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Abstract.  A geometrical/mechanical model of the proton is developed which satisfies 

general empirical features.  A Yukawa / Paris-type potential due to a mesonic field is 

incorporated into Einstein's equations of general relativity to predict a hadronic force 

constant, stronger than the fine structure constant by (137/√3) times  Proton mass is 

expressed in terms of muonic mass building-blocks.  Analysis of the magnetic moment 

allows substructure modelling, incorporating 2 grades of triplets. Creation of these 

component parts is described in terms of action-integrals. The gluon field energy holding 

the triplets together is related to total energy.  Uniqueness of electromagnetic charge is 

attributed to a governing action principle. Finally, a neutron model has been proposed, 

consisting of a proton core orbited by a heavy-electron.  
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1. Introduction 

 Proton design is much more complicated than the electron model (Wayte, Paper 1) 

or muon model (Wayte, Paper 2). Although proton charge is exactly equal and opposite to 

the electronic charge, the proton magnetic moment is nearly 3 times the expected value.  In 

addition, the proton has a strong but short-range hadronic/nuclear force field which does 

not interact with leptons or electric fields.  During high-energy collisions, the proton 

appears to consist of 3 smaller particles, but the amount of spin held by these individuals is 
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still debatable.  Established QCD theory has offered explanations for most aspects of 

proton behaviour; see textbooks such as Perkins (2000), Martin & Shaw (1997), 

Fraunfelder & Henley (1991). However, experiments with spin-directed protons severely 

strain this theory (Krisch, 1992). Some experiments on proton electric/magnetic form 

factors indicate a quark-like core plus mesonic cloud field, (Iachello, 2004). Other 

experiments on electron-nucleon scattering, performed to determine radii of proton and 

neutrons, have been reviewed by Sick (2005). 

 In this paper, the proton model is based entirely on our previous electron and muon 

models, to make them all compatible, including some common physical structures.  No 

dependence upon QCD theory has been necessary to explain the mechanics of a proton 

itself.  In Section (2) the hadronic potential is attributed to a pionic field in agreement with 

Yukawa and the Paris group. In Section (3), Einstein's equations of general relativity are 

employed to develop a variation of the Yukawa field and predict a hadronic force constant 

of (137/√3); i.e. 79 times stronger than the fine structure constant.  Total energy of this 

field is shown to be equal to half the proton mass energy. In Section (4), hard core 

repulsion is attributed to rapid rotation of the proton core, which modulates the field in the 

very short range only, making it repulsive. In Section (5), proton magnetic moment is fully 

analysed in terms of a spin-loop and various descending substructures. A model of 2 

grades of triplets is proposed.   In Section (6) proton mass is expressed in terms of muon 

mass, with due allowance for binding energy.  Section (7) covers the creation of the sub-

structures in terms of spiralling action integrals. The proton core is found to be constructed 

like a quintuply-wound filament, through which the charge flows perpetually. This is made 

of fundamental energy/matter, which is localised in the helical windings and constitutes the 

proton mass. In Section (8), the gluon field which holds component structures together is 

discussed in terms of its energy. In Section (9) the uniqueness of electromagnetic charge is 

investigated with regard to its action. Finally in Section (10) a neutron model is proposed 

consisting of a proton orbited by a heavy-electron. 

 Thus, the proton features are all tangible and revealed as electromagnetic 

charge, hadronic force-field, hard-core repulsion, internal confining gluon field, mass 

relative to leptons, spin angular momentum ½ , magnetic moment and substructure 

particles. Essential properties are the conservation of energy and momentum at all times, 

and overall compatibility with relativity theory. All fundamental physical constants and 
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particle properties have been taken from the latest measured values given in 

http://physics.nist.gov/constants and http://pdg.lbl.gov. 

Postulations of negative energy, extra dimensions, point quarks/particles, Higgs 

bosons, renormalisation and non-conservation of energy at any instant (implied or actual), 

have not been necessary in this physical theory. 

 

2. The hadronic potential 

 The Klein-Gordon wave equation is usually taken as the basis of the inter-nucleon 

potential described by Yukawa: 
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where (r =  /mc = 1.462 fm) is the pion Compton radius. If we assume that this wave 

amplitude Ψ is proportional to potential, then for a static potential the time dependent term 

is dropped, and in a spherically symmetric form the required solution of (2.1) is Yukawa's 

potential: 
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where aχ represents an effective hadronic/nuclear charge. 

 Although this attractive potential appears to fit the data for nucleon-nucleon ranges 

beyond 1.5fm, the measured force becomes repulsive like a hard core potential below 

0.5fm.  Overall, the "Paris potential" derived by Lacombe et al (1980) is commonly 

accepted as providing the best fit to experiment.  Meson exchange has been invoked for the 

attractive part, while the repulsive core is phenomenological.  Comparisons of the Paris 

and other potentials have been illustrated by Signell (1980) and Bugg (1981). 

