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Abstract Methods in object-oriented concurrent libraries often encapsulate internal syn-
chronization details. As a result of information hiding, clients calling the library methods
may cause thread safety violations by invoking methods in an unsafe manner. This is fre-
quently a cause of deadlocks. Given a concurrent library, we present a technique for in-
ferring interface contracts that specify permissible concurrent method calls and patterns of
aliasing among method arguments. In this work, we focus on deriving contracts that guar-
antee deadlock-free execution for the methods in the library. The contracts also help client
developers by documenting required assumptions about the library methods. Alternatively,
the contracts can be statically enforced in the client code to detect potential deadlocks in the
client. Our technique combines static analysis with a symbolic encoding scheme for tracking
lock dependencies, allowing us to synthesize contracts using an SMT solver. Additionally,
we investigate extensions of our technique to reason about deadlocks in libraries that employ
signaling primitives such as wait-notify for cooperative synchronization. Our prototype tool
analyzes over a million lines of code for some widely-used Java libraries within an hour,
thus demonstrating its scalability and efficiency. Furthermore, the contracts inferred by our
approach have been able to pinpoint real deadlocks in clients, i.e. deadlocks that have been
a part of bug-reports filed by users and developers of client code.
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1 Introduction

Concurrent programs are prone to a variety of thread-safety violations arising from the pres-
ence of data races and deadlocks. In practice, as data races are abundant and difficult to
debug, they have garnered considerable attention from the program analysis community. A
knee-jerk response to avoiding race conditions is evident in the prolific use of locking con-
structs in concurrent programs. Languages such as Java have promoted this by providing
a convenient synchronized construct to specify mutual exclusion with monitors. Locking
is sometimes naively used as a “safe” practice, rather than as a requirement. Overzealous
locking not only causes unnecessary overhead, but can also lead to unforeseen deadlocks.
Deadlocks can severely impair real-time applications such as web-servers, database sys-
tems, mail-servers, device drivers, and mission-critical systems with embedded devices, and
typically culminate in loss of data, unresponsiveness, or other safety and liveness violations.

In this paper, we focus on deadlocks arising from circular dependencies in synchroniza-
tion constructs such as locks and signaling primitives. Languages such as Java combine the
mutual exclusion provided by locks with the cooperative synchronization provided by sig-
naling primitives into a single monitor construct. In this paper, we use the abstract term lock
to mean both specialized lock variables in languages such as C, C+/pthread, and monitors
used for enforcing mutual exclusion in Java.

Deadlock detection is a well-studied problem, and both static and dynamic approaches
have been proposed [1, 5, 8, 14, 24, 26, 30]. Typically, such techniques construct lock-
order graphs that track dependencies between locks for each thread. Lock-order graphs for
concurrent threads are then merged, and a cycle in the resulting graph indicates a possibility
of a deadlock. Such techniques typically assume a closed system, and are thus useful for
detecting existing deadlocks in a given application.

However, most software is designed compositionally and treating individual compo-
nents as closed systems could lead to potential deadlocks being undetected. In particular,
consider the now prevalent concurrent libraries, i.e., collections of modules that support
concurrent access by multiple client threads. Modular design principles mandate that the
onus of ensuring thread safety rests with the developer of such a library. This has an un-
desirable side-effect: several details of synchronization are obscured from the developer of
client code that makes use of this library. Consequently, the client developer may uninten-
tionally invoke library methods in ways that can cause deadlocks.

Analyzing concurrent libraries for deadlocks has two main aspects: First of all, we wish
to identify if, for any client, there are library methods that can be concurrently called in a
manner that causes a deadlock. This is termed the deadlockability problem. Secondly, we
wish to use the results of this analysis to search for the existence of deadlocks in a partic-
ular client that invokes these library methods. Deadlockability analysis was first introduced
by Williams et al. [30]. Therein, the authors construct a lock-order graph for each library
method. The fypes of syntactic expressions corresponding to object monitors are used as
conservative approximations for the may-alias information between these monitors. The au-
thors show that their approach helps in identifying important potential deadlocks; however,
their approach is susceptible to false positives, which have to be then filtered using (possibly
unsound) heuristics.

This paper addresses the same underlying problem as that of Williams et al. [30], under
similar assumptions about the underlying language (Java), concurrent libraries, their clients,
and the use of synchronization. The key contributions of this paper are as follows:



public class EventQueue {
EventQueue nextQueue;
void postEventPrivate (Event e) {

1: synchronized (this) {
2: nextQueue.postEventPrivate(e);
}
void push (EventQueue eq) {

3: nextQueue = eq;

void wakeup(boolean £) {

synchronized (this) {
5: nextQueue.wakeup(f) ;

}

IS

Fig. 1.1: Methods in java.awt.EventQueue

(a) We reason about possible aliasing patterns between nodes in a lock graph explicitly
rather than with type-based approximations.

(b) We reduce the space of possible aliasing patterns between nodes by using a notion of
subsumption between aliasing patterns. This enables a symbolic approach for enumer-
ating aliases between nodes using SAT-modulo Theory (SMT) solvers. The focus on
aliasing patterns allows us to rule out infeasible aliases by means of a prior pointer
analysis. Overall, our analysis is just as scalable while producing fewer false positives.

(c) We synthesize logical expressions involving aliasing between the parameters of concur-
rent method invocations such that these expressions guarantee deadlock-free execution
of the library methods. These contracts can then be used to detect deadlocks in a partic-
ular client.

(d) We identify usage patterns of wait-notify based synchronization that can lead to potential
deadlocks.

1.1 Approach at a Glance

To illustrate the problem with treating libraries as closed systems, we use the Java code
snippet (shown in Fig. 1.1) from the EventQueue class in Java’s awt library. In Lines 1 and
4, the “synchronized(this)” statement has the effect of acquiring a lock on the “this” ob-
ject. The nextQueue variable is a data member of the EventQueue class, which is set by the
push method (Line 3). By design, the postEventPrivate and wakeup methods are intended
to perform their action on the EventQueue instance “this”, on which they are invoked, and
then act on “this.nextQueue” (Lines 2 and 5). Consider the case wherein one client thread
(say Tp) invokes “a.push(b)”, while another client thread (say 7>) invokes “b.push(a)”. Sub-
sequently, if 77 invokes “a.postEventPrivate(e)” concurrently while 75 simultaneously
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Fig. 1.2: Joint lock-order graph from the postEventPrivate and wakeup methods.

invokes “b.wakeup(true)”, then this may result in a deadlock. This deadlock can manifest
itself in real client code, as reported by client developers in [9] (bug-id: 6542185).

Our deadlockability analysis first performs static inspection of the given concurrent li-
brary to identify lock-order graphs for each method. The lock-order graph for the wakeup
method in Fig. 1.1 captures the acquisition of the lock for the “this” object followed by
that of the “this.nextQueue” object:

this.wakeup(..):
@ this.nextQueue

Similarly, postEventPrivate method first acquires a lock on the “this” object fol-
lowed by the “this.nextQueue” object, yielding an identical acyclic lock-order graph:

this.postEventPrivate(..):

@ this.nextQueue

Consider a client that performs concurrent calls to the methods from two different
threads on objects: oby, obs:

Ti : obj.wakeup(true) || 7> : oby.postEventPrivate()

Assuming no other lock acquisitions are made by the threads themselves, no other calls to
methods and no aliasing/sharing between the objects, the lock-order graph of the client is as
shown in Fig. 1.2.

Normally, the two graphs by themselves are acyclic, and the method calls by themselves
do not seem to cause an obvious deadlock. However, the lock-order graph above assumes
that the objects ob; ; are not aliased/do not share fields. Consider, on the other hand, the sce-
nario wherein the object ob;.nextQueue aliases ob, and ob,.nextQueue aliases ob;. Under
such a scenario, the lock-order graph of Fig. 1.2 is modified by fusing the aliased nodes into
a single node to obtain the graph depicted in Fig. 1.3. This graph clearly indicates the possi-
bility of a deadlock. Furthermore, prior calls to the push methods set up the required pattern
of aliasing along the lines of [9] (bug-id:6542185). It is important to note that techniques
that assume a closed system would only generate the lock-order graph shown in Fig. 1.2,
and would thus miss a potential deadlock.

At a broad level, the techniques developed in this paper provide a practical framework to:

(a) identify potential deadlock situations by efficiently considering all feasible aliasing and
sharing scenarios between objects at the concurrent call-sites of library methods,
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Fig. 1.3: Lock-order graph for 71 ||T> under aliasing of nodes.

(b) derive an interface contract that characterizes safe aliasing patterns for concurrent calls
to library methods.

Concretely, our technique synthesizes the aliasing scenario described above. For calls
to the wakeup and the postEventPrivate methods, our analysis derives the contract spec-
ifying that at any concurrent call to a.wakeup () and b.postEventPrivate (), the aliasing
between a,b must satisfy: —isAliased(a,b.nextQueue) V —isAliased(b,a.nextQueue)

This is sufficient to guarantee deadlock-free execution of these methods assuming that
the synchronization operations of the client cannot “interfere” with that of the library.

The layout of the paper is as follows: In Sec. 2, we introduce the problem of deadlock
detection for concurrent libraries and discuss the notation. In Sec. 3, we introduce a sym-
bolic encoding scheme for representing lock acquisition orders in library methods, given an
aliasing pattern spanning the objects relevant to the methods. In Sec. 4 we show how we can
identify all potential deadlocks for a library by optimally enumerating all aliasing patterns.
We discuss usage patterns for wait-notify monitors that can potentially lead to deadlocks in
Sec. 5. We present an encoding for such patterns that allows us to similarly perform sym-
bolic reasoning about such deadlocks in Sec. 6. In Sec. 7, we show how interface contracts
derived for a given library can be used compositionally while analyzing the client of the
library for deadlocks. Experimental results obtained by analyzing well-known Java-based
libraries are discussed in Sec. 8. Finally, we discuss related work, and conclude in Sec. 9.

2 Preliminaries

We assume that we are given a concurrent library written in a class-based object-oriented
programming language such as C+ or Java. In the following discussion, we introduce the
type-based semantics and the concurrency model for such libraries, loosely adhering to the
model used in Java.

Library and Types.

Formally, we define a library . as a collection of class definitions (%,...%). Each class
%; denotes a corresponding reference type C;. A class definition consists of definitions for
data members (also called fields), and methods (member functions). We say that C, is a
subtype of Cy if %, is a subclass of €.

Data members have primitive types (int, double, efc.), or reference types'. An object
is an instance of a class %, and the type of the object is the corresponding reference type
Ci. Let V = {oby,...,ob;} be a (super-)set of all the object variables (references in Java
terminology) occurring in the methods of interest in .Z.

! Apart from class types, array types are also classified as reference types, and our technique handles array
variables conservatively; we omit a detailed discussion on array types for simplicity.



