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Abstract. Verifying correctness of programs operating on data struc-
tures has become an integral part of software verification. A method is a
program that acts on an input data structure (modeled as a graph) and
produces an output data structure. The parameterized correctness prob-
lem for such methods can be defined as follows: Given a method and a
property of the input graphs, we wish to verify that for all input graphs,
parameterized by their size, the output graphs also satisfy the property.
We present an automated approach to verify that a given method pre-

serves a given property for a large class of methods. Examples include
reversals of linked lists, insertion, deletion and iterative modification of
nodes in directed graphs. Our approach draws on machinery from au-
tomata theory and temporal logic. For a useful class of data structures
and properties, our solution is polynomial in the size of the method and
size of the property specification.
Keywords: Parameterized correctness, Data structures.

1 Introduction

Data structures are the basic building blocks for all large software systems. Such
systems typically manipulate arbitrarily large data structures using specialized
programs known as methods. An incorrect implementation of a method can lead
to failure of the entire software system. Consequently, reasoning about methods
operating on data structures is a significant part of the software verification
effort.

We investigate the problem of automatic verification of methods operating
on data structures, parameterized by their size. Given a method M, operating
on an input data structure modeled as a graph Gi, and a property ϕ of the
graph, we wish to verify that: if ϕ holds for the input graph Gi, then ϕ also
holds for the graph Go obtained by the action of M on Gi, i.e., M preserves ϕ.
For instance, given a method that adds a node to an acyclic singly linked list, we
would like to verify that the output data structure is also a well formed acyclic
singly linked list. In contrast to the standard testing approach for validation of

⋆ This research is supported in part by NSF grants CCR-009-8141 & ITR-CCR-020-
5483, and SRC Contract No. 2002-TJ-1026



such methods, which ensures correctness for a few candidate data structures up
to a bounded size, we would like to verify that methods exhibit correct behavior
for arbitrarily large input data structures.

We provide an automatic procedure based on machinery from automata the-
ory and temporal logic to establish parameterized correctness. Our approach is
applicable to a broad spectrum of methods that perform updates on dynamically
created data structures. For example, our technique can establish correctness for
methods such as: reversal of singly linked lists; insertion or deletion of nodes in
general graphs (such as linked lists, k-ary trees, directed acyclic graphs, etc.);
swapping of nodes within a bounded distance in any general graph; and iterative
modification of data values at nodes in any general graph.

In our technique the property to be verified is generally specified using a
(tree) automaton running on graphs. Alternatively, we can use temporal logic
as the specification language for properties. Thus, we can specify a rich class of
properties, including, but not limited to:

1. Connectivity properties such as: reachability of a target node from a source
node (where the nodes are specified by pointers); reachability of a given data
value from a given node; existence of cycles; existence of sharing (two nodes
point to a common node); treeness (each non-root node has a unique parent);
list-ness; and checking whether two nodes are fully connected (either node
is reachable from the other using the next pointer fields).

2. Data-dependent properties such as sortedness (i.e., all nodes in a given graph
obey a certain sorting discipline on data values).

3. Properties of dynamically allocated storage such as checking null pointer
dereferences and absence of dangling pointers.

We refer to the automaton specifying the property as the property automaton,
denoted by Aϕ. Similarly, the automaton specifying the negation of the property
is specified as A¬ϕ.

The method (M) to be verified is algorithmically translated into an automa-
ton. We refer to this automaton as the method automaton, denoted by AM. AM

operates on a pair of input-output graphs; it simulates the action of M on the
input graph checking whether the output matches the output graph. It accepts
only those pairs of graphs which represent a valid operation of the method. The
pair of input-output graphs is represented using a single composite graph.

The central step is to use the method automaton and the property automata
to obtain a composite automaton (denoted by Ac) that accepts counterexamples
to the correct operation of the method. On a given composite graph, Ac accepts
iff: the property holds for the input, the output conforms to a valid action of the
method on the input, and the property fails for the output. Thus if a graph is
accepted by Ac, it represents a witness to the failure of the method. Checking
if such a graph exists is equivalent to checking the language accepted by Ac for
nonemptiness.

