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Abstract: 

Quantum field theories, regardless of their content, lead to a finite or infinite number of coupled nonlinear 

field equations. In general, solving these equations in analytic form or managing them through lattice-based 

computations has been met with limited success. We argue that the theory of nonlinear dynamical systems 

offers a fresh approach to this challenge. Working from the universal route to chaos in coupled systems of 

differential equations, we find that: a) particles acquire mass as plane wave solutions of the complex 

Ginzburg-Landau equation (CGLE), without any reference to the hypothetical Higgs scalar; b) the 

(1) (2)U SU×  and (3)SU  gauge groups, as well as leptons and quarks, are sequentially generated 

through period-doubling bifurcations of CGLE.  

 

1. Overview and motivation 

Quantum Field Theory (QFT) is a mature conceptual framework whose predictive power 

has been consistently proven in both high-energy physics and condensed matter 

phenomena [1]. From a historical perspective, QFT represents a successful synthesis of 

quantum mechanics and special relativity and consists of a broad range of models that 

have been developed over the years. Among these, the so-called “gauge” theories play a 

leading role. The Standard Model (SM) is a subset of QFT whose gauge group structure 

includes the electroweak and strong interactions of all known elementary particles. SM is 

a robust theoretical framework, however, it contains some 20 adjustable parameters 
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whose physical origin is presently unknown and whose numerical values are exclusively 

fixed by experiments. 

QFT consists of several nonlinear field models. Quantizing these types of models is a 

highly nontrivial effort and raises a series of theoretical challenges [2]. For example, no 

complete quantum version of classical gravity exists. Quantum chromodynamics (QCD) 

is considered a reliable field theory at short distances but because its coupling constant 

becomes large in the infrared sector, standard perturbative techniques do not apply.  At 

present, there is no universal prescription for deriving and handling closed-form solutions 

of QCD field equations. This is in manifest contrast with quantum electrodynamics 

(QED) and the electroweak theory, where perturbative methods are applicable and 

analytic results possible. In general, dealing with closed-form solutions of field theories is 

seldom a practical alternative. For example, Heisenberg’s nonperturbative quantization 

procedure [3] or Schwinger-Dyson formalism [4] lead to an infinite set of coupled 

differential equations which connect all orders of Green’s functions. This system does not 

have analytic and uniquely determined solutions. In these instances, conventional wisdom 

says that one must seek plausible assumptions that simplify the equations or employ 

suitable numerical techniques for approximation. 

It is known that Feynman’s path integral formulation of QFT reveals its profound 

connection to equilibrium statistical physics and Boltzmann-Gibbs distribution [1, 5, 11]. 

As an effective theory, QFT is the correct language whenever one deals with collective 

phenomena that involve a large number of degrees o freedom [1, 6, 11]. In this context, 

of special interest is the existence and properties of topological objects in QFT and 
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statistical physics. One may view the topologically stable field configurations (instantons, 

solitons, monopoles, vortex lines) as a primitive manifestation of pattern formation.  

Let us further elaborate on this important point. In its traditional form, one frequently 

cited shortcoming of QFT is its inherent limitation to deal with the effect of highly 

unstable fluctuations or with a dynamics regime that is driven far away from equilibrium 

[7]. In general, pattern formation is possible in out-of-equilibrium physical systems that 

are open and nonlinear [8]. Within a closed system patterns may only survive as a 

transient and die out as a result of the relaxation towards equilibrium. It is for this reason 

that traditional QFT, with few notable exceptions, is largely unable to properly detect and 

characterize pattern formation. We now know that pattern formation is relevant to a wide 

range of applications such as reaction-diffusion processes, nonlinear optics applications,  

fluid mechanics (Rayleigh-Benard convection and the Taylor-Couette flow), hot plasma, 

porous and heterogeneous media, arrays of coupled oscillators, lattice quantum field 

models, traffic models, computational and neural networks and so on [8, 9]. 

Understanding of non-equilibrium phenomena and pattern formation is still in its infancy. 