 We shall now derive a more accurate relativistic expression for the field of a 

quiescent nucleon (neglecting spin), as would be measured by a theoretical infinitesimal 

test particle. This will not be exactly the same as would be experienced by an equally 

massive nucleon in a collision because of kinetic energy involvement. Furthermore, this 

mesonic field is permanent, and independent of the strong interaction mediated by gluons 

between the constituent quarks in the nucleon. 
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3. Application of Einstein's equations 

 In order to use Einstein's equations to interpret the hadronic force in a way 

compatible with the long-range electromagnetic and gravitational forces, the potential 

energy function might be expected to have the simple form: 
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Here mp is the proton mass and V(r) is given by (2.2), and we define 
2
 as the metric tensor 

component, (see Paper 1, Section 1.8, and Wayte 1983). However, this form leads to 

regions of negative meson-field energy.  A physically acceptable form, compatible with 

Poisson's Equation for a mesonic field around a proton is: 
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which approximates to (3.1) for a weak field. Given that we need ( = 0) at the effective 

proton radius (rp = ħ/mpc = 0.2103fm), then upon substituting (r = rp) we get: 
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therefore, 
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 Now, the general coordinate potential VC should probably be related to the metric 

tensor component through an expression like (3.1): 

  )cm/Va1( 2
pC  ,      (3.5) 

therefore, (3.4) yields: 
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This VC is the empirical potential and it approaches double the depth of Yukawa's potential 

(2.2) as r decreases to rp . The nucleon hadronic charge aχ may be calculated from the 

weak-field approximation of (3.6), and letting VC ≈ V(r) from (2.2): 
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Then by introducing [rp = 137(e
2
/mpc

2
) = 0.2103 fm] and (r = 1.462 fm); where e is the 

electronic charge, we have: 
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The hadronic interaction for nucleons is therefore 79 times stronger than the 

electromagnetic interaction; and the nucleonic coupling constant χN is definable as: 
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Result (3.8) also follows from the strong-field condition of (3.3), so potential (3.6) is fully 

acceptable. 

 As derived for the electromagnetic and gravitational forces, the energy-momentum 

tensor components for a conserved spherically-symmetric radial field are:  

  )1(r
dr

d

r

1
T

c
8T

c
8 2

2

4
44

1
14





















  ,     (3.10) 

  































)(

dr

d
r

dr

d

r2

1
T

c
8T

c
8 22

2

3
34

2
24

 ,    (3.11) 

(see Paper I, and Wayte 1983); χ is the NN hadronic constant, which evaluates to 

(137e
2
/mp

2
). This expression for momentum/stress density 

2

2T  is the relativistic form of 

Poisson's Equation, so from substituting (3.2) in (3.11) we have: 
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Similarly, the energy density 
4

4T  is given by: 
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Integration of 
4

4T  over all elemental shells from rp to infinity yields the total mesonic field 

energy (W) as follows: 
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then, 
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Here, the negative sign indicates an attractive field constituting exactly one half of the 

proton mass.  Analogous to the electron, half the proton mass resides in a core which 

supports the field.  This proton core material is actually located in a torus, rotating at 

velocity c at mean radius rp ; which gives the proton its spin [½ħ = (mp /2)crp ]. The 

mesonic field propagates radially out and back and does not rotate. 

 Regarding this field, it is believed that each field-meson actually has equivalent 

mass mπ' which is a small fraction (1/137
2
 say) of a free-pion mass mπ . A smooth copious 

field of 'bia-mesons' is thereby produced rather than a disjointed field of only 3 or 4 

mesons. All the previous analysis remains valid if a reduced Planck constant (h′ << h) is 

assumed to go with the 'bia-meson' mass such that the field range is unchanged, (r = ћ′ 

/mπ′c). 

From (3.10), (3.12) and (3.13) the lateral stress 
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This is very different from the electromagnetic field in which the quanta have unitary 

helicity.  It indicates that the field bia-mesons propagate radially at the velocity of light 
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1 TT  ) but spin at a lower velocity when r < 2rπ .  At larger radii, velocities greater 

than c are theoretically permissible for mechanisms within particles. A bia-meson therefore 

takes the form of a vortex, which decreases exponentially in energy from base to apex. 

 Total lateral stress may be found by integrating 
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Finally, the solution of (2.1) is the wave amplitude ψ, which must take the same 

form as Yukawa's potential in (2.2); therefore according to (3.12), ψ is proportional to the 

lateral stress/momentum density. This wave amplitude is not proportional to the real 

potential VC, but is related through: 
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where k is a constant. 

 

4. Hard core repulsion 

 Hard core repulsion exists between like nucleons but not between a nucleon and an 

anti-nucleon; see Klempt et al. (2002).  This agrees with the electromagnetic force in 

which electrons repel each other but attract positrons.  Since the difference between 

electrons and positrons is helicity only, it will be postulated that hard-core repulsion is to 

do with helicity.  There is then no need for a separate, repulsive quantum field which 

would modify energy distribution in the above bia-meson field and change (3.15).  

