Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Numerically-aided Deductive Safety Proof for
a Powertrain Control System

Nikos Aréchiga®!', James Kapinski®, Jyotirmoy V. Deshmukh®,
André Platzer® and Bruce Krogh®

& Carnegie Mellon University, 5000 Forbes Ave Pittsburgh, PA, USA
b Toyota Technical Center, 1630 W. 186th, Gardena, CA, USA

Abstract

The use of deductive techniques, such as theorem provers, has several advantages in safety verification of
hybrid systems. There is often a gap, however, between the type of assistance that a theorem prover requires
to make progress on a proof task and the assistance that a system designer is able to provide. To address this
deficiency we present an extension to the deductive verification framework of differential dynamic logic that
allows the theorem prover KeYmaera to locally reason about behaviors by leveraging forward invariant sets
provided by external methods, such as numerical techniques and designer insights. Our key contribution is
a new inference rule, the forward invariant cut rule, introduced into the proof calculus of KeYmaera. We
demonstrate the cut rule in action on an example involving an automotive powertrain control systems, in
which we make use of a simulation-driven numerical technique to compute a local barrier function.

1 Introduction

Most cyberphysical systems are hybrid in nature, i.e., have both continuous state
evolution governed by differential equations and discrete mode transitions. Unfortu-
nately, the problem of verifying safety properties for hybrid systems is undecidable
[6], and most techniques that are used to verify software are not directly applicable.
Many approaches to hybrid system verification focus on creating an overapproxi-
mation of the set of system states reachable over a fixed time horizon [9],[3],[4],[2].
While these approaches enjoy a high degree of automation, they are restricted in
scope and scalability. An alternative is to employ deductive techniques that attempt
to construct a symbolic proof of safety using a semi-interactive theorem prover [10].
Unlike reachable-set computation techniques, theorem provers can handle nonlinear
dynamics directly, without introducing approximation artifacts. Further, theorem
provers can handle proof tasks that involve symbolic parameters.

Safety verification of hybrid systems via theorem proving may incorporate hu-
man insight in the form of a safety certificate, i.e., a symbolic expression representing

1 This work partially supported by the National Science Foundation under Grant NSF EXPEDITION
CNS-0926181.

©2015 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

ARECHIGA, KAPINSKI, DESHMUKH, PLATZER, KROGH.

a set containing all reachable states from a given initial set, while excluding unsafe
states [1,10]. However, a designer usually has better insight about local behaviors in
different operating regimes rather than overarching knowledge about the entire sys-
tem. In [8], we demonstrated a numerical technique for discovering local invariants.
This technique can be used to search for local invariants in specific regions of inter-
est. In contrast to previous work focused on obtaining a global safety certificate,
our approach encourages local reasoning and lazy construction of such certificates.

To support local reasoning, we introduce a new proof rule called the forward
tnvariant cut rule in the calculus of the theorem prover KeYmaera. This rule
is similar to an inductive invariant; given a region of operation and a proposed
local safety certificate (in the form of a forward invariant), the rule allows us to
decompose the overall proof into three proof obligations: (1) a proof of invariance
of the proposed certificate, (2) a proof that the local certificate guarantees safety,
and (3) a proof of safety of everything excluding the behaviors associated with the
region pertaining to the local certificate.

We demonstrate this rule in a case study on safety verification for a powertrain
control system. This system is a simplified model of a control system responsible
for maintaining the air-to-fuel (A/F) ratio in a gasoline engine near an optimal
setpoint. We describe the overall proof, but primarily describe the role of the
forward invariant cut rule to prove that the A/F ratio remains within 10% of the
optimal setpoint in KeYmaera.

2 Hybrid systems and hybrid programs

A hybrid dynamical system consists of a set of continuous-valued state variables x
that take values from a domain X C R™ and a discrete-valued state variable ¢ (also
known as a mode) taken from a finite set (). The system evolves in continuous or
discrete time, and the configuration of a hybrid system at time ¢ can be described
by the values of its continuous and discrete state variables. In mode ¢, the evolu-
tion of the continuous-valued state variables is typically described using ordinary
differential equations (ODEs) of the form x(t) = f,(x(¢)), where f; is a function
from X to X. Though hybrid systems can have external inputs, here, we consider
only autonomous systems, i.e., systems in which all transitions depend only on the
system states. The state-dependent conditions that allow the system to transition
from one discrete state to another (possibly same) discrete state are called guards.