Formally, we obtain the composite product automaton Ac, by the product
of Aϕ, AM and A¬ϕ. Ac accepts a graph Gc representing an input-output pair
(Gi, Go), iff Go = M(Gi) and ϕ(Gi) and ¬ϕ(Go) are true.

2



In the above approach, correctness properties are specified by the user, us-
ing automata as the specification language. In a variant, but closely related
approach, we use a suitable temporal logic in lieu of automata to specify the
properties of interest. Temporal logics such as CTL often allow an easier spec-
ification of properties. The property to be verified is specified as a formula fϕ

in the given logic. The method automaton is translated to a formula fM. The
parameterized correctness problem reduces to checking the satisfiability of the
conjunction: fc = fϕ(Gi) ∧ fM ∧ f¬ϕ(Go).

In practice, we provide a simple programming language for describing meth-
ods. Our programming language is a useful subset of most modern day high level
languages. We can efficiently compile any program written in our language into
a method automaton. The time complexity of our technique is polynomial in the
size of the method and property automata.

The outline of the paper is as follows: In Section 2, we provide the preliminary
background, the problem definition and the scope of our technique. Section 3
discusses the syntax and semantics of our programming language. The algorithm
for translation of a method into a method automaton is given in Section 4. We
briefly examine the specification of properties as automata in Section 5. We
present an application in Section 6 and discuss a variant approach using temporal
logic in Section 7. The complexity analysis is discussed in Section 8 and finally,
a summary of our paper with related work is given in Section 9.

2 Preliminaries

A data structure can be readily modeled as a directed graph G(V,E) by estab-
lishing a one to one correspondence between the nodes of the data structure and
the vertices (V ) of G, and similarly between links of the data structure and the
edges (E) of G. Each node of the data structure is a vertex v ∈ V in G and a
pointer from a source node (≡ vertex vi) to a destination node (≡ vertex vj)
represents a directed edge (vi, vj) ∈ E. The data content at each node of the
data structure is modeled as a labelling function L : V → D, where D is the
domain of data values. For simplicity, we consider graphs with only a bounded
out-degree, where the out-degree of a graph is defined as the maximum number
of outgoing edges from a vertex in the graph.

A method M is a program that has one or more data structures as input and
produces an output data structure which is a mutation of the input. A property
ϕ of a graph G(V,E) is a predicate on the labeled set of vertices and edges of the
graph. The property ϕ is often referred to as the shape of a graph. Conversely, a
shape ϕ is identified with a family of graphs for which the property ϕ is true. For
instance, graphs satisfying the property that every non-root vertex has a unique
incident edge and the root vertex has no incident edges, are said to constitute
the family of trees. Properties of graphs can be conveniently specified as tree
automata (See Section 5). We now revisit some important definitions for tree
automata operating on trees with out-degree k (i.e., a k-ary tree).
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2.1 Tree Automata

A finite tree automaton over an infinite k-ary tree is a tuple A = (Σ,Q, δ, q0, Φ)
where:

Σ is the finite, nonempty input alphabet labeling the nodes of the tree,
Q is the finite, nonempty set of states of the automaton,
δ : Q×Σ → 2Q×...×Q(k times) is the nondeterministic transition function,
q0 ∈ Q is the start state of the automaton, and
Φ is the acceptance condition.

In our technique, it is convenient to use the parity acceptance condition.
The parity acceptance condition Φ = (Φ0, Φ1, . . . Φm) is expressed in terms of
sequence of mutually disjoint subsets of Q. If π = q0, . . . , qi, . . . is a finite or infi-
nite sequence of automaton states qi, then we say that π satisfies the acceptance
condition if the following condition is satisfied: there exists an even number r,
0 < r < m, such that some state in Φr appears infinitely often in π and each of
the states in the set

⋃
r<j≤m Φj appears only finitely often in π. The parity con-

dition is often alternately expressed as follows: A sequence of states π satisfies
the parity acceptance condition, when the states of the automaton are colored
with a set of colors {c0, . . . , cm}, and the maximal index of the color appearing
infinitely often in π is even. For the rest of this paper, we implicitly assume the
parity acceptance condition for all tree automata used.

