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Nonlinear theory of elementary particles:  
5.The electron and positron equations 

(linear approach)  
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The purpose of this chapter is to describe the mechanism of generation of massive fermions – 
electron and positron. The presented below theory describes the electron and positron mass 
production by means of breakdown of massive intermediate boson without the presence of 
Higgs's boson. It is shown that nonlinearity is critical for the appearance of fermions’ currents 
and masses.  Here is considered only the linear form of equations. The analysis of nonlinear 
forms will be making in the following chapter. 

PASC: 11.10.Lm, 12.10.En Keywords: electron equation, electron theory, electron current 
origin, electron mass origin 

1.0. Introduction. Nonlinear non-Maxwellian electromagnetic field 
and Dirac equation 

The Dirac equation is a relativistic quantum mechanical wave equation, which provides a 
description of elementary spin-½ particles - leptons. It is the relativistic generalization of the 
Schrödinger equation.  

At present Dirac's equation is written in several identical forms. The usual one equation form 
is following: 
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h

rr cm
i

tc
eˆˆ1

=∇⋅+
∂
∂ ,  (5.1.1) 

where ψ  is the four-component wavefunction 
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em  is the rest mass of the electron,  is the speed of light,  c α̂
r  and  are the β̂ α -set of  4×4 

Dirac’s matrices,   
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where 0σ̂ ,σ̂r  are Pauli’s matrices. The most detailed form is the following: 
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Taking into account the fact that 
cm

r
e

C
h

=  is the Compton wavelength, Dirac's equation can 

be rewritten in the form 

 ψβψαψ

Cr
i

tc
1ˆ1

=∇⋅+
∂
∂ rr ,  (5.1.5) 

The Dirac equation in the form, which is near to originally proposed by Dirac, is: 

 ( ) ψβψαεα 2 ˆˆ ˆˆˆ cmpc eo =+
rr , (5.1.6) 

where 
t

i
∂
∂

= hε̂  and are the operators of energy and momentum. ∇−=
r

h
r ip̂

Frequently the term from the right side of equation is called the “mass term” or “free term” of 
Dirac’s equation.   

At present time the explicitly covariant form of the Dirac equation (employing the Einstein 
summation convention) is often used: 

    ,  (5.1.7) ψψγ
µ

µ cme=∂− ˆh

where the γ -set of the Dirac matrices is used. But here 4γ̂  is  Hermitian, and the kγ̂ are anti-

Hermitian, with the definition  (kk αγγβγ ˆˆˆ  ,ˆˆ 44 == )3,2,1=k ; in this case (Madelung, 1943)  

µ
µγ x∂

∂ˆ  is not Hermitian; instead the operator 
µ

µγγ
x∂
∂ˆˆ4  is. Therefore more rationally to write 

Dirac's equation in the form (using { }ictrx ,r=µ  and Compton wavelength ):   Cr

01ˆˆˆ 44 =⎟
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Crx
, which is identical with (5.1.5) and (5.1.6).  

Note (Fermi, 1960) that in order for the Dirac electron equation to obeys to the relativistic 
momentum-energy relation 042222 =−− cmcprε ,  the any set of Dirac’s matrices must satisfy 
the requirements: 

  ,  (5.1.8) 
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====

where .4,3,2,1, =νµ  “One finds that the lowest order matrices for which (5.1.8) can be fulfilled 
is the 4th. For order four there are many solutions that are essentially equivalent. One can prove 
that all the physical consequences of Dirac’s equation do not depend on the special choice (5.1.3) 
of  . They would be the same if a different set of four 4x4 matrices with the 
specifications (5.1.8) had been chosen. In particular it is possible by unitary transformation to 
interchange the roles of  the four matrices, so that their differences are only apparent”.  

