::= block

Fig. 4: Syntactic Class for Recursive Methods

Lemma 4. Methods with syntax as specified by Fig. 4 satisfy
the bounded updates property.

Proof: A recursive method M satisfying the above as-
sumptions visits a node with K out-going edges and performs

destructive updates: a) the first time when called from the
parent node of n (rblock0), and b) K times after each recursive
call returns (rblock1..K), and c) never after the return. Thus,
the total number of destructive updates to any node is at most
K + 1. However, for a given tree, K is a constant, and thus the
total number of destructive updates is bounded by a constant.
Thus, such an M satisfies the bounded updates property.

The overall scheme for compilation into AM for the class
in Fig. 3 is similar to the one used for compiling tail-recursive
methods. In Algo. 1, all destructive updates by a tail-recursive
method on a given window can be composed into a single
destructive update described by the function frblock0 using
computeBlock. This is not possible for a method belonging
to Fig. 4, since it performs K + 1 distinct blocks of updates.
However, by altering the way we define the composite tree,
we can use an algorithm very similar to Algo. 1 to compile
M into AM. We first observe that if we record the actions
of such a M during a depth-first traversal at each node in the
underlying data structure D, we obtain an annotated D′, where
every node of D′ is a K + 2-tuple of values. We illustrate this
with an example in Ex. 3.

2 0 2 0 2 1 2

1 211 01 0 1 0 0

0

1 1 2 2

1 1 1

1

0

1

0

1

1 1 1

20

0

(a) Depth-first Traversal

1,2,0,1

0,1,1,1 2,0,0,0

0,1,2,0

(b) Annotated Tree

method changeData (I) {
if ((I->l1 == ⊥)&&(I->l2 == ⊥)) {

incMod3(I->d);
return;

}
incMod3 (I->d);
if (I->l1 6= ⊥) { changeData (I->l1); }
incMod3 (I->d);
if (I->l2 6= ⊥) { changeData (I->l2); }
incMod3 (I->d);
return;

}
(c) Method changeData

Fig. 5: Depth-first Traversal by ChangeData

Example 3. Fig. 5c shows the recursive method changeData,
that changes the data value of each node in the input tree.
We assume that D is the set {0, 1, 2}, and use incMod3 as
a macro to replace the three conditional assignments that
specify modulo-3 increment. Fig. 5a shows the actions of
changeData on an input tree, while Fig. 5b shows the input
tree annotated with the actions of changeData.

The intuition for Algo. 2 is that depth-first traversal by a
method M generates an annotation similar to that in Ex. 3
on the underlying tree. We define the composite tree Tc
s.t., each node σ in Tc is a (K + 2)-tuple of the form

Algorithm 2: CompileGeneralRecursive
begin1

/* Note that
σ = (win = w0, w1, . . . , wK , wout = wK+1) */

Lines 2-15 of Algo. 12
foreach σ in RS do3

rejected:=false4
foreach j in {0, . . . , K} do5

frblockj := computeBlock(rblockj)6
if (wj+1 6= frblockj (wj)) then7

foreach q in H(σ) do reject(q, σ)8
rejected := true9
break10

if (¬rejected) then Lines 19-25 of Algo. 111

end12

(w0, w1, . . . , wK , wK+1). For a composite tree Tc being in-
spected by AM, win = w0, wout = wK+1, and each wj+1 is
the conjectured value for the effect of rblockj . Our syntax
ensures that a recursive call to the children of wj does not
affect wj . Hence, we can check if for the function frblockj

corresponding to each rblockj statement, whether wj+1 =
frblockj (wj), for all j s.t. 0 ≤ j ≤ K in a single swoop. If
any of these conditions is false, we reject the entire symbol σ
(Line 8), else we proceed in the same way as in Algo. 1. Due
to space limitations, Algo. 2 only shows the parts that differ
from Algo. 1. The definitions of consistent, getState and
computeBlock are changed to account for the changes in σ.

To make a correctness argument, we introduce some nota-
tion. Let Tc be a tree in which every node is a K + 2-tuple
of windows. Let Tiw be the tree obtained by eliding all but
the first window in every node of Tc, and Tow

be obtained by
eliding all but the last window in every node of Tc. Suppose
Tiw and Tow are consistent trees (recall the definition from
Sec. III), then let Ti (resp. To) be the corresponding tree for
which Tiw (resp. Tow) is the window-based abstraction. By
construction, Algo. 2 guarantees Theorem 1; we skip the proof
for brevity.

