Automatic Verification of Parameterized Data Structures

Jyotirmoy V. Deshmukh, E. Allen Emerson and Prateek Gupta

The University of Texas at Austin

- Motivation
- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions

• Motivation

- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions

Motivation

- Data structures: basic building blocks of software systems.
- Methods: programs operating on data structures.
- Traditional approach: check correctness up to bounded size.
- Parameterized verification: correctness for arbitrarily large sizes.
- Parameterized verification faces several difficulties!

Verifying programs operating on data structures

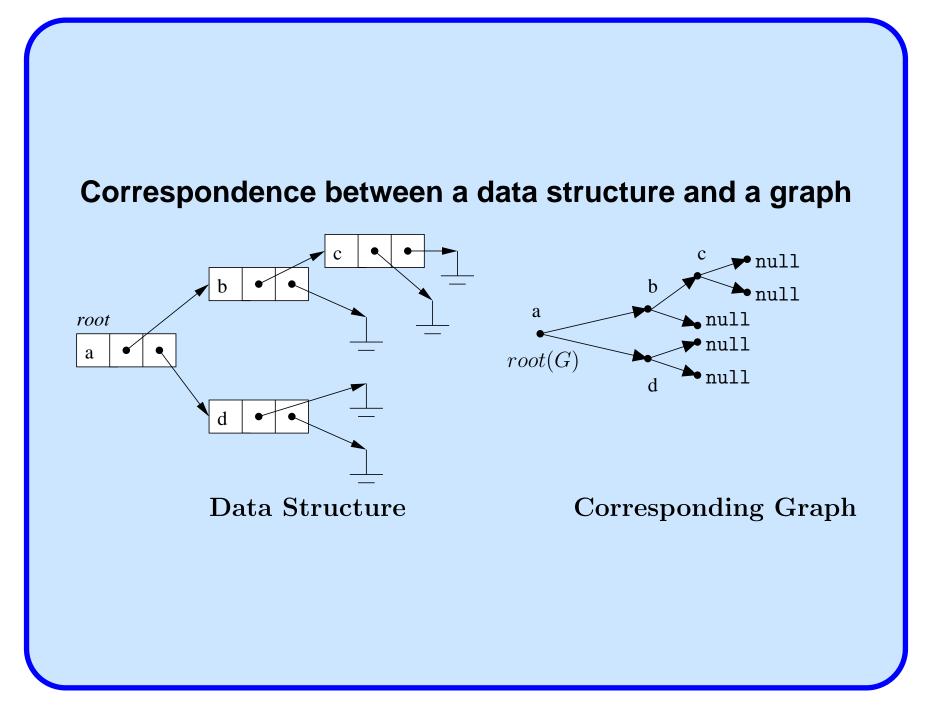
- Data structures:
 - may have arbitrarily large sizes.
 - may use pointers that range over arbitrarily large address space.
 - may use data values that range over unbounded domains.
- Parameterized correctness is generally undecidable.
- Decidable classes of programs face severe combinatorial explosion.

Potential Applications

- Verification of data structure libraries in C++, Java.
- File system manipulation routines.
- Memory management algorithms, *e.g.* garbage collection.
- Algorithms in SoC designs.

• Motivation

- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions



Problem Definition

• Given:

– Method \mathcal{M} : operates on input graph G_i to

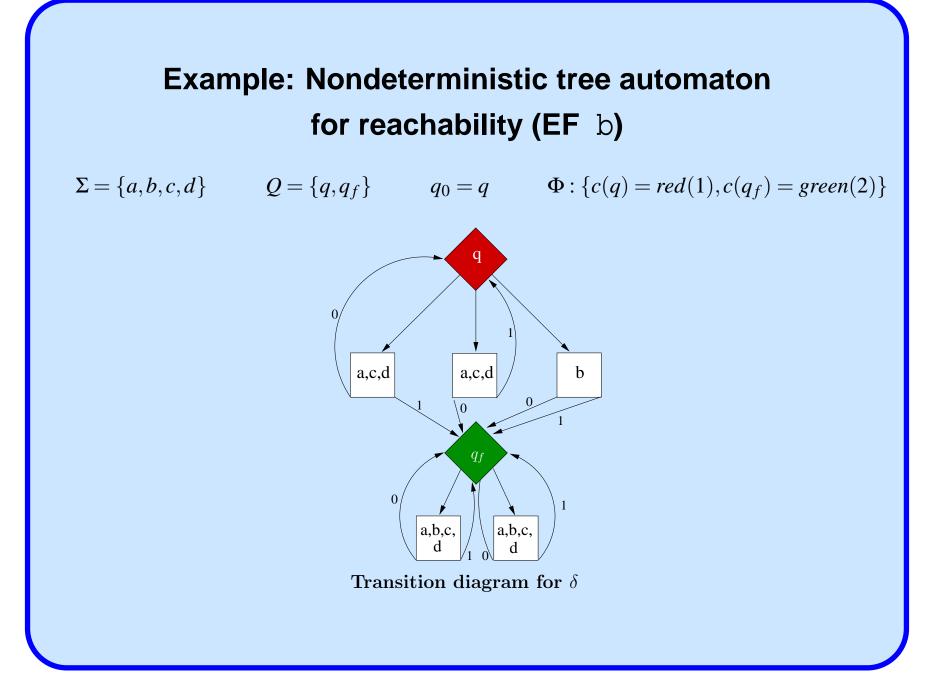
produce output graph $G_o = \mathcal{M}(G_i)$.