βαα̂,1α ˆ,ˆ,ˆ 32
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The connection of contemporary theory of elementary particles with nonlinear 
electromagnetic (EM) theory is known many years. According to modern ideas (Ryder, 1985; 
Philipov, 1990), the observed substance of the Universe consists of photons, intermediate bosons, 
leptons and quarks. Besides electromagnetic interactions, there are strong and weak interactions. 
All of these interactions are described by the unified theory, which is a substantial generalization 
of Maxwell's theory. Instead of vectors of the usual electrical and magnetic fields Ε

r
 and Β

r
, the 

modern theory contains several similar field vectors iΕ
r

 and  iΒ
r

, and in a natural way, the waves 
of these vectors are strictly nonlinear. 

The first such generalization of Maxwell's theory was made by C. Yang and R. Mills in 1954 
(Nambu, 1982): “The generalization of the Maxwell theory is the theory of the Yang-Mills fields 
or non-Abelian gauge fields. Its equations are nonlinear. In contrast to this, the equations of 
Maxwell are linear, in other words, Abelian”. A sufficiently detailed derivation of the Yang-Mills 
equations in the form of Maxwell's equations can be found in the book of Ryder (Ryder, 1985). 
According to one of its creators M.Gell-Mann, «practically, the result of the field theory 
development was only the generalisation of the quantum electrodynamics» (Gell-Mann, 1983)  

It is necessary to note that the possibility of a formal representation of the Schrödinger and 
Dirac electron equations in a form of linear Maxwell equations was also mentioned in several 
articles and books (Schrödinger, 1927; Archibald, 1955; Akhiezer and Berestetskii, 1965; Koga, 
1975; Campolattoro, 1980; Rodrigues, 2002).  But up to now all these EM representations of 
Dirac's equation were examined as the random, curious coincidence of mathematical forms. In 
these studies no attempts were done the to examine the EM forms of Dirac's equation as quantum-
mechanical equations, which describe massive fermions. the traditional view (Gsponer, 2002), 
“which consists in the fact that the particles of spin 1 and spin ½ belong to different irreducible 
representations of the Poincare group, so that no connection exists between the Maxwell and 
Dirac equations, describing the dynamics of particles” probably played a role in this.  

Indeed, the Dirac equations cannot be equivalent to the classical linear equations of Maxwell, 
and a spinor cannot be equivalent to a vector. However, the unified theory of electromagnetic and 
weak interaction, described by the Yang-Mills theory, makes it possible to assume that a 
connection exists between the electromagnetic non-Maxwelian, nonlinear equations and the Dirac 
equations. In other words, we can assume that Dirac’s equation is a quantized nonlinear non-
Maxwelian electromagnetic equation, described in linear form. 

 In the present paper we will derive the linear quantum equation of electron – the Dirac 
electron equation - and give the numerous proofs of its electromagnetic origin.  

2.0. The equations of particles, generated from the breaking of 
intermediate massive photon 
2.1. Derivation of equations 

Our analysis of an initial stage of photoproduction of electron-positron pair, made in the 
previous chapter (Kyriakos, 2010a), shows that an intermediate photon can be divided into two 
parts, in order to produce an electron and a positron.  Let us describe this process mathematically 
in order to find equations for these particles. 

Let us begin with the equation of an intermediate photon (see equation (4.4.2) of the previous 
chapter): 

 ( ) ,0'ˆˆ 2222 =Φ−− Kpc rε   (4.4.2) 

Here as it follows from the previous sections, the term  corresponds to the tangent 
displacement current (4.3.9):  

2ˆ cmK pβ=
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where pr1=Κ   is the curvature of the fields’ motion trajectory, cp =υ  is wave field velocity, 

cm
r

p
p

h
=  is the curvature radius, Κ≡== c

r
cm

p

pp
p

υ
ω

h

2

 is an angular velocity. Furthermore, 

here,  is intermediate  photon own energy, where  is intermediate boson mass, 
corresponding to the energy 

ppcm ε=2
pm

pε . 