A tree automaton can be meaningfully defined to run on graphs. Essentially
a run ρ of a tree automaton on a Σ-labeled input graph is an annotation of the
graph with the automaton states compatible with the transition relation of the
automaton. Not every automaton has a run on every graph, but if an automaton
accepts some tree, it accepts some “small”, finite graph, [EJ ’88,Em ’85]. Note
that when k = 1, the tree automaton can be specialized to a string automaton.

2.2 Problem definition

We define a parameterized family of graphs as the set G = {G|ϕ(G) is true},
where the graphs are parameterized by their size. For all input graphs G ∈ G and
a method M operating on G, we wish to verify if the resultant graphs M(G)
satisfy the property ϕ. Formally, we wish to verify the correctness assertion:
〈ϕ(Gi)〉M〈ϕ(Go)〉.

2.3 Scope

Most methods that operate on data structures use a cursor or an iterator to
traverse the data structure. Methods which have multiple cursors are analogous
to multi-head automata. Unfortunately, the parameterized correctness problem
for such methods is undecidable, since the nonemptiness problem of a k-head
automaton with k ≥ 2 is undecidable [Rose ’65,NSV ’04]. Thus, we focus on
methods which can be simulated by a single head automaton. Such methods can
have multiple cursors, which are constrained to remain within some bounded
distance at all times.
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Methods can also be characterized by the way they access and mutate the
data structure. Some methods perform only a bounded number of destructive

passes over the data structure. We define a destructive pass as a single traversal
of the data structure involving at least one update to some node of the data
structure. It is difficult to reason about the parameterized correctness of meth-
ods which perform an unbounded number of destructive passes over the data
structure, since their operation simulates a linear bounded automaton (LBA).
The nonemptiness problem of an LBA is undecidable [HU ’79]. Thus, our work
focusses on methods which can only perform a bounded number of destructive
passes over the data structure.

It is stipulated that the method terminates1 and performs only a bounded
number of destructive passes over the data structure. We also assume that the
domain D of data values is finite.

2.4 Solution framework

In our approach, we use automata to check if a given method M preserves a
property ϕ. Our technique involves determining the existence of a pair of input-
output graphs (Gi, Go) such that:

1. the input graph Gi satisfies ϕ or ϕ(Gi) is true (i.e., the input is well formed),
2. the output graph Go does not satisfy ϕ or ¬ϕ(Go) is true and
3. Go represents a valid action of M on Gi or Go = M(Gi) is true.

Formally, a property ϕ to be verified is specified as a tree automaton Aϕ, which
accepts the set of all graphs which satisfy ϕ. We are given a similar automaton
A¬ϕ, to accept all graphs that satisfy ¬ϕ. The method M is algorithmically
translated into a method automaton AM, which checks whether Go = M(Gi).
The input-output graph pair is represented using a composite graph, denoted by
Gc.

The composite graph Gc(V,E) has each vertex v ∈ V and each edge e ∈ E

annotated with one of three colors black, green or red. The color black represents
part of the input graph that remains the same, color red represents deleted nodes
or edges, and the color green represents new nodes or edges. Each vertex of the
composite graph is labeled with an ordered pair of labels (di, do) (di, do ∈ D) to
model the old and the new data values at the corresponding node in the data
structure. The input graph Gi, can be extracted from Gc by considering the
subgraph composed of vertices and edges colored red or black and the labels di.
Similarly, the output graph Go can be extracted by considering the set of nodes
and edges labeled black or green and the labels do. We define projection operators
Γi and Γo to obtain the graphs Gi and Go respectively, from the composite graph
Gc. The method automaton AM runs on such composite graphs and accepts a
composite graph Gc iff Gi = Γi(Gc) Go = Γo(Gc) and Go = M(Gi). Similarly,

1 A similar assumption on program termination can be found in techniques such as
shape analysis [Lev-Ami et al.], PALE [MS ’01], and separation logic [ORY ’01],
which implicitly assume the termination of the program being analyzed.
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the property automata Aϕ and A¬ϕ run on composite graphs, and look at the
input or output parts of the composite graph.