However, regular bia-mesons from nucleons are identical and simply expected to produce 

an attractive field for all radii according to (3.10)-(3.13).  Consequently, actual repulsion 

between nucleons will be attributed to some form of helical field modulation which 

converts normal attraction into very strong short-range repulsion.  Such modulation could 

be produced by the spinning proton core torus which supports the field.  That spin 

frequency is (mp / m) times greater than the meson Compton frequency, therefore the 

repulsion could be that much greater.  Propagation of the modulation into the field is 

expected to be compatible with (2.1) and (2.2), wherein mπ would be changed to mp ;  so 

the proposed overall potential exhibits a reversal of the attractive potential in the short-

range only. We must incorporate this effect into the metric tensor component by modifying 

(3.4) to: 
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This describes a modification of the existing bia-meson field, rather than simply adding a 

repulsive field to it. At very short range (r ≈ rp), this approximates to a satisfactory form: 
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So, (4.1) is viable and the empirical overall nucleon potential is given by: 

    1cmVa hc
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This is plotted in Figure 1, and at larger radii it appears stronger than the Paris tensor 

component illustrated in Figure 2 for comparison. 

 It is possible that the proposed field modulation also affects the attraction between 

a nucleon and anti-nucleon. By changing (mp) to (-mp) in (4.1), the attraction potential is 

increased noticeably beyond (3.6) at smaller radii, as shown by the dotted line in Figure 1. 
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Figure 1. The nucleon-nucleon potential. Thin line shows the attractive component 

according to equation (3.6). Bold-line shows the total potential with hard-core repulsion, 

according to equation (4.3). Grey-line top-left is to include radii down to rp , 

corresponding with the logarithmic scale on the right. Dotted-line shows the enhanced 

attraction between a nucleon and an anti-nucleon, caused by the field modulation. 
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Figure  2. The Paris tensor potential (
_ _ _

) and other potentials, copied from Signell 

(1980) for comparison with Figure  1. 

 

 Although a spherically symmetric bia-meson field has been assumed so far, the 

proton actually produces a toroidal field which approximates to a spherical field at large 

radius (r >> rp). This will undoubtedly affect high energy NN collision results, especially 

with regard to spin polarisation. 

 As mentioned earlier, this native field (4.3) is only experienced by small test 

particles because massive nucleons in collision cause modifications to the field source. For 

example, in a head-on collision of two nucleons, the incident kinetic energy is steadily 

absorbed and converted to mass energy until the particles come to rest momentarily. This 

increase in mass from mp to mp' causes the nucleon to shrink in size to rp' = ħ/mp'c. At the 

same time, potential Vhc in (4.3) will increase. So both the nucleons become smaller and 

harder, unless disintegration occurs. If for example, both the nucleons were to have the 

same initial kinetic energy, (KE = mpc
2
 say) then the abscissa in Figure 1 would become 
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half and the ordinate would become double at the instant of closest approach in a head-on 

impact.  

 

5. Proton magnetic moment 

 Previous papers on the electron and muon showed how the magnetic moment 

analysis could involve all the component parts of those particles, from spin-loop through to 

fundamental elements.  Likewise here, the measured proton magnetic moment exhibits 

features which can be directly attributed to substructure components, in common with the 

electron.  Electromagnetic strength factors, 137, 37.7, 24 and 50 are identified in the 

component parts, in terms of simple geometry.  

 In this model, a proton is to consist of 9 pieces of approximate muonic mass 

arranged in two ranks of 3 parts (see Figure 3), bound by gluons and electromagnetic 

guidewaves. The larger rank is the spin-loop of spin ½ħ , and is equivalent to the 3 quarks 

of QCD theory; but since they are very different from quarks they will be called trineons.  

These parts have equal mass and travel around a Lagrange system (see Montgomery, 

2001), which is known to be a system of minimum action. Probably, the 3 parts in a rank 

differ in phase by 2π/3, and this could be responsible for the so-called quark colour 

phenomenon. A trineon is complex, consisting of 3 complex pearls, each part consisting of 

37 grains, which consist of 137 mites, which contain 50 elements each. We shall see in 

Section 7 that the proton creation is most easily understood if it happens via seed growth, 

starting with the spin-loop and working downwards to smaller elements, which can only be 

created in situ as space becomes available. As for the electron, the grains, mites, and 

elements are treated like particles, but they are actually the individual turns of a helix 

around the periphery of the next larger particle. 

 Given that the proton spin is ½ħ, then the expected magnetic moment of the spin-

loop would be one nuclear magneton: 
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The measured value is almost 3 times this: 

  (23). 356 847 2.792 x    Np        (5.2) 

Our proton model will produce a concise expression for p as: 
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Here the fine structure constant has been taken as the empirical value: 
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-1

  =  137.035999679(94)  ≈  137,     (5.4a) 

while the other constants have the same values as for the electron, but they have different 

roles: 
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and en = 2.718281828 is the natural logarithm base. 

 Analysis of the magnetic moment equation (5.3) will involve some properties 

already seen in electron and muon structures, plus some new features.  The first factor 3 

implies that each trineon behaves as if it has unit charge e
+
 when interacting with an 

applied external magnetic field, even though the exterior charge of the proton is e
+
.  

Subsequent terms cover magnetic moments of 3 pearls per trineon, with their constituent 

grains, mites and elements, which are all physically much smaller particles. 