Progress in this field has benefited from tools that have been recently developed for 

dynamical systems, bifurcation and stability theory [8-10, 19]. Among these we mention 

new methods for chaotic dynamics, stochastic stability, Liouville-von Newmann 

formalism [10], new methods in topology, fractional dynamics of systems with long-

range interaction and temporal memory, the theory of multifractal sets, non-extensive 

statistical physics, the dynamics of Levy flows, amplitude equations for spatiotemporal 

chaos and so on.  
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Our aim here is to investigate the far from equilibrium sector of classical field theory 

using some of these newly developed methods. The basic premise is that the theory of 

coupled dynamical systems provides a superior strategy for dealing with the inherent 

complexity of field equations. The paper is structured as follows: section 2 introduces the 

classical equations of motion for a generic model containing a scalar field coupled to a 

U(1) gauge field; the concept of universality and the emergence of CGLE are discussed 

in section 3. Section 4 presents the mechanism of mass generation through period-

doubling bifurcations of CGLE. The mechanism of dynamic unification for gauge groups 

and fermions forms the object of section 5. Summary and concluding remarks are 

detailed in the last section.  

We caution from the outset that our contribution is a preliminary research on the topic. 

As such, it does not claim to be either fully rigorous or comprehensive. The purpose is to 

convey a new qualitative view rather than an in-depth analysis of phenomena. Future 

work is required to validate or reject our findings. 

2. Classical abelian field theory as a “toy” model 

As previously mentioned, field theories amount to a finite or infinite number of coupled 

nonlinear field equations. In general, handling these equations in closed form or through 

numerical approximations has been only partially successful. The universal nature of 

nonlinear dynamics near the threshold of the first instability suggests that one can start 

from a simple “toy” model and generalize results to more realistic settings. 

One of such “toy” models of classical field theory describes an Abelian gauge field 

( , )a x tµ  in interaction with a massless scalar field ( , )x tϕ . The Lagrangian of this model 

is given by [11] 
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21 ( )

4
L F F ieaµν

µν µ µ ϕ= − + ∂ +                                           (1) 

Here, , 0,1, 2,3µ ν =  denote the space-time index, 1 2 3( , , )x x x x=  the spatial coordinate, 

F µν  the field tensor, e  the coupling constant and xµµ
∂∂
∂

  the first-order differential 

operator. Equations of motions derived from (1) are 

( ) 0D Dµ
µϕ =  

                                                                                                                                           (2)   
2 22F e aν

µν µϕ∂ =  

where D ieaµ µ µ∂ +  stands for the covariant derivative operator. Developing (2) yields  

22iea ie a e a aµ µ µ
µ µ µϕ ϕ ϕ ϕ= − ∂ − ∂ +  

(3)  
2 22a a e aν

µ µ ν µϕ= ∂ ∂ −  

in which 
22

2t
∂∇ −
∂

   represents the d’Alembertian operator. 

Nonlinear equations of this type are not limited to this particular model. In fact, a generic 

field theoretic model describing dissipative nonlinear oscillators in interaction can be 

reduced to either one of the following systems of differential equations: 

2[...] [...] ( , ,..., ,...[...])t x f g m ε∂ = ∂ +  

                                           2 2[...] [...] ( , ,..., ,...[...])t x f g m ε∂ = ∂ +                                        (4)  

[...] [...] ( , ,..., ,...[...])t x f g m ε∂ = ∂ +  

Here, ε  is an independent control parameter that can be continuously adjusted, ,g m  are 

coupling constants and masses, […] are dynamic variables (fields, operators, 

propagators) and (...)f  denote coupling functions. Second order derivatives may be 

reduced to first order, at the expense of increasing the number of field equations. When 



 

 6 

dynamic variables depend on ε , the system under study is able to sustain self-organized 

pattern formation [12]. 

In non-equilibrium models, ε  measures the departure from ideal equilibrium conditions. 

In particular, critical behavior in continuous dimension equates ε  with the dimensional 

parameter of the regularization program ( 4 )dε = −  [13]. This identification enables 

fractional dynamics to become a natural player in non-equilibrium field theory [14-16]. 