Access Expressions.
Given a universe of object variables V, access expressions are constructed as follows:

(a) A variable ob; is an access expression of type C;.
(b) Let e; be an access expression of non-primitive type C;, and f; be a field of the class C;
of type C. Then e : e;.f is an access expression of type Cy.

Informally, access expressions are of the form ob.fi.f>..... fx for some valid sequence
of field accesses f1, ..., fr. Let Type(e) denote the type of an access expression e. A runtime
environment associates a set of concrete memory locations and values to each object instance
and its fields.

Aliasing, Sharing.

Aliasing is a relationship between access expressions such that two access expressions e
and e, are aliased under runtime environment R, if they refer to the same object instance.
Two objects ob;, ob; are said to share in a runtime environment R if some access expression
of the form ob;. f ....f; aliases another expression of the form ob;.g; ....g;. In a type system
similar to Java’s type system, we can generally assume that if e; and e, are aliased, then
C : Type(ey) is a subtype of C; : Type(ez) or vice-versa. In this case, we also assume that if
fi,..., fr are the common fields between C| and Cy, then e . f; aliases e,.f; forall 1 <i<k.

A method m of class % is associated with a signature sig(m) that defines the types for the
formal parameters of m, and a return type. Each method m is always executed on an object of
some type C;. The object on which the method is executed is referred to as “this” within the
method body. The method body consists of a sequence of statements, including calls to other
member methods of classes within .. The operational semantics of m are defined using a
control-flow graph (denoted cfg(m)). We define cfg(m) = (V,,E,,S), where V, is a set of
program points, and E, is a set of edges, each labeled with a unique program statement s € S.

2.1 Synchronization Primitives

Lock-based synchronization.

We seek to analyze object libraries that support concurrent accesses to their fields and meth-
ods. Therefore, we assume that synchronization statements for lock-acquisition and lock-
release are used to provide mutual exclusion for shared data. We assume that these state-
ments are of the form Lock(ob) and unlock(ob), where ob is some object variable. A thread
executing lock(ob) is blocked unless it can successfully acquire the lock associated with
ob. The statement unlock(ob) releases the lock, returning it to the unlocked state.

In certain languages such as C++/pthread and C# there is a designated type for lock
variables. For instance, the pthread library uses the type pthread mutex_t for mutex locks,
and the functions pthread mutex_lock and pthread mutex_unlock to implement acquisi-
tion and release of mutexes. In such a model, the programmer decides upon a lock variable
to protect access to one or more shared data items. It is the programmer’s responsibility to
ensure that each access to shared data is preceded by necessary lock acquisition and release,
and that the locking discipline is uniform. Failure to do so results in low-level data races or
high-level atomicity violations.



1: public class Foo {

2: public void method1() {
3: e

4: synchronized (mon) {
5:

6: }

7

8: public synchronized void method2 () {
9: -

10:

11:}

Fig. 2.1: Monitor Usage

Monitor-based synchronization.

Languages like Java, use monitors to implement synchronization>. A monitor object is
a special object with built-in mutual exclusion and thread synchronization capabilities. A
monitored region corresponding to the monitor mon is a sequence of statements that begins
with the acquisition of mon, and ends with the release of mon. In Java, any object can be
used as a monitor, and a monitored region is specified with the help of the synchronized
keyword. For instance, in the example shown in Fig. 2.1, Lines 4-6 constitute a monitored
region associated with the monitor object mon.

Java also allows using the keyword synchronized in a method signature (Line 8 in
Fig. 2.1), which makes the entire method a monitored region corresponding to the implicit
object (this) on which the method is invoked.

In theory, a monitor is associated with two explicit queues, an entry queue and a wait
queue. In Java, instead of queues, each monitor maintains an entry set and a wait set. Queues
are intended to implement FIFO access to a monitored region; Java makes no such guaran-
tees. In the rest of the presentation, we assume the Java model, i.e., we have an entry set
and a wait set for each monitor. The entry set is used primarily for mutual exclusion, while
both sets are used in concert for cooperative synchronization.

Mutual Exclusion with Monitors.

Let mon be a monitor object. When a thread T reaches the beginning of a monitored region
for mon, it is placed in the entry set of mon. T is granted access to a monitored region if no
other thread is executing inside it; we say that T acquires mon when it enters the monitored
region. Any other thread 7’ that reaches the beginning of the monitored region once mon is
acquired by T, is placed in the entry set for mon. Once T leaves the monitored region, we
say that T releases mon. At this time, some (randomly chosen) thread in the entry set is able
to acquire mon. Essentially, a monitor maintains the invariant that at any given time there is
at most one thread inside the monitored region.

In effect, monitors mimic locks: replace the beginning of a monitored region (for mon)
with lock(mon), the end of the monitored region with unlock(mon). One advantage with
having a monitored region is that every monitor acquisition has a matching release, and
monitors can be acquired and released only in a strictly nested fashion, i.e., if ob1 is acquired
before ob2, then the monitors are released in the reverse order.

2 With the addition of the java.util.Concurrent library to Java, there is now language support for an
explicit lock construct.



P: Q:
a0: synchronized (mon) { | bO: synchronized (mon) {
al: Ar; bil: By;
a2: mon.wait(); b2: mon.notify();
a3: Ar; b3: By;
ad: } b4: }

Fig. 2.2: Wait-Notify Monitors

Co-operation with Monitors.

Use of signaling allows monitors to implement cooperation between threads. We focus on
the wait-notify style of monitors used by Java. Each monitor is provided with two special
methods: wait and notify. We explain the semantics of wait and notify methods with the
code fragment shown in Fig. 2.2.

A thread (say 7T7) executing code fragment P acquires the monitor mon, at Line a0.
After executing code-block Aj, in Line a2, T executes the mon.wait() statement, which
has the following effect: (a) release the monitor mon, (b) add 7} to the wait set for mon,
(c) suspend execution of 77. Assume that some other thread, say 75, reaches the beginning
of the monitored region in code fragment Q (Line b0) after 77 has executed Line a0. T,
is then placed in the entry set for mon. Once 7; releases mon in Line a2, 7, can enter the
monitored region, subsequently executing B, followed by mon.notify(). The effect of the
notify statement is to remove any one thread (say 77) from the wait set for mon, and place it
in the entry set for mon. 77 cannot resume execution as it is still in the entry set for mon, and
T, “owns” mon. Once T, executes Lines b3, b4, it releases mon. Now 77 may acquire mon,
and proceed, executing Lines a3, a4.

Condition Variables.

To contrast with wait-notify monitors in Java, we briefly discuss signaling-based syn-
chronization in the pthread library. A condition variable cv is a shared resource that is
used in conjunction with a mutex lock 1. The variable cv is typically associated with a
Boolean-valued expression known as the condition. The method pthread_cond wait has
two arguments: cv and 1, and its semantics are similar to that of wait: unlock mutex
1, start waiting on variable cv, and upon being notified re-acquire mutex 1. The method
pthread_cond_signal takes one argument: cv, and its semantics are similar to that of no-
tify: issue notification to the variable cv.

The discussion on primitives in other languages hopes to illustrate that the algorithmic
underpinnings of our analysis techniques would remain largely unchanged while analyzing
concurrent libraries written in other languages such as C+/pthread or C#. For instance, at
the level of abstraction used in this paper, mutex locks in languages such as C+/pthread and
the synchronized keyword in Java are similar. Also, wait/notify-based synchronization
in Java and condition variables in C+/pthread also share the same structure. In rest of the
paper, we focus on Java libraries, and present experimental results only pertaining to these
libraries. In Sections 3-4, we consider monitors used only for ensuring mutual exclusion,
and as such, use the term lock interchangeably with such a monitor. In Sections 5 and 6, we
consider deadlocks arising from certain usage patterns for wait and notify methods.



Procedure computel G (m)

1 begin

2 worklist =0

3 V,E,lockset,roots :=0
4 worklist.push(T,)

5 while (worklist # 0) do

/* Edge u->v in cfg(m) */
6 u :=worklist.deque()
7 suces(u) = {v|(u 3 v) € cfg(m)}
8 foreach (v in succs(u)) do
9 old_sum := psum(v)
10 new_sum := computeFlow(u, s, v)
11 if (old_sum # new_sum) then worklist.push(v)
12 summary(v) := psum(v) Unew_flow

13 summary(m) := psum(_L,,)
14 summaries_map.put(m, summary(m))
15 end

3 Approach

In this section, we introduce the formal definitions for a lock-order graph, deadlockability
analysis, and deadlock-causing aliasing patterns. We then discuss a scheme to encode a lock-
order graph into a constraint to enable symbolic reasoning with an SMT-based constraint
solver.

3.1 Static Computation of Lock-Graphs

Lock-Order Graph.

A lock-order graph for method m denoted /g(m) is a tuple (V,E), where V is a set of access
expressions, and E is a set of edges. An edge e; — e, denotes a pair of nested lock statements
lock(x) followed by lock(y) wherein x aliases the access expression ey, y aliases the access
expression e;, and the lock acquisitions are nested along some path in ¢fg(m) or along a
path in the cfg of one of m’s callees. In what follows, we frequently use the shorter term
lock-graph interchangeably with lock-order graph.

Static Forward Lock-Graph Analysis.
Interprocedural lock-order graph computation for the methods of a given library involves
summarization of each method m within the library. Let u = v be an edge in cfg(m). The
partial summary of m at control-flow node v (denoted psum(v)) is the symbolic state of m af-
ter executing the statement s. It is described as the data structure (Ig(V,E),lockset,roots),
where [g(V, E) is the lock-order graph, lockset is the set of locks acquired (but not released)
by m at v, roots is the set of locks that do not have any incoming edges?.

We closely follow the technique described in [30] for fixpoint-based summary computa-
tion. The procedure computelL G implements a simple work-list based forward flow analysis.