 The first curly bracket of (5.3) is identical to that in the electron model, and serves 

to include the self-interaction electromagnetic energy around the proton spin-loop, which 

increases the effective circulating charge. This energy is nominally (e
2
/2rp) but it has to be 

supplied by the proton itself, so it is reduced slightly to: 
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e
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which gives the required normalized value: 

  112
p ]1)2[(cm/E    .      (5.5b) 

 Each part of the second curly bracket in (5.3) may be explained by expanding each 

term: 
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           3 trineons 3 pearls     37 grains        137 mites           50 elements             (5.6)          
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For clarity, the approximate forms of have been used, and the particles being 

described are noted underneath. In the following explanation of each term, the „current x 

area‟ definition (5.1) is consistently applied with regard to current flow and particle areas. 

 The first round bracket in (5.6) represents the contribution to the magnetic moment 

from 3 trineons, running as cycloids, anti-parallel to the spin-loop, see Figure 3.  A trineon 

is 137(2/) times smaller than the spin-loop, so the denominator expresses the 

corresponding relative area. It spins with enhanced velocity c' = c(/2). The numerator 

factor 137 represents current flow around the 137 gluonic loops which constitute a trineon 

itself, (formed into 3 clumps/pearls). Factor (/en) is weighting for these gluons. 

 

              

 

Figure 3.   Schematic diagram of a proton which consists of 2 ranks incorporating 3 trineons and 3 

pearls.  A pearl has approximately the mass of a muon. 

 

  The second round bracket represents the contribution from the 3 pearls, running as 

cycloids, around and parallel to their trineons, see Figure 3.  A pearl is 24 times smaller 

than a trineon so the denominator expresses relative area. It spins with velocity c'. The 

numerator factor 24 is interpreted as current flow around the 24 gluonic loops which 

constitute the pearl itself, (braided into a peripheral helix of grains). 

 

(rp) proton radius 
(rp/137(2/π))  trineon radius 

(rp/137(2/π)x24)   

   pearl radius  
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 The third round bracket represents contribution from the 37 grains running 

helically, (probably left-handed), around each pearl circumference. A grain spins at 

velocity c', and is 37.7 times smaller than a pearl so the denominator expresses relative 

area. Attenuation factor (1/2) may be due to the helical propagation around the cycloidal 

pearl. 

 The fourth round bracket represents the contribution from current flow around 137 

mites running helically around each grain circumference.  A mite spins at velocity c', and is 

137(2/) times smaller than a grain, so the denominator expresses relative area. The 

attenuation coefficient (2/) applies to mites and their constituent elements because of their 

changes in orientation as they run around a grain. Mite areas, projected parallel to the spin-

loop, are thus reduced by the factor (2/) on average. 

 Finally, the last bracket represents the contribution from 50 elements running 

helically around each mite circumference.  An element spins at velocity c, and is 50 times 

smaller than a mite so the denominator expresses relative area.  The additional attenuation 

coefficient (2/) applies to elements because of their changes in orientation as they move. 

Their areas, projected parallel to the spin-loop in two axes, are reduced to (2/)
2
 on 

average. The weighting factor (/2) is attributed to the element spin velocity being c while 

its propagation velocity is c' around its mite circumference; as seen for the grain/mite 

transition in the electron model. Coefficient (/en) accounts for the field energy associated 

with the elemental material. 

 The 50 elements per mite are the actual source of proton electromagnetic field 

quanta, and probably have right-handed helicity like positrons. However, in experiments 

on electron and neutrino scattering from protons, the pearls behave as if they have left-

handed helicity. Consequently, if the elements should also have left-handed helicity, then 

the field quanta must peel-off or bifurcate from their elements, with opposite hand. 

 

6. Proton mass 

 Analysis of the muon (Paper 2) showed how its mass is related to the electron mass 

in terms of binding energy loss and magnetic coupling effects.  If proton mass is physically 

related to muon mass, it can also reveal a binding energy term: 
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7.372

1
133m880243389.8mp    ,   (6.1) 

where (mp = 1836.15267247(80) me ) and (m   =  206.768 2823 (52) me ).  

 At first sight, this expression could imply that a proton is just a collection of 9 

muons; but in fact, the structure within a proton pearl is very different from the structure of 

a free muon. The bracket on the right could be taken to describe binding energy of 3 pearls 

in a trineon, as if the pearls remain by attraction around the trineon circumference with a 

binding energy of (mc
2
/2x37.7) per pearl.  

 We shall see in Section 7 that the proton core is found to consist of a single 

filament of matter, winding through every element in every part, in series. Then from 

Section 5, the proton elemental mass is given by: 

  )]50)(137)(7.37)(24x3)(137x3/[(mm pp/el    .    (6.2) 

For comparison, the electron structure analysis in Paper 1 showed how the electron 

elemental mass was given by: 

  )]50)(24)(7.37)(137)(137/[(mm ee/el     .    (6.3) 

The ratio of these different elemental masses is: 

  
ee/el

p/el

m

m
204

3x3

1836

m

m 
    .      (6.4) 

 

7. Creation of proton component parts 

 Just as the electron and muon were created in several separate stages by spiralling 

from previously created or newly generated seeds, so the proton structure is analysable 

from spin-loop to its most fundamental elements.  Using previous techniques and 

arguments from Paper 1, every step has to be compatible with other aspects of the model, 

and empirically sound.  The above magnetic moment analysis has been the essential basis 

of the following theory, with frequent reference to electron structure, given in Paper1. 