Factorizing (4.4.2) and multiplying it on the left side by +Φ' , we obtain: 

  ( )( ) 0'ˆˆˆˆˆˆˆˆ' =Φ+⋅+−⋅−Φ + KpcKpc oo
rrrr

αεααεα ,  (5.2.1)  

or 

 ( )( ) 0'ˆˆˆˆˆˆˆˆˆˆ' 22 =Φ+⋅+−⋅−Φ + cmpccmpc popo βαεαβαεα rrrr
, (5.2.1’)  

Now, we can separate the intermediate photon equation (5.2.1) into two transformed waves, 
advanced and retarded, in order to obtain two new equations for the massive particles: 

  ( )[ ] 0 ˆˆ ˆˆˆ 2 =++ ψβαεα cmpc po
rr , (5.2.2’)  

  ( )[ ] 0 ˆˆ ˆˆˆ 2 =−−+ cmpc po βαεαψ rr ,    (5.2.2’’)       

where  
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ψ ,  ( )zxzx iHiHEE=+ψ ,  (5.2.3)  

is some new transformed EM wave function which appears after the intermediate photon 
breaking. Further, in this connection, we will conditionally name the equations (5.2.2) as semi-
photon equations, and the passage from (4.4.2) to (5.2.2) as the symmetry breaking of an 
intermediate photon). 

Now, we will analyze the peculiarities of equations (5.2.2). We can see that the latter are 
similar to the Dirac electron and positron equations. However, instead of electron mass , 
equations (5.2.2) contain the intermediate photon mass .  The question is, what type of 
particles do equations (5.2.2) describe? 

em

pm

In the case of an electron-positron pair production, it must be ep mm 2= . So, we have from 
(5.2.2): 

 ( )[ ] 0 ˆ2ˆ ˆˆˆ 2 =++ ψβαεα cmpc eo
rr ,    (5.2.4’)  

 ( )[ ] 0 ˆ2ˆ ˆˆˆ 2 =−−+ cmpc eo βαεαψ rr ,     (5.2.4’’)   

and after the breaking of the intermediate photon, the non-charged massive particle must be 
divided  into two charged massive semi-photons, the positively and negatively charged particles 
acquire electric fields. At the same moment each particle begins to move in the field of the other. 
In order to become independent (i.e. free) particles, the electron and positron must be drawn 
sufficiently far away from each other (Fig. 5.1): 

 
Fig. 5.1. 
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Therefore, the equations, which originate after the breaking-up of the intermediate photon, 
cannot be free positive and negative (electron and positron) particle equations, but they have to be 
the particle equations with an external field. In this case, the energy must be expended to the 
charged particles begin move apart. This is the energy that creates an electric field.  

In fact, if the particles are combined, the system won’t have an electric field (Fig. 5.1). At a 
very small distance, the particles will create the dipole field (see Fig. 5.2) 

 

 
Fig. 5.2 

 
At a distance much greater than the particle size, the positive and negative particles (plus and 

minus particles of Fig. 5.1) acquire full electric fields. It is known (Jackson, 1999) that the 
potential  of positive and negative charges at point P is defined as follows: PV

 ⎟
⎠
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⎜
⎝
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+
−=

θπ cos
11

4 drr
eVP , (5.2.5) 

where  are dipole charges,  is the distance between the charges, and e± d θ  is the angle between 
the axes and radius-vector of the plus particle. When 0=d , we have .0=pV  When ∞→d , we 
obtain, as the limit case, the Coulomb potential for each free particle: 

 
r
eVPd π4

1lim =
∞→

,   (5.2.6) 

Thus, during the breaking process, the particle charges appear. If the particles are moved apart to 
an infinite distance, the work to be done against the attraction forces is as follows: 

 υ
π

υε d
r

edeVPrel ∫∫ ==
2

4
1 ,   (5.2.7) 

The external field of particles defines the amount of work, so that the release energy is the 
field’s production energy, and at the same time this is annihilation energy. Therefore, due to the 
law of energy conservation, this value of energy for each particle must be equal to .  2cmerel =ε

So, equations (5.2.2) can be written in the following form: 

