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Abstract The conformance testing problem for dynamical systems asks, given
two dynamical models (e.g., as Simulink diagrams), whether their behaviors are
“close” to each other. In the semi-formal approach to conformance testing, the two
systems are simulated on a large set of tests, and a metric, defined on pairs of real-
valued, real-timed trajectories, is used to determine a lower bound on the distance.
We show how the Skorokhod metric on continuous dynamical systems can be used
as the foundation for conformance testing of complex dynamical models. The Sko-
rokhod metric allows for both state value mismatches and timing distortions, and
is thus well suited for checking conformance between idealized models of dynamical
systems and their implementations. We demonstrate the robustness of the metric
by proving a transference theorem: trajectories close under the Skorokhod metric
satisfy “close” logical properties in the timed linear time logic FLTL (Freeze LTL)
containing a rich class of temporal and spatial constraint predicates involving time
and value freeze variables. We provide efficient window-based streaming algorithms
to compute the Skorokhod metric for both piecewise affine and piecewise constant
traces, and use these as a basis for a conformance testing tool for Simulink. We
experimentally demonstrate the effectiveness of our tool in finding discrepant be-
haviors on a set of control system benchmarks, including an industrial challenge
problem.

1 Introduction

A fundamental question in model-based design is conformance testing: whether two
models of a system display similar behavior. For discrete systems, this question is
well-studied [31,21,22,32], and there is a rich theory of process equivalences based,
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e.g., on bisimilarity. For continuous and hybrid systems, however, the state of the
art is somewhat unsatisfactory. While there is a straightforward generalization
of process equivalences to the continuous case, in practice, equivalence notions
such as bisimilarity are always too strong and most systems are not bisimilar.
Since equivalence is a Boolean notion, one gets no additional information about
the systems other than they are “not bisimilar.” Further, even if two dynamical
systems are bisimilar, they may still differ in many control-theoretic properties.
Thus, classical notions for equivalence and conformance have been of limited use
in industrial practice.

In recent years, the notion of bisimulation has therefore been generalized
to metrics on systems, which quantify the distance between them. For exam-
ple, one approach is that of ε-bisimulation, which requires that the states of the
two systems remain “close” forever (within an ε-ball), rather than coincide ex-
actly. Under suitable stability assumptions on the dynamics, one can construct
ε-bisimulations [19,20]. Unfortunately, proving the pre-requisites for the existence
of ε-bisimulations for complex dynamical models, or coming up with suitable and
practically tractable bisimulation functions is extremely difficult in practice. In ad-
dition, establishing ε-bisimulation requires full knowledge of the system dynamics
making the scheme inapplicable where one system is an actual physical component
with unknown dynamics. So, these notions have also been of limited industrial use
so far.

Instead, a more pragmatic semi-formal approach has gained prominence in
industrial practice. In this approach, the two systems are executed on the same
input sequences and a metric on finite trajectories is used to evaluate the closeness
of these trajectories. The key to this methodology is the selection of a good metric,
with the following properties:
– Transference. Closeness in the metric must translate to preserving interesting

classes of logical and functional specifications between systems, and
– Tractability. The metric should be efficiently computable.

In addition, there is the more informal requirement of usability: the metric should
classify systems which the engineers consider close as being close, and conversely.

The simplest candidate metric is a pointwise metric that computes the maxi-
mum pointwise difference between two trajectories, sometimes generalized to apply
a constant time-shift to one trajectory [16]. Unfortunately, for many practical mod-
els, two trajectories may be close only under variable time-shifts. This is the case,
for example, for two dynamical models that may use different numerical integra-
tion techniques (e.g., fixed step versus adaptive step) or when some component in
the implementation has some jitter. Thus, the pointwise metric spuriously reports
large distances for “close” models. More nuanced hybrid distances have been pro-
posed [1], but the transference properties of these metrics w.r.t. common temporal
logics are not yet clear.

In this work we present a methodology for quantifying conformance between
real-valued dynamical systems based on the Skorokhod metric [14]. The Skorokhod
metric allows for mismatches in both the trace values and in the timeline, and
quantifies temporal and spatial variation of the system dynamics under a unifying
framework. The distortion of the timeline is specified by a retiming function r

which is a continuous bijective strictly increasing function from R+ to R+. Using
the retiming function, we obtain the retimed trace x (r(t)) from the original trace
x(t). Intuitively, in the retimed trace x (r(t)), we see exactly the same values as



before, in exactly the same order, but the time duration between two values might
now be different than the corresponding duration in the original trace. The amount
of distortion for the retiming r is given by supt≥0|r(t)− t|. Using retiming functions,
the Skorokhod distance between two traces x and y is defined to be the least value
over all possible retimings r of:

max

(
sup

t∈[0,T ]

|r(t)− t|, sup
t∈[0,T ]

DO

(
x (r(t)) , y(t)

))
,

where DO is a pointwise metric on values. In this formula, the first component
quantifies the timing discrepancy of the timing distortion required to “match” two
traces, and the second quantifies the value mismatch (in the metric space O) of
the values under the timing distortion. The Skorokhod metric was introduced as
a theoretical basis for defining the semantics of hybrid systems by providing an
appropriate hybrid topology [11,10]. We now demonstrate its usefulness in the
context of conformance testing.

Transference. We show that the Skorokhod metric gives a robust quantification of
system conformance by relating the metric to TLTL (timed LTL) in the boolean
setting; and to FLTL (Freeze LTL) in the real-valued signal setting. The logics
contain (i) predicates of the form f(x1, . . . , xn) ≥ 0, as in Signal Temporal Logic
(STL) [16] (we however allow f to be non-linear), for specifying constraints on trace
values; and (ii) freeze quantifiers, as in TPTL [4] and STL∗ [8,9]1 for specifying tem-
poral and value constraints relating different parts of traces (freeze quantifiers can
express more complex timing constraints than bounded timing constraints, e.g., of
MTL, and can also specify complex value constraints such as signal tracking which
cannot be expressed by STL). TLTL subsumes MTL in the boolean setting; and
FLTL subsumes STL in the real-valued setting. We prove a transference theorem:
flows (and propositional traces) which are close under the Skorokhod metric sat-
isfy “close” FLTL (resp. TLTL) formulae for a rich class of temporal and spatial
predicates, where the untimed structure of the formulae remains unchanged, only
the predicates are enlarged.

Tractability. We improve on recent polynomial-time algorithms for the Skorokhod
metric [27] between polygonal (piecewise affine and continuous) traces by taking
advantage of the fact that, in practice, only retimings that map the times in
one trace to “close” times in the other are of interest. This enables us to obtain
a streaming sliding-window based monitoring procedure which takes only O(W )
time per sample, where W is the window size (assuming the dimension n of the
system to be a constant). In this work, we also develop and implement a signif-
icantly faster sliding-window based Skorokhod metric computation procedure for
piecewise constant traces, and experimentally compare the tradeoff between faster
computation time of the piecewise constant routine and the discrepancy compared
to the polygonal trace procedure.

Usability. Using the Skorokhod distance checking procedure as a subroutine, we
have implemented a Simulink toolbox for conformance testing. Our tool inte-
grates with Simulink’s model-based design flow for control systems, and provides

1 TPTL has only time freeze variables, and STL∗ has only value freeze variables. FLTL
has both. Moreover, the predicates over the freeze variables can be non-linear in FLTL, unlike
STL∗ which only allows linear predicates.



a stochastic search-based approach to find inputs which maximize the Skorokhod
distance between systems under these inputs.

We present three case studies from the control domain, including industrial
challenge problems; our empirical evaluation shows that our tool computes sharp
estimates of the conformance distance reasonably fast on each of them. Our input
models were complex enough that techniques such as ε-bisimulation functions are
inapplicable. We conclude that the Skorokhod metric can be an effective foundation
for semi-formal conformance testing for complex dynamical models.

Related Work. The work of [1,2] is closely related to ours. In it, robustness
properties of hybrid state sequences are derived with respect to a trace metric
which also quantifies temporal and spatial variations. Our work differs in the
following ways. First, we guarantee robustness properties over flows rather than
only over (discrete) sequences. Second, the Skorokhod metric is a stronger form
of the (T, J, (τ, ε))-closeness degree2,3(for systems which do not have hybrid time);
and allows us to give stronger robustness transference guarantees. The Skorokhod
metric requires order preservation of the timeline, which the (T, J, (τ, ε))-closeness
function does not. Preservation of the timeline order allows us to (i) keep the
untimed structure of the formulae the same (unlike in the transference theorem
of [1]); (ii) show transference of a rich class of global timing constraints using
freeze quantifiers (rather than only for the standard bounded time quantifiers
of MTL/MITL). However, for implementations where the timeline order is not
preserved, we have to settle for the less stronger guarantees provided by [1]. The
work of [16] deals with spatial robustness of STL; the only temporal disturbances
considered are constant time-shifts for the entire signal where the entire signal is
moved to the past, or to the future by the same amount. In contrast, the Skorokhod
metric incorporates variable time-shifts.

Comparison to the Preliminary Conference Work [15]. The present work
contains the following new results.

1. We develop an efficient algorithm for computing the Skorokhod distance be-
tween piecewise constant traces (for a general metric space) that may have
discontinuities. The work in [15] dealt only with polygonal traces (i.e., with
traces that are continuous and piecewise affine).

2. We implement the above piecewise constant trace algorithm for Rn, and present
results which show that this algorithm runs two orders of magnitude faster
than the polygonal trace algorithm of [15]. We also experimentally explore the
tradeoff between faster computation time of the piecewise constant routine and
the distance values obtained compared to the polygonal procedure.

3. We strengthen the logic transference result of [15]. In [15] we showed the trans-
ference results for TLTL, which is the logic LTL enriched with predicates over
time and value variables, and time freeze variables. In this work, we prove
transference for the more expressive logic FLTL (based on the logic STL ∗ [8,
9]), which augments TLTL with value freeze variables. The addition of value

2 Instead of having only two parameters τ and ε for time and state variation, we generalize
to n+ 1 parameters: we pre-scale time and the n state components with n+ 1 constants, and
have a single value quantifying closeness of the scaled traces.

3 Informally, two signals x, y are (T, J, (τ, ε))-close if for each point x(t), there is a point
y(t′) with |t− t′| < τ such that D(x(t), y(t′)) < ε; and similarly for y(t).



freeze variables allow expression of more complex properties of traces, such as
signal tracking([8,9]) which cannot be done by time freeze variables alone.

4. We present new detailed examples explaining and demonstrating our logic
transference guarantees.

5. We present a new application of the Skorokhod metric: we develop an al-
gorithm to quantify the timing distortion between traces under some allowed
value distortion. More precisely, given polygonal (or piecewise constant) traces
x, y, and an ε ≥ 0, we develop an algorithm to compute the minimal re-
timing r required in order that x (r(t)) and y(t) match, modulo ε, for all
t. More precisely, we compute the retiming which minimizes the quantity
supt∈[0,T ]|r(t)− t| (this value quantifies the timing distortion under r) such
that supt∈[0,T ] D (x (r(t)) , y(t)) ≤ δ. We also implement the algorithm and
present experimental results.

6. We give detailed proofs of all results.

2 Conformance Testing with the Skorokhod Metric

2.1 Systems and Conformance Testing

Traces and Systems. A (finite) trace or a signal π : [Ti, Te] 7→ O is a mapping
from a finite closed interval [Ti, Te] of R+, with 0 ≤ Ti < Te, to some topological
space O. If O is a metric space, we refer to the associated metric on O as DO.
The time-domain of π, denoted tdom(π), is the time interval [Ti, Te] over which
it is defined. The time-duration of π, denoted tlen(π), is sup (tdom(π)). The t-
suffix of π for t ∈ tdom(π), denoted πt, is the trace π restricted to the interval
(tdom(π) ∩ [t, tlen(π)]. We denote by π↓T ′e the prefix trace obtained from π by
restricting the domain to [Ti, T

′
e] ⊆ tdom(π).

A (continuous-time) system A :
(
R[ ]

+ 7→ Oip

)
7→
(
R[ ]

+ 7→ Oop

)
, where R[ ]

+ is the

set of finite closed intervals of R+, transforms input traces πip : [Ti, Te] 7→ Oip into
output traces πop : [Ti, Te] 7→ Oop (over the same time domain). We require that the
system is causal : if A(πip) 7→ πop, then for every min tdom(π) ≤ T ′e < max tdom(π),
the system A maps πip↓T ′e

to πop↓T ′e
. Common examples of such systems are (causal)

dynamical and hybrid dynamical systems [7,34].

Conformance Testing. Let A1 and A2 be systems and let DTR be a metric over
output traces. For a set Πip of input traces, we define the (quantitative) conformance

between A1 and A2 w.r.t. Πip as supπip∈Πip
DTR

(
A1

(
πip
)
,A2

(
πip
))

The confor-
mance between A1 and A2 is their conformance w.r.t. the set of all input traces.

The conformance testing problem asks, given systems A1,A2, a trace metric
DTR, a tolerance δ, and a set of test input traces Πtest , if the quantitative confor-
mance between A1 and A2 w.r.t. Πtest is more than δ. Clearly, conformance w.r.t.
Πtest is a lower bound on the conformance between A1 and A2.

Algorithm 1 is a standard optimization-guided adaptive testing algorithm. To
define the set Πtest of test inputs, we use a fixed finite parameterization of the
input space using a finite set F of basis functions and fix a time horizon T . We only
generate inputs obtained as a linear combination

∑
f∈F pf · f of basis functions

over the interval [0, T ], where the coefficients {pf | f ∈ F} come from a closed

convex subset of R|F |.



Algorithm 1: Algorithm for Conformance Testing

Input: Systems A1, A2, trace metric DTR, time horizon T , input
parameterization F , termination criterion terminate?

Output: Input u that achieves maximum distance between A1 and A2

1 d ← 0, u←⊥, dmax ← 0, umax ←⊥
2 while not(terminate?) do

3 u← pickNewInputs(F, T, d)
4 y1 ← simulate(A1, u, T ) and y2 ← simulate(A2, u, T )
5 d ← DTR(y1, y2)
6 if d > dmax then dmax ← d , umax ← u

7 end

8 return“on input umax, outputs A1(umax) and A2(umax) differ by dmax by

time T”

In each step, Algorithm 1 picks an input signal u and computes the distance
between the corresponding outputs y1 = A1(u) and y2 = A2(u). Based on heuristics
that rely on the current distance, and a possibly bounded history of costs, the
procedure then picks a new value for u by choosing new values for the coefficients
{pf | f ∈ F}. For instance, in a gradient-ascent based procedure, the new value of u
is chosen by estimating the local gradient in each direction in the input-parameter
space, and then picking the direction that has the largest (positive) gradient. In
our implementation, we use the Nelder-Mead (or nonlinear simplex) algorithm to
pick new inputs.