 

7.1 Creation of a proton spin-loop 

 Proton design involves 3 trineons travelling cycloidally around the spin-loop at 

velocity c, aligned antiparallel to the spin-loop. For creation of the spin-loop from a small 
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seed, the proposed spiralling plus seed-creation equation is to be based on the following 

formula: 

      )e/2(137ln)]e/137ln(1ln[)e/137ln( n
2

nn    .  (7.1.1) 

Here the first two terms will cover spiralling open of the seed by a radial factor (137/en ≈ 

50), while the third term indicates that the seed itself will be created with 137 material 

loops on its circumference.  After spiralling open from the seed radius (rps ≈ rp /50 ), this 

material separates into 3 trineons, (of 137 gluonic loops each).  Given the spin-loop radius 

[rp = 137(e
2
/mpc

2
) = 137rpo] and circumference ( 'Op = 2rp = zp), then (7.1.1) may be 

reduced to an action equation: 
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The spiralling term on the left describes how a proton circumference ('Op) is formed by 

spiralling from the spin-loop-seed circumference ( 'Ops = 'Op /(137/en)). It confirms that a 

proton behaves as if it has charge e
+ 

throughout the process.  In the second term, the 

circumference of the original seed ( 'Ops) consists of 137 material loops wound in a helix of 

radius ( 'Ops / 2137), and created just before spiralling begins. These loops develop after 

the spiralling process into the 3 trineons. On the right, the action integral employs the 

original mass mp in the spin-loop before any external pionic field has formed, (which 

would reduce mp to mp /2). The kinetic energy action is given using the classical proton 

radius (rpo = e
2
/mpc

2
), analogous to the classical electron radius (ro = e

2
/mc

2
) used in Paper 

1. Weighting coefficient (/en) accounts for internal field energy associated with the 

material energy. 

 

 7.2     Creation of a trineon. 

Trineon design consists ultimately of a circumference of 3 complex pearls aligned 

anti-parallel to their trineon.  A trineon has a radius ro' which is 137(2/π) times smaller 

than the spin-loop rp , and it rotates at a velocity c' = c(π/2). The proposed spiralling plus 

seed-creation equation is to be based upon a formula somewhat like that for spin-loop 

creation: 
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    )e/(}24{ln})e/24ln(1ln)e/24{ln(
2

n
3

nn     .  (7.2.1) 

Given the classical proton radius expression (rpo = e
2
/mpc

2
), then development of (7.2.1) in 

the usual way yields an action integral for each of the 137 loops produced above, prior to 

their condensing into 3 separate trineons: 
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The first term shows a trineon circumference ( 'O0 = zp /137(2/π)), being formed by 

spiralling from the trineon-seed circumference ( 'O0S = 'O0 /(24/en)). In the second term, this 

original seed circumference has 24 material loops, in a helix of radius ( 'O0S /224), created 

just before the spiralling begins.  These original 24 material loops grow and finally 

condense into 3 pearls (of 24 gluonic loops each) propagating around the trineon 

circumference at velocity c' while spinning at c' also.  On the right side, the proton kinetic 

energy action is given, using classical rpo again. Weighting coefficient (/en) accounts for 

field energy associated with the material energy. Factor (1/en) indicates that a second 

harmonic guidewave is in control. 

 

 7.3     Creation of a pearl. 

A pearl periphery 'O1 consists ultimately of 37 grains which propagate helically 

around the circumference at velocity c' = c(π/2), while spinning at c'.  The pearl spiralling 

plus seed-creation equation is based upon a formula with some similarity to that for trineon 

creation: 

    )e2/(}7.37{ln}7.37ln1ln7.37{ln n
3  .        (7.3.1) 

Development of this in the usual way yields an action integral for each of the 24 loops 

produced above, prior to their condensing into 3 separate pearls: 
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The first term covers spiralling growth of the pearl by factor 37.7 from a seed of 

circumference ( 'O1S = 'O1 /37.7 ). Final pearl circumference is 24 times less than the 

trineon, ( 'O1 = 'O0 /24) . In the second term, the original pearl-seed circumference ( 'O1S ) 
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has 37.7 material loops in a helix of radius ( 'O1S /237.7 ), created just before spiralling 

begins. These 37.7 loops grow into the grainy helix, propagating around the pearl 

circumference at velocity c' while spinning at c'. On the right side, weighting coefficient 

(/en) accounts for field energy associated with the material energy. 

 

7.4      Creation of a grain. 

A grain periphery 'O2 consists of 137 mites which travel around the grain at 

velocity c' while spinning at velocity c' also.  The grain spiralling plus seed-creation 

equation is based on a formula like that for spin-loop creation: 

 

          )e/2(137lne/137ln1lne/137ln n
2

nn   .  (7.4.1) 

This may be developed into an action integral: 
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The first term covers spiralling growth of the grain by a factor (137/en) from a seed 

circumference [ 'O2S = 'O2 /(137/en) ]. Final grain circumference is 37.7 times less than the 

pearl, ( 'O2 = 'O1 /37.7 ). In the second term, the original grain-seed circumference ('O2S ) has 

137 material loops, in a helix of radius ( 'O2S /2137 ), created just prior to spiralling. These 

grow in the grain final circumference into 137 mites (each of circumference, 'O3 = 'O2 

/137(2/)) which propagate and spin at velocity c'. On the right-side, factor 2 is for 

weighting, and (1/en) indicates a second harmonic guidewave in operation here. 