3 In the actual implementation, we also track as a part of the summary a mapping env, that tracks any local
variables that may be aliased to global variables on the heap, and thus escape the scope of m. We omit this
for simplicity.
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Function computeFlow

input : cfg edge: u v
output: partial summary out

1 begin
2 in = psum(u), out =0
/* in = (V;,Ej,roots;,lockset;), out = (V,,E,,roots,,lockset,) */
3 switch (s) do
/* Lock acquisition. */
4 case lock(mon) :
5 foreach (mon’ € lockset;) do E, := E; U {(mon’,mon)}
6 lockset, := lockset; U{mon}
7 if (roots; = 0) then roots, := {mon}
/* Lock release. */
8 case unlock(mon) :
9 lockset, := lockset; — {mon}
10 if (lockset, = 0) then roots, := 0
/* Method Invocation. */
11 casem’(aj,...,a;):
/* Check if summary(m')= (V/,E/,lockset’,roots’) exists, if not
compute it. */
12 if (summaries map.contains(n’)) then summary(m’') := summaries map.get(m’)
13 else summary(m') := computeLG(m’)
/* Map formal parameters in the summary to actual parameters. */
14 sum’ = summary (m') |v;. fsq;
/* Concatenate new summary with current summary. */
15 E, :=EUE,V, =V;UV
16 foreach (mon € lockset) do
17 foreach (mon’ € roots’) do
18 L | Eo:=E,U{(mon,mon’)}
19 otherwise
20 L out :=in
21 end

We introduce a single (dummy) entry-point T, that has all the actual entry-points of the m
as successors, and an exit-point _L,, that is the successor of all actual exit-points (i.e. return
statements) for m. We assume that the partially computed summary at each point in the
control-flow graph is initialized to (0,0, 0). In each step, a new edge (u 5 v) in cfg(m) is ex-
amined. Using the flow equations for the edge as specified by the function computeFlow and
the partial summary at control point u (psum(u)), we obtain psum(v) (Line 10). If the new
psum(v) is different from the original psum(v) , then v is added to the work-list (Line 11),
and the new psum(v) is merged with the old (Line 12). The merge operation (Ll) computes
the union of each component in the partial summary. Finally, the summary of method m (and
lg(m) contained therein) is obtained as the merge of the partial summaries at L ,,, which is
then stored into a map (Lines 13-14).

We remark that in the presence of recursive types (classes containing themselves as
members, for instance), and recursion/loops in the CFG, the fixpoint computation may not
terminate, in general. We ensure termination by artificially bounding the size of the access
expressions allowed as nodes in the lock graphs.

The computeFlow function is used to compute the effect of a statement s on the partial

lock . L
summary. For the edge u L(’"‘TL v corresponding to a lock-acquisition, we add edges from
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every lock mon’ in lockset(u) to mon, and then add mon to lockset(v) (Lines 5-7). The edge

lock . . .
umlock(non) v corresponding to a lock-release is modeled by setting lockset(v) to the set

obtained by removing mon from lockset(u) (Lines 9-10). Upon encountering a call to a
method m’, we check if the summary for m’ has been computed, and if not, we first compute
it. We then replace the formal parameters in summary(m’') with the actual parameters at
the call-site, and concatenate the result sum’ with the partial summary computed thus far
(Lines 12-16). Concatenation involves adding edges from every lock in lockset to every
root in the roots’ (in sum’) and adding all other edges in g’ (in sum’) to the lock-graph in
the partial summary.

3.2 Deadlockability

Let my,...,my be a set of methods in library .Z that are concurrently invoked by k separate
threads. For ease of exposition, we consider the case of two threads (i.e., k = 2). How-
ever, our results readily extend to arbitrary values of k. Let objects oby,...,ob; denote a
set of objects on which the methods my,...,m; are invoked. Let oby,1,...,0b, be the set
of parameters to these method calls. Let Ig(m) and lg(m;) be the lock order graphs for
the methods m; and m; after substituting the this object and the formal parameters in m

and my with oby,...,ob,. We assume that [g(m,) and Ig(my) are themselves cycle free?.
Let Vi, = {ey,...,en} denote the set of access expressions occurring in Ig(m;) or Ig(my).
We first characterize the patterns of aliasing/sharing between the access expressions corre-
sponding to oby,...,ob, under some fixed runtime environment R.

Definition 3.1 (Aliasing Pattern) An aliasing pattern @ over a set of access expressions V
is a symmetric, reflexive and transitive relation over V. If (e1,ez) € o then (e;.fi,e2.f;) € &
for all shared fields f; between Type(e;) and Type(ez).

Given graphs G| (V1,E;) and G2(V»,E»), we use G = G; UG, to denote the union of
the two graphs (i.e. the set of vertices of G is V| UV,, and the set of edges is E; U E,). For
lock-graphs Ig(m) and Ig(m;), we refer to Ig(my) U 1g(m;) as the merged lock-graph for
m and m;. Given an aliasing pattern a over the nodes of a merged graph Ig(m;) U lg(my),
we fuse the nodes ¢;, ¢; of the graph if (e;,¢;) € o. The outgoing and incoming edges to the
individual nodes e;, e; are preserved by the fused node. Let o> G denote the resulting graph
after merging all aliased nodes.

Definition 3.2 (Deadlock Causing Pattern) An aliasing pattern « is potentially deadlock-
causing for my,my iff o> (Ig(m1) Llg(my)) contains a cycle. An aliasing pattern that is not
deadlock-causing is termed safe.

Example 3.1 Consider two methods from the java.awt.EventQueue class: m; (wakeup)
and my (postEventPrivate), shown in Fig. 1.1. Sec. 1 illustrates the individual lock-order
graphs Ig(m) and Ig(m;). Following the notation established, let ob;, ob, denote the objects
on which methods m,m; are invoked, respectively. The access expressions involved in the
lock graph G : Ig(m;)Ulg(my) are Vi 5 = {obj,oby,obj.nextQueue, oby.nextQueue}. Let
oy be the aliasing pattern {(obj, oby.nextQueue)}. The merged lock graph o > G is shown
below:

4 This assumption relies on re-entrancy of locks. Java monitors are re-entrant. Mutexes in C/C+ with the
pthread library are commonly defined to be re-entrant. Thus this assumption generally holds true for the
libraries that we seek to analyze.
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The pattern ¢¢; does not cause a deadlock. However, the following pattern o, considered
in Sec. 1 is deadlock-causing:

o : {(oby,0obj.nextQueue), (oby,oby.nextQueue)}

Definition 3.3 (Deadlockable) A library is termed potentially deadlockable if there exists
a pair of methods m,m;, and some aliasing pattern &¢ amongst the access expressions in
Vi such that o> (Ig(my) Ulg(my)) contains a cycle.

A simplistic approach consists of (a) enumerating all possible aliasing patterns ¢, and
(b) checking every graph o> G for a cycle. As pointed out in [30], there may exist a huge
number of aliasing/sharing relationships between the parameters, invoked objects, and their
fields. Explicit reasoning over such a large number of patterns is intractable. Hence, we use
a symbolic representation to encode the graphs and the aliasing patterns as constraints, en-
abling the use of SAT-Modulo Theory (SMT) solvers to perform the enumeration efficiently.

3.3 Symbolic Encoding

We first discuss how we can encode the cycle detection problem into an efficient theory
amenable to an SMT solver. The inputs to this problem are a graph G = Ig; Ulg2, and a
fixed aliasing pattern o. In Sec. 4 we will use this encoding to efficiently enumerate all
possible patterns to detect potential deadlocks and derive interface contracts.

The overall strategy consists of two parts: We first encode a lock graph G over a set of
access expressions Vg as a logical formula ¥(G). Next, we show how a given alias pattern
o may be encoded as a formula ¥(o). As a result, we guarantee that ¥(a) A W(G) is
unsatisfiable if and only if a>G has a cycle. The formula ¥(G) represents a topological
ordering of the graph and ¥ (o) places equality constraints on the vertex numbers based on
aliasing. If the result is unsatisfiable then no topological order can exist, indicating a cycle.

Graph Encoding.
Corresponding to each node v; € V, we create an integer variable x(v;) representing its rank
in a topological ordering of the node v;. Corresponding to each edge v; — v; in the graph,
we add the constraint x(v;) < x(v;). The resulting formula ¥(G) is the conjunction of all
edge inequalities:

¥(G): N (xv) <x(vj)| - 3.1

(V,'.Vj)EE
Example 3.2 Consider once again the running example from Fig. 1.1, continuing with the
notation established in Ex. 3.1. The merged lock graph G : Ig(m;)UIg(my) is recalled
in Fig. 1.2. The constraint ¥(G) for this graph is as follows:

(x(obl) < x(obl.nextQueue)) A (x(obg) < x(obz.nextQueue)).



Aliasing Pattern Encoding.

Given an aliasing pattern o, we wish to derive a formula (¢, G) whose satisfiability indi-
cates the absence of a cycle in ot> G (and conversely). This is achieved by encoding o by
means of a set of equalities as follows:

¥Y(a): N\ (x(e) =x(g5)) | - (3.2)

(eiej)EQ

In effect, the rank of the access expressions that are aliased is required to be the same in
the topological order.

Example 3.3 Continuing with Ex. 3.2, the aliasing pattern ¢ : {(obz,ob;.nextQueue)}
may be encoded as: ¥(a ) : (x(oby) = x(obj.nextQueue)).

Given an aliasing pattern o, and a graph G, the formulae ¥ (G), V() are conjoined into
a single formula ¥(¢,G) : W(G) A W(a) that enforces the requirements for a topological
order specified by G, as well as for merging nodes according to the aliasing pattern .

Example 3.4 Continuing with Ex. 3.3, recall ¥(G) from Ex. 3.1, consider the combined
formula:

¥(0,G): (x(ob) < x(obj.nextQueue)) A (x(obz) < x(oby.nextQueue)) A
(x(obz) = x(obl .nextQueue))

This formula is satisfiable in the theory of integers, indicating a topological ordering over
¥ : o >G, thus showing that no cycle exists in o >G. On the other hand, consider the
formula ¥ (o, G) obtained from the pattern:

0 : {(oby,ob;.nextQueue), (oby, oby.nextQueue)}
ie., 'P(Olg) : (x(obz) :x(obl.nextQueue)) AN (x(obl) zx(obg.nextQueue))

The combination of ¥(G) AW(0p) is clearly unsatisfiable indicating that a;; > G has a cycle,
which in turn shows that o may cause a deadlock.

Theorem 3.1 The formula ¥ (o, G) is satisfiable iff o.>G does not have a cycle.

Proof We begin by simplifying the statement of the theorem. Let G’ = a>G. Let ¥(G') be
the encoding for G’ as per (3.1). We observe that ¥(G’) can be obtained from ¥(a,G) by
by replacing integer variables x(v;) and x(v;) by a new variable x;;, if ¥ () contains the
relation x(v;) = x(v;). Note that ¥(G') is satisfiable iff ¥ (o, G) is satisfiable. Thus, we now
wish to prove that W (G') is satisfiable iff G’ is acyclic.

We first prove that if G’ is acyclic, ¥(G’) obtained as per (3.1) is satisfiable. Note that
the edge relation of an acyclic graph G'(V,E) defines a strict partial order’ on the set of
its vertices, and for a given strict partial order (E) we can define the linear extension of E
(denoted E,,) by the order-extension principle. By definition, E;, is a total order, and if
(u,v) € E, then (u,v) € E,y. Since E, is a total order, we can define a bijection f from
the set of vertices V to N such that if (u,v) € Eyo, f(u) < f(v). Thus, the interpretation of
¥(G') where each x(u) is replaced by f(u) evaluates to true, i.e., ¥(G') is satisfiable.