On termination (e.g., when some maximum number of iterations is reached),
the algorithm returns the conformance distance between A1 and A2 w.r.t. the set
of tests generated. One can compare the distance to some tolerance δ chosen based
on engineering requirements.

Sampling Schemes and Resulting Interpolated Traces. In practice, the output
behaviors of the systems are observed with a sampling process, thus y1 and y2
on line 4 are discrete time-sampled sequences. We go from these sequences to
output traces either by linear interpolation between the sampled time points, or
by assuming a constant value in between the sampled values in a sample-and-hold
scheme.

In the first case, we get a polygonal (piecewise linear) trace. Formally, a polygo-

nal trace π : Iπ 7→ O where O is a vector space with the scalar field R is a continuous
trace such that there exists a finite sequence min Iπ = t0 < t1 < · · · < tm = max Iπ
of time-points such that the trace segment between tk and tk+1 is affine for all
0 ≤ k < m, i.e., for tk ≤ t ≤ tk+1 we have π(t) = π(tk) + t−tk

tk+1−tk ·(π(tk+1)− π(tk)).

In the sample-and-hold case, we get a piecewise constant trace π : Iπ 7→ O for
which there exists a finite sequence min Iπ = t0 < t1 < · · · < tm = max Iπ of time-
points such that π is constant over the left-closed right-open intervals [ti, ti+1) for
0 ≤ i < m, and constant over [tm−1, max Iπ] (the last interval is also right closed).
A piecewise constant trace is right continuous, but need not be left continuous.

Given a timed trace sequence tseq, let [[tseq]]Ξ denote the polygonal or piecewise
constant trace obtained from tseq by the linear interpolation or sample-and-hold
scheme Ξ. Let tseqπ, tseqπ′ be two corresponding samplings of the traces π, π′,



respectively. For a trace metric DTR, we have:

DTR(π, π′) ≤ DTR ([[tseqπ]]Ξ , [[tseqπ′ ]]Ξ) + DTR ([[tseqπ]]Ξ , π) + DTR
(
[[tseqπ′ ]]Ξ , π

′) .
If ∆samerr

Ξ is a bound on the distance between a trace and an interpolated comple-
tion according to scheme Ξ of the sampling, we have that DTR(π, π′) ≤ DTR([[tseqπ]]Ξ , [[tseqπ′ ]]Ξ) +
2·∆samerr

Ξ . Thus, a value of 2·∆samerr
Ξ needs to be added in the testing algorithm to

account for the error due to the polygonal or sample-and-hold approximations.

2.2 The Skorokhod Metric

We now define the Skorokhod metric, which we use as the metric in Algorithm 1.
A retiming r : I 7→ I ′, for closed intervals I, I ′ of R+ is an order-preserving (i.e.,
monotone strictly-increasing) continuous bijective function from I to I ′; thus if
t < t′ then r(t) < r(t′). Let RI 7→I′ be the class of retiming functions from I to
I ′ and let I be the identity retiming. Intuitively, retiming can be thought of as
follows: imagine a stretchable and compressible timeline; a retiming of the original
timeline gives a new timeline where some parts have been stretched, and some
compressed, without the timeline having been broken. Given a trace π : Iπ → O,
and a retiming r : I 7→ Iπ; the function π ◦ r is another trace from I to O.

Definition 1 (Skorokhod Metric) Given a retiming r : I 7→ I ′, let || r−I ||sup
be defined as || r−I ||sup = supt∈I | r(t) − t|. Given two traces π : Iπ 7→ O and
π′ : Iπ′ 7→ O, where O is a metric space with the associated metric DO, and a
retiming r : Iπ → Iπ′ , let

∥∥π − π′ ◦ r
∥∥
sup

be defined as:∥∥π − π′ ◦ r
∥∥
sup

= supt∈Iπ DO

(
π(t) , π′ (r(t))

)
.

The Skorokhod distance4 between the traces π() and π′() is defined to be:

DS(π, π′) = inf
r∈RIπ→Iπ′

max
(
‖r−I‖sup ,

∥∥π − π′ ◦ r
∥∥
sup

)
. (1)

Intuitively, the Skorokhod distance incorporates two components: the first
component quantifies the timing discrepancy of the timing distortion required to
“match” two traces, and the second quantifies the value mismatch (in the metric
space O) of the values under the timing distortion. In the retimed trace π ◦ r, we
see exactly the same values as in π, in exactly the same order, but the times at
which the values are seen can be different.

2.3 Skorokhod Metric Computation: Piecewise Constant Traces

In this subsection we derive a procedure for computing the Skorokhod distance
between piecewise constant traces. The outline of the subsection is as follows. First
in Lemma 1, we show that we can use non-decreasing functions as retimings (in-
stead of allowing only strictly increasing functions). Then, in Lemmas 2 and 3, we

4 The two components of the Skorokhod distance (the retiming, and the value difference
components) can be weighed with different weights – this simply corresponds to a change of
scale.



show that for piecewise constant traces, the values of supt∈Iπ DO

(
π(t) , π′ (r(t))

)
and supt∈I | r(t)− t| used in the definition of the Skorokhod metric (Definition 1)
can be determined by looking at a finite set of timepoints. Using the this result, we
then obtain a class of ε-optimal retimings in Lemma 4. Finally, using Lemma 4 and
Lemma 3, we devise a dynamic programming algorithm to compute the Skorokhod
distance between piecewise constant traces. The main result of this subsection is
stated in Theorem 1. The reader may skip directly to Theorem 1 without ham-
pering readability of the rest of the paper.

We assume for simplicity of presentation that both π, π′ contain m segments,
are over the same intervals, and moreover that both traces are the result of sam-
pling at the same time instants (the inter-sample time duration may be different).
As a first step, we prove the retimings can be non-decreasing and onto, rather than
monotone strictly-increasing and bijective

Lemma 1 (Non-decreasing retimings for piecewise constant traces) The value

in Equation (1) is unchanged for piecewise constant traces if non-decreasing and onto

retimings are allowed. That is, for π, π′ piecewise constant traces, we have:

DS(π, π′) = inf
r: Iπ→Iπ′

r non-decreasing and onto

max(‖r−I‖sup ,
∥∥π − π′ ◦ r

∥∥
sup

). (2)

Proof. Let π, π′ be over the time-intervals Iπ (= Iπ′). Suppose Iπ consists of dis-
joint intervals J0, I0, J1, I1, . . . , Ia, Ja (in order) such that r is constant over the I
intervals, and strictly increasing over the J intervals (J0 or Ja may be empty, but
other J intervals are non-empty). Fix ε > 0. Consider I0. Since Iπ and Iπ′ contain
more than one time-point, and and r is onto, at least one of J0, J1 is non-empty.
We can show that we can “wiggle” the retiming r to get another retiming r0 such
that
1. r0 is monotone increasing over J0, I0, J1 and Jk for k ≥ 2.
2. r0 is equal to r over I1, J2, I2, . . . , Ja.
3. ‖r0− r‖sup < ε (over J0, I0, J1).

4. π′ ◦ r(t) = π′ ◦ r0(t) for all t ∈ Iπ, which implies that∥∥π − π′ ◦ r
∥∥
sup

=
∥∥π − π′ ◦ r0

∥∥
sup

.

That is, we locally perturb r a little bit so that it becomes monotone increasing
over I0, and the perturbation does not affect the trace matchings between π and
π′ under the retimings.

Repeating the procedure, we get re such that
1. re : Iπ → Iπ′ is monotone strictly increasing and bijective.
2. ‖re− r‖sup < ε.

3. π′ ◦ r(t) = π′ ◦ re(t) for all t ∈ Iπ, which implies that∥∥π − π′ ◦ r
∥∥
sup

=
∥∥π − π′ ◦ re

∥∥
sup

.

Thus, for every ε > 0, given a non-decreasing and onto retiming r, there exists a
strictly increasing and bijective retiming re such that

max
(
‖re− r‖sup,

∥∥π′ ◦ r(t)− π′ ◦ re(t)∥∥sup) < ε

This implies that the value of Equation (1) does not change if we allow non-
decreasing retimings. This complete the proof of the lemma (the details on how
to perform the perturbations can be found in the Appendix).



We now show that when computing the value of Equation (2), given a retiming
r, we only need to look at the values of r(t) − I(t) and π(t) − π′ ◦ r(t) at a finite
set of timepoints t ∈ {t0, t1, . . . , tm}. For this, we need the following lemma.

Lemma 2 (Retiming function specification for the purpose of Skorokhod

distance computation) Given π, π′ piecewise constant traces such that π and π′ are

constant over the disjoint intervals [t0, t1), [t1, t2), . . . , [tm−1, tm] (with Iπ = Iπ′ =
[t0, tm], and a non-decreasing and onto retiming function r : Iπ → Iπ′ , consider∥∥π − π′ ◦ r

∥∥
sup

(3)

The value of Expression (3) is dependent only on the value of r at timepoints t0, t1, . . . , tm,

that it, if r1 and r2 coincide on t0, t1, . . . , tm, then the value of Expression (3) is the

same whether r1 or r2 is used as the retiming function in the expression.

Proof. Assume m ≥ 1 (otherwise both traces have one segment and the claim is
easy to prove. Since π, π′ are piecewise constant, and r is non-decreasing, we have

{
π(t) − π′ ◦ r(t) | t ∈ Iπ

}
=

∪0≤k<m
{
π(tk) − π′(t′) | t′ ∈ [r(tk), r(tk+1)) ∩ {t0, t1, . . . , tm}

}
The above expression can be understood as follows: r maps the time interval
[tk, tk+1) to the time interval [r(tk), r(tk+1)). Thus, the π segment value π(tk)
is matched to the values

{
π′(t′) | t′ = [r(tk), r(tk+1)) ∩ {t0, t1, . . . , tm}

}
; using the

fact that π′ only changes values at {t0, t1, . . . , tm}. The claim follows.

Consider the expression

max(‖r−I‖sup ,
∥∥π − π′ ◦ r

∥∥
sup

).

which expands to

max

(
sup
t∈Iπ
|r(t)− I(t)| , sup

t∈Iπ
DO

(
π(t), π′ ◦ r(t)

))
. (4)

Lemma 2, and its proof hint that instead of taking the max over the whole inter-
val Iπ in Equation (4), we can take the max over the finite set of timepoints
{t0, t1, . . . , tm}. Technically, it turns out this claim is not true because of the
supt∈Iπ |r(t)− I(t)| part: the retiming function r may deviate more from I on
Iπ \ {t0, t1, . . . , tm} than on {t0, t1, . . . , tm}. However, given a retiming function r,
we can always find another retiming function r† such that (i) r† agrees with r over

{t0, t1, . . . , tm}; (ii) is closer to I; and (iii) supt∈Iπ

∣∣∣r†(t)− I(t)
∣∣∣ can be determined

by the values of r† on {t0, t1, . . . , tm}. That is,

1. r†(t) = r(t) for t ∈ {t0, t1, . . . , tm}, and

2. supt∈Iπ |r(t)− I(t)| ≥ supt∈Iπ

∣∣∣r†(t)− I(t)
∣∣∣, and

3. supt∈Iπ

∣∣∣r†(t)− I(t)
∣∣∣ = max supt∈{t0,t1,...,tm}

∣∣∣r†(t)− I(t)
∣∣∣.

This together with the proof of Lemma 2 gives us the following result.



Lemma 3 (Sufficiency of giving retiming function values only on a finite

set) Given π, π′ piecewise constant traces such that π and π′ are constant over the

disjoint intervals [t0, t1), [t1, t2), . . . , [tm−1, tm] (with Iπ = Iπ′ = [t0, tm]), we have

DS(π, π′) = inf
r: Iπ→Iπ′

r non-decreasing
and onto

max

 maxt∈{t0,t1,...,tm}|r(t)− I(t)| ,
max

0≤k<m
max

t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

DO

(
π(tk), π

′(t′)
).

(5)

Note that in Equation (5), the quantity

max
t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

DO

(
π(tk), π

′(t′)
)

for a given tk gives the maximal discrepancy arising as a result of π(tk) being
matched to the π′ values

{
π′(t′) | t′ = [r(tk), r(tk+1)) ∩ {t0, t1, . . . , tm}

}
.

ε-optimal retiming functions. Finally, we construct ε-optimal retiming functions in
the minimization of Equation (5) (in general, optimal retiming functions need
not exist as Equation (5) still has an “inf” over retimings). Fix ε such that
min0≤k<m(tk+1 − tk) > ε > 0. Consider a class Cε of non-decreasing retiming
functions such that for r ∈ Cε, for all k, there is some j such that r(tk) = tj , or
tj − ε. That it, the retiming r maps the trace change timepoints tk to other change
time-points, or to just before other change timepoints. The following lemma shows
that we can restrict retimings to belong to this class (the proof can be found in
the appendix).

Lemma 4 (ε-optimal retiming functions) Let π, π′ be piecewise constant traces,

and let Cε be the class of non-decreasing retiming functions as defined above. Consider

DCε
S (π, π′) = inf

r∈Cε
max

 maxt∈{t0,t1,...,tm}|r(t)− I(t)| ,
max

0≤k<m
max

t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

DO

(
π(tk), π

′(t′)
)

(6)
We have

DCε
S (π, π′) ≤ DS(π, π′) + ε.

Lemma 4 shows that we can search over a finite space of retiming functions to
compute DS(π, π′). The range of the retiming functions, over the set {t0, t1, . . . , tm}
can be restricted to {t0, t−1 , t1, t

−
2 , t2, . . . , t

−
m−1, tm−1, tm}, where t−k is the timepoint

arbitrarily close to (and less than) tk. Using this fact, we design a dynamic pro-
gramming algorithm to compute DS(π, π′) below.