 

7.5    Creation of a mite. 

A mite periphery contains (16 ~ 50) elements, which travel around the 

circumference at velocity c' while spinning at c.  The mite spiralling plus seed-creation 

equation is based upon a formula like that for grain creation: 

      )e/2(50ln2/50ln1ln50ln
2

n
3 .     (7.5.1) 

Development of this in the usual way shows how a mite-seed evolves by spiralling open, 

according to this action integral: 
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            (7.5.2) 

The first integral covers spiralling action for the mite increasing from a seed circumference 

'O3s to its final circumference ( 'O3 = 50x'O3S ), which is 137(2/) times less than the grain, 

( 'O3 = 'O2/(137(2/)) ). The second integral represents scalar potential action of creating 50 

elemental loops, which travel around the mite-seed circumference at velocity c' while 

spinning at c, prior to the mite spiralling process. On the right side, mp is used rather than 

mp/2 because this process applies prior to an external field forming. Weighting coefficient 

(/en) accounts for field energy associated with the element material energy. Factor (2/en) 

indicates a second harmonic guidewave is in operation here, with 2 times weighting. 

A final mite circumference 'O3 then consists of a helix of 50 material elements 

travelling at c' around the circumference, while spinning at velocity c according to the 

formula: 

 )e/(50ln n
2 ,             (7.5.3) 

which may represent an action integral: 
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Weighting coefficient (/en) appears in the magnetic moment analysis (5.6), and accounts 

for the field energy associated with the material energy. These 50 material elements in 

each mite are fundamental, and emit tethered electromagnetic field quanta with right-

handed helicity. 

 

8. Gluons. 

Experimentally, there is evidence that the 3 trineons in the proton spin-loop are 

bound together by charged gluons which emit colour force quanta.  In Section (6) the 

proton mass analysis revealed some electromagnetic binding energy, as a small proportion 

of the overall mass.  However, the gluon energy existing between trineons and pearls need 

not be explicitly stated.  Each particle mass is inclusive of its gluon field energy, just as the 
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electron mass includes its field energy (½mec
2
).  When the proton is stressed in a collision, 

its strong gluon binding force operates to resist deformation and disintegration. 

Our model of charmonium (pending) has employed the logarithmic potential 

developed by Quigg and Rosner (1979, pp217-223) to explain the gluon and colour field 

between a quark and anti-quark. For charmonium fundamental mass MC and characteristic 

dimension rq , the potential energy was found to be given by: 
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For the proton here, this potential energy will be modified as follows: 
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where we know (rp = 137(e
2
/mpc

2
)). Clearly, at equilibrium (r = rp) the effective potential is 

zero, but the field must be operating continuously to confine the trineons against 

electromagnetic repulsion and centrifugal force. Then the metric tensor component for 

Einstein's equations will take the usual form: 
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Analogous to charmonium, the potential (8.2) will apply to a linear field, as in a tube of 

gluons linking the 3 trineons around the proton spin-loop. We propose that  should be 

zero when the trineons [of radius ro' = rp /(137(2/))], are almost touching in a circle of 

radius [rot = rp /69.6 = ro'(1.25)]; then (8.3) is satisfied. 

 We will let the proton binding field of gluons and colour quanta from the trineons 

be confined to a torus structure. The electron's spin-loop energy was calculated on the 

assumption of a spherical field, so let the trineon's effective area of emission be 4ro' 
2
. 

We can then determine the total energy within a tube of effective cross-sectional area 

4ro' 
2
, by integrating the energy density. 

 There is a solution of Einstein‟s Equations, specifically for a conserved linear 

field, which will be proposed as equivalent to the toroidal field. For example, consider an 

ideally static field produced between a trineon placed at the origin and another trineon 

placed on the x-axis, say. The field of gluons is to be confined by a tube of cross-sectional 
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area 4ro' 
2 

parallel to the axis. It will have components of the energy-momentum tensor 

as derived from Dingle‟s formulae (Tolman, 1934, p. 253), for the line element: 

  2222222 dtdzdydxds     .    (8.4) 

These components are mathematically: 
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Upon introducing γ from (8.3), with x set equivalent to r, we get the separate gluon and 

colour field tangential momentum densities: 
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2
2T  is the effective momentum/stress density of the field of the source trineon, as seen at 

the position of the other trineon. Given the form of (8.6a), we shall infer that 4
4T  in (8.5a) 

cannot really represent zero energy density, and should be made physically compatible 

with 2
2T  by taking the form: 
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Analogous to (3.14), integration of this 4
4T  from (r = rot ) to (r = ∞), will be taken to yield 

the separate and equal gluon and colour field energy components: 
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The modulus of the first term on the right will be attributed to the energy of the gluons 

because the gluons from the 3 trineons travel in the same direction as other material 

around the spin-loop. Upon setting [rot = Qmp /c
2
], analogous to the electron, then the 

maximum gluon plus colour field energy is (1/9) of the proton mass energy: 
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The tangential momentum density may be integrated to get a similar result: 
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This means that the gluons plus colour field quanta have unitary helicity and propagate at 

the velocity of light. 