3. Universality and CGLE 

Far from equilibrium processes display remarkable universality. Regardless of the 

specific content of the system, macroscopic patterns that develop near the threshold of a 

dynamic instability are robust and largely insensitive to microscopic fluctuations [8, 17]. 

This is the basis for the universal “slaving” mechanism underlying the amplitude 

equations: fast modes follow the slow modes and can be integrated out. Stated 

differently, there is a natural “slowing down” of dynamics near the instability and a 

natural separation of time scales.  

CGLE represents a universal amplitude equation for pattern forming systems or non-

equilibrium spatially extended systems. It describes bifurcating solutions close to the 

threshold of the first instability [8, 17, 18]. The complex amplitude ( , )A x t  defines slow 

modulation in space and time of the underlying spatially periodic pattern. The theory of 

the reduction to CGLE from generic systems of autonomous nonlinear equations has been 

developed by several authors. The derivation of CGLE for a 1+1 dimensional system 

starts from the ansatz 

                                    
0 1( , ) ( , ) exp[ ( ] . .c cx t A x t i k x t c c= + −Ω +u u u                                  (5) 
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where ,x t  represent slow variables [17, 18]. Replacing in (5) and expanding in power 

series of the small parameter  cε ε ε= −  leads to CGLE whose standard form is 

                                         22
1 3(1 ) (1 )t xA A ic A ic A A∂ = + + ∂ − −                                        (6) 

Here, the real parameters 1 2,c c  denote the linear and nonlinear dispersion parameters, 

respectively. The limit 1 3, 0c c → corresponds to the real Ginzburg-Landau equation, 

whereas 1 1
1 3, 0c c− − →  recovers the nonlinear Schrődinger equation. 

4. Higgs-free generation of particle masses 

We seek the simplest solutions of CGLE, that is, plane-wave solutions having the form 

0( , ) exp[ ( )] .a x t a i qx mt c c= − + +  
(7) 

2
0 1a q= −  

where the wave-vector  [ 1,1]q∈ −  and the frequency m  satisfies the dispersion equation 

                                                    2 2
1 3 (1 )qm c q c q= − −                                                      (8) 

The dispersion equation has two complementary limits: 1q = ±  ( 0 0a = ) and 0q =  

( 0 1a = ± ). Arguments presented in Appendix A suggest a natural identification of these 

two modes with the fermion and gauge boson fields of SM.  

Despite the fact that we started with a model containing massless fields, both these modes 

acquire non-vanishing masses, namely 

1m c± =  
(9) 

0 3m c= −  
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Recall that the plane-wave solution consists of both positive and negative frequencies. 

Because mass is positive definite, in what follows we are going to only consider positive 

frequencies 1 30, 0c c> >  and take 0 3m c= . 

Extensive numerical data [19] show that both parameters of linear and nonlinear 

dispersion 1 3,c c  are distributed in a geometric progression, that is 

11, 1, 1

n

nc c K δ
−

∞= +   
(10) 

22, 2, 2

n

nc c K δ
−

∞= +  

Since 1 2, ,K K 1,c ∞  and 2,c ∞  are independent of the iteration index 1,2,3....n = , they can 

be both absorbed into a redefinition of masses. We have, accordingly: 

1,
1

1 ( )m m c
K

∗
± ∞= −  

(11) 

0 2,
2

1 ( )M m c
K ∞= −  

The ratios of two arbitrary masses consecutively generated through period-doubling 

bifurcation take the form: 

jj

j p

m
m

δ
∗

∗
+

=  

(12) 
jj

j p

M
M

σ
+

=  

in which 2 pj =  , 1, 2,3....p =  and  δ , σ  are scaling constants. Experimentally, we find 

the following relationship between δ  and σ  [15, 20]: 

                                                 
12 21

2

11 ( ) 1 ( )M
M

σ
δ

− = − ≈                                                (13)   
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Here 1 2,W ZM M M M= =  are vector boson masses and 3.9 4.669δ≤ ≤ , where 

4.669δ =  represents the Feigenbaum constant for quadratic maps [22]. It is instructive to 

note that, using the data reported in [19], one finds that the numerical value of the 

Feigenbaum constant corresponding to CGLE falls in the range [1.5,...,10]δ ∈ .  