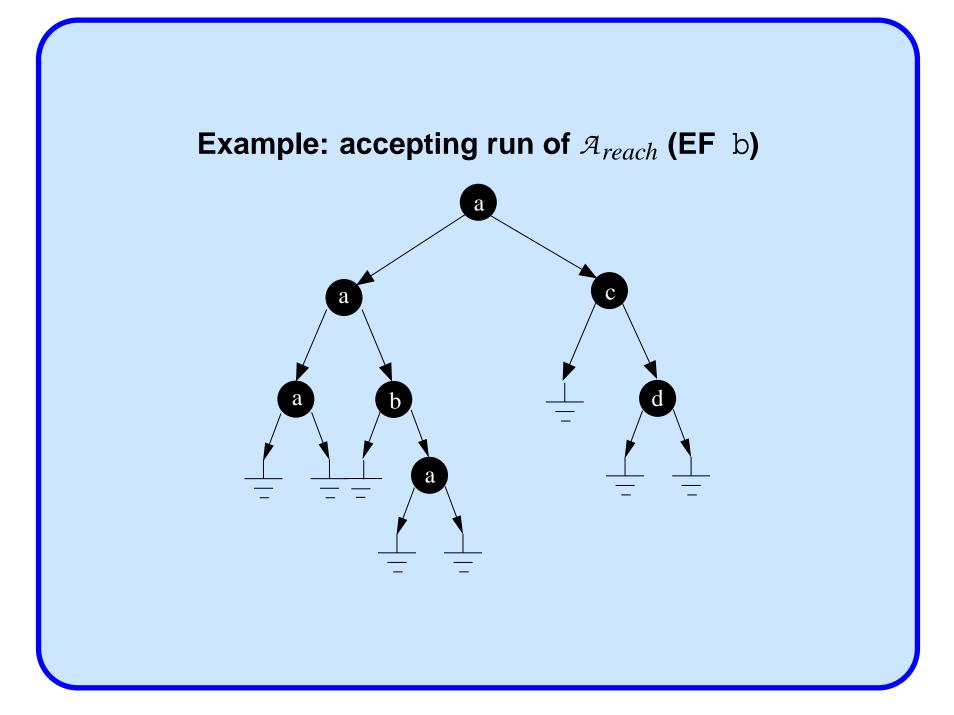
- Property φ: some predicate on graphs.

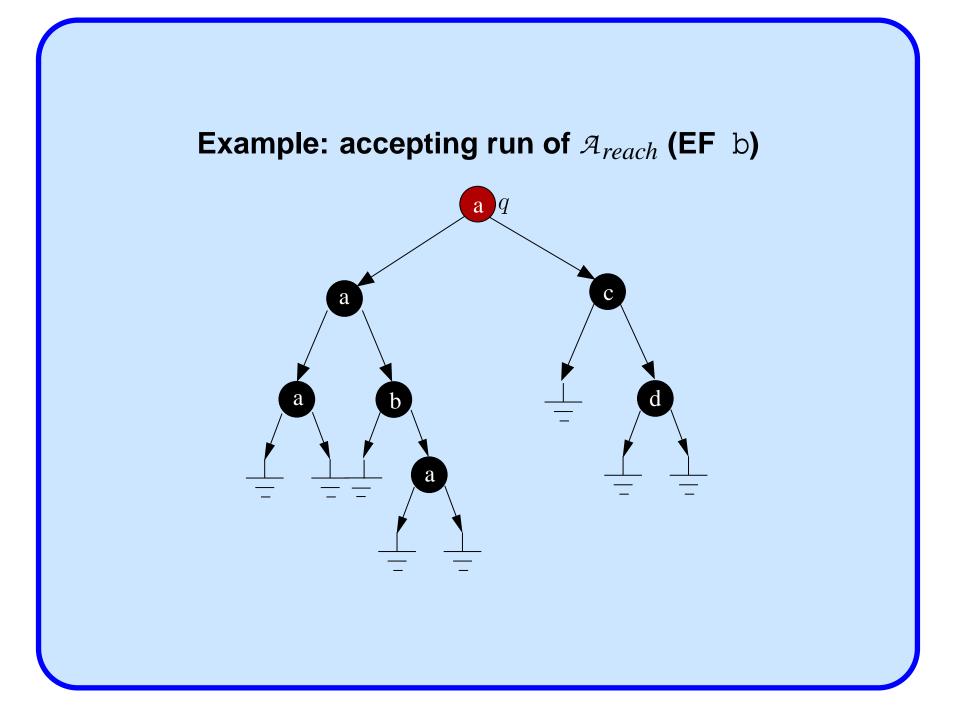
• Parameterized correctness:

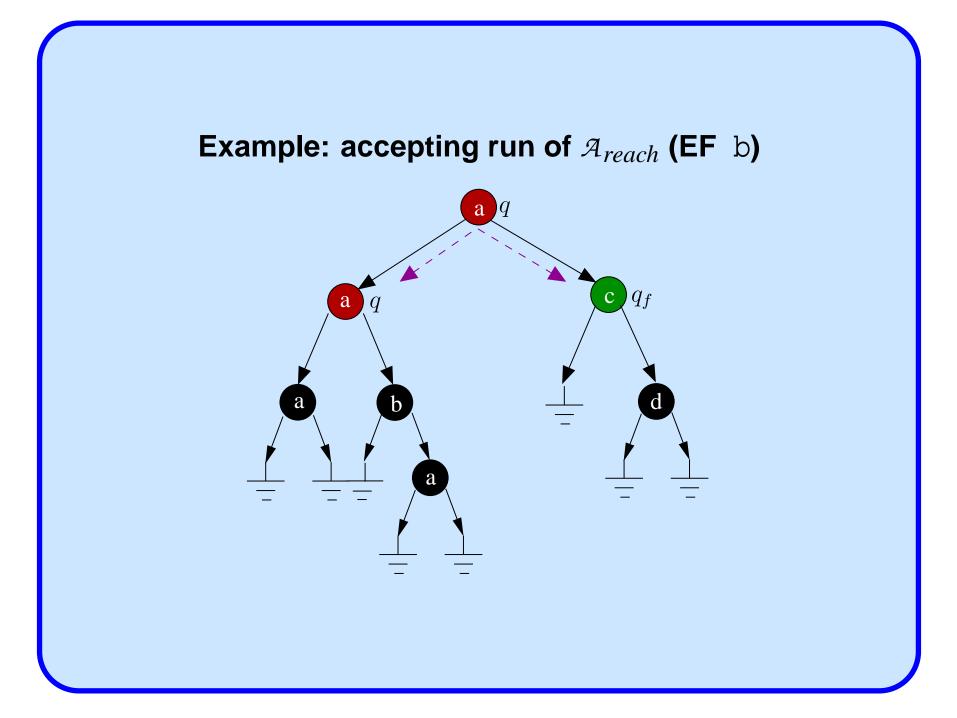
For any arbitrarily large G_i , determine if: $\langle \varphi(G_i) \rangle \mathcal{M} \langle \varphi(G_o) \rangle$