Observe that we “push” the discrepancy maxt∈{t0,t1,...,tm}|r(t)| inside the sec-
ond term as follows.

max

 maxt∈{t0,t1,...,tm}|r(t)− I(t)| ,
max

0≤k<m
max

t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

DO

(
π(tk), π

′(t′)
)

= max
0≤k<m

max
t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

max
(∣∣tk − t′∣∣, DO

(
π(tk), π

′(t′)
))

(7)



For every a trace η : Iη → O, associate a time-explicit trace
ˆ
η : Iη → R+×O defined

by
ˆ
η(t) = (t, η(t)), and let D

ˆ
O

(
(t1, x1), (t2, x2)

)
= max

(
|t1 − t2|, DO(x1, x2)

)
. It

can be checked that Equation (7) can be expressed as

max
0≤k<m

max
t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

D
ˆ
O

(
ˆ
π(t),

ˆ
π′◦ r(t)

)
And thus, Equation (6) as:

DCε
S (π, π′) = inf

r∈Cε
max

0≤k<m
max

t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

D
ˆ
O

(
ˆ
π(t),

ˆ
π′◦ r(t)

)
(8)

Since the retimings can be restricted to {t0, t−1 , t1, t
−
2 , t2, . . . , t

−
m−1, tm−1, tm} (as

mentioned previously), we solve the above problem (8) as follows. In order to
simplify notation, let x0, x1, x2, . . . , x2m+1 be defined as

(t0, π(t0), (t−1 , π(t−1 ), (t1, π(t1), . . . (t−m−1, π(t−m−1), (tm−1, π(tm−1), (tm, π(tm)

where π(t−k ) = π(tk−1), and t−k is a time which is just less than tk; that is π(t−k ) is
the value of trace π just before time tk. Let y0, y1, y2, . . . , y2m+1 be defined similarly
for π′.

We build a dynamic programming algorithm. Let M(i, j) for j > i denote the
fact that point yj is mapped to xi (and possibly earlier x points); M(i, j) for i > j

denote the fact that point yj is mapped to xi (and possibly later x points); and
M(i, i) denote the case when point yi is mapped to xi. For example, M(2, 2m+ 1)
denotes the fact that point y2m+1 has been moved “left” via retiming to match x2
(and perhaps an earlier point). Note that this retiming has the effect of “stretching”
y2m+1 – the single point y2m+1 now matches the x segment [x2, x2m+1]. The
recurrence relation for M is set up as follows.

M(i, j) = min

max
(
M(i− 1, j − 1), D

ˆ
O (xi, yj)

)
max

(
M(i, j − 1), D

ˆ
O (xi, yj)

)
max

(
M(i− 1, j), D

ˆ
O (xi, yj)

)
 (9)

(in case i− 1 or j− 1 is negative, the min omits those lines). The base condition is
given by M(0, 0) = D

ˆ
O (x0, y0). The correctness of the recurrence relation follows

from the fact that either

– The portion [y0, yj−1] is mapped to [x0, xi−1], and the portion (yj−1, yj ] mapped
to (xi−1, xi]; or

– The portion [y0, yj−1] is mapped to [x0, xi], and the portion (yj−1, yj ] mapped
to the single point xi; or

– The portion [y0, yj ] is mapped to [x0, xi−1], and the portion (xi−1, xi] mapped
to the single point yj .

The recurrence relation (9) mirrors these three cases. Note that when we expand
M(i−1, j−1), we see the distance comparison between xi−1, yj−1 (and similarly for
the other cases). Since these are the only cases that can arise from non-decreasing
retimings, we get that M(2m+1, 2m+1) computes DS(π, π′). A similar algorithm
with more bookkeeping applies when π, π′ sample points are at different time
instants. Thus, we get the following theorem.



Theorem 1 (Computing the Distance between Piecewise Constant Traces)

Let π : Iπ 7→ Rn and π′ : Iπ′ 7→ Rn be two piecewise constant traces with mπ and

mπ′ affine segments respectively. Let the Skorokhod distance between them (for the

L ∈ {L1, L2, L∞} norm on Rn) be denoted as DL
S (π, π′).

1. We can compute DL
S (π, π′) in time O (mπ ·mπ′ ·n).

2. Suppose we restrict retimings to be such that the i-th constant segment of π can

only be matched to π′ constant segments i − W through i + W for all i, where

W ≥ 1. Under this retiming restriction, we can compute DL
S (π, π′) with a streaming

algorithm in time O ((mπ +mπ′)·n·W ).

2.4 Skorokhod Metric Computation: Polygonal Traces

We devised an algorithm to compute the Skorokhod distance between polygonal
traces in an earlier work [26]. Note after retiming, the retimed version π ◦ r of a
polygonal trace π need not be polygonal (see [26]), in spite of this, the algorithm
is polynomial time.

Theorem 2 (Distance Monitoring between Polygonal Traces [27]) Let π :
Iπ 7→ Rn and π′ : Iπ′ 7→ Rn be two polygonal traces with mπ and mπ′ affine segments

respectively. Let the Skorokhod distance between them (for the L2 norm on Rn) be

denoted as DS(π, π′).

1. Given δ ≥ 0, it can be checked whether DS(π, π′) ≤ δ in time O (mπ ·mπ′ ·n).

2. Suppose we restrict retimings to be such that the i-th affine segment of π can only be

matched to π′ affine segments i−W through i+W for all i, where W ≥ 1. Under

this retiming restriction, we can determine, with a streaming algorithm, whether

DS(π, π′) ≤ δ in time O ((mπ +mπ′)·n·W ).

Let us denote by DW
S (π, π′) the Skorokhod difference between π, π′ under the

retiming restriction of the second part of Theorem 2, i.e., the value obtained by
restricting the retimings in Equation (1)5. The value DW

S (π, π′) is an upper bound

on DS(π, π′). In addition, for W ′ < W , we have DW
S (π, π′) ≤ DW ′

S (π, π′). These
results on the distances computed under the window restriction W also apply to
piecewise constant traces (Theorem 1).

Computing the Distance Value Between Polygonal Traces. A polynomial
time algorithm was presented in [27] to compute the distance value using the dis-
tance monitoring routine. However, even though polynomial time, and even under
a sliding-window restriction, the time complexity of the algorithm is unsatisfac-
tory for use in conformance testing – a careful analysis shows that that the time
complexity of the algorithm for determining the distance value using the proce-
dure of [27] for a window size W is O

(
(mπ +mπ′) · n ·W 2 · log(W )

)
. In practice,

it turned out to be more efficient to do a binary search employing the monitoring
routine to obtain the distance value; we observed around 7 binary search calls on
average (the typical window size was 100).

The range of DW
S (π, π′) can be bound as follows for the binary search. Observe

that π(min Iπ) must be mapped to π′(min Iπ′) by any retiming (since retimings

5 DW
S

is not a metric over traces (the triangle inequality fails).



are onto), and similarly π(max Iπ) must be mapped to π′(max Iπ′). Thus, a lower
bound on DW

S (π, π′) is:

max
(
DO

(
π(min Iπ), π′(min Iπ′)

)
, DO

(
π(max Iπ), π′(max Iπ′)

))
.

The most obvious upper bound is to fix a retiming r (for example the identity func-

tion in case the time-domains of both traces match), and compute max
(
‖r−I‖sup ,

∥∥π − π′ ◦ r
∥∥
sup

)
.

We can also use the piecewise constant procedure given in the last subsection to
get better bounds. Given a polygonal trace ξ, let ξpwc denote the corresponding
piecewise constant trace obtained by sampling ξ at the endpoints of the affine
segments of ξ (and using sample-and-hold in between the sample points). Suppose
traces π, π′ be over the time interval [t0, tm], and let t0 < t1 < . . . tm be such
that both traces are affine between tk and tk+1 for all k. It can be checked that
the pointwise distance between π, and the corresponding piecewise constant trace
πpwc, defined as

Dsup

(
π, πpwc

)
= sup

t∈Iπ
DO

(
π(t), πpwc(t)

)
(10)

is equal to

max
(
DO

(
π(t1), πpwc(t0)

)
, DO

(
π(t2), πpwc(t1)

)
, . . . ,DO

(
π(tm), πpwc(tm−1)

))
.

We have

DW
S

(
π, π′

)
≤ DW

S

(
πpwc, π

′
pwc

)
+ Dsup(π, πpwc) + Dsup

(
π′, π′pwc

)
.

The above inequality follows from the triangle inequality over DO. Similarly,

DW
S

(
πpwc, π

′
pwc

)
≤ DW

S

(
π, π′

)
+ Dsup(π, πpwc) + Dsup

(
π′, π′pwc

)
.

This gives us the following bounds on DW
S (π, π′)

Proposition 1 Let π, π′ be polygonal traces over the time interval [t0, tm] (with val-

ues in the vector space O). The Skorokhod distance DW
S (π, π′) under the window W

retiming restriction lies in the interval [αmin, αmax], where

αmin = max

(
DO

(
π(t0), π′(t0)

)
, DO

(
π(tm), π′(tm)

)
,

DW
S

(
πpwc, π

′
pwc

)
−
(
Dsup(π, πpwc) + Dsup

(
π′, π′pwc

) ))

αmax = min
(
Dsup

(
π, π′

)
, DW

S

(
πpwc, π

′
pwc

)
+
(
Dsup(π, πpwc) + Dsup

(
π′, π′pwc

) ))
with Dsup for traces η, η′ (over the same time interval Iη) defined as Dsup

(
η, η′

)
=

supt∈IηDO

(
η(t), η′(t)

)
.

Note that Dsup(π, πpwc) and (similarly for π′) can be computed, for O = Rn
with norm L1, L2 or L∞, in time O(m·n) (where m is the number of affine segments
in π).



3 Transference of Logical Properties

In this section, we demonstrate a transference result involving the Skorokhod met-
ric for the linear time logic FLTL (Freeze LTL) — a logic which augments LTL

with freeze quantifiers [4] over both time and trace values. The logic we consider
generalizes MTL, STL, TLTL [4], and STL∗ [8,9]. We show that if the Skorokhod
distance between two traces is small, they satisfy close FLTL formulae. Given a
formula φ of FLTL satisfied by trace π1, we can compute a “relaxation” of φ that
will be satisfied by the “close” trace π2. We first present the results in a propo-
sitional framework for the logic TLTL (obtained by augmenting LTL with freeze
quantifiers over time), and then extend to Rn-valued spaces for the logic FLTL

which also has freeze quantifiers over Rn-valued variables.

3.1 The Logic TLTL

Let P be a set of propositions. A propositional trace π over P is a trace where the
topological space is 2P , with the associated metric DP(σ, σ′) = 0 if σ = σ′, and
∞ otherwise, for σ, σ′ ∈ 2P . The set of all timed propositional traces over P is
denoted by Π(P). Note that if a trace has finite variability, i.e., if there exists a
finite partition of tdom(π) into disjoint subintervals I0, I1, . . . , Im such that π is
constant on each subinterval, and in addition if I0, I1, . . . , Im−1 are left-closed and
right open (with Im closed on both sides), then the propositional trace π can be
viewed as a trace obtained under a sample-and-hold scheme from a finite set of
sample points.

Definition 2 (TLTL(FT) Syntax) Given a set of propositions P, a set of (time)
variables VT, and a set FT of functions from Rl+ to R, the formulae of TLTL(FT)
are defined by the following grammar.

φ := p | true | fT(x) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ

where

– p ∈ P and x ∈ VT, and x = (x1, . . . , xl) with xi ∈ VT for all 1 ≤ i ≤ l;
– fT ∈ FT is a real-valued function, and ∼ is one of {≤, <,≥, >}.

The quantifier “x.” is known as the freeze quantifier, and binds variable x to
the current time. A variable x is defined to be free in φ as follows. The variable x
is not free in x.Ψ , or in p (a proposition), or in true, or in fT(x1, . . . , xl) ∼ 0 where
xi 6= x for all i. It is also not free in φ if φ does not contain an occurrence of x. It
is free in ¬ψ iff x is free in ψ; and it is free in φ1 ∧∨ φ2, or in φ1 U φ2, iff x is free in
either φ1 or in φ2. Finally, variable x is free in fT(x1, . . . , xl) ∼ 0 if some xi is x. A
formula is closed if it has no free variables.

Definition 3 (TLTL(FT) Semantics) Let π : I 7→ 2P be a timed propositional
trace, and let E : VT 7→ I be the time environment mapping the variables in VT
to time values in I. The satisfaction of the trace π with respect to the TLTL(FT)
formula φ in the time environment E is written as π |=E φ, and is defined inductively



as follows (denoting t0 = min tdom(π)).

π |=E p for p ∈ P iff p ∈ π(t0); π |=E true; π |=E ¬Ψ iff π 6|=E Ψ ;

π |=E φ1 ∧ φ2 iff π |=E φ1 and π |=E φ2; π |=E φ1 ∨ φ2 iff π |=E φ1 or π |=E φ2;

π |=E fT(x1, . . . , xl) ∼ 0 iff fT(E(x1), . . . , E(xl)) ∼ 0 for ∼∈ {≤, <,≥, >};
π |=E x.ψ iff π |=E[x:=t0] ψ where E[x := t0] agrees with E for all xi 6=x,

and mapsx to t0;

π |=E φ1 U φ2 iff πt |=E φ2 for some t ∈ I and πt
′
|=E φ1 ∨ φ2 for all t0 ≤ t′ < t.

A timed trace π is said to satisfy the closed formula φ (written as π |= φ) if there
is some environment E such that π |=E φ.

We define additional temporal operators in the standard way: the “eventu-
ally” operator ♦φ stands for trueU φ; and the “always” operator �φ stands for
¬♦¬φ. TLTL(FT) provides a richer framework than MTL [25] for expressing tim-
ing constraints as: (i) freeze quantifiers allow specification of constraints between
distant contexts, which the bounded temporal operators in MTL cannot do; and
(ii) the predicates fT() ∼ 0 for fT ∈ FT allow the specification of complex timing
requirements not expressible in MTL. Note that even if the predicates fT() ∼ 0
are restricted to be of the form x1 − x2 + c ∼ 0, where x1, x2 are freeze variables,
and c is a constant, TLTL(FT) is more expressive than MTL [6] (and hence more
expressive than MITL on which STL is based).

Example 1 (Freeze Quantification) Suppose we want to express that whenever the
event Q occurs, it is followed later by R, and then by S, such that the time
difference between occurrences of Q and R is at most 5, and also the time difference
between occurrences of Q and S is at most 10. This can be expressed in TLTL(FT)

as
�
(
x.Q→ ♦

(
y.
[
R ∧ (y ≤ x+ 5) ∧ ♦ (z. (S ∧ z ≤ x+ 10))

]))
.

