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Abstract—In this paper we analyze the performances of a
new probabilistic belief transformation, denoted DSmP, for the
sequential estimation of target ID from classifier outputs in
the Target Type Tracking problem (TTT). We complicate here
a bit the TTT problem by considering three types of targets
(Interceptor, Fighter and Cargo) and show through Monte-Carlo
simulations the advantages of DSmP over the classical pignistic
transformation which is classically used for decision-making
under uncertainty when dealing with belief assignments. Based
on our previous works for the justification of rules of combination
for TTT problem, only the Proportional Conflict Redistribut ion
rule and the hybrid fusion rules are considered in this work for
their ability to deal consistently with high conflicting sources of
evidence with three different belief assignment modelings.

Keywords: Information Fusion, DSmT, Subjective proba-
bility, Probabilistic Information Content, Pignistic pro ba-
bility, DSmP.

I. I NTRODUCTION

In order to improve the performances of Generalized
Data Association (GDA) in tracking algorithms [13] (Chap.
12), we investigate here the possibility of using uncertain
classifier attribrute decisions coupled with a sequential
fusion mechanism based either on a Proportional Conflict
Redistribution (PCR [13]) fusion rule or on a hybrid (DSmH
[11]) rule. The novelty of this paper lies (aside the fusion
mechanism itself) in the way the decision-making is carried
out for tracking the types of target under observation. In this
work we analyze and show the difference of performances
obtained for the decision-making support by the classical
betting/pignistic probability (BetP) introduced in nineties by
Smets [15], and the new probabilistic transformation, denoted
DSmP, developed by Dezert and Smarandache in [5]. We
will show that BetP and DSmP yield to same performances
when the optimistic PCR fusion rule is used, but that DSmP
outperforms slightly BetP if the more prudent/cautious DSmH
fusion rule is preferred by the fusion system designer. This
paper extends and improves our previous works on the Target
Type Tracking problem (TTT) published in [3] and [13].

This work is partially supported by the Bulgarian National Science Fund-
grant MI-1506/05.

In section II and III, we briefly introduce DSmT (Dezert-
Smarandache Theory) and its two main rules of combination:
the PCR rule no. 5 and the DSm hybrid rule1. In section
IV, we recall the classical pignistic transformation of a belief
mass into a subjective probability measure and we also present
our new probabilistic transformation DSmP which provides in
general a better Probabilistic Information Content (PIC) than
with BetP. In section V, we present the general mechanism for
solving the TTT problem and simulations results and compar-
isons presented and discussed in section VI. The section VII
concludes this work.

II. A SHORT INTRODUCTION OFDSMT

In Dempster-Shafer Theory (DST) framework [9], one con-
siders a frame of discernmentΘ = {θ1, . . . , θn} as a finite set
of n exclusive and exhaustive elements (i.e. Shafer’s model
denotedM0(Θ)). Thepower set of Θ is the set of all subsets
of Θ. The order of a power set of a set of order/cardinality
|Θ| = n is 2n. The power set ofΘ is denoted2Θ. For
example, ifΘ = {θ1, θ2}, then2Θ = {∅, θ1, θ2, θ1 ∪ θ2}. In
Dezert-Smarandache Theory (DSmT) framework [11], [13],
one considersΘ = {θ1, . . . , θn} be a finite set ofn exhaus-
tive elements only (i.e. free DSm-model denotedMf (Θ)).
Eventually some integrity constraints can be introduced inthis
free model depending on the nature of problem we have to
cope with. Thehyper-power set of Θ (i.e. the free Dedekind’s
lattice) denotedDΘ [11] is defined as:

1) ∅, θ1, . . . , θn ∈ DΘ.
2) If A, B ∈ DΘ, thenA ∩ B andA ∪ B belong toDΘ.
3) No other elements belong toDΘ, except those obtained

by using rules 1 or 2.