Remark: Such an annotated graph can be obtained only if the method performs
a bounded number of destructive passes over the data structure. For our current
discussion, we assume that the method performs a single destructive pass of
the data structure, i.e., the method automaton traverses each node of the data
structure exactly once. We generalize the assumption to handle multiple, but a
bounded number of passes over the data structure, later in Section 4.

Finally, we construct a composite automaton Ac, which is the synchronous
product of A¬ϕ, AM and Aϕ. The product construction for the composite au-
tomaton is defined in standard fashion, [Car ’94]. The number of states of the
composite automaton is proportional to the product of the number of states of
the constituent automata. The composite automaton is empty iff the method
preserves the property. If the automaton is non-empty, then there exists a graph
G which satisfies the property ϕ, but M(G) does not satisfy ϕ. Thus we also
obtain a counterexample which illustrates erroneous behavior of the method.

3 Programming language description

In this section, we define the syntax and semantics of our programming language.
An atomic unit of a data structure is termed as a node. Each node has a data field
and a set of k pointer fields next1, . . ., nextk. We define cursor as a reserved
word for an iterator through a given data structure. Since we focus on methods
which can be mimicked using a single headed automaton, our programming
language supports a single cursor2. If the node being pointed to by the cursor
is n, a bounded window w is defined as a set of all nodes within a fixed distance
from n. The size of the window w, denoted by |w|, is the cardinality of w.
We define head or root as reserved words to indicate start nodes of the data
structure.

We use a C-like syntax for describing methods, and accordingly use the ab-
breviation cursor->field to indicate the corresponding field of a node pointed
to by the cursor. A statement in our programming language can have one of
the forms as show in Table 1.

The sequential composition of two more statements with ; as the composition
operator is called a block statement. For memory related operations, our language
allows deletion of nodes being pointed to by any pointer ptr(6= cursor), using
the delete statement.

Every update to a cursor is preceded by storing the current value of the
cursor in a special variable called prev, which cannot be used on the left hand
side of an assignment statement. The addition of prev enhances the expressive
power of our language by allowing methods to perform operations based on past
value of the cursor. Destructive updates are allowed only within the bounded

2 We can easily extend our approach to handle a fixed number of virtual cursors within
a bounded window.
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window defined by the cursor. When a new node is created, the pointer fields
of the new node are initialized to any value within the current window. The
initialization of the fields of a new node is made before cursor or cursor->nexti

is updated.

Table 1. Programming language syntax

Assignment statement

cursor->data := data-constant;

cursor->nexti := ptra

cursor := ptr;

cursor := new node { data := data-constant;

next1 := ptr;. . .; nextk := ptr;};
cursor->nexti := new node {...};

Conditional statement

if (test-expr) {
block statement;

} else { block statement; }
Loop statement

while (loop-cond) {
loop-body;

update statement; }
Here, the update statement is of the form:
cursor:= ncursor1 when cond1

ncursor2 when cond2

...

ncursork when condk;

Break statement

break;

Null statement

null;

a

ptr represents an allowable pointer expression, which can take one of the following forms:
cursor->nexti1

->nexti2
->. . . nextim

or prev or cursor, where m is bounded by the size of
the window.

In a conditional statement, a test-expr is a boolean expression which either
involves a comparison of the data value of the current node with another data
value or a comparison of two ptr expressions.

A loop statement consists of three parts, a loop condition, the loop body and an
update statement. A loop condition loop-cond, is a boolean expression involving
the comparison of a ptr expression with null3. A method continues executing
the loop as long as the loop condition is true. The loop body is a sequence of two
or more non-loop statements. We do not allow nesting of loops statements, since
this can in general mimic a k-head automaton. At the beginning of each iteration

3 Note that any special termination condition required can always be modeled with
the help of a break statement coupled with a conditional statement inside the loop
body.
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of the loop the values cursor->nexti are cached in special variables ncursori

which cannot be used on the left hand side of an assignment statement.
The cursor can be updated inside a loop statement only using an update

statement. The value of cursor is assigned to ncursori if condi evaluates to
true and condj ∀j < i evaluates to false, where cond1 . . . condk are any boolean
valued expressions. A break statement breaks out from the while loop enclosing
the break statement. If the break statement is not inside a loop body, no action
is taken.