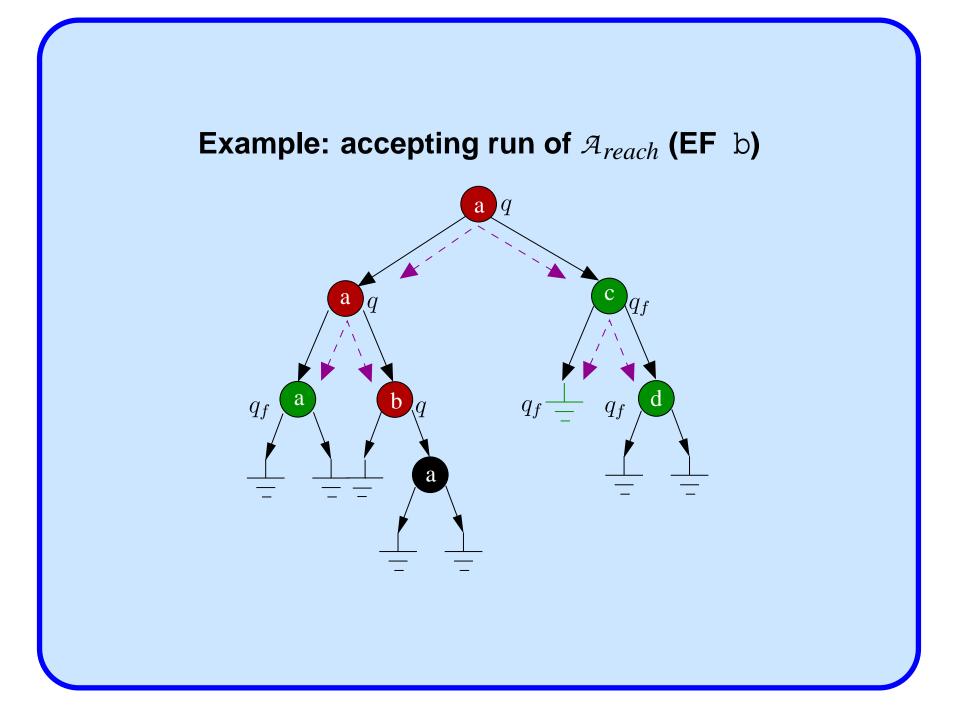
Review: Tree automata

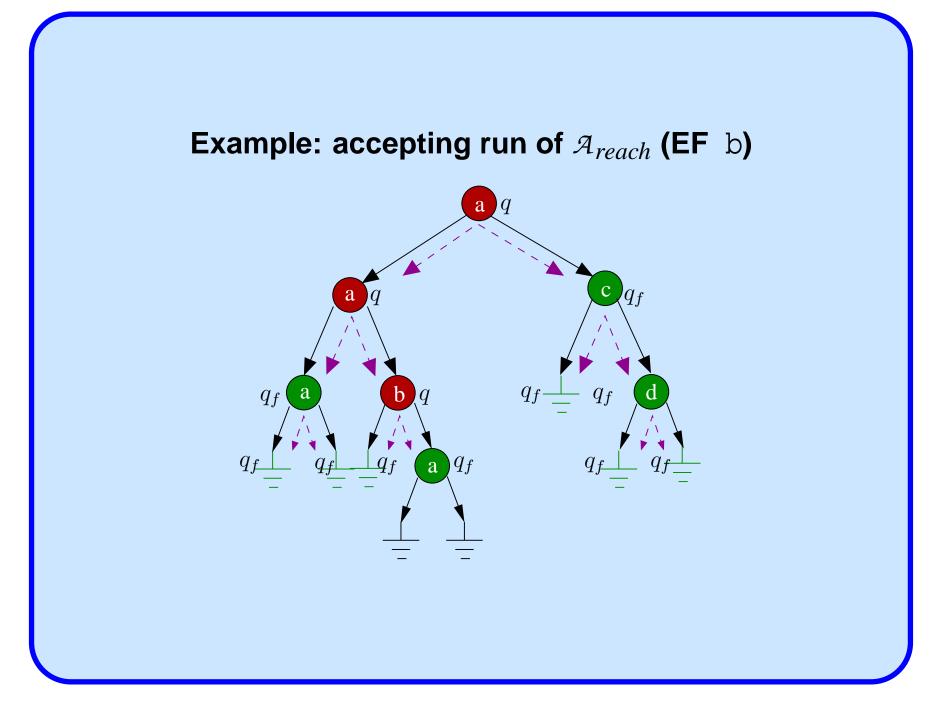












Definition: Destructive pass

- **Pass**: Traversal of graph visiting each node at most once.
- **Destructive update**: Modification of the input graph.

e.g. Adding a node, Deleting a node, Changing a link, Changing a value, etc.

• **Destructive pass**: pass that performs at least one destructive update.

Stipulations

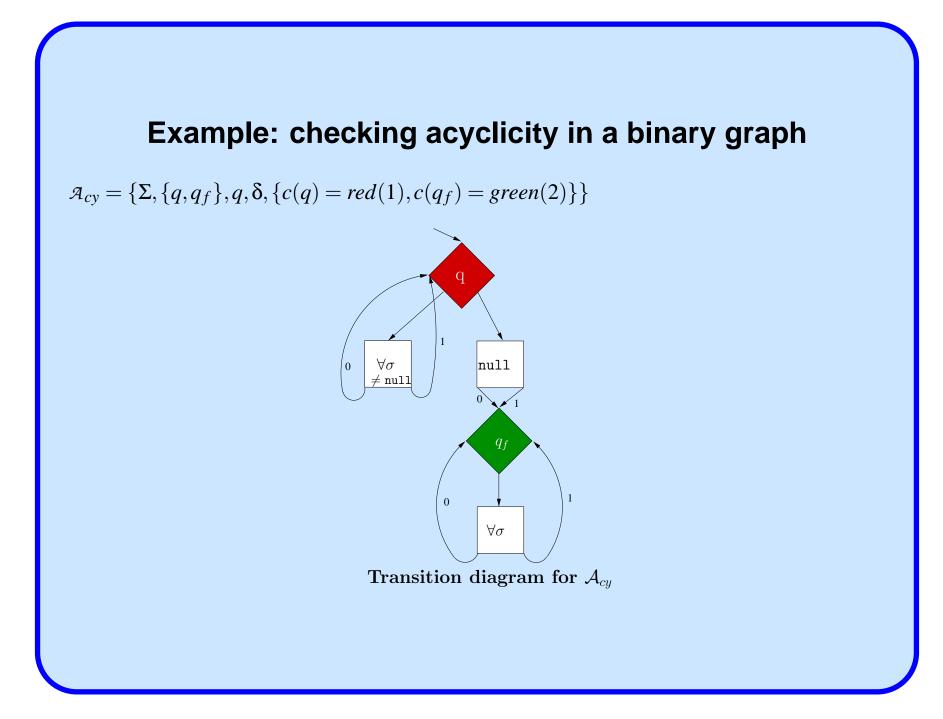
- Methods:
 - must terminate.
 - should perform only a bounded number of destructive passes over the graph.
 - should be iterative (no recursion).
- Domain of data values should be finite.
- Input graphs have varying, but bounded branching.

Example methods

- Insertion/Deletion of nodes in linked lists (linear/circular),
- Insertion/Deletion of nodes in *k*-ary trees,
- Iterative modification of nodes in general graphs,
- Reversal of linked lists,
- Swapping nodes within a bounded distance.

Property specification

- Properties specified as non-deterministic tree automata.
- \mathcal{A}_{ϕ} and $\mathcal{A}_{\neg\phi}$ called property automata.
- Examples include: Acyclicity, Sortedness, Reachability, Treeness, Listness, etc.