If |Θ| = n, then |DΘ| ≤ 22n

. Since for any
finite set Θ, |DΘ| ≥ |2Θ|, we call DΘ the hyper-
power set of Θ. For example, if Θ = {θ1, θ2}, then
DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}. The free DSm model
Mf (Θ) corresponding toDΘ allows to work with vague
concepts which exhibit a continuous and relative intrinsic
nature. Such concepts cannot be precisely refined in an

1DSmH is a natural extension of Dubois and Prade fusion rule [6] for
dealing with dynamical frames of discernments.



absolute interpretation because of the unreachable universal
truth. It is clear that Shafer’s modelM0(Θ) which assumes
that all elements ofΘ are truly exclusive is a more constrained
model than the free-DSm modelMf(Θ) and the power set
2Θ can be obtained from hyper-power setDΘ by introducing
in Mf (Θ) all exclusivity constraints between elements
of Θ. Between the free-DSm modelMf(Θ) and Shafer’s
modelM0(Θ), there exists a wide class of fusion problems
represented in term of the DSm hybrid models denoted
M(Θ) where Θ involves both fuzzy continuous hypothesis
and discrete hypothesis. The main differences between DST
and DSmT frameworks are (i) the model on which one
works with, and (ii) the choice of the combination rule and
conditioning rules [11], [13]. In the sequel, we use the generic
notationGΘ for denoting eitherDΘ (when working in DSmT
with free DSm model) or2Θ (when working in DST with
Shafer’s model).

From any finite discrete frameΘ, we define a belief
assignment as a mappingm(.) : GΘ → [0, 1] associated to
a given body of evidenceB which satisfies

m(∅) = 0 and
∑

A∈GΘ

m(A) = 1 (1)

m(A) is the generalized basic belief assignment/mass (bba)
of A. The belief and plausibility functions are defined as:

Bel(A) ,
∑

B⊆A

B∈GΘ

m(B) and Pl(A) ,
∑

B∩A 6=∅
B∈GΘ

m(B) (2)

These definitions are compatible with the Bel and Pl defini-
tions given in DST whenM0(Θ) holds. When the free DSm
modelMf (Θ) holds, the pure conjunctive consensus, called
DSm classic rule (DSmC), is performed onGΘ = DΘ. DSmC
of two independent2 sources associated with gbbam1(.) and
m2(.) is thus given∀C ∈ DΘ by [11]:

mDSmC(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (3)

DΘ being closed under∪ and∩ operators, DSmC guarantees
that m(.) is a proper bba.

III. DSMH AND PCR5COMBINATION RULES

A. DSmH combination rule

When Mf(Θ) does not hold (some integrity constraints
exist), one deals with a proper DSm hybrid modelM(Θ) 6=
Mf (Θ). DSm hybrid rule (DSmH) fork ≥ 2 independent
sources is thus defined for allA ∈ DΘ as [11]:

mDSmH(A) , φ(A) ·
[

S1(A) + S2(A) + S3(A)
]

(4)

whereφ(A) is the characteristic non-emptiness function of a
set A, i.e. φ(A) = 1 if A /∈ ∅ and φ(A) = 0 otherwise,

2While independence is a difficult concept to define in all theories managing
epistemic uncertainty, we consider that two sources of evidence are indepen-
dent (i.e. distinct and noninteracting) if each leaves one totally ignorant about
the particular value the other will take.

where∅ , {∅M, ∅}. ∅M is the set of all elements ofDΘ

which have been forced to be empty through the constraints
of the modelM and ∅ is the classical/universal empty set.
S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined by

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
∏

i=1

mi(Xi) (5)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
∏

i=1

mi(Xi) (6)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

u(X1∩X2∩...∩Xk)=A

(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (7)

where each element is in the disjunctive normal form (i. e.
disjunctions of conjunctions);U , u(X1)∪ . . .∪u(Xk) where
u(X) is the union of allθi that composeX , It , θ1∪ . . .∪θn

is the total ignorance.S1(A) is nothing but the DSmC rule for
k independent sources based onMf (Θ); S2(A) is the mass of
all relatively and absolutely empty sets which is transferred to
the total or relative ignorances associated with non existential
constraints (if any, like in some dynamic problems);S3(A)
transfers the sum of relatively empty sets directly onto the
canonical disjunctive form of non-empty sets. DSmH gen-
eralizes DSmC and allows to work on Shafer’s model. It is
definitely not equivalent to Dempster’s rule since these rules
are different. DSmH works for any models (free DSm model,
Shafer’s model or any hybrid models) when manipulating
precise bba and is actually an extension of Dubois and Prade’s
rule for working with static or dynamic frames as well [11].