 ( )[ ] 0 ˆ ˆˆ ˆˆˆ 22
0 =+++ ψββαεα cmcmpc ee

rr ,    (5.2.8’)  

 ( )[ ] 0 ˆ ˆˆ ˆˆˆ 22 =−−−+ cmcmpc eeo ββαεαψ rr ,   (5.2.8’’)  

Using a linear equation for the description of the law of energy conservation, we can write: 

 exexexexe Aeepccm
rrrr  ˆ ˆ ˆ 2 αϕαεβ −−=−−=± ,  (5.2.9)  

where “ex” means “external”. Substituting (5.2.9) into (5.2.8), we obtain the Dirac equations with 
an external field: 

 ( ) ( )[ ] 0 ˆˆˆˆˆ 2
0 =+⋅+ ψβαεεα cmppc eexex

r
m

rr
m ,   (5.2.10) 

which at  gives the Dirac free  - plus and minus - particle equations: ∞→d
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 ( )[ ] 0 ˆˆ ˆˆˆ 2 =++ ψβαεα cmpc eo
rr , (5.2.11’)

 ( )[ ] 0 ˆˆ ˆˆˆ 2 =−−+ cmpc eo βαεαψ rr ,        (5.2.11’’)  

Some interesting consequences follow from the above analysis: 
1. an intermediate photon is not an absolutely neutral particle before the breaking-up, but a 

dipole; therefore, it must have a dipole moment (its experimental detection would give 
confirmation of the nonlinear theory). 

2. the relationship (5.2.9) shows that in NTEP the mass is not equivalent to energy, but to a 4-
vector of the energy-momentum; it follows from this that in NTEP the energy has a kinetic origin. 

3. the following formula is valid within the framework of NTEP for the free term of the 
particle equation: 

 inininine Aeepccm
rrrr αϕαεβ ˆˆˆ 2 −−=−−=± ,  (5.2.12) 

where “in” means “internal”.  In other words, values ),( inin prε  describe the inner fields and values 
),( exex prε  of the external fields of the electron-positron particles. When we consider an electron 

particle from a large distance, the fields ),( inin prε  act as the mass, then we will have linear Dirac 
equations of particles. Inside the electron, the term ),( inin prε  is required for the detailed 
description of the inner fields of the particle, which characterize the self-interaction of the 
particle’s parts (it is shown below that this term transforms to a nonlinear equation of the particle). 
4. An important additional conclusion following from the above is that the charge, mass and 
interaction between the particles appear simultaneously in the process of the rotation 
transformation and division of  the “linear” photon. 
5. Subsequently we will show that, although the choice of  Dirac’s matrices does not influence the 
solutions of Dirac's equation, it has the physical sense. 

2.2. Electromagnetic representation of Dirac’s equations 
Using the electromagnetic representation (5.2.3) of the semi-photon wave function ψ  and the 

displacement electric tangential currents  (4.3.7) from previous chapter τω
π
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⋅Ε= p

e
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4
1 ,  we 

obtain an electromagnetic form of equations (5.2.11).  
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Let us note that for the symmetry we included in the equations the displacement magnetic 

tangential currents  (4.3.7) τω
π

rr
⋅Η= p

m
disj

4
1 . It is known that the existence of the magnetic 

current mj
r

 does not contradict to quantum theory (see Dirac’s theory of a magnetic monopole 
(Dirac, 1931)). In case of the plane polarized wave (see previous chapters), the magnetic currents 
are equal to zero (but not for other polarizations, as we will see further).  

According to the results of the previous chapter of the book (see Kyriakos, 2010a), the current 
terms of Dirac's equation are own electrical and magnetic currents of electron. Let us write down 
them in different identical representations: 
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where the subscript l  in general case are  ( )zyxl ,,= .  
Using the currents’ representation with electrical conductivity  (which has 

the CGSE units of inverse second (s

222 cmeep == ωω
–1)), we obtain the following electromagnetic form of Dirac 

equations:  
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As it is easily see, the currents’ forms (5.2.13) and (5.2.15) of the electron equation is similar to 
Maxwell-Lorentz’s equations with complex fields, which is frequently used in the classical theory 
of electromagnetic waves (especially in the theory of ultra-high frequency EM waves). Moreover, 
beginning from O. Heaviside, magnetic currents are introduced into the complex Maxwell's 
equations for the symmetry of equations and facilitation of problem solutions.  