4 Translation into automata

We can mechanically compile any given method in our language into correspond-
ing parts of the method automaton, AM. AM is a k-ary tree automaton running
on graphs. For ease of exposition, we presently assume that each node has a
single successor. We assume that all the statements in the method are labeled
with a unique line number {1, . . . , |M|}, where |M| is the length of M.

AM is of the form (Σ,QM, δM, q0M
, ΦM), where the notation used is similar

to the one described in Section 2.1. The parity acceptance condition ΦM is
specified using two colors {(red = c1), (green = c2)}. States colored green are
accepting states and those colored red are rejecting.

The action of a statement of M is mimicked by a transition of AM. On a
given input graph Gi, the moves of the automaton are completely deterministic
and a run of AM on Gi is unique and well defined. For two different input graphs,
the state of AM after executing the same statement of M may be different. We
use Qj to denote the set of all possible states of AM (for all input graphs) after
executing the statement sj .

A state qj of AM is modeled as a tuple (j, curd, curp, newd, newp), where j

corresponds to the line number of the statement sj , curd is the current data value
of the node being pointed to by the cursor, curp is the value of cursor->next,
newp is 0 if no new node is added at the current cursor position, else it is a
non-zero value indicating the location of new node->next, and newd contains
the data value of the new node that is added. The initial state of the automaton
is denoted by q0M

= (0, 0, 0, 0, 0).
Let θ be a boolean valued expression over the set of program variables. We

say that a state q satisfies θ, denoted by q ² θ, if the valuation of θ over the
components of q is true. (Note that a state q completely encodes the values of
all program variables.). We denote by Qθ the set {q|q ² θ} and Q¬θ, the set
{q|q 2 θ}.

4.1 Algorithm for translation

We now give the algorithm used to populate the transition relation of AM:

1. Let Q be the set of possible states prior to an assignment statement sj . For every
state q ∈ Q, sj is modeled by adding a transition of the form (q, ǫ, q′), where q′

encodes the new data value, the pointer field value or a new node inserted at the
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cursor position by sj . For instance given a state q = (k, curd, curp, newd, newp),
the assignment statement cursor->data:=val is modeled by adding the transition
(q, ǫ, q′), where q′ = (j, val, curp, newd, newp).

2. Let Q be the set of possible states prior to a conditional statement sj . Let φ be
the test expression of sj . Let sk (sm, resp.) be the first statement within the if

(else, resp.) block of the conditional statement. For a conditional statement, we
add transitions of the form: ∀q ∈ Qφ, ∀t ∈ Qk : {(q, ǫ, t)}, and
∀q′ ∈ Q¬φ, ∀t′ ∈ Qm : {(q′, ǫ, t′)}.

3. (a) Let Q denote the set of possible states prior to a loop statement sj . For the
loop statement shown in the left hand column of the table below, we add
transitions shown in the right hand column.
j: while (ψ) { ∀q ∈ Qψ, ∀q′ ∈ Qk : {(q, ǫ, q′)}

k: sk; ∀q ∈ Q¬ψ, ∀q′ ∈ Qm : {(q, ǫ, q′)}
... ∀q ∈ Q

ψ

l , ∀q′ ∈ Qk : {(q, ǫ, q′)}

l: update statement; } ∀q ∈ Q
¬ψ

l , ∀q′ ∈ Qm : {(q, ǫ, q′)}
m: sm;

(b) Suppose a loop body contains the break statement sb. Let the set of possi-
ble states before the break statement be Q. We add transitions of the form:
∀q ∈ Q,∀q′ ∈ Qm : {(q, ǫ, q′)}.

4. A statement sj that alters the current cursor position initializes the window w to
a new cursor position. The state q of AM before the execution of sj encodes the
action of M on the current input node ni. Let τ be a boolean valued expression,
which is true iff the output node in the composite graph no, conforms to M(ni)
and false otherwise. (For details on how the check is performed please refer to the
Appendix.). Let the next node that the automaton reads be n′, with n′

i = Γi(n
′).