Theorem 1. AM derived using Algo. 2 has the following
properties: a) AM is a finite tree automaton, i.e., a finite Q
and Σ, b) AM rejects Tc if Tiw or Tow are inconsistent, and
c) if AM accepts Tc, then To = M(Ti), i.e. AM on M.

V. EXPERIMENTAL RESULTS

The complexity of our technique is equal to the complexity
of checking emptiness of the product automaton Ap. For
acceptance conditions such as the Büchi condition, this is
polynomial in the number of states of Ap, which is itself linear
in the size of AM (denoted |AM|), |Aϕ| and |A¬ψ|. |AM| is
proportional to the size of M, but is dominated by |Σ|, which
in turn is polynomial in |D| and exponential in the branching-
arity (K) of the tree. We note that for purely structural
properties, D can often be abstracted to a single symbol. We
have implemented a prototype tool in Java that can verify
methods with the syntax specified by Fig. 4. Some of the

Method Spec. Timea Mem.
(secs) (MB)

AM Total

On Linked Lists:
DeleteNode Acyclic 0.3 1.3 20
InsertAtTail Acyclic 0.01 0.8 <1
InsertNode Acyclic 0.4 1.6 48

On Binary Trees:
InsertNode Acyclic 15 329 2512
ReplaceAll(a, b) Acyclic 5 26 324

@I : I->d = a 5 27 432
DeleteLeaf Acyclic 12 48 630

aExperiments were performed on an Athlon 64X2 4200+ system
with 6GB RAM.

TABLE I: Experimental Results

early results are shown in Table I. The methods we used for
testing are commonly found implementations for linked lists
and binary trees written in C, adapted to our syntax. As seen in
Table I, while the time required to construct AM is a fraction
of the total time taken, the memory consumption is a sore
spot. This is so because, in our current implementation, we
explicitly construct Σ. The size of Σ can be reduced by several
orders of magnitude by an abstraction that involves forming
clusters of similar symbols in Σ. Furthermore, we can employ
symbolic techniques like BDDs or SAT to compactly represent
Σ, which would ameliorate the memory consumption. Lastly,
as predicted by the complexity analysis, we observe that the
run-time and memory consumption increases sharply with K.
Counterexample Generation: If Ap is found to be non-empty,
the tree Tc witnessing its non-emptiness can be extracted from
the transition diagram δp of Ap using standard techniques. By
projecting Tc onto its components, we can obtain trees Ti
and To respectively. Ti represents a valid input tree to M
for which the “bad” output To is generated, i.e., a concrete
counterexample to the correctness of M.

VI. RELATED WORK AND CONCLUSIONS

Shape Analysis: Shape analysis [7–9], focuses on computing
(3-valued) structure descriptors at each program point, typ-
ically using static analysis. Shape analysis can be used to
analyze a broad class of methods, but to our best knowledge
provides approximate results in double exponential time. Pred-
icate abstraction has been used for shape analysis in [10–12].
[10, 12] focus on singly linked lists, and [13] extends the
authors’ previous work to programs with single-parent heaps.
While [14] provides a way to combine predicate abstraction
and model checking, it may require hints to converge to a
solution.
Separation Logic: Separation logic, typically allows deductive
verification for heap modifying programs [15, 16], and has
been traditionally used for manual proofs or in conjunction
with a theorem prover. Recent work has focussed on automa-
tion, by deriving decidable fragments for programs operating
on structures with single successors [17].

Automata-based approaches: This paper significantly extends
prior work in [1], which uses tree automata for verifying
iterative methods. In [2, 3], system configurations are trees,
succinctly encoded as tree automata. The transition relation
is a bottom-up tree transducer τ , and the technique checks
if τ∗ applied to the initial configuration automaton reaches
a bad state. Though this is undecidable, the authors use
abstraction-refinement to obtain a conservative solution. [4]
uses tree automata with size constraints to verify balanced
trees implementations. PALE [18] encodes programs and par-
tial specifications in MSO logic, which has a non-elementary
decision procedure.
Logic-based Approaches: [19] describes a logic of reachable
patterns that is undecidable, which when restricted to certain
reachability patterns, yields a decidable fragment that can be
checked in double exponential time. The restrictions imposed
to obtain decidability are incomparable to the work in this
paper. While the work in [20] inspires some of the later work
on decidable fragments (cf. [19]), the paper itself does not
yield a practical algorithm. Bottom-up shape analysis [21]
for heap-manipulating programs computes Hoare triples as
summaries for a given method. It may be possible to combine
our technique with bottom-up analysis by substituting method
fragments that do not respect our imposed syntax rules with
equivalent summaries, thereby allowing us to model a larger
class of methods.