B. PCR5 combination rule

Instead of distributing equally the total conflicting mass
onto elements of2Θ as within Dempster’s rule through the
normalization step, or transferring the partial conflicts onto
partial uncertainties as within DSmH rule, the idea behind
the Proportional Conflict Redistribution rules [12], [13] is to
transfer conflicting masses (total or partial) proportionally to
non-empty sets involved in the model according to all integrity
constraints. The general principle of PCR rules is then to :

1) calculate the conjunctive rule of the belief masses of
sources ;

2) calculate the total or partial conflicting masses ;
3) redistribute the conflicting mass (total or partial) pro-

portionally on non-empty sets involved in the model
according to all integrity constraints.

The way the conflicting mass is redistributed yields actually
to several versions of PCR rules. These PCR fusion rules
work for any degree of conflict in[0, 1], for any DSm
models (Shafer’s model, free DSm model or any hybrid DSm
model) and both in DST and DSmT frameworks for static
or dynamical fusion problems. We just now present only the



most sophisticated proportional conflict redistribution rule no.
5 (PCR5) since this rule is what we feel the most efficient PCR
fusion rule proposed so far for sequential fusion problem like
in this TTT problem. The PCR5 combination rule for only two
sources is defined by:mPCR5(∅) = 0 and∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X)+
∑

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (8)

where each elementX , and Y , is in the disjunctive normal
form. m12(X) corresponds to the conjunctive consensus on
X between the two sources. All denominators are different
from zero. If a denominator is zero, that fraction is discarded.
No matter how big or small is the conflicting mass, PCR5
mathematically does a better redistribution of the conflicting
mass than Dempster’s rule and other rules since PCR5 goes
backwards on the tracks of the conjunctive rule and redis-
tributes the partial conflicting masses only to the sets involved
in the conflict and proportionally to their masses put in the
conflict, considering the conjunctive normal form of the partial
conflict. PCR5 is quasi-associative and preserves the neutral
impact of the vacuous belief assignment.

C. How to choose between PCR5 and DSmH

It is important to note that we don’t claim that PCR5 is
better than DSmH, neither the opposite, since they apply
differently. All depends actually on the point of view the fusion
system designer and the risk he/she is ready to accept. If the
fusion system designer is pessimistic (not confident) about
the singletons of the frame, then it is safer to use DSmH
and transfer the partial conflicting mass to the corresponding
partial ignorance. But if he/she is optimistic (confident) about
the singletons of the frame, then he/she can apply PCR5 to
transfer the conflicting mass back to the singletons involved in
that conflict for more specificity. In short summary, the main
differences between DST and DSmT are (1) the model on
which one works with, and (2) the choice of the combination
rule and its possibility to deal with qualitative beliefs aswell
[13].

IV. PROBABILISTIC BELIEF TRANSFORMATIONS

In order to take a decision from a basic belief assignment
m(.), a common adopted approach consists in approximat-
ing the bbam(.) by a subjective probability measureP (.)
through a given probabilistic transformation and then choose
the element of the frame which has the highest probability.
Several transformations have been proposed in the literature
mainly by Smets in nineties [15], later by Sudano [17]–[20]
and last year by Cuzzolin [1], [2]. In a companion paper of this
one, we proposed a new probabilistic transformation, denoted
DSmP (.), which outperforms all previous transformations in
term of maximum of Probabilistic Information Content (PIC)
[17], [18], [20]. In this paper, we focuse our presentation and
comparison only on Smets’ pignistic transformation, denoted

BetP (.) and on our newDSmP (.) since BetP (.) is well
known and generally adopted by the community of researchers
and engineers working with belief functions. A detailed com-
parison of all main probabilistic transformations of bba can be
found in [5].