Thus, freeze quantification, by giving a mechanism to bind times to variables,
allows us to relate, with several constraints, far apart events.

Example 2 (Freeze Quantification Functions) Suppose we want to express that when-
ever the event Q occurs, it must be followed by a response R within time λtQ for
some λ > 1 where tQ is the time at which Q occurred; thus, the later Q occurs the
more delay we can tolerate in the response time. The requirement can be expressed
as x.

(
Q→ ♦

(
y. (R ∧ (y − x ≤ λx))

))
.

Example 3 (TLTL(FT) subsumes MTL) Let FT be the set of two variable functions
of the form f(x, y) = x − y + c where c is a rational constant. Then TLTL(FT)

subsumes MTL. The MTL formula pU [a,b]q can be written as

x.
(
pU y.

(
(y ≤ x+ b) ∧ (y ≥ x+ a) ∧ q

))
.

We explain the formula as follows. We assign the “current” time tx to the variable
x, and some future time ty to the variable y. The values tx and ty are such that
at time ty, we have q to be true, and moreover, at all times between tx and ty, we
have p∨ q to be true. Furthermore, ty must be such that ty ∈ [tx + a, tx + b], which
is specified by the term (y ≤ x+ b) ∧ (y ≥ x+ a).



Example 4 (Temporal Constraints) Suppose we want to express that whenever the
event p occurs, it must be followed by a response q, and then by r. In addition, we
have the following timing requirement: if εpq, εqr, εpr are the time delays between
p and q, between q and r, and between p and r, respectively, then: we must have
ε2pq + ε2qr + ε2pr ≤ d for a given positive constant d. This can be written using freeze
quantifiers as the TLTL formula φ:

x.
(
p→ ♦

(
y.
(
q ∧ ♦

[
z.
(
r ∧
(

(y − x)2 + (z − y)2 + (z − x)2 ≤ d
))]) ))

.

3.2 Transference of TLTL Properties for Propositional Traces

We now show that if a timed propositional trace π satisfies a TLTL(FT) formula φ,
then any timed trace π′ that is at most δ distance away from π satisfies a slightly
relaxed version of the formula φ, the degree of relaxation being governed by δ;
and the variance of the functions in FT over the time interval containing the time
domains of π and π′.

We define the distance DS between two propositional traces as the Skorokhod
distance, where we use DP as the distance between two sets of propositions.

Next, we define relaxations of TLTL(FT) formulae. The relaxations are defined
as a syntactic transformation on formulae in negation-normal form, i.e., in which
negations only appear at the propositions. It can be showed that every TLTL(FT)

formula can be rewritten in negation-normal form, when we additionally use the
waiting for operator, W , defined as:

π |=E φ1W φ2 iff either (1) πt |=E φ1 for all t ∈ Iπ; or (2) πt |=E φ2 for some

t ∈ Iπ; and πt
′
|=E φ1 ∨ φ2 for all min Iπ ≤ t′ < t.

Removing Negation using the W Operator. The following identities hold re-
lating the W operator to the U operator

1. φ1 U φ2 ≡ ¬ (¬(φ2)W (¬φ1 ∧ ¬φ2) ); and
2. φ1W φ2 ≡ ¬ (¬(φ2)U (¬φ1 ∧ ¬φ2) ).

Informally, the first identity states that ¬(φ1 U φ2) holds iff either (i) φ2 never
holds; or (ii) there is a point where φ1 is false, and at that point and all points
before it, φ2 has remained false. The second identity is similar. The first iden-
tity above allows us to “push” the negations down using the W operator. The
mechanism for the three interesting cases is below.

¬ (fT(x1, . . . , xl) ∼ 0) ≡ fT(x1, . . . , xl) neg(∼) 0,

where, for ∼∈ {≤, <,≥, >} we have

neg(≤) to be >; neg(<) to be ≥;

neg(≥) to be <; neg(>) to be ≤

¬(x.ψ) ≡ x.¬(ψ)

¬ (φ1 U φ2) ≡ ¬(φ2)W (¬φ1 ∧ ¬φ2)



Definition 4 (δ-relaxation of TLTL(FT) formulae) Let φ be a TLTL(FT) for-
mula in which negations appear only on the propositional symbols. The δ relax-
ation of φ (for δ≥0) over a closed interval J , denoted rxδJ (φ), is defined as:

rxδJ (p) = p

rxδJ (¬p) = ¬p
rxδJ (φ1 ∧ φ2) = rxδJ (φ1) ∧ rxδJ (φ2)

rxδJ (x.ψ) = x. rxδJ (ψ)

rxδJ (φ1 U φ2) = rxδJ (φ1)U rxδJ (φ2)

rxδJ (true) = true

rxδJ (false) = false

rxδJ (φ1 ∨ φ2) = rxδJ (φ1) ∨ rxδJ (φ2)

rxδJ (φ1W φ2) = rxδJ (φ1)W rxδJ (φ2)

rxδJ (fT(x1, . . . , xl)) ∼ 0) =

{
fT(x1, . . . , xl) + KfT

J (δ) ∼ 0 if ∼∈ {>,≥}
fT(x1, . . . , xl) − KfT

J (δ) ∼ 0 if ∼∈ {<,≤},

where KfT
J : [0,max tdom(J) − min tdom(J)] 7→ R+, and

KfT
J (δ)

def
= sup

t1, . . . , tl ∈ J
t′1, . . . , t

′
l ∈ J



fT(t1, . . . , tl)

−
fT(t′1, . . . , t

′
l)

 s.t. |ti − t′i| ≤ δ for all i


(11)

Thus, instead of comparing the fT() values to 0, we relax by comparing in-

stead to ±KfT
J (δ). The other cases recursively relax the subformulae. The func-

tions KfT
J (δ) define the maximal change in the value of fT that can occur when

the input variables can vary by δ. The role of J is to restrict the domain of the
freeze quantifier variables to the time interval J (from R+) in order to obtain the
least possible relaxation on a given trace π (e.g., we do not care about the values
of a function in FT outside of the domain tdom(π) of the trace).

Proposition 2 The function rx is a relaxation on TLTL(FT) formulae, i.e. if a timed

propositional trace π |= φ for a TLTL(FT) formula φ, then π |= rxδJ (φ) for all δ > 0
and non-empty intervals J .

Proof. Observe that, over the predicates fT(x1, . . . , xl) ∼ 0, the function rx is indeed
a relaxation, i.e, if fT(t1, . . . , tl) ∼ 0 for values t1, . . . , tl, then rxδJ (fT(t1, . . . , tl)) ∼
0) also holds. The result follows by a straightforward induction argument.

Example 5 (δ-relaxation for Bounded Temporal Operators – MTL) We demonstrate
how δ-relaxation operates on bounded time constraints through an example. Con-
sider the MTL formula φ = QU [a,b]R. The δ-relaxation of this formula over the
interval R+ is QU [a−2·δ , b+2·δ]R. This can be seen as follows. The formula φ can
be written in TLTL syntax as:

x.QU y. ((y ≤ x+ b) ∧ (y ≥ x+ a) ∧R) .



The δ-relaxation of this formula according to Definition 4 is:

rxδR+
(x.QU y. ((y ≤ x+ b) ∧ (y ≥ x+ a) ∧R)) =

= rxδR+
(x.QU y. ((y − x− b ≤ 0) ∧ (y − x− a ≥ 0) ∧R))

= x.QU y.
(

(y − x− b− 2·δ ≤ 0) ∧
(y − x− a+ 2·δ ≥ 0) ∧R

)
since the Lipschitz constant of y − x− c is 2

(for any constant c) for the L∞ norm.

= x.QU y. ((y ≤ x+ b+ 2·δ) ∧ (y ≥ x+ a− 2·δ) ∧R)

= QU [a−2·δ,b+2·δ]R.

Thus, the time constraint interval boundaries are relaxed by 2 ·δ. The factor of
2 arises because there are two contributing factors: the starting time of Q can
be “pulled back” by δ, and the time of R can be postponed by δ; thus, the time
duration in between Q and R can increase (and similarly can decrease) by 2·δ.

Theorem 3 (Transference for Propositional Traces) Let π, π′ be two timed propo-

sitional traces such that DS(π, π′) < δ for some finite δ. Let φ be a closed TLTL(FT)

formula in negation-normal form. If π |= φ, then π′ |= rxδIπ,π′ (φ) where Iπ,π′ is the

convex hull of tdom(π) ∪ tdom(π′).

Proof. Denote π′ by π2 for notational convenience. Let untime(φ) be the formula
where all freeze variable constraints are replaced by true (e.g. untime(x.(Q ∧ x <

5)) is x.(Q ∧ true)). Since D(π, π2) < δ, we have that there exists a retiming
r : tdom(π)→ tdom(π2) such that

π(t) = π2(r(t)). (12)

Thus, both π and π2 have the same untimed propositional sequence. This implies
that both π and π2 satisfy untime(φ) (this can formally be shown by an induction
argument). Thus, both π and π2 satisfy the temporal operator constraints of φ.

We now prove the theorem statement claims concerning the freeze variable
constraints. We assume WLOG that φ does not freeze the same variable twice.
Intuitively, if E is an assignment to freeze variables to show π |= φ, then to show
π2 |= rxδIπ,π2

(φ), we consider the environment Er is defined by Er(x) = E(r(x)).

We show that under Er(x), the base constraints of φ involving the freeze variables
are satisfied provided the base constraints are relaxed according to rxδIπ,π2

. The
satisfaction of non-base subformulae can then be shown by an induction argument.

Formally, the proof is as follows. The conditions of Definition 3 define a proof
tree in order for π |= φ to hold. The nodes of the trees are 3-tuples (πt, E , ψ) where
πt is a suffix of the trace π such that min tdom(πt) = t, and E is an freeze variable
environment, and ψ is a formula. The proof tree has the following properties:

1. If a node is the tuple
(
πt, E , ψ

)
, then πt |=E ψ.

2. A node
(
πtp , Ep, ψp

)
has the following children (mirroring the proof obligations

for showing πtp |=Ep ψp according to Definition 3:

(a) if ψp = ψ1 ∧ ψ2, then two children nodes labelled with
(
πtp , Ep, ψ1

)
and(

πtp , Ep, ψ2

)
respectively.



(b) if ψp = ψ1 ∨ ψ2, then one child node labelled with either
(
πtp , Ep, ψ1

)
, or(

πtp , Ep, ψ2

)
.

(c) If ψp = ψ1 U ψ2, then, for a single t with max tdom(π) ≥ t ≥ tp such that

πt |=E ψ2 and πt
∗
|=E ψ1 ∨ ψ2 for all tp ≤ t∗ < t, the following (possibly

uncountably many) children:

i.
(
πt
∗
, Ep, ψ1 ∨ ψ2

)
ii.
(
πt, Ep, ψ2

)
(d) If ψp = ψ1W ψ2, then children based on how how πtp |=Ep ψ1W ψ2 holds

(similar to the U case).
(e) If ψp = x.ψ, then one child labelled with

(
πtp , Ep[x := tp], ψ

)
.

(f) If ψp = p for p a proposition, or ψp = fT(x1, . . . , xl) ∼ 0, then the node is
a leaf node such that the proposition or ψp holds at πtp(0).

3. The root node is (π, E∗, φ) where E∗ is any environment, π is the whole trace,
and φ is the original formula.

Note that if a non-root node in a tree is labelled
(
πt, E , ψ

)
, then t is not smaller

than any value E(x) in that tree for x free in ψ (intuitively, the variable x was
bound to a value at a time earlier than, or equal to time t).

Let T be a proof tree for π |= φ. We construct another proof tree T ′ which
witnesses π2 |= rxδIπ,π2

(φ) as follows.

– For every node (πt, E , ψ) of T , the tree T ′ has a corresponding node
(
π
r(t)
2 , Er, rxδIπ,π2

(ψ)
)

,

where the environment Er is defined by Er(x) = E(r(x)).
– Moreover, if

(
πtp , Ep, ψp

)
is a parent to

(
πt, E , ψ

)
in tree T , then in the tree T ′

the node
(

(π
r(tp)
2 , (Ep)r, rx

δ
Iπ,π2

(ψp)
)

is a parent to
(
π
r(t)
2 , Er, rxδIπ,π2

(ψ)
)

.

Since r is strictly increasing and bijective, it can be checked that T ′ can be
proved to be a proof tree by induction on the height of nodes, if we can show that

for leaf nodes
(
π
r(t)
2 , Er, ψ

)
, we have π

r(t)
2 |=Er ψ. We prove this next.

If a leaf node is
(
π
r(t)
2 , Er, p

)
for p a proposition, then π

r(t)
2 |= p since (a) r

maps the time t in π to time r(t) in π2; and (b) DS(π, π2) < δ and δ is finite;
thus π2(r(t)) = π(t); and (c) T must contain the corresponding leaf node

(
πt, E , p

)
and so π(t) = p. The three previous facts imply π2(r(t)) = π(t) = p; and hence

π
r(t)
2 |= p.

Consider a leaf node involving freeze variables
(
π
r(t)
2 , Er, rxδIπ,π′ (ψ)

)
, for ψ =

fT(x1, . . . , xl) ∼ 0. We need to show that rxδIπ,π2
(fT(u′1, . . . , u

′
l) ∼ 0) where Er(xi) =

u′i. We show this fact as follows. The node in T corresponding to the T ′ node(
π
r(t)
2 , Er, rxδIπ,π2

(ψ)
)

is
(
πt, E , (fT(x1, . . . , xl) ∼ 0)

)
. Since T is a proof tree for

π |= φ, we have that E(xi) = ui such that fT(u1, . . . , ul) ∼ 0. We also have that∣∣ui − u′i∣∣ < δ since r(ui) = u′i; and moreover ui ∈ tdom(π), and u′i ∈ tdom(π2).
Thus, ∣∣fT(u′1, . . . , u

′
l)− fT(u1, . . . , ul)

∣∣ < KfT
Iπ,π′

(δ) .

Since fT(u1, . . . , ul) ∼ 0, we have that fT(u′1, . . . , u
′
l) + KfT

Iπ,π2
(δ) ∼ 0 in case ∼∈

{>,≥}; and fT(u′1, . . . , u
′
l) −K

fT
Iπ,π2

(δ) ∼ 0 in case ∼∈ {<,≤}. Or in other words,

rxδIπ,π2
(fT(u′1, . . . , u

′
l) ∼ 0).