Due to space restrictions, we omit a few simple extensions
that our technique can handle such as: allowing methods
to return values in a restricted form (both D-values and
pointer values), allowing methods to have a limited access
to predecessor nodes up to a bounded distance, and allowing
more than one pointer argument in the method signature,
with the restriction that all arguments are contained within
a window. A more significant extension is verification of
recursive methods on directed acyclic graphs (dags). Since
dags can contain sharing between nodes, the restriction of
“one visit per successor” is not enough to ensure the bounded
updates property. However, if we can enforce (or guarantee)
that a method visits each node in a dag (and thus every
sub-dag) at most once, then such methods would satisfy
the bounded updates property, and could be verified using a
modified form of the algorithms presented here.
Acknowledgements: We thank Prateek Gupta for interesting
discussions in the initial phase of this work, and the anony-
mous reviewers for their helpful comments and suggestions.

REFERENCES

[1] J. Deshmukh, E. Emerson, and P. Gupta, “Automatic
verification of parameterized data structures,” in Proc.
of TACAS, 2006, pp. 27–41.

[2] A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar, “Ver-
ifying programs with dynamic 1-selector-linked struc-
tures in regular model checking,” in Proc. of TACAS,
2005, pp. 13–29.

[3] A. Bouajjani, P. Habermehl, and A. Rogalewicz, “Ab-

stract regular tree model checking of complex dynamic
data structures,” in Proc. of SAS, 2006, pp. 52–70.

[4] P. Habermehl, R. Iosif, and T. Vojnar, “Automata-based
verification of programs with tree updates,” in Proc. of
TACAS, 2006, pp. 350–364.

[5] E. A. Emerson and C. S. Jutla, “The complexity of tree
automata and logics of programs,” SIAM J. Comput., vol.
Vol. 29, pp. 132–158, 1999.

[6] M. Sipser, Introduction to the Theory of Computation,
1st ed. Course Technology, Dec. 1996.

[7] N. Rinetzky and M. Sagiv, “Interprocedural shape anal-
ysis for recursive programs,” in Proc. of CC, 2001, pp.
133–149.

[8] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape
analysis via 3-valued logic,” ACM Trans. Program. Lang.
Syst., vol. Vol. 24, pp. 217–298, 2002.

[9] T. Lev-Ami, N. Immerman, and M. Sagiv, “Abstraction
for shape analysis with fast and precise transformers,” in
Proc. of CAV, 2006, pp. 547–561.

[10] I. Balaban, A. Pnueli, and L. D. Zuck, “Shape analysis
by predicate abstraction,” in Proc. of VMCAI, 2005, pp.
164–180.

[11] R. Manevich, E. Yahav, G. Ramalingam, and M. Sa-
giv, “Predicate abstraction and canonical abstraction for
singly-linked lists,” in Proc. of VMCAI, 2005, pp. 181–
198.

[12] J. Bingham and Z. Rakamaric, “A logic and decision
procedure for predicate abstraction of heap-manipulating
programs,” in Proc. of VMCAI, 2006, pp. 207–221.

[13] I. Balaban, A. Pnueli, and L. Zuck, “Shape analysis of
single-parent heaps,” in Proc. of VMCAI, 2007, pp. 91–
105.

[14] D. Dams and K. Namjoshi, “Shape analysis through
predicate abstraction and model checking,” in Proc. of
VMCAI, 2003, pp. 310–323.

[15] J. C. Reynolds, “Separation logic: A logic for shared
mutable data structures,” in Proc. of LICS, 2002, pp. 55–
74.

[16] D. Distefano, P. OHearn, and H. Yang, “A local shape
analysis based on separation logic,” in Proc. of TACAS,
2006, pp. 287–302.

[17] J. Berdine, C. Calcagno, and P. O’Hearn, “A decidable
fragment of separation logic,” in Proc. of FSTTCS, 2004,
pp. 97–109.

[18] A. Møller and M. I. Schwartzbach, “The pointer assertion
logic engine,” in Proc. of Programming Language Design
and Implementation, 2001, pp. 221–231.

[19] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and
A. Bouajjani, “A logic of reachable patterns in linked
data-structures,” in Proc. of FOSSACS, 2006, pp. 94–110.

[20] M. Benedikt, T. Reps, and M. Sagiv, “A decidable logic
for describing linked data structures,” in Proc. of ESOP,
1999, pp. 2–19.

[21] B. Gulavani, S. Chakraborty, G. Ramalingam, and
A. Nori, “Bottom-up shape analysis,” in Proc. of SAS,
2009, pp. 188–204.