  Clearly, to interpret (8.5a) in real terms, it has been essential to introduce some 

prior knowledge of the real gluon and colour field into these solutions of Einstein‟s 

equations. 

 

9. Electromagnetic charge uniqueness. 

 The electron and proton have charges which are accurately equal in magnitude, but 

their masses and internal mechanisms are very different. Furthermore, an electron-positron 

pair may be produced from high energy photons without reference to a proton. So it 

appears to be necessary for particle charges to be inherent and absolute.   

  Fermion spin is also absolute and may be related to charge. First, the theoretical 

classical radius of an electron, muon or proton has the form: 

 2
o

2
o cm/er    .     (9.1) 

This is based on the hypothesis that work would be done in assembling incremental 

charges against their mutual repulsion force, as may be expressed: 
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Then application of (9.1) gives W = ½moc
2
, as if the work done is stored in the particle as 

mass. The remaining (½moc
2
) must be attributed to the original charges or additional 

ballast.  Even if such a classical compression process does not occur in reality, it is 

probable that particles are produced while conserving energy and charge, so that (9.2) and 

the inverse process of dispersion would be allowed. 

 Second, the theoretical radius (9.1) may not always exist physically, but the real 

spin radius is invariably given by (rs = 137ro).  Thus for fermions, their spin is: 

   2/cr2/ms so   ,           (9.3) 

and the electric charge can be defined absolutely in terms of spin by: 
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   2/1
137/cs2e     ,       (9.4) 

which is independent of particle mass, size, or detailed design. Then the large proton mass 

is effectively equivalent to work being done in forcing charge into the relatively small 

dimensions.  Obviously, everything depends on particles having spatial volume with 

angular momentum, rather than being mathematical singularities. 

 Calculations of magnetic moment in Section (5) and creation-action in Section (7) 

depended upon the charge being divisible among the various substructures; so we need a 

charge formula applicable to the fundamental elements in a proton.  For an electron, such a 

formula was found which was based upon allocating 3 curls of charge Δq to each element.  

In addition, there needed to be some field material holding the 3 charge-curls in place, 

effectively increasing their weight to 3(π/en).  Now the total number of elements per 

electron was given in Paper 1 as: 

 8
e 10x5405.850x24x7.37x137x137n     .         (9.5) 

and the electron total charge was therefore: 

  q109611.2q)e/(3ne 9
ne     .    (9.6) 

When all the charge-curls were situated in a single circumferential helix of cross-sectional 

radius rq and unitary pitch, the overall electromagnetic action was expressed as: 
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where (e
2
/c = mecroe) for the electron, and x varies from 2πrq to 2πrq{nex3(π /en)} with (dt = 

dx/c). This primeval loop of around 3x10
9
 charge-curls is a most basic definition of 

electron charge. 

 For a proton of unit charge e
+
 , the effective total number of elements will be taken 

as: 

 8
tri 105405.8501377.3724137n   .         (9.8) 

The first term represents a spin-loop seed of 137 loops before separating into 3 trineons, as 

in creation equation (7.1.1).  Each of these loops has a helix of 24 smaller loops according 

to (7.2.1), which later grow and separate into 3 pearls. Factor 37.7 represents the number of 

grains in each pre-pearl in equation (7.3.1). The next factor 137 is that for the mites in a 

grain, see (7.4.1).  Finally, there are 50 elements per mite, as in (7.5.1). Clearly ntri is equal 
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to ne during the creation stages of the proton, which suggests that the final total charge 

should be the same as expressed in (9.6), even if it is distributed differently. 

 

10. Creation of a Neutron 

 The neutrons in a neutron star are formed, during the gravitational collapse of a 

massive star in a supernova event, because of great pressure forcing free electrons onto 

free protons.  Consequently, a simple mechanical neutron model consists of a proton 

orbited by a heavy-electron, in such a way as to account for the neutron's magnetic moment 

and its empirical mass. 

 

10.1    Magnetic moment 

It was shown in Section (5) that the proton spin-loop has radius [rp = 137(e
2
/mpc

2
)], 

and the measured magnetic moment is [p ≈ +2.792 847(eћ/2mp)].  Now, let there be a 

"heavy-electron" orbiting around a proton at selected radius rhe = rp(en√3) with velocity c, 

which could produce a magnetic moment according to (5.1): 
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Then the resultant neutron magnetic moment should be around: 

 N915355.1hepn    ,           (10.1.2) 

which is close to the empirical value n = –1.913 04273(45)N . 

 

10.2    Heavy-electron mass 

Since the selected orbit radius rhe is less than the classical radius of a free electron 

(ro = e
2
/mec

2
), it is proposed that the compressed “heavy-electron” takes the physical form 

of the core of a heavy-electron. This core surrounds the proton as a thin torus of charged 

matter, as described in Paper 1.  Work done to compress a free electron into this small core 

size in this location is effectively retained as the increased mass energy. Given rhe above, 

the heavy-electron mass might be as straightforward as: 
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However, the neutron mass [mn = 1838.683 6605(11)me] is only greater than the free 

proton mass by 2.5309 8803(11)me ; so we need to propose a better description of mhe . 