Thus, the leaves of the tree T ′ satisfy property (1) of proof trees Property (1)
can be seen to hold for non-leaf nodes using a bottom up argument following the
structure of the proof tree T . This completes the proof.

Theorem 3 relaxes the freeze variables over the entire signal time-range Iπ,π′ ;
it can be strengthened by relaxing over a smaller range: if π |= φ, and t1, . . . , tk are
time-stamp assignments to the freeze variables x1, . . . , xk which witness π satisfying
φ, then xi only needs to be relaxed over [ti−δ, ti+δ] rather than the larger interval
Iπ,π′ . These smaller relaxation intervals for the freeze variables can be incorporated
in Equation 11. We omit this optimization for ease of presentation.

Example 6 Recall Example 4, and the formula φ presented in it. Suppose a trace
π satisfies φ; and let DS

(
π, π′

)
< δ (using the Skorokhod metric for propositional

traces). Our transference theorem ensures that (i) π′ will satisfy the same untimed
formula p → ♦ (q ∧ ♦r); and (ii) it gives a bound on how much the timing con-
straints need to be relaxed in φ in order to ensure satisfaction by π′; it states that
π′ satisfies the following relaxed formula φ′.

π′ |= x.
(
p→ ♦

(
y.
(
q ∧ ♦

[
z.
(
r ∧
(

(y − x)2 + (z − y)2 + (z − x)2 ≤ d†
))]) ))

where d† = d+ 12 · δ2 + 4
√

3 · δ ·
√
d .

This can be seen as follows. Since π satisfies φ, we must have time-stamps
tx, ty, tz bound to x, y, z respectively so that with these assignments, the formula
φ is satisfied. Since π′ is δ close to π, there is a retiming from π to π′ such that
the times tx, ty, tz in π are mapped to corresponding time t′x, t

′
y, t
′
z in π′ such that

(a) |tx − t′x| ≤ δ; and (b) |ty − t′y| ≤ δ; and (c) |tz − t′z | ≤ δ.
The sum (t′x − t′y)2 + (t′y − t′z)2 + (t′z − t′x)2 is

=
(
(t′x − tx) + (tx − ty) + (ty − t′y)

)2
+
(
(t′y − ty) + (ty − tz) + (tz − t′z)

)2
+(

(t′z − tz) + (tz − tx) + (tx − t′x)
)2

= 2
(

(t′x − tx)2 + (t′y − ty)2 + (t′z − tz)2
)

+ (tx − ty)2 + (ty − tz)2 + (tz − tx)2 +

2
(
(t′x − tx)(tx − ty) + (ty − t′y)(tx − ty) + (t′x − tx)(ty − t′y)

)
+

2
(
(t′y − ty)(ty − tz) + (tz − t′z)(ty − tz) + (t′y − ty)(tz − t′z)

)
+

2
(
(t′z − tz)(tz − tx) + (tx − t′x)(tz − tx) + (t′z − tz)(tx − t′x)

)
≤ 6δ2 + d+ 4δ|tx − ty|+ 2δ2 + 4δ|ty − tz |+ 2δ2 + 4δ|tz − tx|+ 2δ2

= d+ 12δ2 + 4δ (|tx − ty|+ |ty − tz |+ |tz − tx|)

≤ d+ 12 · δ2 + 4
√

3 · δ ·
√
d

In the last step above, we use the inequality: |a|+ |b|+ |c| ≤
√

3 ·
√
a2 + b2 + c2 This

inequality is obtained by applying the Cauchy-Schwartz inequality to the tuples
(|a|, |b|, |c|) and (1, 1, 1). Thus, by Theorem 3, we have

π′ |= x.
(
Q→ ♦

(
y.
(
R ∧ ♦

[
z.
(
S ∧

(
(y − x)2 + (z − y)2 + (z − x)2 ≤ d†

))]) ))
where d† = d+ 12 · δ2 + 4

√
3 · δ ·

√
d.



3.3 Transference of FLTL Properties for Rn-valued Traces

In the previous two subsections, we considered propositional traces. We now gen-
eralize to Rn-valued traces, and freeze quantification over both time and Rn trace
values in the logic FLTL (as compared to the propositional case where the freeze
quantifiers were only over the time domain).

A timed Rn-valued trace π is a function from a closed interval I of R+ to Rn.
To define the semantics of FLTL formulae over timed Rn-valued sequences, we

use booleanizing predicates µ : Rm 7→ B, to transform Rn-valued sequences into
timed propositional sequences. These predicates – with the help of freeze variables
– denote relationships between different times and values in the trace. Since we
also have freeze variables, FLTL with predicates is strictly more expressive than
STL6 (as in the propositional case [6]).

For ease of presentation, we assume n is fixed, i.e., we consider FLTL for Rn-
valued traces

Definition 5 (FLTL(F) Syntax) Given a set of vectors V (the freeze vectors,
each vector having n+ 1 variables), and a set F of functions f : Rm(n+1) → R for
1 ≤ m ≤M for some M ≥ 1, the formulae of FLTL(F) are defined by the grammar:

φ := true | f(xi1 , . . . , xik) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ where

x and xij ∈ V , and xij = (x0ij , x
1
ij , . . . , x

n
ij ) (similarly, x is freeze vector of n + 1

variables); and ∼ is ≤, <,≥, or >.

Closed FLTL(F) formulae are defined analogously to closed TLTL(FT) formulae.
The semantics of FLTL(F) are similar to that of TLTL(FT) (Definition 3). The
only new ingredient is that now the freeze variables are n+ 1-tuple freeze vectors.
For a freeze vector x = (x0, x1, . . . , xn), we denote xi by x[i]. The component x[0]
refers to the time dimension. The components x[i] for i > 1 refer to the i-th value
dimension. The freeze quantifier “x.” now binds time, and the trace values in Rn
to x[0] and to x[1], . . . , x[n] respectively (the i-th dimension of the trace value is
mapped to x[i]).

Example 7 Consider the following property of R2 traces: “the first trace dimen-
sion is delayed by 4 time-units, squared, and then output as the second trace
dimension”. This can be expressed in FLTL(F) as:

�x1.

(
♦x2.

(
(x2[0] = x1[0] + 4) ∧ (x2[2] = x1[1] · x1[1])

))
In the above expression, we let a = b stand for (a ≤ b) ∧ (b ≤ a). The time-delay
aspect can be understood as follows: we first bind each timestamp to x1[0]. Then,
we require that 4 time units after the timestamp in x1[0], we get to a time (this
timestamp is bound to x2[0]) such that the 2-nd value dimension is the square of
the first value dimension at timestamp x1[0].

FLTL(F) compared to the logic STL∗ of [8,9]: The logic FLTL(F) extends STL∗ as
follows: (1) it allows capture of time-stamps in freeze variables; (2) the functions

6 STL is MITL enriched with booleanzing predicates without freeze variables.



in F need not be linear; and (3) the temporal operators are not attached to closed
non-singular intervals.

δ relaxation of FLTL(F). Let Rn have the norm L. Let J be a mapping from
{0, 1, . . . , n} to subsets of of R (with J(0) being a closed interval of R+). The
interval J(i) for i > 0 denotes the range of the i-th trace dimension. The time-
range is the interval J(0). The relaxation function rxδJ, for the Rn norm L, which
operates on FLTL(F) formulae is defined analogous to the relaxation function rxδJ
in Definition 4. We omit the similar cases, and only present the new case for the
predicates formed from F (the full definition can be found in the appendix).

rxδJ (f(x1, . . . , xl) ∼ 0) =

{
f(x1, . . . , xl) + Kf

J (δ) ∼ 0 if ∼∈ {>,≥};
f(x1, . . . , xl) − Kf

J (δ) ∼ 0 if ∼∈ {<,≤}

where Kf
J :
[
0, max0≤k≤n |max J(k) − min J(k)|

]
7→ R+ is a function s.t.

Kf
J (δ) = sup

ui[k] ∈ J(k); u′i[k] ∈ J(k)
for all 1 ≤ i ≤ l;
for all 0 ≤ k ≤ n



f(u1, . . . , ul)

−
f(u′1, . . . , u

′
l)

 s.t.

∥∥ui − u′i∥∥Lmax ≤ δ
for all 1 ≤ i ≤ l



and where Lmax denotes the norm:∥∥∥〈u0, u1, . . . , un〉∥∥∥
Lmax

= max
(∣∣∣u0∣∣∣,∥∥∥〈u1, . . . , un〉∥∥∥

L

)
.

The function Kf
J (δ) define the maximal change in the value of f that can occur

under the following constraints:
– the input n+ 1-ary values ui can vary by at most δ in the Lmax norm; and
– the time-domain is restricted to J(0); and
– the k-th value-domain is restricted to intervals in J(k).

The role of J in the above definition is to restrict the domains of time, and value
dimensions, in order to obtain the least possible relaxation bounds on the signal
constraints; as was done in Definition 4 for the freeze time variables.

Proposition 3 The function rxδJ is a relaxation on FLTL(F) formulae, i.e. if a timed

Rn-valued trace π |= φ for a FLTL(F) formula φ, then π |= rxδJ(φ).

Proof. The proof is similar to the proof of Proposition 2.

Theorem 4 (Transference for Rn-valued Traces) Let π, π′ be two Rn-valued

traces such the Skorokhod distance between them (corresponding to the Rn norm L)

is less than δ for some finite δ. Let φ be a closed FLTL(F) formula in negation-normal

form. If π |= φ, then π′ |= rxδJ(φ), where

– J be a mapping from {0, 1, . . . , n} to subsets of R;

– J(0) is the convex hull of tdom(π) ∪ tdom(π′); and

– J(k) for n ≥ k > 0 is {π(t)[k] | t ∈ tdom(π)} ∪ {π′(t)[k] | t ∈ tdom(π′)}; where

π(t)[k] denotes the k-th dimensional value in π(t) (and similarly for π′(t); and

– rxδJ is defined with respect to the norm Lmax.



Proof. The theorem can be proved along the same lines as the proof of Theorem 3.
The witnessing proof tree is constructed using the time-bindings as previously. In
the propositional case, a retiming r in effect maps the proposition π(t) to π′(r(t));
in the present case, it maps the Rn value π(t) to the Rn value π′(r(t)) such that∥∥π′(r(t))− π(t)

∥∥
L
< δ. This requires us to incorporate the value distortions in Rn

(in addition to the time distortions) when relaxing the formulae f(x1, . . . , xl) ∼ 0.
This is handled by rxδJ as shown previously. The rest of the proof is as in the
propositional case.

Theorem 4 can be strengthened similar to the strengthening mentioned for
Theorem 3 by relaxing the variables over smaller intervals obtained from assign-
ments to variables which witness π |= φ.

Example 8 (Transference) Recall Example 7. Suppose we have two traces π, π′ over
the time interval [0, 100] with trace values in R2. Let the range of the first value
dimension be [−8, 8] and range of the second value dimension be [0, 64]. Let the
Skorokhod distance with respect to the R2 norm L∞ be δ.

Consider the formula of Example 7. Since our traces are over a finite time-
interval [0, 100], we need to modify the formula of Example 7 to only talk about
delay constraints till time 100− 4 = 96 time units as follows:

�x1.

(
x1[0] > 96 ∨ ♦x2.

(
(x2[0] = x1[0] + 4) ∧ (x2[2] = x1[1] · x1[1])

))
(13)

Suppose the trace π satisfies the formula above. We apply Theorem 4 to get a
formula which π′ satisfies as follows. Expanding the “=” constraints, we get:

�x1.

(
x1[0] > 96 ∨ ♦x2.

(
(x2[0] ≤ x1[0] + 4) ∧ (x2[0] ≥ x1[0] + 4)∧

(x2[2] ≤ x1[1] · x1[1]) ∧ (x2[2] ≥ x1[1] · x1[1])

))
(14)

In order to apply rxδJ to the above formula, we compute rxδJ for the following basic
formulae, over J corresponding to the previously mentioned ranges.

– f1(x1) > 0, for f1(x) = x1[0]− 96.

We haveKf1
J (δ) to be δ (since

∥∥u1 − u′1∥∥Lmax
∞
≤ δ implies that

∣∣f1(u1)− f1(u′1)
∣∣ ≤

δ. Thus, rxδJ(f1(x1) > 0), which is defined to be f1(x1) + Kf1
J (δ) > 0, is equal

to x1[0] + δ − 96 > 0.
– f2(x1, x2) ≤ 0, for f2(x1, x2) = x2[0]− x1[0]− 4.

Since if
∥∥u1 − u′1∥∥Lmax

∞
≤ δ and if

∥∥u2 − u′2∥∥Lmax
∞
≤ δ we have

sup
u1,u2,u′1,u

′
2

∣∣(u2[0]− u1[0]− 4
)
−
(
u′2[0]− u′1[0]− 4

)∣∣ = 2δ,

we get that Kf2
J (δ) to be 2δ. Thus, rxδJ(f2(x1, x2) ≤ 0), which is defined to be

f2(x1, x2)−Kf2
J (δ) ≤ 0, is equal to x2[0]− x1[0]− 4− 2δ ≤ 0.

– f2(x1, x2) ≥ 0, for f2(x1, x2) = x2[0]− x1[0]− 4.
Using the analysis from the previous case, we get rxδJ(f2(x1, x2) ≥ 0) to be
x2[0]− x1[0]− 4 + 2δ ≥ 0.