5 A strict partial order is a transitive and asymmetric binary relation on a set.



To prove the reverse direction, we prove by contradiction. Assume that ¥(G’) is sat-
isfiable and G'(V,E) contains a cycle. Since ¥(G’) is satisfiable, we can find a satisfying
assignment to ¥(G’) such that each x(v;) corresponds to a distinct integer. By definition,
each constraint x(v;) < x(v;) corresponds to an edge (v;,v;) € E. Since G’ contains a cycle,
it contains a path & = (v1,...,v,v1) in G, s.t. each consecutive pair of vertices in 7 is in E.
The conjunction of constraints corresponding to 7 contains the inequality (x(v¢) < x(v1))
and by transitivity of < over integers, also contains (x(v;) < x(v)). This is a contradiction
as each x(v;) is a distinct integer. O

Constraint Solving.

Given an aliasing pattern ¢, the constraint ¥(a) is a conjunction of equalities, whereas
¥ (G) is a conjunction of inequalities of the form: v; < v;, i.e., unit two variable per in-
equality (UTVPI) constraint [18]. In practice, Boolean combinations of UTVPI and equality
constraints can be solved quite efficiently using modern SMT solvers such as Yices and Z3
[11,22].

We also note that the problem of solving a set of UTVPI constraints is equivalent to
cycle detection in a graph. Therefore, our reduction in this section has not gained/lost in
complexity. On the other hand, encoding the graph cycle detection problem as a UTVPI
constraint in an SMT framework allows us to efficiently make use of strategies such as
incremental cycle detection and unsatisfiable cores. The subsequent section shows the use
of these primitives to effectively enumerate all aliasing patterns by computing subsumed and
subsuming patterns. The discovery of such patterns reduces the set of aliases to be examined
and speeds up our approach enormously.

4 Aliasing Pattern Enumeration

We now consider the problem of enumerating all possible aliasing patterns, in order to gen-
erate the interface contracts. The number of such patterns is exponential in the number of
nodes of the lock-order graphs. Following Sec. 3, we need to enumerate all possible equiv-
alence classes over the sets of nodes in the lock-order graphs. A naive approach thus suffers
from an exponential blow-up. We avoid this using various key optimizations:

(a) We prune the lock-order graphs to remove all nodes that cannot contribute to a potential
deadlock.

(b) We restrict the possible aliasing patterns with the help of a prior alias analysis and typing
rules imposed by the underlying programming language.

(c) Based on the set of aliasing patterns already enumerated, we remove sets of subsumed
or subsuming aliasing patterns from consideration.

Graph Pruning.
Let E;, V; represent the edges and vertices of the lock graph G; : lg(m;). This pruning strat-
egy is based on the observation that nested lock acquisitions are relatively uncommon and
non-nested lock acquisitions may be removed from the lock graph. As a results, nodes with-
out any successors and predecessors can be trivially removed. This results in a large reduc-
tion in the size.
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A terminal node in the graph is defined as one without any successors. Similarly a node
in the lock graph is termed initial if it has no predecessors. In general, a terminal node e; € V
cannot be removed without missing any potential deadlocks.

Example 4.1 Returning to the lock graph in Fig. 1.2 we note that the two terminal nodes
may not be removed since their incoming edges can be used in a potential cycle. The same
consideration applies to initial nodes.

However, a terminal node can be removed if all the other nodes to which it may alias
to are also terminal. Similarly, an initial node can be removed if all the other nodes to
which it may alias are also initial. The pruning strategy for removing terminal/initial nodes
of the graph utilizes the result of a conservative may-alias analysis. Let mayAlias(v) =
{u € V| u may-alias v}.

1. Let v be a terminal node such that all nodes in mayAlias(v) are also terminal. We remove
the vertices in mayAlias(v) from the graph.

2. Let u be an initial node such that all nodes in mayAlias(u) are also initial. We remove all
nodes in mayAlias(u) from the graph.

The removal of a terminal/initial node from the graph may create other terminal/initial
nodes respectively. Hence, we iterate steps 1 and 2 until no new nodes can be removed. The
mayAlias relationship can be safely approximated in languages like Java by type-masking.
As a result, we regard two nodes as aliased for the purposes of lock graph pruning, if the
types of their associated access expressions are compatible (one is a sub-type of another).
Note that no potential deadlocks are lost in this process. Our experiments indicate that the
pruned lock graph is an order of magnitude smaller than the original graph obtained from
static analysis, making this an important step in making the overall approach scalable. We
now shift our focus to reducing the number of aliasing patterns to be enumerated.

Reducing Aliasing Patterns.

Given two graphs with n nodes each, the number of possible aliasing patterns that need to be
considered across the nodes of the two graphs is exponential in n. In our experiments with
Java libraries, we have observed that the extensive use of locking with the synchronized
keyword gives rise to lock-order graphs containing 100s of nodes, which are reduced to
lock-order graphs with 10s of nodes after pruning. However, given the exponential number
of aliasing patterns that may exist, we need to impose restrictions on the set of aliasing
patterns that we examine. First of all, it suffices to consider aliasing patterns that respect
the type safety considerations of the language and the conservative may-alias relationships
between nodes.

Definition 4.1 (Admissible) An aliasing pattern o is admissible iff for all (u,v) € o, u €
mayAlias(v). Once again, type information can be used in lieu of alias information for lan-
guages such as Java.

Another important consideration for reducing the aliasing patterns, is that of subsump-
tion. Subsumption is based on the observation that for a deadlock causing pattern ¢ adding
more aliases to & does not remove the deadlock. Similarly, for a safe pattern 8, removing
aliases from 8 does not cause a deadlock.

Definition 4.2 (Subsumption) A pattern o subsumes o, denoted oy C ap, iff V(u,v) :
(u,v) € o1 = (u,v) € a. In other words, o is a sub-relation of .
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Lemma 4.1 If o, 0 are aliasing patterns, and &y C 0, then the following are true:

(A) aq is deadlock-causing = 0y is deadlock-causing,
(B) oy is safe = Q is safe.

Proof As ai C aa, ¥ (i, G) can be expressed as ¥ (ay,G) AP (ax \ o). Since we know
that o is deadlock-causing, by definition, ¥ (@, G) is unsatisfiable, implying that ¥(a;, G)
is unsatisfiable. O

Note that (B) is simply the contrapositive of (A) and is stated here in Lemma 4.1 for the
sake of exposition.

Definition 4.3 (Maximally Safe/Minimally Unsafe) A pattern o that causes a deadlock is
minimally unsafe iff for any (u,v) € a, a— {(u,v)} is not deadlock causing. Similarly, a safe
(non-deadlock) pattern « is maximally safe if, for any (u,v) & o, U {(u,v)} is deadlock
causing.

Following Lemma 4.1, it suffices to enumerate only the maximally safe and minimally
unsafe patterns. Hence, after enumerating a pattern o that is safe, we can add previously
unaliased pairs of aliases to o as long as the addition does not cause a deadlock. The re-
sulting pattern is a maximally safe pattern. Similarly, upon encountering a deadlock-causing
pattern 3, we remove “unnecessary” alias pairs from f as long as pairs that contribute to
some cycle in B >G can be retained.

Example 4.2 Consider the aliasing pattern ¢ : @ for the example described in Sec. 1.1.
Fig. 1.2 shows the resulting graph. We can add the pair (obj, oby.nextQueue) to oy without
creating any cycles. The resulting pattern ¢ is shown in Ex. 3.1. However, if we add the
pair (oby,ob;.nextQueue) to o then we obtain a cycle in the graph. As a result, the pattern
a is maximally safe.

The explicit enumeration algorithm (Algorithm 3) for aliasing patterns maintains a set
U of unexplored patterns, sequentially exhausting the unexamined patterns from this set
while updating the set U. The algorithm terminates when U = 0. First of all, a previously
unexamined pattern & is chosen from the set U (Line 4), and the graph > G is examined
for a cycle (Line 5). If the graph is acyclic, we keep adding previously unaliased pairs (u,v)
to o as long as the addition does not create a cycle in o > G, where o is the symmetric
and transitive closure of ot U {(u,v)}. The result is a pattern o that is maximally safe, which
is then added to the set . (Line 9). We then remove all patterns 3 that are subsumed by
o from the graph G, as they are safe (Line 10). On the other hand, if the graph o> G has
cycles, we choose some cycle C in the graph (Line 12), and the aliases in o that involve the
merged nodes in C. Discarding all the superfluous aliases not involving nodes in the cycle
C yields an alias relationship o’ C ¢« that is still deadlock-causing 6 (Line 13). The set U of
unexamined patterns is pruned by removing all patterns that subsume @’ (such patterns also
cause a deadlock) (Line 14).

The application of Algo. 3 on the graph from Fig. 1.2 enumerates the max. safe/ min.
unsafe patterns in Table 4.1.

Symbolic Enumeration Algorithm.
Algorithm 3 relies on explicit representation of the set U of alias patterns in order to per-
form the enumeration. Representing an arbitrary set of relations explicitly is not efficient in

© Note that &' may not be a minimally unsafe relation.



Algorithm 3: EnumerateAllAliasingPatterns

Input: G : Graph
Result: 2 : Deadlock Scenarios
begin

1
2 U := all legal aliasing patterns
3 while U # 0 do
4 Choose element @ € U.
5 if a>G is acyclic then

/* Add aliases without creating a cycle */
6 foreach (u,v) € @ do

/* Add (u,v) and compute closure. */

7 o' := Closure({(u,v)}Ucr)
8 if o' >G is acyclic then o := o

/* o mazimally safe */
9 S = JSU{a}
10 U= U-{BIBCa}
11 else /* a>G has a cycle */

/* Choose a cycle C */
12 C := FindACycle(a>G)

/* Remove aliases that do not contribute to C */
13 a = oan{(u,v)|uveC}

/* o is unsafe */
14 U:=U-{B|ad B}
15 9 = 9U{d'}
16
17 end

Table 4.1: Max. Safe/Min. Unsafe Patterns Enumerated.