A. Classical and generalized pignistic probabilities

The basic idea of Smets’ pignistic transformation [15],
denotedBetP (.) consists in transferring the positive mass
of belief of each non specific element (also called partial or
total ignorance) onto the singletons involved in that element
split by the cardinality of the proposition. In Dempster-Shafer
framework [9] (when working with normalized basic belief
assignments (bba’s) and withm(∅) = 0), BetP (.) is defined
by BetP (∅) = 0 and∀X ∈ 2Θ \ {∅} by:

BetP (X) =
∑

Y ∈2Θ

X⊆Y

1

|Y |
m(Y ) = m(X)+

∑

Y ∈2Θ

X⊂Y

1

|Y |
m(Y ) (9)

where 2Θ is the power set of the finite and discrete frame
Θ with Shafer’s model, i.e. all elements ofΘ are assumed
truly exclusive. This transformation has been generalizedin
DSmT for any model of the frame (free DSm model, hybrid
DSm model and Shafer’s model as well) [11]. It is defined by
BetP (∅) = 0 and∀X ∈ GΘ \ {∅} by

BetP (X) =
∑

Y ∈GΘ

CM(X ∩ Y )

CM(Y )
m(Y ) (10)

whereGΘ corresponds to the hyper-power set including all the
integrity constraints of the model (if any);CM(Y ) denotes the
DSm cardinal ofY , i.e. the number of parts ofY in the Venn
diagram of the modelM of the frameΘ under consideration
[11] (Chap. 7). The formula (10) reduces to (9) whenGΘ

reduces to classical power set2Θ when one adopts Shafer’s
model.

B. A new generalized pignistic transformation

In the companion paper [5], we have developed a new
generalized quantitative pignistic transformation denoted
DSmP (.) to avoid confusion with the previousBetP (.)
transformation.DSmP (.) has also been extended in [5]
to deal with qualitative belief assignments but it is out of
the scope of this paper and this will not be presented here.
The newDSmP (.) transformation is straight, different from
Smets’, Sudano’s and Cuzzolin’s transformations. The two
last ones are more refined than Smets’ approach but less
interesting and efficient in our opinions thanDSmP (.) as
proved in [5]. The basic idea of ourDSmP (.) transformation
consists in a new way of proportionalizations of the mass of
each partial ignorance such asA1 ∪ A2 or A1 ∪ (A2 ∩ A3)
or (A1 ∩ A2) ∪ (A3 ∩ A4), etc and the mass of the total
ignoranceA1 ∪A2 ∪ . . .∪An, to the elements involved in the
ignorances. The main innovation in this new transformation
is to take into account both the values of the belief masses
and the cardinality of elements in the redistribution process,
contrariwise to previous transformations proposed in the



literature so far. We first recall what is the Probabilistic
Information Content (PIC) of any given discrete probability
measureP (.) and then we briefly present theDSmP (.)
formula. In the next section, after presenting the Target Type
Tracking problem, we will show howDSmP (.) performs
with respect toBetP (.) from on Monte Carlo simulations
based on classifier decisions in a three-targets-type scenario.

1) The Probabilistic Information Content (PIC): PIC is
a criteria introduced by John Sudano [18] for depicting the
strength of a critical decision by a specific probability distri-
bution. PIC is an essential measure in any threshold-driven
automated decision system. A PIC value of one indicates the
total knowledge (i.e. minimal entropy) or information to make
a correct decision (one hypothesis has a probability value of
one and the rest of zero). A PIC value of zero indicates that
the knowledge or information to make a correct decision does
not exist (all the hypothesis have an equal probability value),
i.e. one has the maximal entropy. Mathematically, the PIC
of a probability measureP{.} associated with a probabilistic
source over a discrete frameΘ = {θ1, . . . , θn} is defined by:

PIC(P ) = 1 +
1

Hmax
·

n
∑

i=1

P{θi} log2(P{θi}) (11)

The PIC is nothing but the dual of the normalized Shannon
entropy and thus is actually unit less.PIC(P ) takes its values
in [0, 1]. PIC(P ) is maximum, i.e.PICmax = 1 with any
deterministic probability and it is minimum, i.e.PICmin = 0,
with the uniform probability over the frameΘ. The simple
relationships between Shannon’s entropyH(P ) andPIC(P )

arePIC(P ) = 1− H(P )
Hmax

andH(P ) = Hmax · (1−PIC(P ))
whereHmax is the maximum value achievable by Shannon’s
entropy, i.e.Hmax = −

∑n
i=1

1
n

log2(
1
n
) = log2(n).

2) The DSmP formula: Let’s consider a discrete frameΘ
with a given model (free DSm model, hybrid DSm model
or Shafer’s model), the DSmP transformation is defined by
DSmPǫ(∅) = 0 and∀X ∈ GΘ \ {∅} by

DSmPǫ(X) =
∑

Y ∈GΘ

∑

Z⊆X∩Y
C(Z)=1

m(Z) + ǫ · C(X ∩ Y )

∑

Z⊆Y
C(Z)=1

m(Z) + ǫ · C(Y )
m(Y )

(12)
where ǫ ≥ 0 is a tuning parameter andGΘ corresponds to
the hyper-power set including eventually all the integrity
constraints (if any) of the modelM; C(X ∩ Y ) and C(Y )
denote the DSm cardinals3 of the sets X ∩ Y and Y
respectively.

The parameterǫ allows to reach the maximum value the
Probabilistic Information Content (PIC) of the approximation
of m(.) into a subjective probability measure. The smaller

3We have omitted the index of the modelM for notation convenience.

ǫ is, the better/bigger PIC value is. In some particular
degenerate cases however, theDSmPǫ=0(.) values cannot
be derived, but theDSmPǫ>0(.) values can however always
be derived by choosingǫ as a very small positive number,
say ǫ = 1/1000 by example in order to be as close as we
want to the maximum of the PIC (see examples in [5]).
It is interesting to note also that whenǫ = 1 and when
the masses of all elementsZ having C(Z) = 1 are zero,
the DSmP formula (12) reduces to the formula (10), i.e.
DSmPǫ=1(.) = BetP (.). The passage from a free DSm
model to a Shafer’s model involves the passage from a
structure to another one, and the cardinals change as well in
DSmP formula.

3) Advantages of DSmP: It has been shown in [5] that
among all main probabilistic belief transformations proposed
so far, onlyDSmP (.) transformations yields to highest PIC
value and its main advantage is that it works for all models
(free, hybrid and Shafer’s) - while other transformations work
for Shafer’s model only. In order to apply other transforma-
tions we had to first refine the frameΘ (on the cases when
it is possible!) in order to work with Shafer’s model, and
then apply their formulas. In the case when it is possible
to build a ultimate refined frame, then one can apply the
other subjective probabilities on the refined frame.DSmPǫ(.)
works on the refined frame as well and gives the same
result as it does on the non-refined frame. ThusDSmPǫ>0

transformation works on any models and so is very general
and appealing.DSmPǫ(.) can be seen as a combination of
Sudano’sPrBel(.) transformation [19] and Smet’sBetP (.).
The advantages and limitations of Smets [15], Sudano [17]–
[20] and Cuzzolin [1], [2] transformations have been discussed
in details in [5].

V. THE TARGET TYPE TRACKING PROBLEM

The Target Type Tracking Problem can be simply stated as
follows [3], [4]:

• Let k = 1, 2, ..., kmax be the time index and consider
M possible target typesTi ∈ Θ = {θ1, . . . , θM} in the
environment; for example in air target surveillance sys-
temsΘ could beΘ = {Interceptor, F ighter, Cargo}
and T1 , Interceptor, T2 , Fighter, T3 , Cargo,
in ground target surveillance systemsΘ could beΘ =
{Tank, T ruck, Car, Bus} [8], etc.