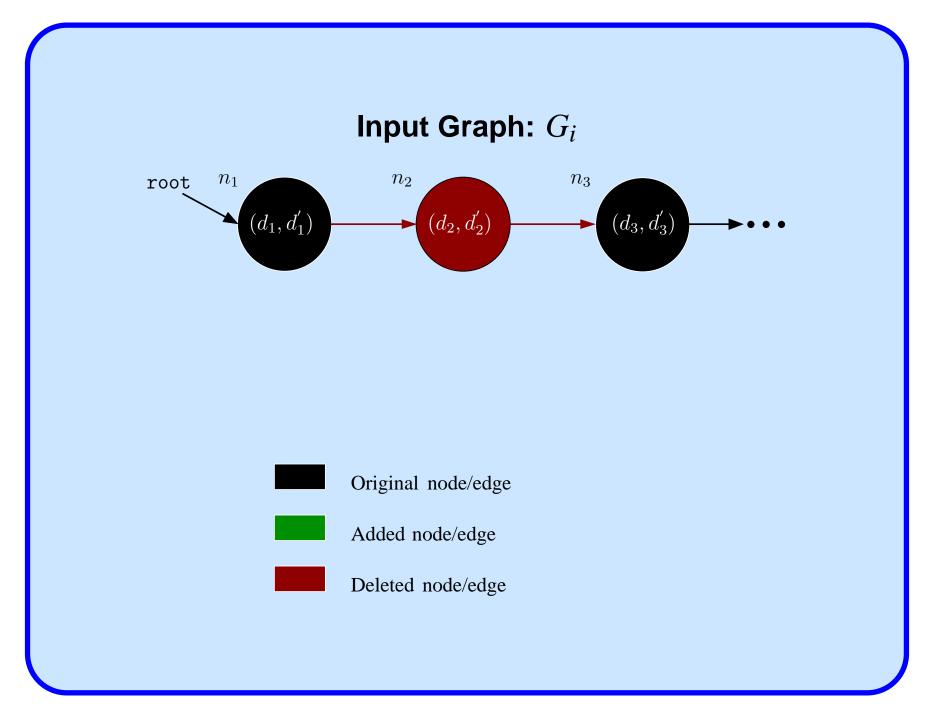


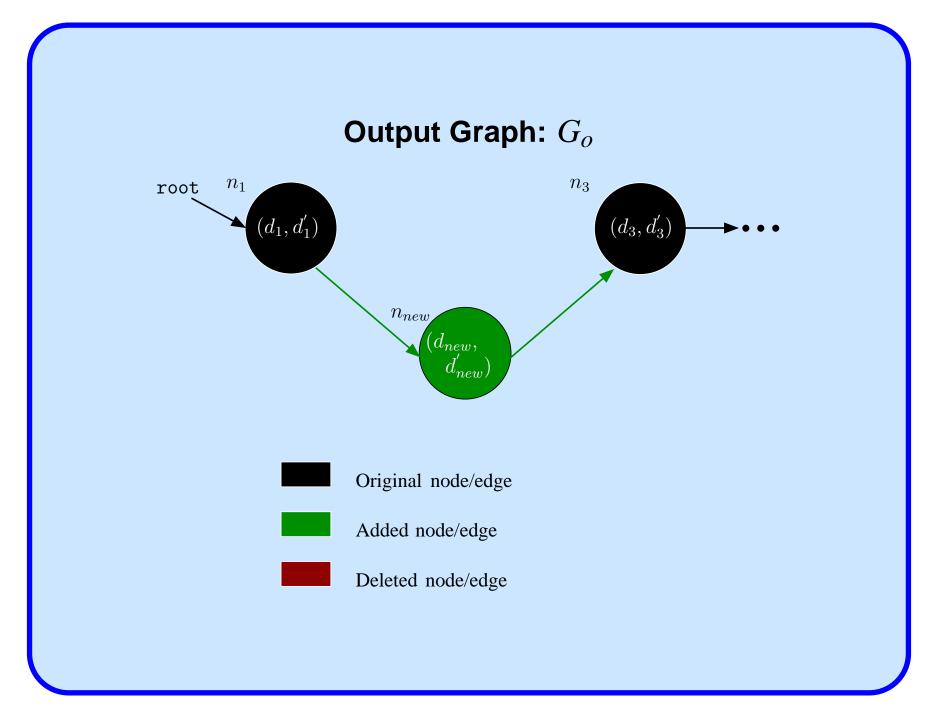
Motivation

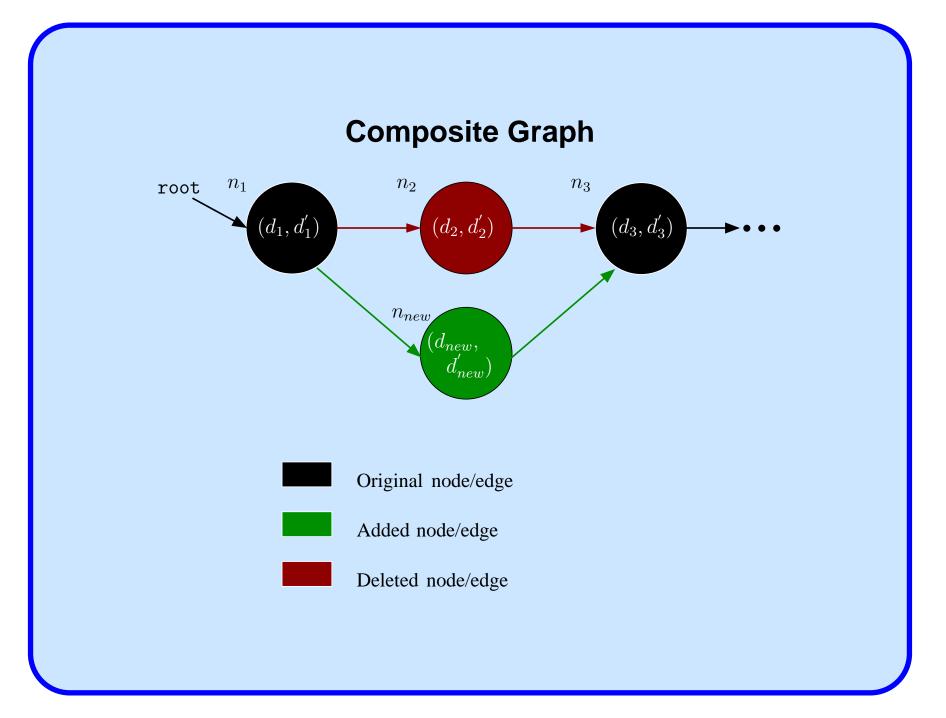
- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions

Modeling the method

- Method \mathcal{M} modeled using tree automaton $\mathcal{A}_{\mathcal{M}}$.
- (G_i, G_o) represented as composite graph G_c .
- $\mathcal{A}_{\mathcal{M}}$ accepts all graphs G_c that represent valid I/O behavior of \mathcal{M} .