{(oby,0by), (obj.nextQueue, oby.nextQueue)} SAFE
{(obj,oby.nextQueue)} SAFE
{(oby,0ob;.nextQueue)} SAFE
{(ob;,0by.nextQueue), (oby,ob;.nextQueue)} DL

practice. Therefore, we leverage the power of symbolic solvers to encode aliasing patterns
succinctly. Specifically, we wish to represent the set U of unexamined aliasing patterns with
the help of a logical formula. Let V = {ey,...,e; } be the set of access expressions labeling
the nodes of the graph G. We introduce a set of integer variables y(e;), such that each y(e;)
corresponds to an access expression ;. We then encode all aliasing patterns with the help of
a logical formula ¥ involving the y(e;) variables, as follows:

N (y(er) # y(e;)) A
=V, e e;¢gmayAlias(e;) .
BV =Veerer | AT (e = yie) = Olers) =) |

ei.frej.fEV

The formula ¥, ensures the consistency of alias patterns considered in the enumera-
tion process. Specifically, expressions that cannot be aliased to each other according to a
conservative pointer analysis are not considered aliased in any of the patterns generated.
Secondly, if e, e, are aliased then for every field f, e;.f and e,.f must be aliased (provided
the two expressions are in the set V). Algorithm 4 shows the symbolic version of Algo-
rithm 3. The correspondence between the two algorithms is immediately observable upon
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Algorithm 4: SymbolicEnumerate AllAliasingPatterns

Input: G : Graph
Result: 2 : Deadlock Scenarios
begin

1
2 ¥y := ¥ (V) (encoding all alias patterns)
3 while ¥ SAT do
4 (y(e1),...,y(ex)) := Solution of ¥ .
5 o= {(ei,e;) | y(ei) =y(ej)}.
/* Construct ¥(o,G) */
6 if ¥(at,G) SAT then
/* Add aliases without creating a cycle */
7 foreach (e;,e;) & o do
8 o' := Closure(a U (ej,€;))
9 ¥(o/,G):= ¥(a,G) A (x(e;) =x(e)))
10 if ¥(o',G) SAT then o := o
/* o is mazimally safe */
11 Hyi= W AV (erepgay(e) = y(ej)
12 | 7 = SU{a}
13 else
/* ¥(a,G) UNSAT */
14 C := MinUnsatCore(¥(ct,G))
15 o := {(ei,e;) | x(ej) < x(ej) constraintin C}
/* o' is unsafe */
16 = W AV (e pear ¥(ei) # ¥(ef)
17 | 2 := 2u{d}
18 end

comparing them. Since we represent sets of aliasing patterns as a logical formula, a witness
to the satisfiability of this formula is an aliasing pattern o (Line 5).

Recall from Sec. 3.3 that we can encode the problem of cycle detection in a graph using
inequality constraints. Thus, in Line 6 we check the inequality constraints specified by the
graph G (i.e. ¥(G)) conjoined with the previously unexamined aliasing pattern & (encoded
as (o)) for satisfiability. Satisfiability of this formula indicates that the graph G is cycle-
free, and we proceed to compute a maximally safe aliasing pattern from the given ¢ (Line 7).
Once a maximally safe « is obtained, we remove all aliasing patterns that are subsumed by
o from the set of all aliasing patterns (represented by %), and add o to . (Line 12). If the
formula is unsatisfiable, then we obtain the minimal unsatisfiable core (Line 14) and extract
the minimally unsafe aliasing pattern o’ from the constraints represented in this core. We
then remove all aliasing patterns that subsume o from ¥, (Line 16), and add the minimally
unsafe &’ obtained (if any) to the set Z (Line 17).

Such a symbolic encoding of sets of aliasing patterns has many advantages, including:
a) the power of constraints to represent sets of states compactly, and b) the use of blocking
clauses to remove a set of subsumed/subsuming aliasing patterns. Modern UTVPI solvers
such as Yices and Z3 incorporate techniques for fast and incremental cycle detection upon
addition or deletion of constraints [11, 22]. This is very useful in the context of Algorithm 4.
In practice, our use of subsumption and pruning ensures that a very small fraction amongst
the alias patterns is explored by the symbolic algorithm.

Deriving a Contract.
The enumeration scheme in Algo. 3 and Algo. 4 can generate a contract that succinctly
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represents the set of all safe aliasing patterns. The result of the enumeration is a set of
patterns & such that any aliasing pattern 8 is deadlock-causing iff it subsumes a pattern
oED.

Lemma 4.2 An aliasing pattern o is safe iff forall B € 2, B € a.

Proof We prove this by contradiction. Suppose o is safe, and there exists B € Z, s.t. B C o.
By definition, o subsumes f3; hence by Lem. 4.1, if 8 is deadlock-causing, ¢ is deadlock-
causing, which is a contradiction. O

In practice, contract derivation consists of first compacting the set & to obtain the mini-
mal deadlock-causing patterns. The contract for safe calling contexts can then be expressed
succinctly using the fact that any such pattern must not subsume any element of the set Z.

Example 4.3 From Table 4.1, the only unsafe pattern enumerated is
o) {(ob1 s ob2.nextQueue), (ob27 ob; .nextQueue)}
The set of safe patterns therefore is specified by the following set:
{O{ } (oby,0by.nextQueue) € o or (oby,ob;.nextQueue) & o } .
In terms of a contract, this set is expressed as
—isAliased(obj, oby.nextQueue) V —isAliased(oby, obj.nextQueue).

Theorem 4.1 The set 9 of deadlock-causing alias patterns for each pair of library methods
obtained by the enumeration technique in Algo. 4 yields a contract of the form:

N\ isAliased(eie;).

acy (el‘.ﬁj)G(X

Note that the contract is a Boolean combination of propositions conjecturing aliasing
between access expressions. Thus, such a contract can be both statically and dynamically
enforced in a client, as the concrete aliasing information between access expressions can be
obtained through alias analysis, or may be available at run-time.

5 Deadlocks in Signaling-based Synchronization

So far we have looked at deadlocks arising from circular dependencies in lock acquisition.
Recall that a lock is an abstraction for specifying mutual exclusion, and is implemented as
Java monitors or pthread mutexes. In Java, each object monitor is provided with wait
and notify methods to achieve signaling-based synchronization. Recall the semantics of
wait and notify methods from Sec. 2. As before, we assume that the library is intended
to be well-encapsulated: every wait statement in some library method is expected to have a
matching notify statement from within some (possibly the same) library method.

Happens Before.

We define a happens before relation similar to [19] applied to concurrent systems (cf. [13]).
In simple terms, a statement s; happens before s, (denoted s; — s7) if a causal precedence
can be established between the execution of s; by 7 and s, by some (possibly the same)
thread T’. For instance, statements in the same thread are trivially ordered by —, and causal
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precedence is established across statements in different threads by synchronization opera-
tions (such as lock release, lock acquisition, thread notification, etc.).

A thread executing a method that contains a statement s = mon.wait() is suspended
upon executing s. It is understood that a waiting thread will be eventually notified by another
thread that executes the statement » = mon.notify(), failing which the waiting thread fails to
progress (causing a deadlock). Such a lack of notification can be ascribed to either a missing,
or a lost or an unreachable notification. We elaborate on these scenarios as follows:

I. For some wait() statement, there is no matching notify() statement in the library.
This is an instance of a missing notification.

II. For some concurrent execution, it is possible that every notify statement r satisfies that
r — s. This is an instance of a lost notification, i.e., the appropriate object is notified, but
before it has a chance to wait.

III. Assume that for every wait statement s, there is a matching notify statement r present
in some library method (i.e., notify is not missing). For some concurrent execution,
s — r, but r is unreachable in a possible notifying method.

Analyzing programs with wait-notify synchronization is hard. In fact, context-sensitive
synchronization-sensitive analysis is undecidable [27]. As the general problem is undecid-
able, we use a case-by-case analysis to identify sub-problems with conservative solutions.

To statically detect Case I, we can make use of a thread-aware, thread-safe alias analysis:
For a given pair of methods (such that one invokes a wait, and other a notify), we need to
check if the wait and notify are invoked on objects that alias to each other. We remark that
this case subsumes the common beginner mistake of Java programmers to invoke wait and
notify on the this object from within two different monitors. The result is that the wait is
issued on one monitor, while the notify is issued on an entirely different monitor, causing
the waiting thread to wait forever.

Case Il requires semantic analysis of the code to deduce whether there is an interleaving
in which a notify precedes the matching wait statement. Thus, case II is tricky to detect
statically without introducing a slew of false positives. It may be possible to predict such
deadlocks by conservative approximation of the happens before relation; however, this is
beyond the scope of this paper.

Case III can manifest due to different reasons, such as (a) the notify is in a control-flow
path that the “notifying” method does not execute, (b) waits and notifies are mismatched,
and (c) methods acquire monitors in a nested fashion. As in Case II, (a) requires semantic
analysis, and goes beyond the scope of this paper. Examples of Case IIl(b) include cases
where there are more wait statements that notify statements, and there is a circular de-
pendency between wait and notify instructions,i.e., T} executes monl.wait() followed by
mon2.notify(), while 7> executes mon2.wait() followed by monl.notify(). We can extend
our approach to statically detect these kind of deadlocks by checking compatibility between
wait-notify sequences as a part of future work. In what follows we focus on Case III(c).

5.1 Nested Monitor Deadlocks

Nested monitor deadlocks have been well-known in the literature since before the advent
of programming languages that use monitors, cf. [21]. We wish to analyze potential nested
monitor deadlocks in concurrent libraries written in languages such as Java that use wait-
notify constructs. As before, we assume that library methods are invoked by separate
threads, and use the terms threads and methods interchangeably.
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The semantics of wait-notify create situations that not only lead to unpleasant dead-
locks, but also violate the well-encapsulation principle of modular software. We explain this
with an example.

Example 5.1 The library method foo contains a this.wait() statement within the moni-
tored region for this. foo is invoked on the object 1ib from within the monitored region
for monl1 inside the client method bar. As the acquisition of this (i.e. 1ib) is nested within
the scope of monl, this is an instance of a nested monitor acquisition. Recall the semantics
of wait from Sec. 2. For a thread T executing the this.wait() statement, the effect is that T
releases the monitor associated with this, but not the monitor monl1. Thus, a library method
foo holds on to a client resource, which violates the spirit of well-encapsulation.

1: public class Library { 1: public class Client {
2 public synchronized void foo() { 2: Library lib;
3: this.wait(); 3: public void bar() {
4: } 4: synchronized (mon1) {
5: } 5: 1ib.foo();
6: }
7: }
8: }

Thus, we argue that among all the different cases in which deadlocks manifest in con-
current libraries using wait-notify, these kind of deadlocks are the most important to doc-
ument and predict. We now give concrete examples of nested monitor deadlocks due to
wait-notify.

Unreachable Notification.

Consider the case where a method m acquires some monitors before executing mon.wait ().
As per the semantics of mon.wait (), (the thread executing) m releases mon, but while wait-
ing, it still holds the previously acquired monitors. Now, any method m’ that needs to acquire
one of the “held” monitors before it can execute s, (mon.notify()) will never reach s,. Thus,
method m waits for some method to notify it, while 7’ waits for the locks held by . In the
literature, such a deadlock has also been called a hold and wait deadlock. We discuss two
examples of such a deadlock.

Example 5.2 Consider the code shown below. In Line 4, method m1_w releases the monitor
mon2, but still holds mon1. As a result, m1_n can never reach Line 4 as it remains “stuck” in
the entry set of mon1 at Line 2. As both m1_w and m1_n cannot progress, this could lead to a
deadlock.