Let n′
i->data = d′ and n′

i->next = p′. The next state q′ after execution of sj is q′ =
(k, d′, p′, 0, 0), where k is the line number of the statement following sj in the control
flow graph. The state qrej represents a reject state. Let the set of possible states
prior to sj be Q. We add a set of transitions of the form: ∀q ∈ Qτ : {(q, n′, q′)},
∀q ∈ Q¬τ : {(q, ǫ, qrej)}, and ∀σ ∈ Σ ∪ {ǫ} : {(qrej , σ, qrej)}. Intuitively, if a node
is found in a composite graph such that the input and output parts of the node
do not conform to the action of the method, the automaton rejects that composite
graph.

5. Let Qlast be the set of possible states after executing the last statement of M.
We add transitions of the form: ∀q ∈ Qlast : {(q, ǫ, qacc)}, and ∀σ ∈ Σ ∪ {ǫ} :
{(qacc, σ, qacc)}.

The transition relation computed by the above algorithm is partial and in order
to make it complete, we add transitions (q, ǫ, qrej) for all states q which do not
have a successor. The number of states of the method automaton is bounded
above by O(|M|), since curp, newp range over |w| values; curd, newd range over
D; and |w| and |D| are fixed constants. In practice, the size of the data domain
|D| can be significantly reduced by techniques such as data abstraction. For in-
stance, for a method that searches for a node with a particular data value d,
we can easily abstract the data domain to have just two values, D′ = {0, 1},
where ∀x ∈ D : x 7→ 0 (if x 6= d) and x 7→ 1 (if x = d). Similarly, we can apply
techniques such as reachable state space analysis to further reduce the size of
the automaton. Note that, for a method operating on a tree, the automaton
deterministically chooses a path in the tree, and trivially accepts along all other
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branches.
Remark: Our approach can be extended to handle methods that perform a
bounded number of passes over the input graph. The basic idea is to encode
the changes for each pass in the composite graph. Assuming that we make at
most k destructive passes, the composite graph is represented as a k-tuple,
Gc = (G0, G1, . . . , Gk) with G0 = Gi and Gk = Go. Intuitively, the result
of the jth traversal is encoded as Gj and the automaton can verify that the
graph Gj = M(Gj−1). We use colors {red1, . . . , redk}, {green1, . . . , greenk}
and {black} to define the annotation encoding the kth traversal in the composite
graph. The color redi, (greeni, resp.) represents nodes or edges deleted (added,
resp.) in the ith traversal of the method. Note that these colors are annotations
in the composite graph and not related to the coloring of the automaton states.

5 Property specification

We use automata as the specification language for properties. A property au-
tomaton Aϕ is a finite tree automaton specified as a tuple (Σ,Q, δ, q0, Φ), where
all symbols have the usual meanings as described in Section 2.1. We assume
that the states of the automaton are colored using a coloring function c : Q →
{c0, . . . , ck}.

Existence of a cycle: A rooted directed graph is said to have a cycle if there
exists some path in the graph which visits a node infinitely often. The property
automaton for checking existence of a cycle in a binary graph (maximum out-
degree 2) has the form: Aϕ = (Σ, {q, qf}, δ, q, {c(qf ) = c1, c(q) = c2}), where the
transition relation is given as: δ(q, n) = (qf , qf ) when n = null, δ(q, n) = (q, q)
when n 6= null and δ(qf , n) = (qf , qf ) for all n including null. Intuitively, the
automaton labels every node of the input graph with the state q. The automa-
ton transitions to a final state iff the path is terminating. Thus the automaton
accepts a graph iff there exists a non-terminating path along which q is vis-
ited infinitely often. Note that the automaton for the complement property, i.e.

acyclicity is obtained by simply reversing the coloring of the states.

Reachability of a given data value: Suppose, given a binary tree we wish to de-
termine if there exists a node with a given data value (key) reachable from the
unique root node of the graph. Intuitively, the automaton non-deterministically
guesses a node with the desired value and then checks it. If the desired node is
found, then the automaton transits to a final state for each child node. Formally
the automaton is given as: (Σ, {q, qf}, δ, q, {c(q) = c1, c(qf ) = c2}). The transi-
tion relation is defined as: δ(q, n) = {(q, qf ), (qf , q)} when n->data6= key and
n 6=null; δ(q, n) = (qf , qf ) when n->data = key and ∀n : δ(qf , n) = (qf , qf ).