Composite automaton

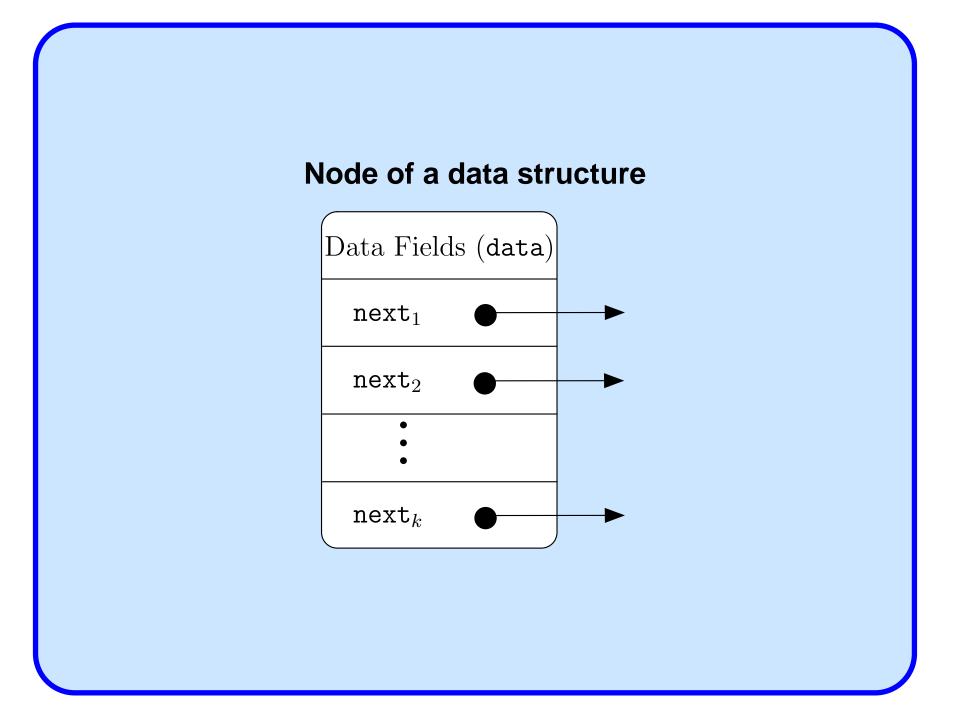
- Given: \mathcal{A}_{ϕ} , $\mathcal{A}_{\neg \phi}$ and $\mathcal{A}_{\mathcal{M}}$.
- **Construct**: Composite automaton \mathcal{A}_c .
- \mathcal{A}_c : (synchronous) product of \mathcal{A}_{φ} , $\mathcal{A}_{\mathcal{M}}$ and $\mathcal{A}_{\neg \varphi}$.
- \mathcal{A}_c accepts G_c , iff:
 - $\mathcal{A}_{\mathcal{M}}$ accepts G_c ,
 - \mathcal{A}_{φ} accepts G_i (input part), and
 - $\mathcal{A}_{\neg \phi}$ accepts G_o (output part).

Reduction to language emptiness

- \mathcal{A}_c accepts exactly those graphs that witness a *failure* of \mathcal{M} .
- \mathcal{M} is correct iff language accepted by \mathcal{A}_c is empty.
- \mathcal{A}_c is empty implies parameterized correctness of \mathcal{M} .

• Motivation

- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions



Programming language

- Methods equipped with an iterator called "cursor".
- Bounded window (w): set of nodes within fixed distance from cursor.
- Auxiliary pointers: denote positions within *w*, relative to cursor.
- Types of statements: Assignment, Conditional and Loop statements.


```
method InsertNode (value, newValue) {
```

1: cursor := head;

```
2: while (cursor != null) {
```

[ncursor := cursor->next]

```
3: if (cursor->data == value) {
```

```
4: cursor->next := new node {
```

data := newValue;

```
next := ncursor;};
```

```
5: break; }
```

```
6: cursor := ncursor when true; } }
```

Motivation

- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions

How does $\mathcal{A}_{\mathcal{M}}$ emulate \mathcal{M} ?

While operating on composite graph $G_c = (G_i, G_o)$, $\mathcal{A}_{\mathcal{M}}$:

- reads a new node $n = (n_i, n_o)$,
- changes state to mimic atomic updates to n_i ,
- checks if updated node matches n_o , and
- if yes, moves to next node.