Tab. 2 and Tab. 3 show a side-by-side comparison between predictions inferred from 

(12), (13) and experiment for 4.669δ =  and 3.9δ = , respectively. Actual values of SM 

parameters, computed at the reference scale given by the mass of the top quark [21], are 

listed in Tab. 1. Note that the choice of the mass scale is completely arbitrary since (12) 

involves ratios of consecutive parameters. 

Parameter Value Units 

um  2.12 MeV 

dm  4.22 MeV 

sm  80.90 MeV 

cm  630 MeV 

bm  2847 MeV 

tm  170,800 MeV 

WM  80.46 GeV 

ZM  91.19 GeV 

EMα  1/128 - 

Wα  0.0338 - 

QCDα  0.123 - 

                                            
Tab. 1: Actual values of selected SM parameters  
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5. Dynamic unification of fermion fields and gauge groups  

The Feigenbaum-Sharkovskii-Magnitskii (FSM) paradigm of universal transition to 

chaos in nonlinear dissipative systems [19, Appendix B] suggests an intriguing 

mechanism for the generation of SM particles. The quartet of electroweak fields 

0( , , , )W W Zγ + −  breaks into the gluon octet and lepton multiplet breaks into the quark 

multiplet according to the pattern: 

                                           0
1 8( , , , ) ( )W W Z gluonγ + −
−⇒                                             (14a) 

 
                 ,( , , , , , ) ( , , , , , )e r ge antiparticles u d c s b t antiparticlesµ τν ν ν µ τ + ⇒ +            (14b) 

Stated differently, (14a) shows that the dynamical transition (1) (2) (3)U SU SU× →  

means that a stable cycle of period 4 (corresponding to the electroweak quartet) 

transforms into a stable cycle of period 8. Note that there are 12 distinct leptons and 24 

distinct colored quarks in (14b). It follows that transition of leptons to quarks occurs 

through a bifurcation that generates a stable cycle of period 24 from a stable cycle of 

period 12. 

Two important remarks are in order: 

a) color and electrical charge conservation constrains the number of independent 

(distinct) attractors generated through bifurcations. For example, taking " "R  and " "G  to 

represent independent color states, color conservation prohibits formation of distinct 

attractors of type " "B since 1R G B+ + = , by definition.  

b) there is a natural mixing of cycles prior to their complete separation through 

bifurcation. As a result of this mixing, transition (1) (2) (3)U SU SU× →  allows leptons 

and quarks to couple through electroweak fields, but forbids leptons to couple to gluon 

fields.  
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We note that these results are pointing in the same direction with findings reported by the 

author in an early work [20]. 

 

 

Tab. 2: Actual versus predicted scaling ratios for 4.669δ =  

 
Parameter ratio 

 
Behavior 

 
Actual 

 
Predicted 

u

c

m
m  

 

4
δ

−
 33.365 10−×  32.104 10−×   

c

t

m
m  4

δ
−

 33.689 10−×  32.104 10−×  

d

s

m
m  2

δ
−

 0.052  0.046 

s

b

m
m  2

δ
−

 0.028  0.046 

em
mµ

 4
δ

−
 34.745 10−×  32.104 10−×  

m
m

µ

τ
 2

δ
−

 0.061 0.046 

EM

W

α
α  1

δ
−

 0.230  0.214 

EM

s

α
α  2

δ
−

 0.0635 0.0459 

W

Z

M
M  11

2(1 )δ
−

−  0.8823 0.8865 
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Tab. 3: Actual versus predicted scaling ratios for 3.9δ =  

6. Summary and conclusions 

This brief report has been motivated by recent advances in the theory of nonlinear 

dynamics and complexity. Through the combined use of CGLE and universal theory of 

transition to chaos in nonlinear dissipative systems, we have found that: 

a) particles acquire mass as plane wave solutions of CGLE, without any reference to the 

hypothetical Higgs scalar or to a particular symmetry breaking mechanism. 

