
Automatic verification of parameterized data structures

Automatic Verification of Parameterized Data Structures

Jyotirmoy V. Deshmukh, E. Allen Emerson and Prateek Gupta

The University of Texas at Austin

The University of Texas at Austin 1

Automatic verification of parameterized data structures

Outline

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 2

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 3

Automatic verification of parameterized data structures Motivation

Motivation

• Data structures: basic building blocks of software systems.

• Methods: programs operating on data structures.

• Traditional approach: check correctness up to bounded size.

• Parameterized verification: correctness for arbitrarily large sizes.

• Parameterized verification faces several difficulties!

The University of Texas at Austin 4

Automatic verification of parameterized data structures Motivation

Verifying programs operating on data structures

• Data structures:

– may have arbitrarily large sizes.

– may use pointers that range over arbitrarily large address space.

– may use data values that range over unbounded domains.

• Parameterized correctness is generally undecidable.

• Decidable classes of programs face severe combinatorial explosion.

The University of Texas at Austin 5

Automatic verification of parameterized data structures Motivation

Potential Applications

• Verification of data structure libraries in C++, Java.

• File system manipulation routines.

• Memory management algorithms, e.g. garbage collection.

• Algorithms in SoC designs.

The University of Texas at Austin 6

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 7

Automatic verification of parameterized data structures Preliminaries

Correspondence between a data structure and a graph

a
b

d

a

b

d

c

root

c

root(G)
null

null
null

null

null

Data Structure Corresponding Graph

The University of Texas at Austin 8

Automatic verification of parameterized data structures Preliminaries

Problem Definition

• Given :

– Method M : operates on input graph Gi to

produce output graph Go =M (Gi).

– Property ϕ: some predicate on graphs.

• Parameterized correctness :

For any arbitrarily large Gi, determine if: 〈ϕ(Gi)〉M 〈ϕ(Go)〉

The University of Texas at Austin 9

Automatic verification of parameterized data structures Preliminaries

Review: Tree automata

The University of Texas at Austin 10

Automatic verification of parameterized data structures Preliminaries

Example: Nondeterministic tree automaton

for reachability (EF b)

Σ = {a,b,c,d} Q = {q,q f } q0 = q Φ : {c(q) = red(1),c(q f) = green(2)}

q

a,c,d a,c,d b

1

0

0 0

1

1

0 1

01

a,b,c,
d

a,b,c,
d

Transition diagram for δ

qf

The University of Texas at Austin 11

Automatic verification of parameterized data structures Preliminaries

Example: accepting run of A reach (EF b)

a

a

a b

c

d

a

The University of Texas at Austin 12

Automatic verification of parameterized data structures Preliminaries

Example: accepting run of A reach (EF b)

a

a

a b

c

d

a

q

The University of Texas at Austin 13

Automatic verification of parameterized data structures Preliminaries

Example: accepting run of A reach (EF b)

a

a

a b

c

d

a

q qf

q

The University of Texas at Austin 14

Automatic verification of parameterized data structures Preliminaries

Example: accepting run of A reach (EF b)

a

a

a b

c

d

a

qf

q qf

qqf qf

q

The University of Texas at Austin 15

Automatic verification of parameterized data structures Preliminaries

Example: accepting run of A reach (EF b)

a

a

a b

c

d

a

q

q qf

qf qfqf qf qf

qf

qf

qqf qf

The University of Texas at Austin 16

Automatic verification of parameterized data structures Preliminaries

Definition: Destructive pass

• Pass : Traversal of graph visiting each node at most once.

• Destructive update : Modification of the input graph.

e.g. Adding a node, Deleting a node, Changing a link, Changing a value, etc.

• Destructive pass : pass that performs at least one destructive update.

The University of Texas at Austin 17

Automatic verification of parameterized data structures Preliminaries

Stipulations

• Methods:

– must terminate.

– should perform only a bounded number of

destructive passes over the graph.

– should be iterative (no recursion).

• Domain of data values should be finite.

• Input graphs have varying, but bounded branching.

The University of Texas at Austin 18

Automatic verification of parameterized data structures Preliminaries

Example methods

• Insertion/Deletion of nodes in linked lists (linear/circular),

• Insertion/Deletion of nodes in k-ary trees,

• Iterative modification of nodes in general graphs,

• Reversal of linked lists,

• Swapping nodes within a bounded distance.

The University of Texas at Austin 19

Automatic verification of parameterized data structures Preliminaries

Property specification

• Properties specified as non-deterministic tree automata.

• Aϕ and A¬ϕ called property automata.

• Examples include: Acyclicity, Sortedness, Reachability,

Treeness, Listness, etc.

The University of Texas at Austin 20

Automatic verification of parameterized data structures Preliminaries

Example: checking acyclicity in a binary graph

A cy = {Σ,{q,q f },q,δ,{c(q) = red(1),c(q f) = green(2)}}

1

1

10

0

0

qf

∀σ null

q

∀σ

6= null

Transition diagram for Acy

The University of Texas at Austin 21

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 22

Automatic verification of parameterized data structures Solution strategy

Modeling the method

• Method M modeled using tree automaton AM .