Namely, let the heavy-electron mass be given approximately by the formula: 
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Our interpretation of this is that the neutron's heavy-electron comprises 3 parts of nominal 

electronic mass, which are bound together by self-interaction of its electromagnetic 

guidewave force around the orbit 2πrhe , (just as a trineon consists of 3 pearls bound by 

gluons). Existence of the 3 component parts will be supported by (10.2.7) and (10.3.4). 

This interpretation assumes that compression work has to be done to add energy 

(1.5309mec
2
) to a free electron mass, and the final electron is internally well bound and 

stable, unlike for (10.2.1). The proton does not affect this value of heavy-electron energy.

 The original free electron spin-loop was compressed inwards by a factor of 137, to 

its seed size (res in Paper 1).  This would happen in steps, rather than a single jump, 

because action needs to be quantised in a simple way.  Possibly there would be 5 steps 

given by: 

  4321 eeee1137ln     .    (10.2.3) 

For each step, the spin-loop material spirals-inward at azimuthal velocity c.  Equation 

(10.2.3) may be developed into an action expression: 
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Here, the steps employ first to fifth harmonic guidewave frequencies, respectively.  Clearly 

a single jump of size 137 would not accommodate velocity c, since [ln137 ≈ π(π/2)] 

implies velocity [c' = c(π/2)]. 

 The collapsing spiral has the simple form: 

   2/exprr e .        (10.2.5) 

If the azimuthal material velocity is constant at c, then (rdφ = cdt) and consequently, the 

instantaneous electron circumference is 

 ctr2r2 e  .        (10.2.6) 
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A controlling guidewave-loop collapses with the material, propagating at velocity c also.  

The total spiral rotates (4.92 ≈ ln137) times and has the same shape as for electron 

creation, even though the velocities are different.  It is necessary that this compressed 

electron takes the core design (see Section 2 of Paper 1) because miniaturising the 

complete electron design does not produce the correct mass. 

 After the electron spin-loop has been compressed down to its core radius ro , further 

pressure reduces it to rhe.  This is quantisable, in terms of action, because ln(rhe /ro) = 

ln(2.84589) ≈ π /3, which leads to an action integral: 
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Phase factor (2π /3) implies the separation of material into 3 particles during electron 

collapse, as allowed by (10.2.2). 

Besides satisfying (10.2.2) for mass, the radius of the stable heavy-electron [rhe = 

rp(en√3)] is critical because quantisation is suggested by the formula: 

 2/)r/rln( phe          (10.2.8)  

The interpretation of this is that the toroidal heavy-electron transmits circular feeler 

guidewaves inwards from its position at rhe to the proton spin-loop at rp.  These are 

reflected back so continual interaction helps keep the electron in position.  For an 

equivalent guidewave charge δe and mass δm, the action integral for this loop spiralling 

inwards and reflecting back is from (10.2.8): 
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where (e/c = mcro) and (dz = cdt). 

 

10.3    Neutron lifetime 

Lifetime of the free neutron may be related to action around the heavy-electron in 

the same way as the muon lifetime was treated in Paper 2.  The period of the heavy-

electron is given by: 

 23
hehe 1007526.2c/r2t   secs,     (10.3.1) 

while the measured neutron lifetime is: 
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  0.887n   secs.        (10.3.2) 

Let (cτn) be equal to a number Nn of the heavy-electron circumferences (cthe); then upon 

taking logarithms we get a familiar format: 

    2
nhenn e/1370172.59ct/clnNln       .    (10.3.3) 

This may be developed, using (e
2
/c = mhecrhe), to give an expression for the action around 

Nn heavy-electron orbits: 
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Here, (1/en
2
 ) on the right implies a third harmonic guidewave, which is perfect for 

stabilising the 3 components of the heavy-electron. Distance cτn could represent a 

coherence length for these guidewaves. 

 

11. Conclusion 

 A physical model of a proton has been developed which exhibits all known 

properties.  Einstein‟s equations of general relativity have incorporated a Yukawa / Paris-

type potential in order to define a hadronic force constant χN ≈ α(137/√3). Proton mass has 

been related to muon mass, and the magnetic moment analysis has terms very similar to 

those employed for the electron.  The 3 main constituents, named trineons, are nothing like 

quarks because they are very small and possess little spin themselves, but travel around the 

proton spin-loop together to generate observed proton spin ½ħ .  Action integrals have 

been proposed for creating the entire substructure in separate stages, consecutively in 

chronological order from spin-loop through to fundamental elements.  Gluon energy was 

quantified and found to be in agreement with other work on charmonium.  The uniqueness 

of electronic charge has been explained in terms of a primeval loop of elementary charges, 

which satisfies a universal action integral.  Finally, a neutron model was proposed, 

consisting of a proton orbited by a heavy-electron, which generates the empirical magnetic 

moment.  Lifetime of a free neutron has been attributed to the finite coherence length of 

guidewaves operating around this heavy-electron. 
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