While hybrid automata are often a convenient modeling formalism for such sys-
tems, here we use the hybrid programs notation to facilitate the use of the KeY-
maera theorem prover, the workhorse for our deductive approach. To specify hybrid
programs and specifications, KeYmaera uses the formalism of differential dynamic
logic? denoted by dL .

2.1 The logic dC
A hybrid program is specified by the grammar
a,fu=x=0|x=x|{2]=01,...,2, =0,&H} |TH |aUB | ;8| a* (1)

2 The syntax and semantics of d£ are described in detail in [10]; we provide only a minimal overview here.

2

ARECHIGA, KAPINSKI, DESHMUKH, PLATZER, KROGH.

where «, 8 are hybrid programs, 6,01,...,60, are terms, and H is a logical formula.
The program x := 6 means that x is assigned the value of the term 6. The program
T = % means that x is nondeterministically assigned an arbitrary real value. The
program {x} = 01, ...,x] = 0,&H} means that the x; variables evolve continuously
for some duration, with derivatives 6; subject to the constraint that the values taken
by the x; variables satisfy H during the entire flow. The hybrid program ?H behaves
as a skip if the logical formula H is true, and as an abort otherwise. The rest follows
notation similar to that for regular expressions, U denotes nondeterministic choice,
; denotes sequential composition, and * denotes arbitrary repetition. The formulas
of dL are described by the grammar:

=01 =060 >0 0[dpNY|dVU][P—= 3 |[a]d] () (2)

where ¢, ¥ are formulas of dL , 01, 05 are terms, and « is a hybrid program. The
box modality [a]¢ means that ¢ holds after all traces of the hybrid program «a, and
() ¢ means that ¢ holds after some execution of hybrid program a.

3 Safety verification with the forward invariant cut rule

The safety verification problem. The safety verification problem is to decide
whether the state of a hybrid program « is always contained within a given safe set
S when starting from a designated initial set I (i.e., to decide if I — [a*]5).

We say that a set is initialized if it includes the initial set, safe if it excludes
the unsafe set, and invariant if whenever a system behavior enters it, the behavior
remains in the set for all future time. A global safety certificate is an initialized,
invariant and safe set. Arguments with safety certificates are captured in d£ using
the invariant proof rule, where G is a global safety certificate:

I-G G—loJG G—=S
I — [a*]S (3)

The general task of finding a global safety certificate is difficult. In this work,
we instead use knowledge of the system structure to propose sets that are invariant
and safe, but not necessarily initialized, and leverage them in the proof procedure.
We call such sets local safety certificates.

The forward invariant cut rule. A cut in a logical proof allows introducing a
lemma. We introduce a new cut rule that, in our experience, simplifies the proof
procedure by leveraging knowledge of local invariance properties. The following
proof rule asserts that if a set C' C I is locally invariant (C' — [a|C) and safe
(C — S), the remaining conditions (I A ~C') can be separately addressed to prove
safety. We remark that we can prove that this proof rule is sound, but omit the
proof for brevity.

Rule 3.1 (Forward Invariant Cut Rule)

IA—C = [(;7-0)]S C—[a]C C =S)
=[S (4)

We note that the first branch in (3) concerns a global invariant set G' that must
hold for all initial states I, but the forward invariant cut set C' need not hold for

3

ARECHIGA, KAPINSKI, DESHMUKH, PLATZER, KROGH.

all initial states I. Thus, the first branch in (4) corresponds to the states in I that
are not included in C.

Numerical methods to obtain forward invariants. We briefly mention some
existing techniques to generate safe forward invariant sets. In the hybrid systems
community, barrier certificates have been proposed as a Lyapunov-like analysis tech-
nique to prove that starting from an initial set of states Xy, no system trajectory
ever enters an unsafe set U [11]. To discover barrier certificates, we employ a modi-
fication of a technique from [12], which uses concrete system executions to generate
a series of candidate barrier functions. Our technique, which is based on [8], uses
concrete executions to generate a set of linear constraints. The linear constraints
are used to construct the series of candidates. The final candidate is verified using
a satisfiability modulo theories (SMT) solver that is capable of handling nonlinear
theories over the reals, dReal [5].