• (Gi,Go) represented as composite graph Gc.

• AM accepts all graphs Gc that represent valid I/O behavior of M .

The University of Texas at Austin 23

Automatic verification of parameterized data structures Solution strategy

Input Graph: Gi

Added

Deleted

Original node/edge

node/edge

node/edge

n1 n2 n3

(d2, d
′

2
)(d1, d

′

1
) (d3, d

′

3
)

root

The University of Texas at Austin 24

Automatic verification of parameterized data structures Solution strategy

Output Graph: Go

Added

Deleted

Original node/edge

node/edge

node/edge

n1 n3

nnew

(d1, d
′

1
) (d3, d

′

3
)

root

(dnew,
d

′

new)

The University of Texas at Austin 25

Automatic verification of parameterized data structures Solution strategy

Composite Graph

Added

Deleted

Original node/edge

node/edge

node/edge

n1 n2 n3

nnew

(d2, d
′

2
)(d1, d

′

1
) (d3, d

′

3
)

root

(dnew,
d

′

new)

The University of Texas at Austin 26

Automatic verification of parameterized data structures Solution strategy

Composite automaton

• Given : Aϕ, A¬ϕ and AM .

• Construct : Composite automaton A c.

• A c: (synchronous) product of Aϕ, AM and A¬ϕ.

• A c accepts Gc, iff:

– AM accepts Gc,

– Aϕ accepts Gi (input part), and

– A¬ϕ accepts Go (output part).

The University of Texas at Austin 27

Automatic verification of parameterized data structures Solution strategy

Reduction to language emptiness

• A c accepts exactly those graphs that witness a failure of M .

• M is correct iff language accepted by A c is empty.

• A c is empty implies parameterized correctness of M .

The University of Texas at Austin 28

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 29

Automatic verification of parameterized data structures Programming language

Node of a data structure

Data Fields (data)

next1

next2

nextk

The University of Texas at Austin 30

Automatic verification of parameterized data structures Programming language

Programming language

• Methods equipped with an iterator called “cursor”.

• Bounded window (w): set of nodes within fixed distance from cursor.

• Auxiliary pointers: denote positions within w, relative to cursor.

• Types of statements: Assignment, Conditional and Loop statements.

The University of Texas at Austin 31

Automatic verification of parameterized data structures Programming language

Example method: Insertion in a singly linked list

method InsertNode (value, newValue){

1: cursor := head;

2: while (cursor != null) {

[ncursor := cursor->next]

3: if (cursor->data == value) {

4: cursor->next := new node {

data := newValue;

next := ncursor;};

5: break; }

6: cursor := ncursor when true; } }

The University of Texas at Austin 32

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 33

Automatic verification of parameterized data structures Translation

How does AM emulate M ?

While operating on composite graph Gc = (Gi,Go), AM :

• reads a new node n = (ni,no),

• changes state to mimic atomic updates to ni,

• checks if updated node matches no, and

• if yes, moves to next node.

The University of Texas at Austin 34

Automatic verification of parameterized data structures Translation

From M to AM : I

• AM starts in state q0 and reads node (ni,no).

• State of AM encodes updated value of ni.

• Statements that do not alter cursor position map to ε-moves.

e.g. conditionals, loop body, assignments (except to cursor)

The University of Texas at Austin 35

Automatic verification of parameterized data structures Translation

From M to AM : II

• For assignments that alter cursor position:

– check if current state matches no,

– if yes, read new node,

– if no, transition to reject state.

• Transition to accept state after last statement in M .

• Add self-loops to reject and accept states.

The University of Texas at Austin 36

Automatic verification of parameterized data structures Translation

Example: Compilation of a while statement

Reject!States encoding action of stmt

Exit loop;
ψ is false

Enter loop; ψ is true

Skip loop, ψ is false

Read Next
Node

while (ψ) {

stmt;

update statement; }

loop body;
l.b. acting on ni

does not match no!

(l.b.)

ψ holds true

States encoding action
of loop body

The University of Texas at Austin 37

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

– Examples

• Efficiency

• Related work and conclusions

The University of Texas at Austin 38

Automatic verification of parameterized data structures

Example method: Insertion in a singly linked list

method InsertNode (value, newValue){

1: cursor := head;

2: while (cursor != null) {

[ncursor := cursor->next]

3: if (cursor->data == value) {

4: cursor->next := new node {

data := newValue;

next := ncursor;};

5: break; }

6: cursor := ncursor when true; } }

The University of Texas at Austin 39

Automatic verification of parameterized data structures

Example method automaton for insertNode

qacc

qrej

q0

node
Q4

Qτ
4 Q¬τ

4

Q6

Q
¬ψ
6 Q

ψ
6

Q1

Q2

Q
ψ
2 Q

¬ψ
2

Q3

Q
φ
3 R¬τ Rτ R = Q

¬φ
3

The University of Texas at Austin 40

Automatic verification of parameterized data structures

Example: An incorrect method

method sampleMethod {

cursor->next := cursor;

cursor->data := 10; }

Does this method preserve acyclicity?

