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Automatic verification of parameterized data structures Motivation

Motivation

• Data structures: basic building blocks of software systems.

• Methods: programs operating on data structures.

• Traditional approach: check correctness up to bounded size.

• Parameterized verification: correctness for arbitrarily large sizes.

• Parameterized verification faces several difficulties!
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Automatic verification of parameterized data structures Motivation

Verifying programs operating on data structures

• Data structures:

– may have arbitrarily large sizes.

– may use pointers that range over arbitrarily large address space.

– may use data values that range over unbounded domains.

• Parameterized correctness is generally undecidable.

• Decidable classes of programs face severe combinatorial explosion.
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Potential Applications

• Verification of data structure libraries in C++, Java.

• File system manipulation routines.

• Memory management algorithms, e.g. garbage collection.

• Algorithms in SoC designs.
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Correspondence between a data structure and a graph
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Problem Definition

• Given :

– Method M : operates on input graph Gi to

produce output graph Go =M (Gi).

– Property ϕ: some predicate on graphs.

• Parameterized correctness :

For any arbitrarily large Gi, determine if: 〈ϕ(Gi)〉M 〈ϕ(Go)〉
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Review: Tree automata
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Example: Nondeterministic tree automaton

for reachability (EF b)

Σ = {a,b,c,d} Q = {q,q f } q0 = q Φ : {c(q) = red(1),c(q f ) = green(2)}
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Example: accepting run of A reach (EF b)
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Example: accepting run of A reach (EF b)
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Definition: Destructive pass

• Pass : Traversal of graph visiting each node at most once.

• Destructive update : Modification of the input graph.

e.g. Adding a node, Deleting a node, Changing a link, Changing a value, etc.

• Destructive pass : pass that performs at least one destructive update.
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Stipulations

• Methods:

– must terminate.

– should perform only a bounded number of

destructive passes over the graph.

– should be iterative (no recursion).

• Domain of data values should be finite.

• Input graphs have varying, but bounded branching.
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Example methods

• Insertion/Deletion of nodes in linked lists (linear/circular),

• Insertion/Deletion of nodes in k-ary trees,

• Iterative modification of nodes in general graphs,

• Reversal of linked lists,

• Swapping nodes within a bounded distance.
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Property specification

• Properties specified as non-deterministic tree automata.

• Aϕ and A¬ϕ called property automata.

• Examples include: Acyclicity, Sortedness, Reachability,

Treeness, Listness, etc.
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Example: checking acyclicity in a binary graph

A cy = {Σ,{q,q f },q,δ,{c(q) = red(1),c(q f ) = green(2)}}
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Automatic verification of parameterized data structures Solution strategy

Modeling the method

• Method M modeled using tree automaton AM .

• (Gi,Go) represented as composite graph Gc.

• AM accepts all graphs Gc that represent valid I/O behavior of M .
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Input Graph: Gi
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Output Graph: Go
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Composite Graph
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Composite automaton

• Given : Aϕ, A¬ϕ and AM .

• Construct : Composite automaton A c.

• A c: (synchronous) product of Aϕ, AM and A¬ϕ.

• A c accepts Gc, iff:

– AM accepts Gc,

– Aϕ accepts Gi (input part), and

– A¬ϕ accepts Go (output part).
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Reduction to language emptiness

• A c accepts exactly those graphs that witness a failure of M .

• M is correct iff language accepted by A c is empty.

• A c is empty implies parameterized correctness of M .
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Node of a data structure

Data Fields (data)
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Programming language

• Methods equipped with an iterator called “cursor”.

• Bounded window (w): set of nodes within fixed distance from cursor.

• Auxiliary pointers: denote positions within w, relative to cursor.

• Types of statements: Assignment, Conditional and Loop statements.
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Example method: Insertion in a singly linked list

method InsertNode (value, newValue){

1: cursor := head;

2: while (cursor != null) {

[ncursor := cursor->next]

3: if (cursor->data == value) {

4: cursor->next := new node {

data := newValue;

next := ncursor;};

5: break; }

6: cursor := ncursor when true; } }
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Automatic verification of parameterized data structures Translation

How does AM emulate M ?

While operating on composite graph Gc = (Gi,Go), AM :

• reads a new node n = (ni,no),

• changes state to mimic atomic updates to ni,

• checks if updated node matches no, and

• if yes, moves to next node.