• at each instantk, a target of true typeT (k) ∈ Θ (not
necessarily the same target) is observed by an attribute-
sensor (we assume a perfect target detection probability
here).

• the attribute measurement of the sensor (say noisy Radar
Cross Section for example) is then processed through a
classifier which provides a decisionTd(k) on the type of
the observed target at each instantk.

• The sensor is in general not totally reliable and is
characterized by aM × M confusion matrix

C = [cij = P (Td = Tj|TrueTargetT ype = Ti)]



We had proposed and analyzed in [3], [4] a method for
solving the Target Type Tracking Problem which was based
on Shafer’s model for the frame of Target TypesΘ and
the sequential/temporal combination of basic belief assign-
ments (measurements) with prior belief mass available at
previous step/scan to update at each current step the belief
in each target type. So we gave a solution to estimate
T (k) from the sequence of declarations done by the un-
reliable classifier up to timek, i.e. we built an estimator
T̂ (k) = f(Td(1), Td(2), . . . , Td(k)) of T (k). The decision
about the target type was then taken from Smet’sBetP (.)
transformations of the updated belief assignment/mass. We
had shown the efficiency of PCR5 fusion rule with respect
to its main alternatives to track efficiently the true targettype
of the target under observation at each scan. Our Target Type
Tracker consisted in the sequential combination of the current
basic belief assignment (drawn from classifier decision, i.e.
our measurements) with the prior bba estimated up to current
time from all past classifier declarations and can be sketched
by the following steps:

• a) Initialization step (i.e.k = 0). Select the target type
frameΘ = {θ1, . . . , θM} and set the prior bbam−(.) as
vacuous belief assignment, i.em−(θ1 ∪ . . . ∪ θM ) = 1
since one has no information about the first target type
that will be observed.

• b) Generation of currentobservation: We investigate in
this paper three possible modelings for buildingmobs(.)
from the current decisionTd(k) and the confusion matrix.
Let’s assume thatTd(k) = Tj, j ∈ {1, 2, . . . , M} and
let’s denote bySj the sum of thej-th column of the
confusion matrixC, i.e. Sj =

∑

i=1,M cij .

– Modeling #1 (probabilistic bba modeling) : Fori =
1, . . . , M , one takesmobs(θi) = cij/Sj .

– Modeling #2: We commit a belief only toθj and to
the 2D partial ignorances which includeθj , i.e. one
takesmobs(θi ∪ θj) = cij/Sj .

– Modeling #3: We commit a belief only toθj and the
full ignorance, i.e. one takesmobs(θj) = cjj/Sj and
mobs(θ1 ∪ . . . ∪ θM ) = 1 − cjj/Sj.

• c) Combination of current bbamobs(.) with prior bba
m−(.) to get the estimation of the current bbam(.).
Symbolically we will write the generic fusion operator
as⊕, so thatm(.) = [mobs ⊕m−](.) = [m− ⊕mobs](.).
The combination⊕ is done according either with DSmH
fusion rule (i.e. m(.) = mDSmH(.)) or with PCR5
rule (i.e. m(.) = mPCR5(.)) to show what happens in
simulation if one adopts a pessimistic or an optimistic
point of view of the fusion process.

• d) Estimation of True Target Type is obtained fromm(.)
by taking the singleton ofΘ, i.e. a Target Type, having
the maximum ofBetP (.) or the maximum ofDSmP (.).

• e) setm−(.) = m(.); do k = k + 1 and go back to b).

In this paper, we follow the same Target Type Tracking
approach as in [3], [4] but we complicate a bit the Target Type
Tracking scenario and we want to see how the new proposed

DSmP (.) transformation performs with respect toBetP (.)
with the different bba modelings for observations. For doing
this we examine the PCR5 and DSmH fusion rules for the
sequential update of belief mass of target types. The two fusion
rules correspond actually to the confidence the fusion system
designer has in the singletons of the frame. If the fusion system
designer is not confident in the singletons, then he/she would
prefer to use DSmH, otherwise he/she would prefer to use
PCR5.