Sortedness: A linked structure satisfies the sortedness property if within each
bounded window of size two, the value of the current node is smaller (or greater)
than the successor node. An automaton that checks if a list is sorted in ascending
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order rejects the list iff there exists a window such that the data value of the
current node is greater than the data value of the successor node.

6 Application: Insertion in a singly linked list

We wish to make sure that the method InsertNode that inserts a node in an
acyclic singly linked list, preserves acyclicity. Since the underlying data structure
is a linear list, the method automaton and the property automata are string
automata. A representation of the method automaton obtained by the algorithm
in Section 4.1 is shown in Figure 1. In the figure, ψ is the loop condition, φ is
the test expression of the if statement φ=cursor->data == value, and τ is
the boolean expression which is true iff no = M(ni). Qis represent sets of states
of the automaton. A dotted arrow represents an ǫ-transition and a solid line
indicates a normal transition. The states qrej and qacc represent the reject and
accept states respectively.

method InsertNode (value, newValue){
1: cursor := head;

2: while (cursor != null) {
[ncursor := cursor->next]

3: if (cursor->data == value) {
4: cursor->next := new node {

data := newValue;

next := ncursor;};
5: break; }
6: cursor := ncursor when true; } }

The property automaton for checking acyclicity is given as: Aϕ = (Σ, {q, qf},
δ, q, {c(q) = c1, c(qf ) = c2}). The complement automaton A¬ϕ is given by re-
versing the coloring of q and qf . The transition relation for the automaton is
given as: δ(q, n) = q for n 6= null, δ(q, n) = qf for n = null and δ(qf , n) = qf

for all n, including null. The composite automaton can be constructed in the
standard fashion, and calculations show that the resultant automaton is empty,
i.e., the method InsertNode preserves acyclicity.

7 Extensions

In a variant approach, we use a suitable temporal logic in lieu of automata to
specify the properties of interest. In this approach, method automaton AM is
translated to formula fM in the given logic. The property ϕ is specified as a
formula fϕ(Gi). The parameterized correctness problem reduces to checking the
satisfiability of the conjunction: fc = fϕ(Gi) ∧ fM ∧ f¬ϕ(Go). The method M
does not preserve property ϕ, iff fc is satisfiable. Most temporal logics also have
the nice property that the logic is closed under complementation. Thus given a
property ϕ specified as a formula fϕ, the negation of the property is simply the
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formula ¬fϕ. We take a look at two example properties that can be specified
using temporal logic.

Reachability: A node ny is said to be reachable from a node nx if ny can be
reached from nx by using only the next pointer links. Since particular nodes in
the data structure are usually specified as pointers, we are interested in check-
ing reachability of pointer expressions, where x and y are pointers to nodes nx

and ny respectively. We introduce virtual nodes labeled with vx and vy, such
that their next pointers point to nx and ny respectively and then check whether
AG(EXvx ⇒ EFEYvy). Intuitively, this formula checks that for all nodes being
pointed to by vx->next (alias for x), there exists some node ny being pointed
to by vy->next (alias for y) which is reachable from x. (EY (there exists some
past) is a temporal operator in CTL with branching past).

Sharing: A node n in a data structure is called shared if there exist two distinct
nodes, x and y in the graph such that they have n as the common immediate
successor. We say that sharing exists in a graph if there exists a node in the
graph which is shared. The above property (sharing exists) can be specified in
CTL with branching past, as follows:
∃(x, y, n) : (x ≡ EY(n)) ∧ (y ≡EY (n)) ∧ ¬(x ≡ y).

12



8 Complexity analysis

The complexity of testing nonemptiness of the composite automaton Ac, depends
on the sizes of the property automata Aϕ and A¬ϕ, and the method automaton
AM. A method M having |M| lines of code gives rise to an automaton of size
O(|M|) states. The number of states of the composite automaton is proportional
to the product of the number of states of its constituent automata. Hence the
number of states of Ac is linear in the number of states of the property automata
and the size of the method. Since the number of colors used for the parity
condition by the property and method automata is fixed (and typically small),
the number of colors used by the composite automaton is also fixed.