4 Engine Fuel Control Case Study

Model. We present a case study involving a hybrid system representing an automo-
tive fuel control system. Environmental concerns and government legislation require
that the fuel economy be maximized and the exhaust gas emissions be minimized.
At the ideal air-to-fuel (A/F) ratio, also known as the stoichiometric ratio, both
quantities are optimized. We study an automotive control system whose purpose is
to accurately regulate the A/F ratio.

The system dynamics and parameters were derived from a published model [7]
and then simplified, as in [8]. The model consists of a simplified version of the
physics of engine subsystems responsible for air intake and A /F ratio measurement,
along with a computer control system tasked with regulating the A/F ratio. The
objective of the controller is to maintain the A/F ratio within 10% of the nominal
operating conditions. The experiment that we model involves an engine running at a
fixed speed. The controller has two modes of operation: (1) a recovery mode, which
controls fuel in an open-loop manner, i.e., with only feedforward control action,
where the system runs for at most 8ms, and (2) a normal run mode, which uses
feedback control to regulate the A/F ratio.

The controller measures both the air flow through the air-intake manifold, which
it uses to estimate the air pressure in the manifold, and the oxygen content of
the exhaust gas, which it uses to compute the A/F ratio. The recovery mode
represents the behavior of the controller when recovering from a sensor fault (e.g.,
aberrant sensor readings or environmental conditions that cause suspicion of the
sensor readings). During the recovery mode, the controller has no access to oxygen
sensor measurements and must operate in a feedforward manner (i.e., using only
the manifold air flow rate). The normal mode is the typical mode of operation,
where the oxygen sensor measurements are used for feedback control.

Algorithm 1 is a hybrid program representing this system?®. The ODEs rep-
resenting the continuous dynamics in each mode and the model parameters are
omitted for brevity, but they can be found in [8]. The state variables p, 7, pest, and i
represent the manifold pressure, the ratio between actual air-fuel ratio and the sto-
ichiometric value, the controller estimate of the manifold pressure, and the internal

3 Note that apparent redundancies appear in the hybrid program due to the explicit conversion from the
representation of the system as a hybrid automaton to a hybrid program.

4

ARECHIGA, KAPINSKI, DESHMUKH, PLATZER, KROGH.

Algorithm 1: A d£ model of a closed-loop fuel control system

1 EFC=1— [(m1 Umg Usis2 Us{y 2y fail Umfm‘l)*]s

2 I= ((tr=0) A (M = recovery) N (pest =0) A (i=0) A
(-1073<p<1073) A (—1073 <r <1073))

3 m; = (?M = recovery; 7T < 0.008;

{301.305.305.(—0.86 < 01 < 0.74) A (—0.17 < f5 < 0.18) A (—0.81 < £3 < 0.68)
AN =) N @' =L) N (ply=10) AN (i'=0) A (7' =1) & 7 <0.008})
4 s1»2 = (?M = recovery; 7T > 0.008;
M = normal;)
5 m2 = (?M = normal;
{@ =1fp) A" =F) N Dot = Fpe) N (= Fi)
& (—0.02 < p<0.02) A (—0.02 <7 <0.02) A
(—0.02 < pest < 0.02) A (—0.02 < i < 0.02)})
S{1,2}—~fail = (?7r < —0.1Vr >0.1;

[

M = fail;)

7 Mfeii = (?7r < —0.1Vr > 0.1;
M := fail)

8 S = M # fail

state of the PI controller; these variables have all been translated so that the equi-
librium point coincides with the origin. In the recovery mode, the continuous-time
state x is the tuple (p,#,Pest?,7). The additional state variable in the recovery
mode represents the state of a timer that evolves according to the ODE 7 = 1.
In the normal mode, the state is given by (p, 7, Pest, i) We assume the system is
within 1.0% of the nominal value at the initialization of the recovery mode. This
represents the case where the system was previously in a mode of operation that
accurately regulated the A/F ratio to the desired setpoint. A domain of interest
for the state variables is given by ||x||cc < 0.2, which contains the set of reasonable
values for the state variables.