VI. SIMULATIONS RESULTS

In order to analyze, evaluate and to compare fairly the per-
formances of both probabilistic belief transformations (BetP(.)
and the new DSmP(.) one), for the sequential (temporal)
estimation of target ID in the considered here Target Type
Tracking problem, we did a set of Monte-Carlo simulations,
based on an assumed scenario for a 3D Target Type frame,
i.e. Θ = {(I)nterceptor, (F )ighter, (C)argo} for a given
classifier, corresponding to the following confusion matrix:

C =





0.7 0.2 0.1
0.15 0.7 0.15
0.1 0.2 0.7





The confusion matrix is asymmetric, reflecting the degree
of mutual discrimination between the considered target
types. In our scenario we consider that there are three
closely-spaced targets: one interceptor, one fighter and one
cargo. Due to circumstances, attribute measurements received
are predominately from one or another, and all three targets
generate actually one single (unresolved kinematics) track.
In the real world, the tracking system should in this case
maintain three separate tracks: one for interceptor, one for
fighter and one for cargo, and then, based on the classification,
allocate the measurement to the proper track. But in difficult
scenario like this one, there is no way in advance to know the
true number of targets because they are unresolved and that’s
why only a single track is maintained. Of course, the single
track can further be split into three separate tracks as soon
as three different targets are declared based on the attribute
tracking. This is not the purpose of our work however since
we only want to examine how works the new probabilistic
belief transformation and to compare its performance with
the well known BetP transformation for Target Type Tracking.

To simulate such scenario, a true Target Type sequence over
200 scans was generated according to figure 1. The target
type sequence (Groundtruth) is characterized with variable
switches’ time steps, starting with the observation of a Cargo
Type (called Type 3) during the first 20 scans. Then the
observation of the Target Type switches four times: onto
Fighter Type (called Type 2) during time duration of 25
scans; again onto Cargo Type during the next 25 scans; onto
Interceptor Type (called Type 1) during the next 15 scans and
finally, again to Cargo Type during the last 115 scans. As a
simple analogy, tracking the target type changes committed
to the same (hidden unresolved) track can be interpreted as



tracking color changes of a chameleon moving in a tree on its
leaves and on its trunk.
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Figure 1. Sequence of True Target Type (Groundtruth)

Our simulation consists in 500 Monte-Carlo runs and
we compute, show and analyze in the sequel the averaged
performances of the two probabilistic belief transformations,
applied over the results of sequential fusion, performed via
PCR5 and DSmH combinational rules. At each time stepk
the decisionTd(k) is randomly generated according to the
corresponding row of the confusion matrix of the classifier
given the true Target Type (known in simulations). Then the
algorithm presented in the previous section is applied.

A. Results based on DSmH fusion

The lack of confidence about the singletons of the frame
justifies the application of DSmH combination rule and we test
the three modelings for measurement’s basic belief assignment
as proposed in step b) of TTT algorithm described in the
section V.

Figures 2 and 3 show the performances of DSmP and
BetP probabilistic belief transformations obtained by our
Target Type Tracker based on DSmH fusion rule for the
three measurement’s bba modelings. We have set the
tuning parameterǫ = 0.0001 when applying DSmP (.)
transformation.