1: public void miw (O { 1: public void min (O {

2 synchronized (mon1) { 2 synchronized (mon1) {

3 synchronized (mon2) { 3 synchronized (mon2) {
4: mon2.wait() ; 4: mon2. notify () ;

5: } 5: }

6: } 6: }

7} 7}

7 Tt is possible that there is a third method m” in which notify is reachable, and it can issue a notification.
However, while checking possibility for a deadlock between concurrent invocation of m and m’, we err on the
conservative side, and do not make assumptions about the existence of such a m”.
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Example 5.3 Methods m2_w and m2_n shown below have a similar situation as in Ex. 5.2.
Method m2_w releases mon1 in Line 4, but still holds mon2. Thus, m2_n cannot proceed beyond
Line 3, where it gets stuck in the entry set of mon2.

1: public void m2w () { 1: public void m2n () {

2 synchronized (mon1) { 2 synchronized (mon1) {

3 synchronized (mon2) { 3 synchronized (mon2) {
4: monl.wait(); 4: monl.notify();

5: } 5: }

6: } 6: }

7} 7}

Deadlock due to lock-order inversion.

In addition to the deadlocks due to unreachable notification, nested monitors also cause
deadlocks due to an inversion in the lock acquisition order. We explain this scenario in
Ex.5.4.

Example 5.4 Consider the following interleaved execution of the methods m3_w and m3_n
shown below:

1: public void m3_w { 1: public void m3n {
2 synchronized (mon1) { 2 synchronized (mon1) {
3 synchronized (mon2) { 3 monl.notify () ;
4: monl.wait(); 4 synchronized (mon2) {
5: } 5:
6: } 6: }
7.} 7: }
8: }

Method m3_w holds the monitor mon2, and is in the wait set of mon1 at Line 4. Method
m3_n acquires mon1, and then calls mon1.notify() (Line 3). Upon waking up, m3_w first tries
to re-acquire mon1. However, as m3_n holds mon1, m3_w cannot proceed. On the other hand,
m3_n tries to acquire mon2, but as m3_w holds mon2, m3_n cannot progress beyond Line 4.
Effectively, due to the semantics of wait, the lock-acquisition order gets reversed, causing
the classic cyclic dependency deadlock that we discussed in the previous sections.

6 Generalized Nested Monitor Rule

In this section, we show how we can extend the lock-graph computation in Sec. 3.1 to
capture deadlocks induced by nested monitors.

6.1 Extended Lock-Graph

We extend the notion of a lock-acquisition order graph defined in Sec. 3.1. Consider the
set of control-flow edges shown in Fig. 6.1. We now formulate static rules that help in
construction of an extended lock-graph that models the nested monitor deadlocks resulting
from unreachable notification and lock-order inversion. We recall the rule for modeling the
edge ¢; in Rule RO from Sec. 3.1. Recall that the set of locks held by m before executing a
statement s is lockset(u) for the edge u = v in ¢ fg(m). We denote the extended lock-graph
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by elg(V,E). Rules R1, R2 specify how to model the edge e,, for a wait statement, while
Rule R3 specifies how to model the edge e, for a notify statement.

V¢ € lockset(up), add edge (¢,mon) (RO)
V¢ € lockset(u;), { #mon, addedge ({,smon) (R1)
V¢ € lockset(u;), { #mon, addedge (¢,mon) (R2)
V¢ € lockset(uz), £ #mon, add edge (smon,/) (R3)

Definition 6.1 (Distinct Cycle) A cycle in the merged extended lock-graph is called a dis-
tinct cycle if each edge in the cycle is induced by a distinct method (invocation).

Lemma 6.1 (Generalized Nested Monitor Rule)

Let the extended lock-graphs obtained using Rules R1, R2, R3 for methods my,...,my be
elg(my),. .. elg(my). Concurrent calls to methods my,...,my may deadlock if | |*_, elg(m;)
contains a distinct cycle.

Proof Recall that in Rules R1, R2, R3, we only focus on deadlocks due to nested monitor
acquisition leading to unreachable notification or lock-order inversion. We argue that in
both scenarios, whenever methods m; and m, deadlock, the merged extended lock-graph
elg(my) Uelg(my,) contains a cycle. Thus, the presence of a cycle indicates the possibility
of a deadlock.

Consider the control-flow edges shown in Fig. 6.1. An unreachable notification occurs
when m;; holds some lock mon and waits, while method m, needs lock mon before it can reach
the notification that “wakes up” m,. For a method m,, executing s1, Rule R1 mimics the
act of relinquishing mon and waiting. As m; holds all the locks in lockset(u;) (except for
mon) when waiting, we create a vertex smon in the lock-graph, and add edges from every
monitor £ (except mon) in lockset(u) to smon. Method m, (containing statement s;) can
reach s; if it can successfully acquire all the monitors in in lockset(up) (except mon). We
model this by adding edges from smon to each monitor in lockset(uz) (Rule R3). Thus,
rules R1 and R3 ensure that if monitor ¢ is held by m,, when it starts waiting, and m,, needs

to acquire £ to reach the notification, then elg(m) Ll elg(m’) contains a cycle of the form:

Rl,my, R3, . . S .
¢ = smon ™ ¢, Note that since the edges involved in this cycle are necessarily from

different methods, such a cycle is a distinct cycle.

Rule R2 encodes lock-order inversion. Suppose m,, holds certain monitors, and is wait-
ing as a result of a call to mon.wait(). Upon waking up, m,, tries to re-acquire mon; so we
add dependency edges (mon’,mon), where mon’ is some monitor (other than mon) held by m1,,
before executing mon.wait(). If another method, say m,, requires acquisition of mon before

5o = lock(mon)

er: (uo vo)
5] = mon.wait()

ew: (u 2200 )
57 = mon.notify()

en: (g ————— )

Fig. 6.1: Control-flow Edges
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acquiring mon’, then the concurrent invocation of m,, and m,, could deadlock. This scenario

.. R2.m, RO.m
corresponds to a distinct cycle of the form: mon’ —— mon ——" mon’.

Lastly, above arguments can be inductively extended to the case where there are multiple
waiting and notifying methods. a

Example 6.1 Consider the extended lock-graphs for m1_w and m1_n from Ex. 5.2:

lg(m1_w) lg(m1m) lg(m1 w)UIg(mln)

We can observe that there is a distinct cycle in 1g(m1_w) LI/g(m1_n).

Example 6.2 Consider the extended lock-graphs for m2_w and m2_n from Ex. 5.3:

QL e

Vé /‘19 /@ P
& o e o
m2_w, R1 m2_n, R3 n2wR1

lg(m2_w) lg(m2.n) lg(m2_w)LI/g(m2.n)

In this case, there are two distinct cycles in the merged graph indicating potential deadlocks.
The cycle due to unreachable notification corresponds to the solid edges.

Example 6.3 Consider the extended lock-graphs for m3_w and m3_n from Ex. 5.4:

lg(m3n) lg(m3_w)LI/g(m3n)

There is a distinct cycle between nodes monl and mon?2 by picking the label m3_n for the edge
(monl,mon2) and m3_w for (mon2,monl), which indicates a potential deadlock.

6.2 Modifications to Lock-Graph Computation

The algorithm for lock-graph computation outlined in Sec. 3.1 can be extended to accommo-
date the generalized nested monitor rule. Recall that the summary computed for each point in
the control-flow graph of a method m is a tuple (Ig(V,E),lockset,roots) where Ig(V,E) is
the lock-order graph, lockset is the set of locks currently acquired by method m, and roots
is the set of locks that do not have parent nodes in /g. For computing the extended lock-
graphs, the partial summary is defined as the tuple: (e/g(V,E),lockset,roots,notifySet),
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Function extendedComputeFlow

input : cfg edge: u 2, v, Method name: m
output: partial summary out

1 begin

2 in = psum(u), out =0

/* in = (V;,E;,roots;,lockset; notifySet;), out =
(Vo,Ep,roots,,lockset,,notifySet,) */

3 switch (s) do

4 Lines 4-16 of function computeFlow
/* Wait Statement. */
5 case mon.wait () ():
6 foreach (mon’ € lockset;) s.t. (mon’ # mon) do
/* Rule R1: %/
7 E, := E, U{(mon’ 2 smon)}
/* Rule R2: */
8 E, := E, U {(mon’ % mon)}
/* Notify Statement. */
9 case mon.notify () ():
10 foreach (mon’ € Is;) s.t. (mon’ # mon) do
/* Rule R3: */
11 E, := E,U{(smon % mon’)}
12 notifySet :=notifySet U {smon}
/* Method Invocation. */
13 casem’(ay,...,a;):
14 Lines 12-16 of function computeFlow
/* Recall, sum’' = summary(m')|vi.fisq, */
/* Also, sum’ = (V,E/,lockset’,roots’ notifySet’) */
15 foreach smon € notifySet’ do
16 foreach mon € lockset do
17 L E, := E, U{(smon % mon)}
18 | notifySet :=notifySetUnotifySet’
19 end

where elg is the extended lock-graph as defined in Sec. 6.1, and notifySet is the set of
monitors on which mon.notify() has been invoked.

The extendedComputeFlow function specifies the flow equations for the wait-notify
statements, and modified flow equations for method calls. For a given method m, the edges
induced by Rules R1 and R2 are fully contained within summary(m,), and are added in
standard fashion (Lines 7, 8). However, the edges induced by Rule R3 are “reverse” edges
that can point to nodes outside of summary(m;). Consider the case where m calls m; and
m) contains a mon.notify() statement. Now, by Rule R3, we add edges from mon (which
is a node in elg(m;)) to every lock in lockset at the call-site of m; (which is in m). To
ease this computation, we add mon to the set notifySet, when mon.notify() is called

s=my(ay,....ar)

(Line 12). Let u ————— v be the call-site of method m, in ¢fg(m). When we concate-
nate summary(m ) with the partial summary at point u in m (i.e. psum(u)), we add edges from
the set notifySet in summary(m ) to every monitor in lockset(u) in psum(u) (Line 15-17).
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6.3 Symbolic Encoding

Recall that for a given pair of methods m; and m;, there is a potential deadlock if elg(m;) U
elg(my) contains a distinct cycle. For deadlockability analysis, we can extend the above
rule as follows: o is a deadlock-causing aliasing pattern for methods m; and m; if a>
elg(my)Uelg(my) contains a distinct cycle. We can extend the symbolic encoding described
in Sec. 3.3 to encode the extended lock-graphs. The main difficulty is that an extended lock-
graph elg(m) for a method m can have cycles, while our symbolic encoding for graphs and
aliasing patterns relies on encoding acyclic graphs.

We observe that a cycle is added to elg(m) due to simultaneous application of Rule RO
and R2. For instance, consider the case where m acquires monitor monl followed by mon2,
and then executes monl.wait(). Rule RO requires an edge to be added from monl to mon2,
while Rule R2 requires an edge to be added from mon2 to monl. To check for existence of a
distinct cycle, we need either the edge (monl,mon2), or, the edge (mon2,monl), but not both.
In effect, we can decompose elg(m) into two acyclic graphs elg;(m) and elg,(m), each
of which contains exactly one of these two edges. It is easy to see that such a disjunctive
decomposition of the extended lock-graph can be systematically performed by “breaking
cycles” formed by the symmetric edges induced by RO and R2.