Safety proof using forward invariant cut. The verification goal is to ensure
that in the given experimental setting, the system always remains within 10% of
the nominal A /F ratio after a fixed recovery time of 8.0 ms has passed. We describe
an interactive proof using KeYmaera. To assist the proof procedure, we generated
a barrier function, B : R” — R, using the numeric technique outlined in Sec. 3. We
then use the set enclosed by the barrier, {x|B(x) < 0}, to formulate the forward
invariant cut:

C = (M = normal) A\ (B(x) <0). (5)
We apply the forward invariant cut inference rule (4), producing three proof obli-
gations that KeYmaera has to discharge.
Obligation 1: C — [a]C. From the definition of C, the hybrid programs m; and
$1.s2 may be ignored, as both have the hybrid program ?M = recovery as their first
item, which is inconsistent with C. Thus, this obligation only needs to be proved
for the programs mg, s{1 2} fait, and mge;. To discharge this obligation for the
program mo we use the barrier certificate rule that we have added to KeYmaera's
proof calculus, below.

I=(Bx)<0) (Bx)=0-=% fx< (B(x)<0) =3 (6)
I = [{a' = f(x)}]S

To apply the barrier certificate rule, we use the initial states I defined in Algorithm
1 and substitute S with C'. The first and the third proof obligations in the barrier

5

ARECHIGA, KAPINSKI, DESHMUKH, PLATZER, KROGH.

certificate rule are trivially satisfied due to our choice of the barrier function and
the nature of the forward invariant cut. For the middle proof obligation KeYmaera
asks dReal if the query (B(x) =0) A (‘g—f « frnormal(X) > —€) is unsatisfiable.

To discharge the proof obligation for mg, sf1 2} fait, KeYmaera needs to show
that if B(x) < 0 holds, either of these programs cannot invalidate C' by transitioning
to mode fail. It proves this by showing that the set B(x) < 0 is a subset of the
safe set using dReal.

Obligation 2: C' — S. This obligation is trivial as S requires the mode to anything
but fail, while C says that the mode is normal mode.

Obligation 3: I A —C — [(o; ?7-C)*]S. Here we introduce C'1, which is invariant
for all initial conditions in I A —C.

Cl= (M # fail) A (0 <7 < 0.008) A (& € Sreacn) (7)

Here S,cqch is an overapproximation of reachable sets by using upper and lower
bounds on p and 7 computed using dReal. There is one additional barrier certificate
application to show that the normal mode, when starting in this set, lands within the
barrier certificate and hence also respects this invariant. This requires a derivative
negativity argument, which KeYmaera resolves by querying dReal. The rest is
handled by KeYmaera’s standard deduction procedures.

Conclusion. We demonstrated how to leverage local knowledge of the powertrain
control system to propose a set that is invariant and safe. We used the set to apply
the forward invariant cut rule to prove a safety property for the system.

References

[1] Bernhard Beckert, Reiner Hahnle, and Peter H Schmitt. Verification of object-oriented software: The
KeY approach. Springer-Verlag, 2007.

[2] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Flow*: An Analyzer for Non-Linear Hybrid
Systems. In CAV, 2013.

[3] g%ooréan Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. STTT, 10(3):263-279,

[4] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verification of hybrid
systems. In CAV, pages 379-395, 2011.

[5] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. é-complete decision procedures for satisfiability
over the reals. In J. Automated Reasoning, pages 286—300, 2012.

[6] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s Decidable about
Hybrid Automata? . JCSS, 57(1):94 — 124, 1998.

[7] Xiaoqging Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Powertrain
Control Verification Benchmark. In Hybrid Systems: Computation and Control, 2014.

[8] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Aréchiga. Simulation-
%Bilcélled lyapunov analysis for hybrid dynamical systems. In Hybrid Systems: Computation and Control,

[9] James Kapinski and Bruce H Krogh. Verifying asymptotic bounds for discrete-time sliding mode
systems with disturbance inputs. In ACC, pages 2852-2857, 2004.

[10] André Platzer. Logical Analysis of Hybrid Systems. Springer, 2010.

[11] Stephen Prajna. Optimization-based methods for monlinear and hybrid systems verification. PhD
thesis, California Institute of Technology, Caltech, Pasadena, CA, USA, 2005.

[12] U. Topcu, P. Seiler, and A. Packard. Local stability analysis using simulations and sum-of-squares
programming. Automatica, 44:2669-2675, 2008.

	Introduction
	Hybrid systems and hybrid programs
	The logic dL

	Safety verification with the forward invariant cut rule
	Engine Fuel Control Case Study
	References