Using the currents’ representation with , we obtain the other electromagnetic form of Dirac 
equations:  

em
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which means that the electron has electromagnetic origin and its mass is generated as circular 
electromagnetic field. Thus, the derivation of Dirac's equation on the basis of quantized 
electromagnetic equations proves Lorentz's hypothesis about the electromagnetic origin of the 
electron (see Kyriakos, 2010c). (Subsequently we will prove the same relatively to all leptons and 
hadrons). 

(Note also that the forms of source term (5.2.14) with curvature radius or curvature 
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1 ,    

the electron equation is similar to Gilbert-Einstein gravitational equation, but here the mass-
energy term appear due to curvilinearity of field, not of space-time). 
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At the same time there are essential differences between the classical and quantum form of 
electromagnetic equations. 

- In the nonlinear theory the quantization of the energy-momentum of electromagnetic field is 
introduced, whereas in the classical theory this limitation is absent. 

- In the nonlinear theory the complex forms have literal physical sense: they describe the 
fields’ rotation (in other words, they ensure passage from linear forms to nonlinear forms of 
theory). In the classical theory complex forms are convenient for calculation, but as final results is 
considered only one of the projections of rotary motion - the so-called, real part of the complex 
number. Thus, the complex form of the equations of nonlinear theory is the generalization of the 
linear theory of Maxwell-Lorentz. 

- In the classical theory there are no magnetic currents and charges. At the same time, as we 
will show subsequently, in the theories of neutrino and quarks, magnetic currents actually exist. 
But they are not found out of the particles because of the mutual compensation for magnetic 
currents inside the particles and therefore they do not create magnetic monopoles. On one hand, 
this explains, why the introduction of magnetic currents does not disrupt the classical results, but 
on the other hand, it explains, why magnetic currents and charges in it are absent. 

2.3. The “field diagram” of the photoproduction of the electron-positron pair 
Using the results, obtained above and in the previous chapter (Kyriakos, 2010a), we can give 

Feynman's diagram of the electron-positron pair photoproduction (see the figs of 4.1 and 4.4 of 
previous chapter (Kyriakos, 2010a) more real physical sense. Thus we correspond to each element 
of this diagram the graphical representation of wave fields of the corresponding elementary 
particles. Let us name this diagram “field diagram” of interaction of particles. 

  Thus, we can conditionally represent the transformation of photon fields during the process of 
electron-positron pair photoproduction as following  field diagram (Fig. 5.3): 

 
Fig. 5.3. 

 
The part A here represents a “linear” photon (that obeys the linear equation); part B depicts the 

intermediate massive boson (“nonlinear” photon); and parts C and D represent the electron and 
positron.  

We can make some conclusions from this field diagram without calculations. 
a) It is clear that the intermediate photon breakdown process, according to Fig. 5.3, 

corresponds to the process of particle-antiparticle pair production. Closed currents υρ
r

ej =  
(where in our case c=υ ), that emerge in this case, create electrical charges of particle 

, where τρ
τ

de e∫= τ  is volume. This means that the field diagram Fig. 5.3 actually describes the 

generation of the charged particles. 
Note that in the electromagnetic interpretation for understandable reasons the free term of 

Dirac’s equation can be called “a source” of electric field of electron. The electric charge appears 
here as the gauge coupling constant, like as in Standard Model theory. 
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b) It follows from Fig. 5.3 that parts C and D (two ‘semi-photons’) contain currents of opposite 
directions. Thus, we can assume, that the cause of an intermediate photon breaking is a mutual 
repulsion of oppositely directed currents. 