The complexity of checking nonemptiness of a parity tree automaton is poly-
nomial in the number of states [EJ ’91] (for a fixed number of colors in the parity
acceptance condition). Thus, our solution is polynomial in the size of the method
as well as the sizes of the property automata. Note that for linear graphs the
method automaton and property automata can be specialized to string automata
and thus the complexity of our technique is linear.

If we use temporal logic to specify properties, satisfiability of a formula in
the CTL with branching past can be done in time exponential in the size of
the formula [Sch ’02]. We argue that the exponential cost is incurred in the
construction of the tableaux from the formula. If the size of the formula is small,
we can easily bear this penalty. The cost of checking emptiness of the tableau is
still polynomial in the size of the tableau.

9 Conclusions and Related Work

We present an efficient solution to the parameterized correctness problem for
methods operating on linked data structures. In our technique, a method is al-
gorithmically compiled into a method automaton and properties are specified as
tree automata. We construct a composite automaton, from the method automa-
ton and the property automata, for checking if the given method preserves the
given property. The property is not preserved iff the language accepted by the
composite automaton is nonempty. Our technique is polynomial in the size of
the method and the sizes of the property automata. In a variant approach an
appropriate temporal logic can be used for specifying properties.

A key advantage of our approach is that for a broad, useful class of programs
and data structures we provide an efficient algorithmic solution for verifying
safety properties. Since reasoning about parameterized data structures is unde-
cidable in general, we present a solution for methods which are known to ter-
minate for all well-formed inputs. Techniques such as shape analysis [SRW ’99],
pointer assertion logic engine [MS ’01] and separation logic [ORY ’01] make in-
teresting comparison with our approach, since they address a similar genre of
problems.

Shape analysis is a technique for computing shape invariants for programs
by providing over-approximations of structure descriptors at each program point
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using 3-valued logic. In contrast to our technique which provides exact solutions,
shape analysis provides imprecise (albeit conservative) results in double expo-
nential time. In [BRS ’99] the authors discuss a decidable logic Lr for describing
linked data structures. However, their work does not provide a practical algo-
rithm for checking the validity of formulas in this logic and the complexity of
the given decision procedure is high.

Pointer Assertion Logic Engine tool [MS ’01] encodes programs and partial
specifications as formulas of monadic second order logic. Though their approach
can handle a large number of data structures and methods, the complexity of
the decision procedure is non-elementary. Moreover, the technique works only for
loop-free code and loops need to be broken using user specified loop invariants.

Separation logic [ORY ’01], which is an extension of Hoare Logic for giving
proofs of partial correctness of methods, does not easily lend itself to automa-
tion. Furthermore, classical separation logic without arithmetic is not recursively
enumerable [Rey ’02].

In [Bou et al.] the authors describe a technique to verify safety properties of
programs that modify data structures. Initial configurations of a program are
encoded as automata and the program is translated into a transducer. The main
idea is to check whether action of the transducer on the initial configurations
leads to a bad configuration of the program. This problem is undecidable since a
transducer could, in general, encode a Turing machine computation. The authors
use abstraction-refinement to verify properties. Their technique is restricted to
data structures with a single successor, and also limited by the efficiency of
abstractions and the refinement process.
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Appendix: Checking whether no = M(ni)

For simplicity, we discuss only methods operating on linear graphs. Let the state of the
automaton before checking the condition no = M(ni) be q = (j, curd, curp, newd, newp).
For a given node, the method can modify either the outgoing edge from the current
node, add a new node m at the current position, or delete the current node. Let the old
and new successor nodes be n1 and n′

1 respectively. Let l be the coloring function for
the nodes and edges. Let the (data, next) fields for the nodes ni, no and m be (d, n1),
(d′, n′

1) and (dm, m′) respectively. We need to check for the following conditions:

1. d′ = curd

2. If n1 6= n′
1, i.e. the next pointer of the cursor has changed, (l(ni, n1) = red) ∧

(l(no, n
′
1) = green),

3. If m exists, (l(m) = green) ∧ (dm = newd) ∧ (l(m, m′) = green) ∧ (l(no, m) =
green) ∧ (l(ni, n1) = red).

Additionally, the action of a delete statement is checked by checking whether the color
of a node is red.
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