– f3(x1, x2) ≤ 0, for f3(x1, x2) = x2[2]− x1[1] · x1[1].
For vectors u1, u2, u

′
1, u
′
2 in R+ ×Rn such that

1. |uk[1]| ≤ 8 and
∣∣u′k[1]

∣∣ ≤ 8 for k ∈ {1, 2}, and



2. 0 ≤ uk[2] ≤ 64 and 0 ≤ u′k[2] ≤ 64 for k ∈ {1, 2}, and
3.
∥∥u1 − u′1∥∥Lmax

∞
≤ δ and

4.
∥∥u2 − u′2∥∥Lmax

∞
≤ δ,

we have

sup
u1,u2,u′1,u

′
2

∣∣(u2[2]− u1[1] · u1[1]
)
−
(
u′2[2]− u′1[1] · u′1[1]

)∣∣
≤ sup
u1,u2,u′1,u

′
2

∣∣u2[2]− u′2[2]
∣∣ + sup

u1,u2,u′1,u
′
2

∣∣u1[1] · u1[1]− u′1[1] · u′1[1]
∣∣

≤ δ + sup
u1,u2,u′1,u

′
2

∣∣u1[1] · u1[1]− u′1[1] · u′1[1]
∣∣ (15)

Denote u1[1] as a, and u′1[1] as b. To compute the supremum in the last ex-
pression, we need to obtain the following:

maximize
∣∣∣a2 − b2∣∣∣

subject to − 8 ≤ a ≤ 8

− 8 ≤ b ≤ 8

|a− b| ≤ δ

We have
∣∣a2 − b2∣∣ = |a− b| · |a+ b| ≤ δ · |a+ b|. Using the ranges of a, b, we get

|a+ b| ≤ 16. Thus,
∣∣a2 − b2∣∣ ≤ 16 · δ. Substituting back in Equation (15), we

get

sup
u1,u2,u′1,u

′
2

∣∣(u2[2]− u1[1] · u1[1]
)
−
(
u′2[2]− u′1[1] · u′1[1]

)∣∣ ≤ δ + 16 · δ = 17 · δ

Thus, Kf3
J (δ) is 17 · δ. Hence, rxδJ(f3(x1, x2) ≤ 0), which is defined to be

f3(x1, x2)−Kf3
J (δ) ≤ 0, is equal to

x2[2]− x1[1] · x1[1]− 17 · δ ≤ 0.

– f3(x1, x2) ≥ 0, for f3(x1, x2) = x2[2]− x1[1] · x1[1].
Using the analysis of the previous case, we get rxδJ(f3(x1, x2) ≥ 0) to be

x2[2]− x1[1] · x1[1] + 17 · δ ≥ 0.

Using the above facts, the relaxation rxδJ of the formula in (14) is equal to

�x1.

x1[0] > 96− δ ∨ ♦x2.


(x2[0] ≤ x1[0] + 4 + 2δ)∧
(x2[0] ≥ x1[0] + 4− 2δ)∧

(x2[2] ≤ x1[1] · x1[1]) + 17δ ∧
(x2[2] ≥ x1[1] · x1[1])− 17δ




This can be written in a more readable form as:

�x1.

x1[0] > 96− δ ∨ ♦x2.


x2[0] ∈

[
x1[0]+4−2δ , x1[0]+4+2δ

]
∧

x2[2] ∈
[

(x1[1])
2−17δ , (x1[1])

2+17δ
]

 (16)

Informally, the above formula specifies the following three requirements:



1. The tracking requirements are only till time 96−δ (the original formula in (13)
has a tracking requirement till time 96).

2. The tracking delay is variable, and falls in the range [4−2δ ,4+2δ] (the original
formula in (13) has a tracking delay of exactly 4 time units).

3. The tracked trace dimension value v is output as the second dimension value
in range [v2−17δ , v2 +17δ] (the original formula in (13) output the second
dimension as exactly v2).
Theorem 4 states that if π satisfies the formula in (13), then we can guarantee

that π′ satisfies the more relaxed formula in (16).

4 Quantifying Timing Distortion Using the Skorokhod Metric

In computing DS(π, π′) for given traces π, π′, the Skorokhod distance computation
routine optimally retimes π′ and then computes the pointwise value discrepancy
between the retimed π′ and the original π signal, i.e., it computes Dsup(π, π′ ◦ r) =
supt∈Iπ DO

(
π(t), π′(r(t))

)
It is interesting to know how much retiming must be

done by the routine to get the optimal Skorokhod distance. A related problem is:
given a user-supplied bound ε, compute the least retiming r required for π′ such
that Dsup(π, π′◦r) ≤ ε. We define a measure which quantifies the retiming required
as follows. Given traces π, π′, and ε > 0, let

λ?(π, π′, ε) =


∞ if there does not exist retiming r

s.t. Dsup(π, π′ ◦ r) ≤ ε
inf

r s.t. Dsup(π, π′◦r)≤ε
‖r−I‖sup otherwise

(17)
where ‖r−I‖sup is as defined in Definition 1 and quantifies the deviation of r

from the identity retiming function. The quantity λ?(π, π′, ε) above is a measure
of timing distortion under an allowed value distortion ε. It generalizes the timing
distortion quantified by the Skorokhod metric in the propositional setting. Recall
that in the propositional setting (Section 3.1), the distance DP(π(t), π′(t′)) be-
tween two trace values π(t), π′(t′) is 0 if π(t) = π′(t′), and ∞ otherwise. Under
this point metric DP , the Skorokhod metric between traces quantifies the timing
distortion required to make the two traces match exactly. The Skorokhod distance
DS(π, π′) is:

DS(π, π′) =


∞ if the proposition sequence of

π differs from that of π′

inf
r s.t. Dsup(π, π′◦r)=0

‖r−I‖sup otherwise.

The measure λ?(π, π′, ε) of Equation (17) generalizes the timing distortion quantifi-
cation in the propositional case to the Rn valued case. Instead of the propositional
requirement of Dsup(π, π′ ◦ r) = 0, we require Dsup(π, π′ ◦ r) ≤ ε for a given ε > 0.

We derive a procedure to compute λ?(π, π′, ε) as follows. Consider a trace πα
obtained from the trace π by multiplying the timestamps by α for α > 0. That
is, πα(t) = π(α · t). Let π′α be defined similarly. We have DS

(
πα, π

′
α

)
< ε iff there

exists a retiming r such that
– ‖r−I‖sup < ε; and



– Dsup(πα, π
′
α ◦ r) < ε.

Observe that r is a retiming Iπα → Iπ′α between πα and π′α iff r 1
α

defined as

r 1
α

(t) = r (1/α) is a retiming Iπ → Iπ′ between π and π′. Moreover,

–
∥∥∥r 1

α
−I
∥∥∥
sup

< ε
α ; and

– Dsup(π, π′ ◦ r 1
α

) < ε.

Thus, given an ε > 0, we have

λ?(π, π′, ε) < β for β > 0 iff DS

(
π ε
β
, π′ε

β

)
< ε.

The value of λ?(π, π′, ε) can hence be found by searching for the smallest β > 0

such that DS

(
π ε
β
, π′ε

β

)
< ε. If an upper bound T on λ?(π, π′, ε) is given, then this

can be done by binary search over the interval [0, T ]. Note that if ε ≥ Dsup(π, π′),
then λ?(π, π′, ε) = 0 as no retiming will be required. If an upper bound is not given,
then we set T as (max Iπ′ −min Iπ), as this is the maximum value that λ?(π, π′, ε)
can take, corresponding to the case where the starting time min Iπ of π is mapped
to the ending time max Iπ′ of π′. The algorithm for computing λ?(π, π′, ε) is given
below.

Algorithm 2: Computing λ?(π, π′, ε) (defined in Equation (17))

Input: Traces π(·), π′(·) over times t, Bound ε, Maximum allowed time
distortion τmax, Convergence gaps αgap, εgap

Output: Minimal retiming measure λ? as defined in Equation (17)
1 d← Dsup(π, π′)
2 if ε ≥ d then λ? ← 0
3 else

4 αlo ← 0
5 αhi ← τmax

6 δ ← −∞
7 while (αhi − αlo > αgap) ∧ ((ε < δ) ∨ (ε− δ > εgap)) do

8 α← αhi+αlo
2

9 π, π′ ← π, π′ with timestamps multiplied by α

10 δ ← DS(π, π′)
11 if ε > δ then αlo ← α

12 else αhi ← α

13 end

14 end

15 λ? ← ε
α

16 if λ? > τmax then λ? ←∞

5 Experimental Evaluation

In this section we provide experimental evidence on the efficacy of the Skorokhod
metrics, and their use in a conformance testing framework. We begin the section
by a brief remark on the difference between the precise Skorokhod distance be-
tween signals in a mathematical sense and the signals we obtain from a simulation
framework.



Remark 1 In what follows, we rely on simulation tools that internally perform
numerical integration of ordinary differential equations (ODEs) to numerically
approximate the solution to the dynamical equations of a given system. A rich
set of algorithms to perform such numerical integration is supported by the tools
Matlab R©and Simulink R©. Essentially, these algorithms provide a discrete approxi-
mation of the mathematical solution to the ODEs, at a sequence of equally spaced
time-points (for fixed-step solvers) or a set of variably spaced time-points (for
variable-step solvers). For certain classes of variable step-solvers, the user has the
ability to specify an absolute tolerance and a relative tolerance [28], which are used
to bound the local truncation error or the error caused in a single iterative step in
the numerical integration [33]. However, these tolerances do not control the global
truncation error, or the error accumulated by several integration steps. If we had
access to absolute bounds on the global truncation error, to find precise bounds
on the Skorokhod distance between two dynamical systems, we could find the
Skorokhod distance between the discrete solution signals obtained from numerical
integration, and add the global truncation error bound to the result. However,
precise bounds on the global truncation error require well-behavedness conditions
on the numerical integration procedure used, as well as the functions being inte-
grated. Such conditions are nearly impossible to satisfy in practice (for example
when we have hybrid systems, systems with discontinuous dynamics, black-box
systems, etc.). Hence, in the rest of the paper, we assume the results obtained
from the numerical simulation tools as the precise time-varying behavior of the
systems to be analyzed.

Roadmap of the Experiments. In Section 5.1, we present the running times of our
sliding window Skorokhod metric computation procedure for polygonal traces. In
Section 5.2, we present the running times of our sliding window Skorokhod metric
computation procedure when traces are completed from the sample points under a
sample-and-hold semantics, and compare the distance values obtained with those
given by the polygonal trace routine. This routine for piecewise constant (PWC)
traces runs two orders of magnitude faster than the polygonal trace metric routine
as a result of the simpler dynamic programming algorithm for PWC traces. We
note that difference between the distance given by the polygonal routine, and that
given by the PWC routine can be made to decrease by “up-sampling” (where we
generate new intermediate sample points using linear interpolation); however, as
we increase the sampling rate, the number of samples in the trace and the window
sizes required for the same allowed time distortion both increase – thus up-sampling
by a factor of γ results in the computation time increasing by a factor of γ2 for
PWC traces.

In Section 5.3, we present the results on our implementation which computes
the least retiming required in order to have the Dsup distance between two given
traces after retiming be at most ε (corresponding to the algorithm presented in
Section 4).

In Section 5.4, we present three case studies for finding the distance between
systems using the Skorokhod trace metric in a conformace testing framework (as
sketched in Algorithm 1). The first case study involves two related LQR-based
aircraft pitch controllers – the first controller is continuous time, and the second
controller is in discrete time with added sensor delays. The second case study
involves two air-fuel ratio controllers – the first one has highly nonlinear dynamics,



and the second one is a hypothesized polynomial approximation of the first one.
The third case study involves a Simulink model, under two different numerical
integrators, of a four-cylinder spark ignition internal combustion engine.

5.1 Skorokhod Metric Computation: Polygonal Traces

We implemented a streaming, sliding window-based monitoring routine which
checks, given a fixed δ, whether the linear interpolations of two time-sampled
traces are at Skorokhod distance at most δ away from each other (the distance
between two points p1, p2 in Rn is taken to be with respect to the L2 norm, i.e.,
‖p1 − p2‖L2

). The algortithm has a time complexity of O (m · n ·W ) where m is
the number of sample points, n is the dimension of a sample point, and W is the
window size. Our implementation uses only O(W ) space. The least δ value, ie.. the
Skorokhod distance value, is then computed by binary search over the monitoring
routine. The upper limit of the search range is set to the pointwise metric (i.e.,
assuming the identity retiming) between the two traces.

Time and Value Scaling. The traces to the monitoring routine are pre-scaled, each
dimension (and the time-stamp) is scaled by a different constant. The constants
are chosen so that after scaling, one unit of deviation in one dimension is as
undesirable as one unit of jitter in other dimensions.

Skorokhod Distance Computation Benchmark: I. We first show that the window-

[
ḣ1
ḣ2

]
=

[
i− d1
−d2

] [
ḣ1
ḣ2

]
=

[
−d1
i− d2

]
h2 < `2

h1 < `1

Fig. 1 System A1 used for benchmarking Skorokhod Distance computation. Inflow rate i,
Drain rate d1 for tank 1 and d2 for tank 2 are all inputs to the system.

based implementation is efficient using the following benchmark. Fig. 1 shows a
hybrid dynamical system A1 consisting of two water tanks, each with an outlet
from which water drains at a constant rate dj . Both tanks share a single inlet pipe
that is switched between the tanks, filling only one tank at any given time at a
constant inflow rate of i. When the water-level in tank j falls below level `j , the
pipe switches to fill it. The drain and inflow rates d1, d2 and i are assumed to be
inputs to the system. Now consider a version A2 that incorporates an actuation
delay that is a function of the inflow rate. This means that after the level drops to
`j for tank j, the inlet pipe starts filling it only after a finite time. A1 and A2 have
the same initial water level. We perform a fixed number of simulations by system-
atically choosing drain and inflow rates d1, d2, i to generate traces (water-level vs.
time) of both systems and compute their Skorokhod distance. We summarize the
results in Table 1.

Recall that the Skorokhod distance computation involves a sequence of moni-
toring calls with different δ values picked by a binary-search procedure. Thus, the



Table 1 Computation of DS(π1, π2), where π1 is a trace of system A1 described in Fig. 1,
and π2 is a trace of system A2, which is A1 with an actuation delay. Dsup is the pointwise
trace distance with respect to the L2 norm: Dsup(π, π′) = supt∈Iπ‖π(t) − π′(t)‖L2

. Both π1
and π2 contain equally spaced 2001 time points over a simulation horizon of 100 seconds.

Window Avg. DS Avg. Time taken (secs)
Dsup−DS

Dsup

size Computation Monitoring Max. Avg. Std. dev.