The University of Texas at Austin 34



Automatic verification of parameterized data structures Translation

From M to AM : I

• AM starts in state q0 and reads node (ni,no).

• State of AM encodes updated value of ni.

• Statements that do not alter cursor position map to ε-moves.

e.g. conditionals, loop body, assignments (except to cursor)
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From M to AM : II

• For assignments that alter cursor position:

– check if current state matches no,

– if yes, read new node,

– if no, transition to reject state.

• Transition to accept state after last statement in M .

• Add self-loops to reject and accept states.
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Example: Compilation of a while statement

Reject!States encoding action of stmt

Exit loop;
ψ is false

Enter loop; ψ is true

Skip loop, ψ is false

Read Next
Node

while (ψ) {

stmt;

update statement; }

loop body;
l.b. acting on ni

does not match no!

(l.b.)

ψ holds true

States encoding action
of loop body
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Example method: Insertion in a singly linked list

method InsertNode (value, newValue){

1: cursor := head;

2: while (cursor != null) {

[ncursor := cursor->next]

3: if (cursor->data == value) {

4: cursor->next := new node {

data := newValue;

next := ncursor;};

5: break; }

6: cursor := ncursor when true; } }
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Example method automaton for insertNode
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Example: An incorrect method

method sampleMethod {

cursor->next := cursor;

cursor->data := 10; }

Does this method preserve acyclicity?
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Constructing the composite automaton
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Composite automaton is non-empty!
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Automatic verification of parameterized data structures Efficiency

Efficiency

• A c: linear in |AM |, |Aϕ| and |A¬ϕ|.

– Size of AM : O(|M |).

– AM , Aϕ, A¬ϕ have small, fixed number of colors in parity condition.

• Non-emptiness: polynomial in |A c|.

• Overall complexity: polynomial in size of M and property automata.
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Automatic verification of parameterized data structures Related work

Related work: I

• Pointer Assertion Logic Engine : [Møller, Schwartzbach, 2001]

– More general (uses MSOL), but complexity is non-elementary.

– Requires human ingenuity in providing loop invariants.

• Separation logic : [O’Hearn, Reynolds, Yang, 2001]

– Deductive system with proof rules.

– Decidable fragment treats only linked lists.
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Related Work: II

• Shape analysis : [Sagiv, Reps, Wilhelm, 1999]

– Shape invariants represented using 3-valued logic.

– Broad scope, but inexact solutions.

• Transducer-based approach :[Bouajjani et al, 2005]

– Abstraction refinement based approach.

– Limited to single successor data structures.
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Conclusions

• Efficient algorithmic technique for verification of

parameterized data structures.

• Reasoning about a large class of methods, examples include:

Adding, deleting, inserting nodes in linked lists, binary search trees,

swapping nodes within a bounded distance, reversing lists, etc.

• Properties such as: acyclicity, reachability, sortedness,

treeness, listness, sharing etc.

• Complexity: polynomial in size of method and property specifications.
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Thank You!
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Tree automata

A (parity) tree automaton A has the form: (Σ,Q,δ,q0,Φ), where:

• Σ is the input alphabet (nodes of the graph),

• Q is the finite non-empty set of states,

• δ : Q×Σ → 2Qk
is the non-deterministic transition relation,

• q0 is the initial state, and

• Φ is the parity acceptance condition.
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Run of a tree automaton A

• Run: Annotation of input tree with states of A .

• Accepting run: Run in which acceptance condition is true for all paths.

• A accepts tree T if there is some accepting run on T .

• Notion of run can be generalized to general graphs.
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Parity acceptance condition

• States colored with colors {c0, . . . ,cm}.

• π is some finite/infinite sequence of states.

• π satisfies parity condition iff: maximal index of color appearing

infinitely often is even .

• Remark: Our technique needs 2 colors in most cases.
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Programming language: Syntax

• Assignment statement syntax:

– cursor->data := d; (Modify data value)

– cursor->next := ptr; (Redirect an edge)

– cursor := ptr; (Change cursor location)

– cursor := new node{data:=d;next1:=null;. . .}; (Add new node)

– cursor->next := new node { . . . }; (Add new node after cursor)

• Conditional statements:

– standard if-then-else construct

– test condition: data comparison, pointer comparison (within the window)
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Loop statements

while (ψ) {

loop body;

update statement; }

• Used for iterating through the data structure.

• Nesting of loops not permitted.

• cursor cannot be changed inside loop body.

• Update statement used to change cursor position.
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