From these figures, one clearly sees the advantage of DSmP
transformation with respect to BetP transformation since the
level of probabilty of the true target type under observation
is clearly bigger with DSmP than with BetP. DSmP shows a
faster reaction to the target type changes than BetP, shortening
that way the time for correct decision-making in comparison
to BetP. It is also interesting to note that modelings 2 and 3
provide significantly higher PIC than with modeling 1. This is
because modelings 2 and 3 are less strict than modeling 1 and
thus offer a better ability to readapt after Target ID switches.
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Figure 2. DSmP (.) results after using DSmH rule of combination

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Estimation of BetP(I) with DSmH fusion

Scan number
B

et
P

(I
)

 

 
bba  modeling #1
bba  modeling #2
bba  modeling #3

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Estimation of BetP(F) with DSmH fusion

Scan number

B
et

P
(F

)

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Estimation of BetP(C) with DSmH fusion

Scan number

B
et

P
(C

)

Figure 3. BetP (.) results after using DSmH rule of combination

B. Results based on PCR5 fusion

The possible confidence of the fusion system designer about
the singletons of the frame justifies the application of PCR5
combination rule of our TTT algorithm. Figures 4 and 5,
show the performances of DSmP and BetP probabilistic belief
transformations obtained by our Target TypeTracker based
on PCR5 fusion rule, according to Interceptor, Fighter and
Cargo types respectively and for the three measurements’ bba
modelings considered in this work. Here againǫ = 0.0001
when applyingDSmP (.) transformation.

It had been proven in [3], [4] and it can be seen again here,
considering the 3D TTT problem, that the TTT based on PCR5
fusion rule tracks properly the quick changes of target type,
with a very short latency delay in order to produce the correct
target type decision. Since PCR5 reacts faster to the target
target changes, accelerating that way to reach the correct de-
cision. Then the mass of ignorance quickly decreases, because
of the strict redistribution of conflicting mass (total or partial)
proportionally on non-empty sets involved in the considered
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Figure 4. DSmP (.) results after using PCR5 rule of combination
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Figure 5. BetP (.) results after using PCR5 rule of combination

model. In parallel the mass to be transferred to singletons
decreases very fast. Because of this, the behavior of both
probabilistic belief transformations (DSmP and BetP) converge
very quickly. When the mass, assigned to the ignorance
becomes zero, DSmP and BetP coincide. Here again we see the
advantage of using bba modeling 2 and 3 with respect to bba
modeling 1, even now the difference between performances is
less important than when using DSmH fusion rule.

C. Results based on Dempster-Shafer rule

We provide here on figures 6 and 7 the results obtained
when applying Dempster-Shafer rule of combination for this
scenario with same inputs and bba modelings 1, 2 or 3. We
clearly see that this rule under same conditions cannot track
correctly the types of targets under observation whichever
probabilistic transformationDSmP (.) or BetP (.) is chosen
for decision-making.
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Figure 6. DSmP (.) results after using DS rule of combination
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Figure 7. BetP (.) results after using DS rule of combination

VII. C ONCLUSIONS

This paper concerned the application of a new probabilistic
belief transformation, denoted DSmP, for solving the Target
Type Tracking problem (TTT). We have considered three
types of targets (Interceptor, Fighter and Cargo) in our
scenario and have shown how the types of each target can
be efficiently estimated from the sequential outputs/decisions
of a classifier and its confusion matrix when using different
belief mass modelings with DSmT fusion rules couples with
DSmP. The advantages of DSmP over the classical pignistic
transformation have been shown through Monte-Carlo
simulations. Based on our previous works for the justification
of rules of combination for the TTT problem, only the
Proportional Conflict Redistribution rule no. 5 and the DSm
hybrid fusion rules were considered in this work for their
ability to deal consistently with high conflicting sources of
evidence in an optimistic or a pessimistic/cautious way.

From our analysis one can clearly conclude on the ad-



vantage of the new DSmP transformation with respect to
BetP whenever the cautious DSmH fusion rule is used. When
PCR5 fusion rule is preferred, DSmP and BetP provide very
quickly almost the same performancesbecause PCR5 reduces
efficiently and quickly the masses committed to ignorances
(partial or total) and in such case, DSmP and BetP mathemat-
ically coincide. We can claim that DSmP provides a stable
and faster reacting behavior than BetP and reduces the delay
for correct decision-making in comparison with BetP. Our
simulation results show also the advantage of using uncertain
bba modelings of type 2 and/or 3 over the probabilistic bba
modeling 1 in term of higher level of probability of correct
ID estimation.
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