The University of Texas at Austin 41

Automatic verification of parameterized data structures

Constructing the composite automaton

c = 1
c = 2

β

¬β

β

¬β

qrej

q

qf

q0

qacc
qf

q

AM Aϕ A¬ϕ

β = (n 6= null)

Method automaton Property automata

Q1

conform ¬conform

The University of Texas at Austin 42

Automatic verification of parameterized data structures

Composite automaton is non-empty!

c = 1
c = 2

null

n
(d, d’)

Q1

β

¬β

β

¬β

qrej

q

qf

q0

qacc
qf

q

AM Aϕ A¬ϕ

β = (n 6= null)

Method automaton Property automata Witness to

nonemptiness

conform ¬conform

The University of Texas at Austin 43

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 44

Automatic verification of parameterized data structures Efficiency

Efficiency

• A c: linear in |AM |, |Aϕ| and |A¬ϕ|.

– Size of AM : O(|M |).

– AM , Aϕ, A¬ϕ have small, fixed number of colors in parity condition.

• Non-emptiness: polynomial in |A c|.

• Overall complexity: polynomial in size of M and property automata.

The University of Texas at Austin 45

Automatic verification of parameterized data structures

• Motivation

• Preliminaries

• Solution strategy

• Programming language

• Compiling into automata

• Efficiency

• Related work and conclusions

The University of Texas at Austin 46

Automatic verification of parameterized data structures Related work

Related work: I

• Pointer Assertion Logic Engine : [Møller, Schwartzbach, 2001]

– More general (uses MSOL), but complexity is non-elementary.

– Requires human ingenuity in providing loop invariants.

• Separation logic : [O’Hearn, Reynolds, Yang, 2001]

– Deductive system with proof rules.

– Decidable fragment treats only linked lists.

The University of Texas at Austin 47

Automatic verification of parameterized data structures Related work

Related Work: II

• Shape analysis : [Sagiv, Reps, Wilhelm, 1999]

– Shape invariants represented using 3-valued logic.

– Broad scope, but inexact solutions.

• Transducer-based approach :[Bouajjani et al, 2005]

– Abstraction refinement based approach.

– Limited to single successor data structures.

The University of Texas at Austin 48

Automatic verification of parameterized data structures

Conclusions

• Efficient algorithmic technique for verification of

parameterized data structures.

• Reasoning about a large class of methods, examples include:

Adding, deleting, inserting nodes in linked lists, binary search trees,

swapping nodes within a bounded distance, reversing lists, etc.

• Properties such as: acyclicity, reachability, sortedness,

treeness, listness, sharing etc.

• Complexity: polynomial in size of method and property specifications.

The University of Texas at Austin 49

Automatic verification of parameterized data structures

Thank You!

The University of Texas at Austin 50

Automatic verification of parameterized data structures

Tree automata

A (parity) tree automaton A has the form: (Σ,Q,δ,q0,Φ), where:

• Σ is the input alphabet (nodes of the graph),

• Q is the finite non-empty set of states,

• δ : Q×Σ → 2Qk
is the non-deterministic transition relation,

• q0 is the initial state, and

• Φ is the parity acceptance condition.

The University of Texas at Austin 51

Automatic verification of parameterized data structures

Run of a tree automaton A

• Run: Annotation of input tree with states of A .

• Accepting run: Run in which acceptance condition is true for all paths.

• A accepts tree T if there is some accepting run on T .

• Notion of run can be generalized to general graphs.

The University of Texas at Austin 52

Automatic verification of parameterized data structures

Parity acceptance condition

• States colored with colors {c0, . . . ,cm}.

• π is some finite/infinite sequence of states.

• π satisfies parity condition iff: maximal index of color appearing

infinitely often is even .

• Remark: Our technique needs 2 colors in most cases.

The University of Texas at Austin 53

Automatic verification of parameterized data structures

Programming language: Syntax

• Assignment statement syntax:

– cursor->data := d; (Modify data value)

– cursor->next := ptr; (Redirect an edge)

– cursor := ptr; (Change cursor location)

– cursor := new node{data:=d;next1:=null;. . .}; (Add new node)

– cursor->next := new node { . . . }; (Add new node after cursor)

• Conditional statements:

– standard if-then-else construct

– test condition: data comparison, pointer comparison (within the window)

The University of Texas at Austin 54

Automatic verification of parameterized data structures

Loop statements

while (ψ) {

loop body;

update statement; }

• Used for iterating through the data structure.

• Nesting of loops not permitted.

• cursor cannot be changed inside loop body.

• Update statement used to change cursor position.

The University of Texas at Austin 55