Example 6.4 Consider the method m2_w shown in Ex. 5.3, and its corresponding extended
lock-graph shown in Ex. 6.2. The encoding for 1g(m2_w) is expressed as two conjunctions as
follows:

¥Y(Gy) = x(monl) < x(mon2) A x(mon2) < x(smonl)
—_—
RO

¥(G2) = x(mon2) < x(monl) A x(mon2) < x(smonl)
—_—
R2

Example 6.5 Continuing with Ex. 6.2 and Ex. 6.4, let o be the empty aliasing pattern.
Consider the merged lock-graphs obtained by merging G; and G, individually with the
lock-graph for m2_n.

x(mon2) < x(smonl

[ x(monl) < x(mon2 ( )
'P(Ol,G] I_Ilg(m2ll)) = |: x(smonl) < x(monZ):|
( )

1)
x(monl) < x(mon2
)

x(mon2) < x(monl
x(monl) < x(mon2

x(mon2) < x(smonl

N
N
N

A x(smonl) < x(mon2)

)
)
W(a, G Ulg(n2.n)) { %
We can see that both conjunctions are unsatisfiable. Moreover, each conjunction encodes
a distinct cycle in the merged extended lock-graph.

Example 6.6 Consider Ex. 6.3. Let o be the empty aliasing pattern. Note that /g(m3_w) in
Ex. 6.3 is identical to lg(m2_w) in Ex. 6.2, and thus the decomposition of elg(m3_w) into
graphs G| and G is as in Ex. 6.4. Now consider the merged lock-graphs obtained by merg-
ing G and G, with [g(m3_n) from Ex. 6.3.

(0,61 Ulgnan)) = | {oon]) S oo/ x{mon) <xfemonl) A
(G Ulgnan)) = | {oon) S oon) /1 wlmend) <xfemenl) A
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We can see that the second conjunction is unsatisfiable, and corresponds to a distinct
cycle in the merged extended lock-graph for #; and #,.

Thus, we can observe that if the extended lock-graph elg(m;) for a method m; has cy-
cles, then we can decompose it into components {elg;(m,)...elg,(m;)}, s.t. each elg;(m;)
is acyclic and elg(m;) is the union of the components, i.e., elg(m;) = U, elgi(m;). We
can see from the above examples that for a pair of methods m;, my, the merged extended
lock-graph elg(m) U elg(my) has a distinct cycle if there exist some acyclic components
elgi(my) and elg;(my) such that elg;(m;) Uelg;(my) has a cycle. This is formalized in the
theorem below.

Theorem 6.1 Let G; be some acyclic component of elg(my) and Gj be some acyclic com-
ponent of elg(my). Let G;j denote G;UGj. The formula (o, Gi;)| is satisfiable for all i, j
iff [a> (elg(my) Uelg(my))] does not have a distinct cycle.

Proof We give a proof outline:

1. We first prove that [a>elg(m;)Lelg(my)] does not contain a distinct cycle iff Vi and
Vj, elgi(my)Uelgj(my) does not contain a cycle. This follows from the definition of the
decomposition operation.

2. If elg;(m) Uelg;(my) does not contain a cycle, then by Theorem 3.1, we know that
¥ (a,G;j) is satisfiable. Thus if Vi and Y}, if elg;(m;) Uelg;(my) does not contain a
cycle, then Vi and Vj, ¥ (o, G;;) is satisfiable. O

7 Analyzing Clients

The interface contracts generated by our tool vastly simplify the analysis of client code that
makes use of the library methods that are part of the library’s interface contract. Furthermore,
they serve to document against the improper use of the methods in a multi-threaded context.

We recall from Section 4 that the final contract for a safe call to a pair of methods m,m;
is a Boolean expression involving propositions of the form —isAliased(e;, €;), wherein ¢; and
e; are access expressions corresponding to the formal parameters of the methods, including
the “this” parameter.

In practice, checking such a contract for a given client that uses the library involves two
major components: (A) a May-happen in Parallel (MHP) analysis [20] for calls to methods
my and my to determine if two different threads may reach these method call-sites simulta-
neously, and (B) a conservative, thread-safe alias analysis in order to determine the potential
aliasing of parameters at the invocation sites of the methods in question.

On the basis of such an alias analysis, we may statically evaluate the contract at each
concurrent call-site. Note that these two components are already part of most data-race de-
tection tools such as CHORD [23, 24]. In theory, deadlock violations can be directly ana-
lyzed by a “whole-program analysis” of the combined client and the library code. In prac-
tice, this requires the (re-)analysis of a significant volume of code. Using contracts has the
distinct advantage of being fast in the case of small clients that invoke a large number of
library methods. Moreover, decoupling the client analysis from the library analysis allows
our technique to be compositional. Since library internals are often confusing and opaque to
the client developers, another key advantage is the ability to better localize failures to their
causes in the clients, as opposed to causes inside the library code.
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Table 8.1: Experimental Results

Library KLOC  Num.of  Num.of Computation Num. of Unique
Alias DL- Time (secs)” Scenarios

Patterns causing  Lock- SMT False Potential

Checked  Patterns  Graph  Solver  Positives  Deadlocks
apache-log4j 333 4 4 130 0.1 1 1
cache4;j 2.6 0 0 15 - - -
ftpproxy 1.0 0 0 13 - - -
hsqldb 157.6 369 231 804 2.8 3 3
JavaFTP 2.6 0 0 9 - - -
netty 11.0 0 0 14 - - -
oddjob 41.3 0 0 250 - - -
java.applet 0.9 102 64 64 1.0 1 1
java.awt 163.9 5325 3800 454 26.4 2 3
java.beans 16.2 148 108 31 1.5 1 2
java.io 28.6 32 0 39 0.0 - -
java.lang 55.0 279 89 46 1.9 3 2
java.math 9.1 0 0 18 - - -
java.net 26.5 55 44 32 0.5 1 1
java.nio 46.7 0 0 19 - - -
java.rmi 9.1 2 2 14 0.1 1 0
java.security 342 0 0 27 - - -
java.sql 22.2 1836 0 10 8.0 - -
java.text 22.6 26 18 26 0.2 1 0
java.util 116.8 188 117 190 2.0 4 3
javax.imageio 24.7 0 0 22 - - -
javax.lang 52 0 0 8 - - -
javax.management 67.5 16 6 74 0.2 2 0
javax.naming 19.5 0 0 64 - - -
javax.print 2.1 2 0 27 - - -
javax.security 11.7 164 110 27 1.2 2 0
javax.sound 14.3 0 0 10 - - -
javax.sql 18.2 0 0 14 - - -
javax.swing 322.2 132 120 353 1.6 2 2
javax.xml 48.9 0 0 27 -

¢ All experiments were performed on a Linux machine with an AMD Athlon 64x2 2.2 GHz processor,

and 6GB RAM.

8 Experimental Results

‘We have implemented a prototype tool for synthesizing interface contracts for Java libraries.
The tool consists of a summary based lock-order graph analysis for a given Java library
followed by its encoding into logical formulae for symbolic enumeration of alias patterns.
We utilize the soot framework for implementing the lock-order graph extraction [29], using
custom analyses for alias propagation built atop soot’s native intraprocedural alias analysis.
Before generating constraints for analysis with the SMT solver, we prune the lock-order
graphs using various filtering strategies strategies (in addition to those discussed in Sec. 4):

(a) Pruning unaliasable fields, e.g. final fields initialized to a constant.

(b) Removing objects declared private that are not accessed outside the constructor or

finalizer.

(c) Removing immutable string constants and java.lang.Class constants.
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(d) Pruning objects that cannot escape the scope of a given library method using a conser-
vative escape analysis.

These filtering strategies discussed above are sound: our tool does not miss any potential
deadlock due to the above strategies. For example, we prune an object from the lock-order
graph only if it definitely cannot escape the scope of a library method, or is aliased to an
immutable constant. In other words, we only remove a node from the lock-graph if it is
impossible for it to be aliased to any other node, and thus impossible to be part of some
cycle.

The generated constraints are solved using the SMT solver Yices [11]. Table 8.1 summa-
rizes the potential deadlocks thus obtained. Table 8.1 shows that our tool runs in a relatively
short amount of time even for large Java libraries. Furthermore, the runtime is dominated by
the lock-order graph computation rather than the enumeration and constraint solving with
the SMT solver.

Some deadlock-causing aliasing patterns are false positives. These patterns result from
two main sources: a) the static lock-order graph construction is a may analysis, and hence
there are inaccurate edges and nodes in the lock-order graph, and b) our alias analysis is a
may analysis, which leads to aliasing patterns that cannot be realized. We manually examine
the output of our tool to discard such patterns. However, the output of our tool may also
consist of a large number of “redundant” deadlock-causing patterns. These patterns that are
repeated instantiations of the same underlying deadlock scenario, and appear due to the
fact that several library methods typically invoke the same deadlock-prone utility method.
Such a deadlock gets reported multiple times in our current implementation, each under a
different set of library entry methods. The table shows the number of unique scenarios after
considering such redundancies (manually, at present).

Example 8.1 From the lock-order graph of postEventPrivate presented in Sec. 1.1, if we
concurrently invoke the method postEventPrivate on two separate objects a and b, then
it leads to a deadlock under a specific aliasing pattern. However, the methods postEvent,
push and pop in the same class also invoke the postEventPrivate method, and hence are
susceptible to the same deadlock. Thus, for each pair of these methods, the same under-
lying deadlock-causing aliasing pattern is generated. In our experiments, we observed 324
possible deadlock-causing aliasing patterns, all of which correspond to this single unique
scenario involving calls to postEventPrivate.

Significantly, our tool predicts deadlocks that are highly relevant to some of the clients
using these libraries. Some have already manifested in real client code, and have been re-
ported as bugs by developers in various bug repositories. Table 8.2 summarizes the library
name and the bug report locations we have found using a web search. Inspection of the bug
reports reveals that the aliasing patterns at the call-sites of the methods involved in the dead-
lock, correspond to a violation of the interface contract for that library, as generated by our
tool. Further examples of such deadlocks can be expected in the future. Finally, we remark
that the tool currently analyzes only deadlocks arising from circular dependencies in lock
acquistion, and extensions to the tool to incorporate the heuristics for detecting deadlocks in
wait-notify programs will be an important part of the future work.