20 8.58 0.81 0.13 0.11 0.03 0.03
40 8.35 1.55 0.26 0.23 0.06 0.06
60 8.09 2.31 0.39 0.34 0.1 0.09
80 7.88 3.05 0.52 0.38 0.1 0.11
100 7.72 3.77 0.64 0.38 0.1 0.11

total time to compute DS is the sum over the computation times for individual
monitoring calls plus some bookkeeping. In Table 1, we make a distinction between
the average time to monitor traces (given a δ value), and the average time to com-
pute DS. There are an average of 6 monitoring calls per DS computation. We ran
64 simulations by choosing different input values, and then computing DS for in-
creasing window sizes. As the window size increases, the average DS decreases and
the computation time increases linearly, as expected from Theorem 2. Finally, the
Skorokhod distance can be significantly smaller than the simpler metric Dsup (de-
fined as the maximum of the pointwise L2 norm). This discrepancy becomes more
prominent with increased window size. With a window size of 100, the variation
between DS and Dsup was up to 38% (mean difference of 10% with std. deviation
of 11%).

5.2 Skorokhod Metric Computation: Piecewise Constant Traces

A numerical solver for simulations typically returns a sequence of time-value pairs
for the signals of interest, which are then interpreted as a signal over dense time by
using an interpolation scheme. The most commonly used scheme is linear interpo-
lation, which results in polygonal, i.e., continuous piecewise linear (PWL) traces.
It is also of interest to consider constant interpolation; here, the interpolated value
at a time point is simply the sample-value of the largest preceding time. Recall
that the Skorokhod distance computation for piecewise constant (PWC) traces can
be achieved by an algorithm that uses dynamic programming, and that this algo-
rithm is computationally more efficient than the algorithm to compute Skorokhod
distance between polygonal traces. This raises a natural question: are there cases
where the simpler algorithm for computing distance between PWC traces can be
used? We experimentally evaluate this question by comparing the results of the
polygonal routine with the results from the PWC routine.

We implemented a streaming, sliding window-based dynamic programming al-
gorithm to compute the Skorokhod distance between two piecewise constant traces
based on the results in Section 2.3. The algortithm has a time complexity of
O (m · n ·W ) where m is the number of sample points, n is the dimension of a
sample point, and W is the window size. Our implementation uses only O(W )
space. The time-stamps and the sample values are pre-scaled as in the polygonal
case.



Table 2 Variation in Skorokhod Distance between PWC traces with sampling rate. The time-
length of the simulation traces considered is 300 seconds, and we use a window corresponding
to approximately 25 seconds of time distortion when computing the Skorokhod distances.
The average trace length of the PWL (polygonal) traces was 381.5, the average time required

to compute the D
pwl
S

distance is 0.5225 seconds, while that for Dsup is 0.0001 seconds. The

discrepancy between D
pwl
S

and Dsup is 0.207.

Sampling Avg. Trace Avg.
D

pwl
S
−D

pwc
S

D
pwl
S

Avg.
Dsup−D

pwc
S

Dsup
Avg. Time

Rate Length (secs)

1 381.5 -0.149 0.098 0.0034
2 761.9 -0.064 0.159 0.0104
5 1903.3 -0.033 0.181 0.0639
10 3805.6 -0.019 0.193 0.2553
15 5707.8 -0.012 0.198 0.5787
20 7610.2 -0.009 0.199 1.0365
50 19024.0 -0.003 0.204 6.5343
75 28535.5 -0.002 0.205 15.3230

Skorokhod Distance Computation Benchmark: II. In the following experiment,
we asssume that we are given two models of a bang-bang controller for a water
boiler system. The controller operates at a fixed frequency, and turns on heat or
turns off heat depending on whether the water temperature is below or above
a user-specified reference temperature. In the first model, we assume that there
is a fixed actuation delay in turning the boiler on or off. In the second model,
the actuation delay in turning the boiler on is different than that for turning it
off. The output signal of interest is the water temperature, and we compute the
distance between the outputs of the two models, for 50 randomly chosen reference
temperatures in the range [40, 70]◦C.

We use three distance metrics to compute the distances: the Dsup metric de-
fined in the previous benchmark, the Skorokhod distance between the output traces
obtained using PWL interpolation of the samples returned by the simulator, and
the Skorokhod distance between the output traces obtained using PWC interpola-
tion. Further, we assume that the models are simulated with a variable-step solver
(ode23 in Simulink R©).

For each sequence of samples returned by simulation, we compute the base-
line Skorokhod distance estimation using the routine for distance estimation for
PWL traces, and also compute the Dsup metric. Next, we resample the traces at
increasing sampling rates and compute the Skorokhod distance using the routine
for distance estimation for PWC traces. The results are shown in the table below.

Table 2 shows that the difference between the Skorokhod distance computed
by the routine for PWL traces is about 15% lower than that computed by the
routine for PWC traces for the same sequence of time-value pairs (i.e. sampling
rate 1). This discrepancy improves as we sample the PWL traces at higher rates.
However, as we increase the sampling rate, the number of samples in the trace and

the window sizes required for the same allowed time distortion both increase – thus
upsampling by a factor of γ results in the computation time increasing by a factor
of γ2 for PWC traces. At around a sampling rate of 15, the computation time
for the PWC routine is comparable to that of the PWL routine, while giving a
discrepancy of about 1.2%. Another observation of interest is that the discrepancy



Table 3 Variation in Skorokhod Distance between polygonal traces with sampling rate. We
assume a window corresponding to 25 seconds of time distortion when computing the Sko-
rokhod distances. Dr

S
is the Skorokhod distance value obtain at a downsampling rate r. All

data presented represents the average over 50 random simulations.

Down-sampling Avg.
D1

S−DrS
D1

S

Avg.
Dsup−DrS

Dsup
Avg. Time

Rate (r) (secs)

1 0 0.207 0.53
2 -0.159 0.092 0.28
3 -0.259 0.018 0.20
4 -0.265 0.014 0.16
5 -0.267 0.012 0.13
10 -0.274 0.007 0.08
25 -0.278 0.003 0.05
50 -0.279 0.002 0.03

between the Skorokhod distance computed by the PWC and the Dsup metric
steadily increases with sampling rate, approaching the discrepancy between the
Skorokhod distance computed by the PWL routine and the Dsup metric.

Skorokhod Distance Computation Benchmark: III. We now examine the effect
on accuracy of the distance computation for the algorithm to compute Skorokhod
distance on polygonal traces with sampling rate of the trace. The thesis is that
as we downsample the given pair of outputs, we can compute Skorokhod distance
faster, but with loss of accuracy. The experiment below (using the same setting as
the previous benchmarking experiment) explores this tradeoff curve. The results
are presented in Table 3.

Table 3 shows that as we down-sample the traces, the computation time
improves. However, as expected, the accuracy of computation degrades. Down-
sampling by a factor of 2 (i.e. dropping every other sample point) leads to an error
of 15% in the distance computation.

5.3 Quantifying Timing Distortion Using the Skorokhod Metric

We implemented Algorithm 2 to compute the least retiming required in order to
have the Dsup distance between the traces after retiming be at most ε.

For each pair of traces (xi, yi), we compute the Skorokhod distance δi =
DS(xi, yi), and then use ε values in a spectrum around δi to explore the trade-
off between λ? (as defined in Equation (17), and the desired Dsup(x ◦ r, y) bound.
Figure 2 shows the results of 50 randomly simulations, where the X-axis represents
the percentage deviation between the chosen ε and δi. Figure 3 is another repre-
sentation of the same data, where the X-axis shows the least retiming required
versus the chosen ε values.

For both figures, the ε-values were picked in the spectrum [0.2 ∗ δi, 1.8 ∗ δi].
As shown, there are some ε-values where no retiming is possible to achieve the
given ε-bound, i.e., the retiming required is ∞. The figures also show the expected
trend that as we increase the ε value more than the Skorokhod distance, the least
retiming required to achieve the ε decreases, and once ε exceeds Dsup(x, y), the
least retiming required becomes identity (i.e., λ? becomes 0).
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Fig. 2 Variation of least retiming required with different values of ε. The X-axis represents
the percentage deviation of the chosen ε from the Skorokhod distance.

5.4 Skorokhod Distance between Systems: Case Studies

We integrated the Skorokhod metric monitoring routine in an adaptive testing
procedure for Simulink blocks based on Algorithm 1. The output of Algorithm 1
is compared against tolerance levels (e.g., maximum allowed jitter) given by the
engineering requirements. In the following, we evaluate the effectiveness of the
Skorokhod metric in conformance testing of Simulink applications. The subsequent
case studies used the polygonal Skorokhod distance computation routine.

Case Study I: LQR-based Controller. The first case study for conformance
testing is an aircraft pitch control application taken from the openly accessible
control tutorials for Matlab and Simulink [30]. The authors describe a linear dy-
namical system of the form: ẋ = (A−BK)x +Bθdes. Here, x describes the vector
of continuous state variables x = [α q θ], where α is the angle of attack, q is the
pitch rate, and θ is the pitch angle. The system has a single input δ (the elevator
deflection angle); and θdes is the desired reference provided as an external input.
In deriving the control law, the designers use the state feedback law to substitute
δ = θdes −Kx. The resulting dynamical equations of the system are of the form
ẋ = (A − BK)x + Bθdes, and the output of the system is the state variable θ.
Note that the K matrix is the gain matrix resulting from the LQR control design
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Fig. 3 Variation of least retiming measure λ? required with different values of ε. For each
trace, we chosen a different array of ε values for this experiment. The X-axis represents the
spectrum of the chosen ε-values across all traces.

technique. The values of the A, B and K matrices are as given below:

A =

−0.313 56.7 0
−0.0139 −0.426 0
0 56.7 0

 B =

 0.232
0.0203
0


K = [−0.6435 169.6950 7.0711]

We are interested in studying a digital implementation of the continuous-time
controller obtained using the LQR method. To do so, we consider sampled-data
control where the controller samples the plant output, computes, and provides
the control input to the plant every ∆ seconds. To model sensor delay, we add
a fixed delay element to the system; thus, the overall system now represents a
delay-differential equation.

Control engineers are typically interested in the step response of a system.
In particular, quantities such as the overshoot/undershoot of the output signal
(maximum positive/negative deviation from a reference value) and the settling
time (time it takes for transient behaviors to converge to some small region around
the reference value) are of interest. Given a settling time and overshoot for the
first system, we would like the second system to display similar characteristics. We
remark that both of these properties can be expressed in STL (and hence in FLTL),
see [23] for details. We quantify system conformance (and thereby adherence to
requirements) in terms of the Skorokhod distance, or, in other words, maximum
permitted time/space-jitter value δ. For this system, we know that at nominal
conditions, the settling time is approximately 2.5 seconds, and that we can tolerate
an increase in settling time of about 0.5 seconds. Thus, we chose a time-scaling



Table 4 Variation in Skorokhod Distance with changing sampling time for an aircraft pitch
control system with an LQR-based controller. Time taken indicates the total time spent in
computing the upper bound on the Skorokhod distance across all simulations. We choose a
window size chosen of 150 samples and simulate the system for 5 seconds with a variable-step
solver.

Controller Skorokhod Time taken (seconds) Number of
Sample-Time distance to compute DS simulations
(seconds)

0.01 0.012 232 104
0.05 0.049 96 104
0.1 0.11 70 106
0.3 0.39 45 104
0.5 1.51 40 101

factor of 2 = 1
0.5 . We observe that the range of θ is about 0.4 radians, and specify

an overshoot of 20% of this range as being permissible. Thus, we pick a scaling
factor of 1

0.08 for the signal domain. In other words, Skorokhod distance δ = 1
corresponds to either a time-jitter of 0.5 seconds, or a space-discrepancy of 0.08
radians.

We summarize the results of conformance testing for different values of sam-
pling time ∆ in Table 4. As expected, the conformance increases with increasing
∆. The time taken to compute the Skorokhod distance decreases with increasing
∆, as the number of time-points in the two traces decreases.

Case Study II: Air-Fuel Ratio Controller. In [23], the authors present three
systems representing an air-fuel ratio (λ) controller for a gasoline engine, that
regulate λ to a given reference value of λref = 14.7. These systems are simplified
versions of industrial-scale models. Of interest to us are the second and the third
systems. Both versions have 2 exogenous inputs, and states in both versions consist
of 4 components taking values in R (thus, both systems have a continuous state
space). The inputs are engine speed (measured in rpm) and the throttle angle
(in degrees). The throttle angle is a user input, and it is common to assume a
series of pulses or steps as throttle angle inputs. The engine speed is considered
an input to avoid modeling parts of the powertrain dynamics. In our experiments,
we typically hold the engine speed constant. This is to mimic a common engine
testing scenario involving a dynamometer, which is a device to provide external
torque to the engine to maintain it at a constant speed. Of the 4 state components,
we assume that 2 of these are from the plant model (that encapsulates physical
processes within the engine), while the other 2 belong to the controller. The plant
state components p and λ denote intake manifold pressure and the A/F ratio
respectively. The controller state component pe denotes the estimated manifold
pressure (with the use of an observer) used in the feed-forward control, and the
state component i denotes the integrator state in the P+I feedback control. We
check conformance with respect to the system output λ. For the dynamical system
equations, please refer to [23,24].

The second sysrem has a continuous-time plant model with highly nonlinear
dynamics, and a discrete-time controller model. In [24], the authors present a ver-
sion of this system where the controller is also continuous. We take this to be
A1. The third system in [23] is a continuous-time closed-loop system where all



the system differential equations have right-hand-sides that are polynomial ap-
proximations of the nonlinear dynamics in A1. We call this polynomial dynamical
system A2. The rationale for these system versions is as follows: existing formal
methods tools cannot reason about highly nonlinear dynamical systems, but tools
such as Flow* [12], C2E2 [18], and CORA [3] demonstrate good capabilities for
polynomial dynamical systems. Thus, the hope is to analyze the simpler systems
instead. In [23], the authors comment that the system transformations are not
accompanied by formal guarantees.

We check for conformance using the Skorokhod metric. We pick a scaling factor
of 2 for the time domain, as a time-jitter of 0.5 seconds is the maximum deviation
we wish to tolerate in the settling time, and pick 0.68 = 1

0.1∗λref
as the scaling factor

for λ (which corresponds to the worst case tolerated discrepancy in the overshoot).
The scaling factors transform the problem into one where a Skorokhod distance of
greater than 1 is equivalent to time distortion and/or overshoot being unacceptable
in A2.