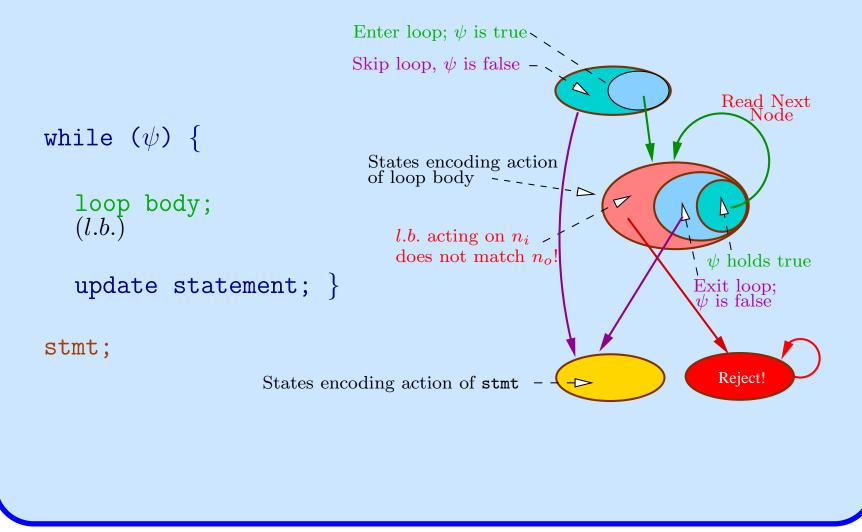
From ${\mathcal M}$ to ${\mathcal A}_{{\mathcal M}}$: ${\mathbb I}$

- $\mathcal{A}_{\mathcal{M}}$ starts in state q_0 and reads node (n_i, n_o) .
- State of $\mathcal{A}_{\mathcal{M}}$ encodes updated value of n_i .
- Statements that do not alter cursor position map to ϵ -moves.

e.g. conditionals, loop body, assignments (except to cursor)

From \mathcal{M} to $\mathcal{A}_{\mathcal{M}}$: II

- For assignments that alter cursor position:
 - check if current state matches n_o ,
 - if yes, read new node,
 - if no, transition to *reject* state.
- Transition to accept state after last statement in $\mathcal M$.
- Add self-loops to reject and accept states.



- Motivation
- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
 - Examples
- Efficiency
- Related work and conclusions

Example method: Insertion in a singly linked list

```
method InsertNode (value, newValue) {
```

1: cursor := head;

```
2: while (cursor != null) {
```

[ncursor := cursor->next]

```
3: if (cursor->data == value) {
```

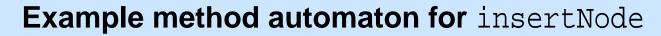
```
4: cursor->next := new node {
```

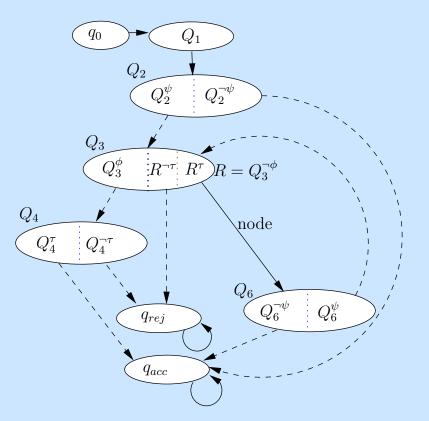
data := newValue;

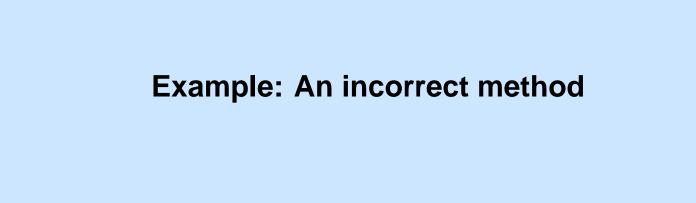
```
next := ncursor;};
```

```
5: break; }
```

```
6: cursor := ncursor when true; } }
```