 
Parameter ratio 

 
Behavior 

 
Actual 

 
Predicted 

u

c

m
m  

 

4
δ

−
 33.365 10−×  34.323 10−×  

c

t

m
m  4

δ
−

 33.689 10−×  34.323 10−×  

d

s

m
m  2

δ
−

 0.052  0.066 

s

b

m
m  2

δ
−

 0.028  0.066 

em
mµ

 4
δ

−
 34.745 10−×  34.323 10−×  

m
m

µ

τ
 2

δ
−

 0.061  0.066 

EM

W

α
α  1

δ
−

 0.230 0.256 

EM

s

α
α  2

δ
−

 0.063 0.066 

W

Z

M
M  11

2(1 )δ
−

−  0.8823 0.8623 
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b) there is a natural separation of non-relativistic modes ( 0q = ) from relativistic modes 

of maximal group velocity ( 1)q = . The most straightforward interpretation of this result 

is that the first group of modes corresponds to gauge bosons and the second group to 

fermions.  

c) the (1) (2)U SU×  and (3)SU  gauge groups of SM, as well the currently known 

fermion generations, are sequentially produced through period-doubling bifurcations of 

CGLE.  

Appendix A 

The two dispersion parameters of CGLE are subject to the following dynamic constraints 

[8, 17]: 

a) the Benjamin-Feir-Newell (BFN) criterion states that stability becomes borderline for 

                                                               1 3 1c c =                                                              (A1)  

b) the group velocity of linear perturbations to the plane wave solutions is given by ( ) 

                                                          1 3v 2 ( )g q c c= +                                                     (A2) 

Compliance with relativity bounds (A2) to a constant that represents the normalized value 

of light speed in vacuo. It is clear that 0q =  represents a slow mode (massive gauge 

boson), while 1q = ±  describes the fastest mode (relativistic fermions). Masses associated 

with these modes are supplied by (9).  From the BFN criterion it follows that the 

borderline value of the normalization constant 
max
gv

2Q   can be determined from 

 
2

1
4

2
2

Q Q
c Q

± −
= ⇒ ≥  

(A3) 

3
1

1c
c

=  
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(A1) and (A2) imply that, close to the border of BFN instability, gauge boson and 

fermion masses scale as complementary entities.   

Appendix B 

For convenience, we briefly outline here the universal FSM paradigm of transition to 

chaos in nonlinear dissipative systems. The interested reader is referred to [19] for 

additional details. 

Consider the boundary value problem for CGLE in 1+1 space-time dimensions ( , )x t : 

22
1 3(1 ) (1 )t xA A ic A ic A A∂ = + + ∂ − −  

(B1) 
(0, ) ( , ) 0x xA t A L t∂ = ∂ = , 0( ,0) ( )A x A x= , 0 x L≤ ≤ , 0 t≤ ≤ ∞  

This model can be reduced to a three-dimensional system of nonlinear ordinary 

differential equations with the help of the Galerkin few-mode approximation: 

                               1 2( , ) ( ) exp[ ( )] ( ) exp[ ( )]cos( )A x t t i t t i t x
L
πξ θ η θ≈ +                    (B2)                     

in which 

1 1 3( , , , , , )t f c c Lξ ξ η θ∂ =  

                                                   2 1 3( , , , , , )t f c c Lη ξ η θ∂ =                                               (B3)   

3 1 2( , , , , , )t f c c Lθ ξ η θ∂ =  

with 2 1( ) ( ) ( )t t tθ θ θ− . It can be shown that the transition to chaos in (B3) occurs 

through a sequential cascade of bifurcations. This cascade starts with the Feigenbaum 

scenario of period-doubling bifurcations of stable cycles, followed by the Sharkovskii 

subharmonic cascade and ending with the Magnitskii cascade of stable homoclinic 

cycles. 
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