Sources of Unsoundness. Our strategies for pruning lock-order graphs outlined earlier in
this section are sound: no deadlocks can be missed as a result of removing nodes from the
lock-order graphs under consideration. However, to ensure that our analysis terminates, we
use certain abstractions that could lead to unsoundness. For instance, we bound the size
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Library Name Method names Bug Report

java.awt postEventPrivate, [9]:4913324

(EventQueue) wakeup [9]:6424157,
[9]:6542185

java.awt removeAll, [4]

(Container) addPropertyChangeListener

java.util addLogger [9]:6487638

(LogManager)  getLogger

(Logger)

javax.swing setFont Jajuk [17]

(JComponent)  paintChildren

hsqldb isAutoCommit [3]

(Session) close

Table 8.2: Real Client Deadlocks

of access expressions when iteratively computing the lock-order graph for recursive meth-
ods, which could lead to potentially missing deadlocks. Our analysis ignores the dynamics
of thread creation from within a library method, and could miss a potential deadlock if a
newly spawned thread contains a circular locking dependency with the parent thread. In
case of programs with wait/notify, we do not make any guarantees of soundness, as our
analysis currently does not handle missing notifications, lost notifications, and unreachable
notifications that are not a result of nested monitor invocations. Thus, our contributions for
wait/notify deadlocks should not be viewed as much more than effective heuristics. Lastly,
our technique can only detect deadlocks that manifest as a result of circular dependencies in
lock acquisition. Thus, deadlocks that may result from conditions such as insufficient mem-
ory, thread joins, interrupts, non-terminating, or any other reason are not detected by our
technique.

9 Related Work and Conclusions

9.1 Related Work

Runtime Techniques.

Runtime techniques for deadlock detection track nested lock acquisition patterns. The Good-
Lock algorithm [14] is capable of detecting deadlocks arising from two concurrent threads;
[2] generalizes this to an arbitrary number of threads, and defines a special type system in
which potential deadlocks correspond to code fragments that are untypable. Agarwal et al.
[1] further extend this approach to programs with semaphores and condition variables.

Model Checking.

Model checking techniques [7] have been successfully used to detect deadlocks in programs.
For instance, Corbett et al. employ model checking to analyze protocols written in Ada for
deadlocks [8]. Model checkers such as SPIN [16], Java Path Finder [14, 15] have been used
extensively to check concurrent Java programs for deadlocks. However, program size and
complexity limit these approaches in presence of arbitrary aliasing. A compositional tech-
nique based on summarizing large libraries can help these approaches immensely. Bensalem
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et al. [6] propose a dynamic analysis approach, based on checking synchronization traces
for cycles, with special emphasis on avoiding certain kinds of guarded cycles that do not
correspond to a realizable deadlock.

Static Techniques.

Static techniques based on dataflow analysis either use dataflow rules to compute lock-order
graphs [12, 26] or examine well-known code patterns [5, 25] to detect deadlocks. Naik et al.
present an interesting combination of different kinds of static analyses to approximate six
necessary conditions for deadlock [24]. Most static techniques focus on identifying dead-
locks within a given closed program, while in [24], the authors close a given open program
(the library) by manually constructing a harness for that program. In [28] the author an-
alyzes the entire Java library, and uses a coarser level of granularity in lock-order graph
construction.

Deadlock Detection for Libraries.

As mentioned previously, deadlock analysis for concurrent libraries was first introduced by
Williams et al. [30] for analyzing Java libraries. Therein, the authors use types to approx-
imate the may-alias relation across nodes in the lock-order graphs for a library, and reduce
checking existence of potential deadlocks to cycle detection. Our approach is inspired by
this work and seeks to solve the very same problem under similar assumptions. Our distinct
contributions lie in the use of aliasing information in the library. As Williams et al. rightly
point out, there is an overwhelming amount of aliasing possible. Therefore, we use pruning
as well as symbolic encoding of the aliasing patterns. Our use of subsumption ensures that
a tiny fraction of the exponentially many alias patterns are actually explored, and doing so
clearly reduces the number of false positives without the use of unsound filtering heuristics.
The use of aliasing pattern subsumption also ensures that the final deadlock patterns can be
inverted to yield statically enforceable interface contracts.

We introduced symbolic techniques for deadlockability analysis in [10]. In this paper,
we extend this methodology to reason about deadlocks in libraries that employ signaling-
based synchronization primitives such as wait-notify in Java. We formulate a generalized
nested monitor rule to identify code patterns that can lead to a deadlock, and provide static
techniques to detect them. Finally, we enable symbolic reasoning using SMT solvers for this
more general case, and present the required encoding and algorithms.

9.2 Conclusions and Future Work

The techniques presented thus far identify patterns of aliasing between the parameters of
concurrent library methods that may lead to a deadlock. We use these patterns to synthesize
interface contracts on the library methods, which can then be either used by developers when
writing the client code, or by analysis tools to automate deadlock detection in the client.
Synchronization primitives such as locks and monitors used for enforcing mutual ex-
clusion are the most common source of deadlocks. Hence, the main thrust of this paper is
on detecting deadlocks based on cyclic dependencies in the acquisitions of such (lock and
monitor) variables. Likewise, in our current implementation, our tool is limited to predicting
such deadlocks. Moreover, as we have focused on the analysis of Java programs, we assume
that the monitors are re-entrant. In this paper, we present a technique to analyze deadlocks
in libraries that use signaling-based synchronization with the help of wait-notify state-
ments. Validating this extension with experimental results remains an important part of the
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future work. We would also like to incorporate reasoning about libraries that use (counting)
semaphores, and locks with arbitrary re-entrancy models in the future.

For control-flow graphs of libraries that use recursive types, we artificially bound the
size of the resulting access expressions, which may lead to a deadlock being missed when
analyzing a scenario involving multiple concurrent threads (where the number of threads ex-
ceeds this artificial bound on the size). However, since deadlocks involving more than three
threads are extremely rare in practice, such artificial bounds do not impact the effectiveness
of our tool in identifying real deadlocks.

While the number of false positives generated by our tool is low, cases such as guarded
cycles, i.e., cycles that are infeasible as each entry node in the cycle is protected by a com-
mon lock [6], are not currently handled. Dealing with newer features of the Java language
such as generics, and Java’s concurrency library (java.util.concurrent) that uses con-
structs similar to the pthread library is a challenge. The automatic identification of unique
scenarios from the interface contracts generated by our current implementation, as well as
the static analysis that checks/enforces the derived interface contracts on real client code (as
described in Sec. 7), will be completed as part of future work.
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Appendix: Unexamined Alias Patterns

In this appendix, we formally justify the use of a Boolean encoding along with SAT/SMT
solvers to perform the symbolic enumeration of unexamined alias patterns. Specifically, we
justify the use of SAT to test for unexamined patterns in line 6 of Algorithm 4 by showing
that the underlying problem of detecting unexamined alias patterns is NP-complete. Let G :
(N1,E1) and G; : (N, E») be two graphs. An aliasing pattern is a binary relation o C Ny X N
between the nodes of G| and G,. Recall that the execution of our algorithm for symbolic
enumeration of “interesting” aliasing patterns yields the set .# (set of aliasing patterns that
are maximally safe) and the set & (set of aliasing patterns that are minimally unsafe). Also
recall that in the set ., maximally safe patterns are obtained by adding aliases to safe
patterns as long as they do not cause deadlocks (cf. line 7 in Algo. 4). Similarly, minimally
unsafe patterns are added to & by removing pairs of aliases from a deadlock causing pattern
until no more can be removed (cf. line 14 in Algo. 4).
We say that a pattern « is unexamined w.r.t &, 7 iff

(VS,’EyOl,@S,)AND(VD,‘E@D,’QO[).

We now consider the problem AnyUnexaminedPatterns as below:

Inputs: (G1,G2,.7,9)
Output: YES, iff 3o C N x N unexamined w.r.t
. 9.

NO, otherwise.

Theorem A AnyUnexaminedPatterns is NP-complete.

Proof Membership in NP is straightforward. An aliasing pattern & claimed to be unexam-
ined can be checked by iterating over the aliasing patterns in .% and &, and checking (in
polynomial time) for the subset relation.

We prove NP-hardness by reduction from the CNF satisfiability problem. Let V =
{x1,...,x,} be a set of Boolean-valued variables and ¢ = {C},...,C,} be a set of dis-
junctive clauses over literals of the form x; or —x;. Corresponding to this instance of SAT,
we create an instance (G|, G2,.%, Z) of the AnyUnexaminedPatterns problem.

Consider a graph G consisting of n vertices, each labeled with a variable in V. Consider
a graph G consisting of two vertices labelled frue and false, respectively. Informally, alias-
ing between the node labeled x; in G| and a node in G, can be interpreted as an assignment
of true or false to x;. We now design the sets .’ and Z so that any unexamined aliasing
pattern « has the following properties:

1. For each x;, exactly one tuple in the set {(x;,frue), (x;, false)} belongs to . In other
words, & represents an assignment of truth values to variables in V.
2. The assignment represented by « is a solution to the original SAT problem.

We define the set . as {Ay,...,A;,...,A,}, where
At (V—={x;}) x {true, false} .

Intuitively, each A; represents an aliasing pattern in which the x; variable is missing, and
all other variables have both the true and false value assigned. Clearly, any unexamined
pattern that is a subset of any A; does not have a truth-value assigned to the variable x;, and
hence cannot represent a valid assignment of truth values to the original SAT problem.
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We define the set & as a union of two sets B and 7. The set B is defined as {By,...,By},
where:

B;: {(xi,true), (x;, false)}.

Intuitively, any aliasing pattern ¢ that is a superset of some B; cannot represent a valid truth
value assignment to the original SAT instance, as it would contain conflicting assignments
of truth values to the variable x;.

The set T is defined in terms of the clauses C; € . T ={Th,..., T}, wherein T; corre-
sponds to the i’ clause C; as follows:

J

xj,true)}  —x; €C;

Intuitively, any aliasing pattern ¢ that is a superset of 7; cannot satisfy the clause C; (i.e.,
C; = false). Hence, such an o cannot represent a solution to the SAT problem. Combining
Band T, any « that is the superset of any aliasing pattern D; € &, thus, cannot represent a
solution to the original SAT problem.

To summarize, corresponding to each SAT instance (V,C), we construct an instance of
the AnyUnexaminedPatterns problem with

< {Ay,..., Ay}, and, 2: {By,...,B,} U{Ty,..., Ty}

In order to complete the proof, we show that there is a satisfying assignment to the
original problem if and only if there is an unexamined aliasing pattern.

Let u : {x1,...,x,} —> {true,false} be any satisfying solution to the original problem.
We construct a pattern o that maps x; to true if i (x;) = true and to false otherwise. We now
show that o is an unexamined aliasing pattern. It is easy to see that a Z A;, since o contains
at least one of (x;,true) or (x;, false). We can also show that B; Z o since o contains only
consistent assignments for each variable x;. Similarly, 7; Z o, or else the corresponding
clause C; is not satisfied by «. Therefore ¢t is an unexamined aliasing pattern. Conversely, we
can demonstrate that any unexamined aliasing pattern « that can be discovered corresponds
to a satisfying truth assignment. This shows that the problem AnyUnexaminedPattern can be
obtained as a reduction from CNF-SAT, and is thus NP-complete.