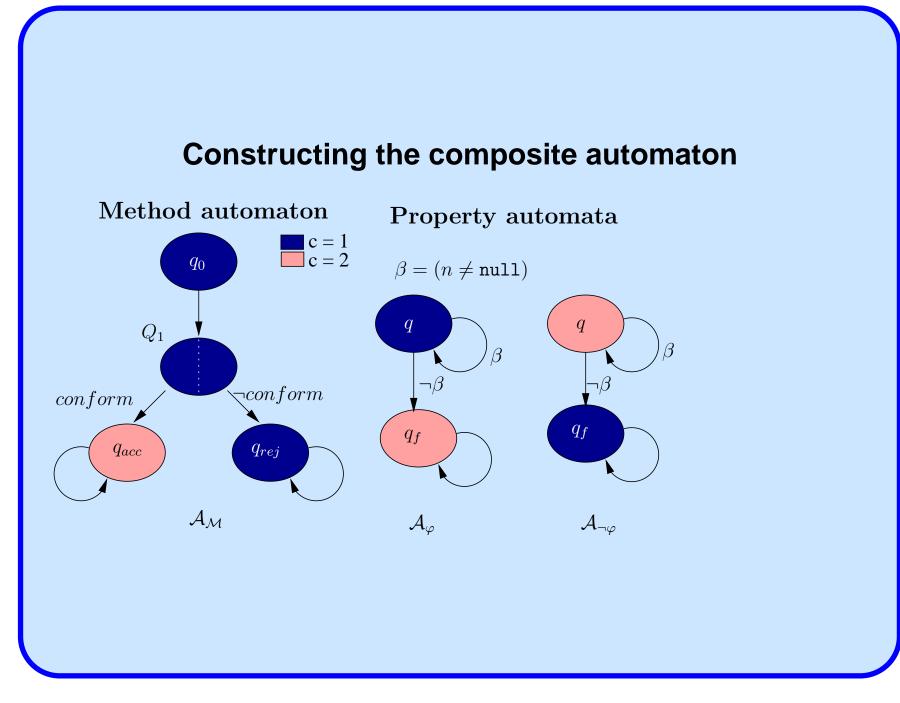


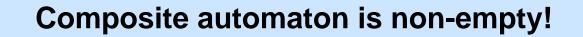


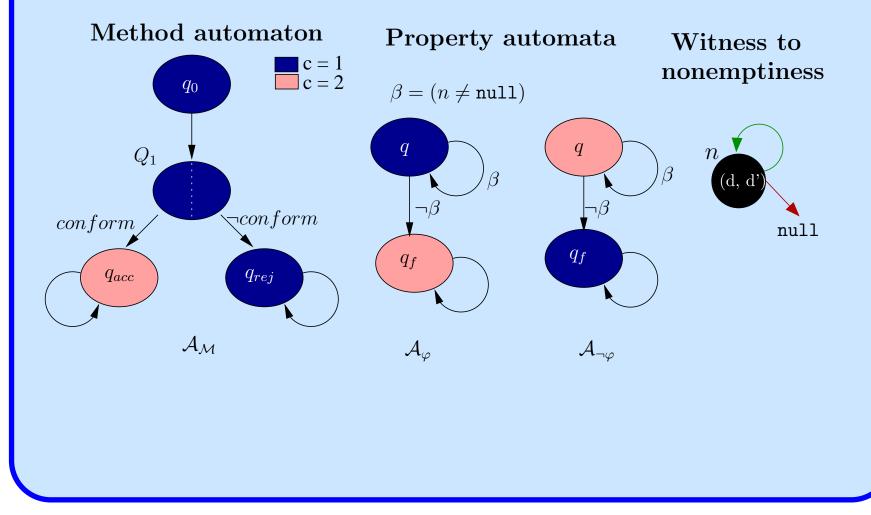
method sampleMethod {

cursor->next := cursor; cursor->data := 10; }

Does this method preserve acyclicity?







Motivation

- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions

Efficiency

- \mathcal{A}_c : linear in $|\mathcal{A}_{\mathcal{M}}|$, $|\mathcal{A}_{\varphi}|$ and $|\mathcal{A}_{\neg \varphi}|$.
 - Size of $\mathcal{A}_{\mathcal{M}} \colon O(|\mathcal{M}|).$
 - $\mathcal{A}_{\mathcal{M}}$, \mathcal{A}_{ϕ} , $\mathcal{A}_{\neg \phi}$ have small, fixed number of colors in parity condition.
- Non-emptiness: polynomial in $|\mathcal{A}_c|$.
- Overall complexity: **polynomial** in size of \mathcal{M} and property automata.

Motivation

- Preliminaries
- Solution strategy
- Programming language
- Compiling into automata
- Efficiency
- Related work and conclusions

Related work: I

- Pointer Assertion Logic Engine: [Møller, Schwartzbach, 2001]
 - More general (uses MSOL), but complexity is non-elementary.
 - Requires human ingenuity in providing loop invariants.
- Separation logic: [O'Hearn, Reynolds, Yang, 2001]
 - Deductive system with proof rules.
 - Decidable fragment treats only linked lists.

Related Work: II

- Shape analysis: [Sagiv, Reps, Wilhelm, 1999]
 - Shape invariants represented using 3-valued logic.
 - Broad scope, but inexact solutions.
- Transducer-based approach: [Bouajjani et al, 2005]
 - Abstraction refinement based approach.
 - Limited to single successor data structures.

Conclusions

- Efficient algorithmic technique for verification of parameterized data structures.
- Reasoning about a large class of methods, examples include: Adding, deleting, inserting nodes in linked lists, binary search trees, swapping nodes within a bounded distance, reversing lists, etc.
- Properties such as: acyclicity, reachability, sortedness, treeness, listness, sharing etc.
- Complexity: *polynomial* in size of method and property specifications.

Thank You!

Tree automata

A (parity) tree automaton \mathcal{A} has the form: $(\Sigma, Q, \delta, q_0, \Phi)$, where:

- Σ is the input alphabet (nodes of the graph),
- Q is the finite non-empty set of states,
- $\delta: Q \times \Sigma \to 2^{Q^k}$ is the non-deterministic transition relation,
- q_0 is the initial state, and
- Φ is the parity acceptance condition.

Run of a tree automaton \mathcal{A}

- Run: Annotation of input tree with states of \mathcal{A} .
- Accepting run: Run in which acceptance condition is true for all paths.
- \mathcal{A} accepts tree T if there is some accepting run on T.
- Notion of run can be generalized to general graphs.

Parity acceptance condition

- States colored with colors $\{c_0, \ldots, c_m\}$.
- π is some finite/infinite sequence of states.
- π satisfies parity condition iff: maximal index of color appearing infinitely often is even.
- Remark: Our technique needs 2 colors in most cases.

Programming language: Syntax

- Assignment statement syntax:
 - cursor->data := d; (Modify data value)
 - cursor->next := *ptr*; (Redirect an edge)
 - cursor := *ptr*; (Change cursor location)
 - cursor := new node{data:=d;next1:=null;...}; (Add new node)
 - cursor->next := new node { ... }; (Add new node after cursor)
- Conditional statements:
 - standard if-then-else construct
 - test condition: data comparison, pointer comparison (within the window)


```
while (\u03c6) {
loop body;
update statement; }
```

- Used for iterating through the data structure.
- Nesting of loops not permitted.
- cursor cannot be changed inside loop body.
- Update statement used to change cursor position.