
ALMOST UNBIASED RATIO AND PRODUCT TYPE ESTIMATOR OF FINITE 
POPULATION VARIANCE USING THE KNOWLEDGE OF KURTOSIS OF AN 
AUXILIARY VARIABLE IN SAMPLE SURVEYS 
 

Rajesh Singh, Pankaj Chauhan, and Nirmala Sawan, 

School of Statistics, DAVV, Indore (M.P.), India 

(rsinghstat@yahoo.com) 

 

Florentin Smarandache 
Chair of Department of Mathematics, University of New Mexico, Gallup, USA 
(smarand@unm.edu) 
________________________________________________________________________ 

Abstract 

It is well recognized that the use of auxiliary information in sample survey design 

results in efficient estimators of population parameters under some realistic conditions. 

Out of many ratio, product and regression methods of estimation are good examples in 

this context. Using the knowledge of kurtosis of an auxiliary variable Upadhyaya and 

Singh (1999) has suggested an estimator for population variance. In this paper, following 

the approach of Singh and Singh (1993), we have suggested almost unbiased ratio and 

product-type estimators for population variance. 

1. Introduction  

Let ( )NUUUU ,......,, 21=  denote a population of N units from which a simple random 

sample without replacement (SRSWOR) of size n is to be drawn. Further let y and x 

denote the study and the auxiliary variables respectively. The problem is to estimate the 

parameter 
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The conventional unbiased estimator of 2
yS  is defined by  
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 is the sample mean of y. 

Using information on 2
xS , Isaki (1983) proposed a ratio estimator for 2

yS  as  
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 is unbiased estimator of 2
xS . 

In many survey situations the values of the auxiliary variable x may be available 

for each unit in the population. Thus the value of the kurtosis ( )x2β  of the auxiliary 

variable x is known. Using information on both 2
xS and ( )x2β  Upadhyay and Singh 

(1999) suggested a ratio type estimator for 2
yS  as  
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For simplicity suppose that the population size N is large enough relative to the sample 

size n and assume that the finite population correction (fpc) term can be ignored. Up to 

the first order of approximation, the variance of 2
ys , and t1 and bias and variances of t2 

(ignoring fpc term) are respectively given by  
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From (1.8), we see that the estimator t2 suggested by Upadhyay and Singh (1999) is a 

biased estimator. In some application bias is disadvantageous. This led authors to suggest 

almost unbiased estimators of 2
yS . 

2. A class of ratio-type estimators 
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 such that RtRi ∈ , for 3,2,1=i ; where R 

denotes the set of all possible ratio-type estimators for estimating the population variance 

2
yS . We define a class of ratio-type estimators for 2

yS  as – 
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For simplicity we assume that the population size N is large enough so that the 

fpc terms are ignored. We write  
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Expressing (2.1) in terms of e’s we have  
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Assume that 11 <eθ so that ( )ie11 θ+  is expandable. Thus expanding the right hand side 

of the above expression (2.3) and retaining terms up to second power of e’s , we have  
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Taking expectation of both sides of (2.3) we get the bias of tr , to the first degree of 

approximation, as  
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Squaring both sides of (2.4), neglecting terms involving power of e’s greater than two 

and then taking expectation of both sides, we get the mean-squared error of tr to the first 

degree of approximation, as  
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Minimizing the MSE of tr in (2.7) with respect to R1 we get the optimum value of R1 as 
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Thus the minimum MSE of tr is given by 
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ρ  is the correlation coefficient between ( )2Yy −  

and ( )2Xx − . 



From (2.2), (2.7) and (2.8) we have  
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From (2.10) and (2.11) we have three unknown to be determined from two equations 

only. It is therefore, not possible to find a unique value of the constants ( )3,2,1' =iswi . 

Thus in order to get the unique values of the constants ( )3,2,1' =iswi , we shall impose a 

linear constraint as  

 ( ) 0=rtB          (2.12) 

which follows from (2.5) that  

 ( ) ( ) ( ) 03623 321 =−+−+− aCaCaC θθθ     (2.13) 

Equation (2.10), (2.11) and (2.13) can be written in  the matrix form as 
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Using (2.14) we get the unique values of ( )3,2,1' =iswi  as  
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Use of these ( )3,2,1' =iswi  remove the bias up to terms of order ( )1−no at (2.1). 

Substitution of (2.14) in (2.1) yields the almost unbiased optimum ratio-type estimator of 

the population variance 2
yS . 

 

 

 

3. A class of product-type estimators  

Consider 
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such that PtPi ∈ , for 3,2,1=i ; where P denotes 

the set of all possible product-type estimators for estimating the population variance 2
yS . 

We define a class of product-type estimators for 2
yS  as – 
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where ski '  ( )3,2,1=i  are suitably chosen scalars such that  
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Proceeding as in previous section, we get 

 ( ) ( ){ } ( )⎥⎦
⎤

⎢⎣
⎡ −+−= ∑

=

3

1
2

2

21
2 i

i
y

P Ciiax
n

S
tB θθθβ     (3.2) 

 ( ) ( ){ } ( )( ){ }( )[ ]CRxRy
n
S

tMSE y
P 211 2222

4

+−+−= θβθβ   (3.3) 

where, ∑
=

=
3

1
2

i
iikR         (3.4) 



Minimizing the MSE of Pt  in (3.4) with respect to 2R , we get the optimum value of 2R as  
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Thus the minimum MSE of Pt  is given by  
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which is same as that of minimum MSE of rt at (2.9). 

Following the approach of previous section, we get 
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Use of these ki’s (i=1,2,3) removes the bias up to terms of order O (n-1) at (3.1). 

4. Empirical Study 

The data for the empirical study are taken from two natural population data sets 

considered by Das (1988) and Ahmed et.al. (2003). 

Population I – Das (1988) 

The variables and the required parameters are: 

X: number of agricultural labourers for 1961. 

Y: number of agricultural labourers for 1971. 

8898.38)(2 =xβ , ,8969.25)y(2 =β h=26.8142, 44.16542 =xS . 

Population II – Ahmed et.al. (2003) 

The variables and the required parameters are: 



X: number of households  

Y: number of literate persons 

,05448.8)(2 =xβ ,90334.10)(2 =yβ 85.118382 =xS , h=7.31399. 

In table 4.1 the values of scalars wi’s (i=1,2,3) and ki’s (i=1,2,3) are listed. 

 

 

Table 4.1:    Values of scalars wi’s and ki’s (i=1,2,3) 

Scalars Population Scalars Population 

 I II  I II 

w1 1.3942 1.1154 k1 4.8811 5.5933 

w2 -0.4858 -0.1261 k2 -6.0647 -7.2910 

w3 0.0916 0.0109 k3 2.1837 2.6978 

 

Using these values of wi’s and ki’s (i=1,2,3) given in table 4.1,one can reduce the bias to 

the order O(n-1) respectively, in the estimators tr and tp at (2.1) and (3.1). 

In table 4.2 percent relative efficiency (PRE) of 2
ys ,t1,t2,tr (in optimum case) and tp 

(in optimum case) are computed with respect to 2
ys . 

Table 4.2:   PRE of different estimators of 2
yS  with respect to 2

ys  

Estimators PRE (., 2
yS ) 

 Population I Population II 

2
ys  100 100 



t1 223.14 228.70 

t2 235.19 228.76 

tr (optimum) 305.66 232.90 

tp (optimum) 305.66 232.90 

 

Table 4.2 clearly shows that the suggested estimators tr and tp in their optimum 

case are better than the usual unbiased estimator 2
ys , Isaki’s (1983) estimator t1 and 

Upadhayaya and Singh (1999) estimator t2. 
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