 It is not difficult to see that in both parts C and D (electron and positron) magnetic and electric 
forces appear, which have reciprocal directions that is necessary to ensure the equilibrium of 
particle. 

c) Note also that the “daughter” semi-photons C and D, i.e. electron and positron, are 
completely anti-symmetric, and one cannot be transformed into the other by any co-ordinate 
transformation (if this transformations are not accompanied by the change of fields’ directions). 

 
d) From the above also follows that the angular momentum of the intermediate photon is equal 

to: 

    h
h 1

2
2 =⋅=⋅=

cm
cmrp

e
epppσ ,    

In accordance with the law of conservation of angular momentum, we have , 

where  are the spins of the plus and minus semi-photons (i.e. of the electron and positron). 
Then, we obtain the known value for the angular momentum of the electron: 

pss σσσ =+ −+

−+
ss σσ ,

 h
2
1

2
1

== ps σσ ,      

e) It is interesting that both the semi-photons’ and intermediate photons’ radii must be the 
same. Since sss rp ⋅=σ , where  is the semi-photon (electron) radius, and  is the inner 
semi-photon (electron) linear momentum, we have: 

sr cmp es =

   p
ees

s
s r

cmcmp
r ====

22
1 hhσ

,    

Thus, the torus size of the intermediate photon doesn't change after its breaking. 
f) Using this result, we can show that during the breaking the angular velocity (angular 

frequency) also does not change:  

 p
e

s
s

cm
r
c ωω ===

h

22
.  

g) Linear velocity of rotation of fields’ of intermediate boson and electron are equal to speed of 
light: 
 crr sspp =⋅=⋅= ωωυ  

h) Magnetic moment of ring electron accordingly with definition is Is SI ⋅=µ , where I  is 
electron ring current and  is the current ring square. In our case we have SI

h

22
2
1

2
cmqqI e

s
s

s ππ
ω

== , 
2

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

cm
rS

e
sI

hππ . Using these formulae, we find: 

 
cm

q

e
s 22

1 h
=µ ,  

If we put , the value  is equal to half of the experimental value of the magnetic 
momentum of the electron. Taking into account the Thomas's precession (Thomas, 1926) we 
obtain the experimental value of the electron magnetic momentum. 

eqs =

The breakdown of the intermediate photon makes it possible to explain some fundamental 
experimental results: 
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1) the origin of the law of charge conservation: a total electric charge of an isolated system 
remains constant regardless of the changes within the system itself. Since there are the same 
numbers of plus and minus half-periods of photons in nature, the sum of all created or 
destroyed charges must be equal to zero. 

2) the difference between the positive and negative charges: this difference follows from the 
asymmetry of fields and  the difference in directions of tangent currents of semi-photons after the 
pair production. 

3) the explanation of "Zittertbewegung": E. Schroedinger showed in his well-known articles 
about the relativistic electron (Schrödinger, 1929;1930;1931a;1931b;1932; Bethe, 1964) that the 

rest electron has a special inner motion "Zitterbewegung", which has a frequency ω Z
em c

=
2 2

h
, 

an amplitude r
m cZ

e

=
h

2
, and velocity of light υ = c . The attempts to explain this motion within 

the framework of QED did not produce results. However, if the electron is a semi-photon, then we 
receive a simple explanation of Schroedinger's analysis.  

4) the difference between the bosons and fermions: the bosons contain an even number, while 
the fermions contain an odd number of semi-photons.  

5) in nonlinear theory the problem of the  infinite electron energy does not exist, because the 
space distribution of particle field is continuous. 

6) The characteristic feature of quantum theory is the non-commutativity of canonical 
variables. This is easily explained by the fact that non-commutativity appears as the consequence 
of motion of vectors along the curvilinear trajectory. 

3.0. Analysis of the free electron’s equation solution from EM point 
of view 

According to the above results, an electromagnetic form of a solution of the free electron Dirac 
equation must be a transformed electromagnetic wave.   