Table 5 summarizes the results of conformance testing for these systems. In [23],
the authors shown that both the original nonlinear system and the approximate
polynomial system both satisfy the STL requirement specifying a worst-case devi-
ation 5% of the normalized air-fuel ratio λ/λref from the reference λref/λref(= 1);

that is, for µ defined as µ(t) = λ(t)−λref

λref
we have the requirement below

ϕerror ≡ �[τs,T ] |µ| < 0.05. (18)

In our experiments we found that for the model with polynomial dynamics,
the worst robustness value for ϕerror found by falsification tools such as Breach
[17] or S-TaLiro [5] is about 0.04. Thus, the polynomial dynamics model satisfies
the stricter requirement �[τs,T ] |µ| < 0.01. In other words, the model satisfies the
stricter requirement that the normalized air-fuel ratio error is less than 1%. The
results on transference presented in this paper guarantee that as long as the largest
Skorokhod distance between the two models is less than 4% of 14.7, i.e., 0.588, the
model with the nonpolynomial dynamics satisfies Requirement (18).

As shown in Table 5, our conformance testing tool found the worst-case Sko-
rokhod distance between the two models to be 0.469 at the speed of 1000 rpm7.
Even under the worst-case assumption that the dominant contribution to the Sko-
rokhod distance is from the value-domain, this means that the worst-case discrep-
ancy between the output signals for the two models is less than 0.469 1

0.1λref
= 0.31

(which is less than the 0.588 limit postulated above). This implies that the model
with nonpolynomial dynamics indeed satisfies Requirement (18).

Nevertheless, in this experiment, we found an input that led to system-outputs
that differed by around 0.469 Skorokhod distance, corresponding to a worst-case
value-discrepancy of roughly 2% of the reference value λref . While this may not
seem like a lot, it is about a 40% jump relative to the requirement of 5% worst-
case error tolerance. This shows that though two models may satisfy the same STL
requirement, it can happen that one model easily satisfies the requirement, while
the other barely satisfies the requirement. Such a qualitative judgement on model

7 In the version of this paper published previously [15], this number was reported as 0.31.
This discrepancy can be attributed to the random seed selected by the optimizer used to
maximize the Skorokhod distance. We report the higher number in this paper, as it was the
maximum value obtained after trying a number of different random seeds.



Table 5 Conformance testing for closed-loop A/F ratio controller at different engine speeds.
We scale the signals such that 0.5 seconds of time-jitter is treated equivalent to 10% of the
steady-state value (14.7) of the A/F ratio signal. The simulation traces correspond to a time
horizon of 10 seconds and the window size is 300.

Engine Skorokhod Computation Total Time Number of
speed (rpm) distance Time (secs) Taken (secs) simulations

1000 0.47 218 544 700
1500 0.20 240 553 700
2000 0.27 223 532 700

conformance is valuable, and can be deduced from the quantitative conformance
metric such as the one we use.

The polynomial dynamical model was obtained by approximating the nonlin-
ear dynamics in the second model by a polynomial corresponding to minimize the
error between the dynamics functions at the operating point of 1000 rpm. Hence,
the largest Skorokhod distance between the models being at the input condition of
1000 rpm was surprising to the developers of these models. The designers’ expec-
tation was thus to see the two models be most conformant at 1000 rpm, and less
conformant at other speeds. The root cause was this discrepancy was determined
to be the increased sensitivity of the system dynamics at 1000 rpm, which led to
pronounced differences in the transient behavior upon small perturbations to the
dynamics. However, this was not obvious a priori, and was investigated only due
to the unexpected results from conformance testing.

Case Study III: Engine Timing Model. The Simulink demo palette from Math-
works [29] contains a system representing a four-cylinder spark ignition internal
combustion engine based on a model by Crossley and Cook [13]. This system is
then enhanced by adding a proportional plus integral (P+I) control law. The in-
tegrator is used to adjust the steady-state throttle as the desired engine speed
set-point changes, and the proportional term compensates for phase lag intro-
duced by the integrator. In an actual implementation of such a system, such a
P+I controller is implemented using a discrete-time integrator. Such integrator
blocks are typically associated with a particular numerical integration technique,
e.g., forward-Euler, backward-Euler, trapezoidal, etc. It is expected that different
numerical techniques will produce slight variation in the results. We wish to quan-
tify the effect of using different numerical integrators in a closed-loop setting. We
checked if the user-provided tolerance of δ = 1.0 is satisfied by systems A1 and
A2, where A1 is the original system provided in [29] and A2 is a modified system
that uses the backward Euler method to compute the discrete-time integral in the
controller. We scale the outputs in such a way that a value discrepancy of 1% of
the the output range (∼ 1000) is equivalent to a time discrepancy of 0.1 seconds.
These values are chosen to bias the search towards finding signals that have a
small time jitter. This is an interesting scenario for this case study where the two
systems are equivalent except for the underlying numerical integration solver. We
find the signal shown in Fig. 4, for which we find output traces with Skorokhod
distance 1.04. The experiment uses 296 simulations and the total time taken to
find the counterexample is 677 seconds.
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Fig. 4 Outputs showing a Skorokhod distance of 1.04.

6 Conclusion

We argue that the Skorokhod metric provides a robust basis for checking confor-
mance between dynamical systems. We showed that it provides transference of
a rich class of temporal logic properties and that it can be computed efficiently,
both in theory and in practice. Our experiments indicate that conformance check-
ing using the Skorokhod metric can be integrated into a testing flow for Simulink
models and can find non-conformant behaviors effectively, allowing for indepen-
dent weighing of time and value distortions.
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Appendix

A. Skorokod Metric Computation: Piecewise Constant Traces

Proof of Lemma 1. We prove the claim as follows. Assume Iπ = Iπ′ contains
more than one time-point (otherwise the claim is vacuous). Consider a non-decreasing
retiming r : Iπ → Iπ′ . let π and π′ be constant over the intervals [t0, t1), [t1, t2), . . . , [tm−1, tm]
for t0 = min Iπ and tm = max Iπ.

Let Iπ consist of disjoint intervals J0, I0, J1, I1, . . . , Ia, Ja (in order) such that
r is constant over the I intervals, and strictly increasing over the J intervals (J0
or Ja may be empty, but other J intervals are non-empty). Fix ε > 0. Consider
I0. Sinces Iπ and Iπ′ contain more than one time-point, and and r is onto, at least
one of J0, J1 is non-empty. We show that we can “wiggle” the retiming r to get r0
such that

1. r0 is monotone increasing over J0, I0, J1 and Jk for k ≥ 2.
2. r0 is equal to r over I1, J2, I2, . . . , Ja.
3. ‖r0− r‖sup < ε (over J0, I0, J1).

4. π′ ◦ r(t) = π′ ◦ r0(t) for all t ∈ Iπ, which implies that∥∥π − π′ ◦ r
∥∥
sup

=
∥∥π − π′ ◦ r0

∥∥
sup

.

That is, we locally perturn r a little bit so that it becomes monotone increasing
over I0, and the perturbation does not affect the trace matchings.

We obtain r0 as follows. Denote the value of r over I0 as t. Two cases arise.

1. t ∈ (tk, tk+1) for some k (recall the [t0, t1), [t1, t2), . . . , [tm−1, tm] breakdown of
I ′π).
In this case J1 must be non-empty. We let r0 be equal to r over J0, I1, J2, . . . , Je.
We only modify r over I0, J1 to get r0.
Consider the range of r over the interval J1, denoted as r(J1). It can be seen
that r over J1 can be modified to r0 so that

(a) the range of r0 over J1 is now
(
t+ min(ε, tk+1−t

2 ), tm
]
∩ r(J1); and

(b) π′ ◦ r(t) = π′ ◦ r0(t) for all t in J1.

That is, we “take away”
(
t, t+ min(ε, tk+1−t

2 )
]

from r(J1). This portion can be

used to make r0 be strictly increasing on Io, i.e., the range of r0 on I0 is now[
t, t+ min(ε, tk+1−t

2 )
]
. It can be checked that r0 satisfies the four properties

listed above.
2. t = tk for some k.

In case J1 is non-empty, r0 is obtained as in the previous case. In case J1 is
empty, then we have tk = tm = max Iπ′ . In this condition, a portion of r(J0) can
be “taken away” (similar to the modification mentioned previously, to make r0
strictly increasing over I0 and satisfy the four conditions we desire.

Thus, for every ε > 0, we can obtain r0 satisfying the four conditions. Repeating
the procedure, we get re such that

1. re : Iπ → Iπ′ is monotone strictly increasing and bijective.
2. ‖re− r‖sup < ε.

3. π′ ◦ r(t) = π′ ◦ re(t) for all t ∈ Iπ, which implies that∥∥π − π′ ◦ r
∥∥
sup

=
∥∥π − π′ ◦ re

∥∥
sup

.



Thus, for every ε > 0, given a non-decreasing and onto retiming r, there exists a
strictly increasing and bijective retiming re such that

max
(
‖re− r‖sup,

∥∥π′ ◦ r(t)− π′ ◦ re(t)∥∥sup) < ε

This implies that the value of Equation (1) does not change if we allow non-
decreasing retimings. This complete the proof of the lemma.

Proof of Lemma 4. Consider a non-decreasing retiming function r not in Cε. To
prove the claim, it suffices to show there exists rε ∈ Cε such that
1. For all t ∈ {t0, t1, . . . , tm}, we have either

– |rε(t)− r(t)| < ε, or
– |rε(t)− I(t)| ≤ |r(t)− I(t)|

i.e., rε deviates less from I than r

and
2. For all t ∈ {t0, t1, . . . , tm}, we have

– If r(t) = tk for tk ∈ {t0, t1, . . . , tm}, then rε(t) = r(t) = tk; and
– If tk ≤ r(t) < tk+1 for tk ∈ {t0, t1, . . . , tm−1}, then tk ≤ rε(t) < tk+1.

This condition can be understood as follows. The timestamps t0 < t1 < · · · < tm
natutally partition [t0, tm] into intervals

[t0, t1), [t1, t2), . . . , [tm−2, tm−1) [tm−1, tm].

The stated condition says that the interval on which rε(t) lies is the same as
the interval on which r(t) lies. Note that this implies that π′ ◦ r(t) = π′ ◦ rε(t)
for all t ∈ {t0, t1, . . . , tm}.

The first condition above implies

max
t∈{t0,t1,...,tm}

|rε(t)− I(t)| ≤ max
t∈{t0,t1,...,tm}

|r(t)− I(t)|+ ε. (19)

The second condition implies that for all tk ∈ {t0, t1, . . . , tm−1},

max
t′∈
[
r(tk),r(tk+1)

)
∩{t0,t1,...,tm}

DO

(
π(tk), π

′(t′)
)

= max
t′∈
[
rε(tk),rε(tk+1)

)
∩{t0,t1,...,tm}

DO

(
π(tk), π

′(t′)
)

(20)

since
[
r(tk), r(tk+1)

)
∩ {t0, t1, . . . , tm} =

[
rε(tk), rε(tk+1)

)
∩ {t0, t1, . . . , tm}.

The two conditions (19) and (19) give us the statement of the lemma.

We construct rε from r as follows. We only need to specify rε on {t0, t1, . . . , tm}.
– For all tk such that r(tk) ∈ {t0, t1, . . . , tm}, we let rε(tk) = r(tk).
– Suppose r(tk) ∈ (tj , tj+1). Note that we must have k < m (since r is onto). Take

the greatest such k.
– If tk ≥ tj+1 (which means tk is closer to tj+1 than to tj), then let rε(tk) =
tj+1 − ε. Note that either
• I(tk) is closer to rε(tk) than to r(tk) (this happens when r(tk) < tj+1−ε;

or
• r(tk) and rε(tk) differ at most by ε) (this happens when r(tk) ∈ (tj+1 −
ε , tj+1).



– If tk ≤ tj (which means tk is closer to tj than to tj+1), then let rε(tk) = tj .
Note that I(tk) is closer to rε(tk) than to r(tk).

Repeat the construction for the remaining k.
It can be checked that rε is non-decreasing, and satisfies the two conditions stated
at the begining of the proof.

B. Transference of FLTL Properties for Rn-valued Traces

Definition 6 (δ-relaxation of FLTL(F) formulae) Let φ be a FLTL(F) formula
in which negations appear only on the prepositional symbols . Let J be a mapping
from {0, 1, . . . , n} to subsets of of R; with J(0) being a closed interval of R+). The
interval J(i) for i > 0 denotes the range of the i-th trace dimension. The time-
range is the interval J(0). The δ relaxation of φ (for δ ≥ 0) given the interval map
jmap , denoted rxδJ(φ), is defined as follows (we assume a given norm on Rn).

rxδJ(true) = true; rxδJ(false) = false;

rxδJ(φ1 ∧ φ2) = rxδJ(φ1) ∧ rxδ(φ2);

rxδJ(φ1 ∨ φ2) = rxδJ(φ1) ∨ rxδJ(φ2);

rxδJ(x.ψ) = x. rxδJ(ψ);

rxδJ(φ1 U φ2) = rxδJ(φ1)U rxδJ(φ2);

rxδJ(φ1W φ2) = rxδJ(φ1)W rxδJ(φ2)

rxδJ (f(x1, . . . , xl) ∼ 0) =

{
f(x1, . . . , xl) + Kf

J (δ) ∼ 0 if ∼∈ {>,≥};
f(x1, . . . , xl) − Kf

J (δ) ∼ 0 if ∼∈ {<,≤}

where Kf
J :
[
0, max0≤k≤n |max J(k) − min J(k)|

]
7→ R+ is a function s.t.

Kf
J (δ) = sup

ui[k] ∈ J(k); u′i[k] ∈ J(k)
for all 1 ≤ i ≤ l;
for all 0 ≤ k ≤ n



f(u1, . . . , ul)

−
f(u′1, . . . , u

′
l)

 s.t.

∥∥ui − u′i∥∥Lmax ≤ δ
for all 1 ≤ i ≤ l



and where Lmax denotes the norm:∥∥∥〈u0, u1, . . . , un〉∥∥∥
Lmax

= max
(∣∣∣u0∣∣∣,∥∥∥〈u1, . . . , un〉∥∥∥

L

)
.

The function Kf
J (δ) define the maximal change in the value of f that can occur

under the following constraints:
– the input n+ 1-ary values ui can vary by at most δ in the Lmax norm; and
– the time-domain is restricted to J(0); and
– the k-th value-domain is restricted to intervals in J(k).

The role of J in the above definition is to restrict the domains of time, and value
dimensions, in order to obtain the least possible relaxation bounds on the signal
constraints; as was done in Definition 4 for the freeze time variables.