As we saw above, for the appearance of electric current and, as a result, charge, it is necessary 
that the electric vector moved in the trajectory plane of the motion of electromagnetic wave. 

If this supposition is correct, then two solutions must exist for the -direction of a photon:  y
1) for the wave rotated around the OZ -axis development of electromagnetic theory 

       ,  (5.3.1) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

4

1

0
0

0
0

ψ

ψ

ψ

z

x

oz

iH

E

2) for the wave rotated around the -axis OX

        ,    (5.3.2) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0

0

0

0

3

2

ψ
ψ

ψ
x

zox

iH
E

The ψ - functions (5.3.1) and (5.3.2), as solutions of equations (5.2.11), must have the same 
expressions as solutions of the Dirac’s equation for an electron (Schiff, 1955). Let us analyze 
solutions of the Dirac’s wave equation for an electron from the NTEP point of view.  

It is known (Schiff, 1955) that the solution of the Dirac free electron’s equation (5.2.1) has a 
form of a plane wave:  
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 ,)(exp ⎟
⎠
⎞

⎜
⎝
⎛ −−= rptiBjj

rr

h
εψ          (5.3.3) 

where ; ; amplitudes b  are numbers, and 4,3,2,1=j B b ej j
i= φ

j φ  is the initial wave phase. 
Functions (5.3.3) are eigenfunctions of energy-momentum operators, where ε  and pr  are the 
energy-momentum eigenvalues. Here, for each rp , the energy ε  has either positive or negative 
values according to equation, representing the law of  energy-momentum’s conservation 

4222 cmpc +±=±
rε . 

We have two linear-independent sets of four orthogonal normalizing amplitudes for ε + : 

 1)
( )

,0  ,1  ,  , 432221 ==
+

+
−=

+
−=

++

BB
mc

ippc
B

mc
cpB yxz

εε
 (5.3.4) 

 2) 
( )

,1  ,0  ,  , 432221 ==
+

=
+

−
−=

++

BB
mc

cpB
mc

ippc
B zyx

εε
 (5.3.5) 

Accordingly, for ε −  : 

 3) 
( )

,  ,  ,0  ,1 242321 mc

ippc
B

mc
cpBBB yxz

+−

+
=

+−
===

−− εε
 (5.3.6) 

 4)
( )

,  ,  ,1  ,0 242321 mc
cpB

mc

ippc
BBB zyx

+−
−=

+−

−
===

−− εε
 (5.3.7) 

Each of these four solutions (Schiff, 1955) can be normalized by multiplying it by 
normalization factor: 

 
( )

2
1

22

22
1

−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+=

cm

pc

eε
κ

r

, 

which gives . 1=+ψψ
Let us discuss these results. 
1) The existence of two linear independent solutions corresponds to two independent 

orientations of electromagnetic wave vectors, and gives a unique logical explanation for this fact. 
2) Since ( )ψ ψ= y , we have mcppp yzx === ,0 , and we obtain for field vectors the 

following: for the "positive" energy from (5.2.4) and (5.2.5) : 

  ,     (5.3.8) ( ) ( ) φφ ii e

b

b

Be
b
b

B ⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= ++

4

1

2

3

21

0
0

,

0

0

For the "negative" energy, we obtain from (5.2.6) and (5.2.7): 

 ,  (5.3.9)  ( ) ( ) φφ ii e
b
b

Be

b

b

B ⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= −−

0

0

,
0
0

3

22

4

1

1

which corresponds exactly to  (5.3.1) and (5.3.2).     
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3) Calculating correlations between the components of the field vectors. Substituting φ
π

=
2

 

for  and , we obtain accordingly: ε + = mc2 ε − = −mc2

 ( ) ( )

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

−

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅
= ++

1
0
0
2
1

,

0
1

2
1
0

21

i

B
i

B ,    (5.3.10) 

 ( ) ( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⋅

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⋅

= −−

0
2
1
1

0

,

2
1

0
0
1

21 i
B

i

B ,          (5.3.11) 

Obviously, the imaginary unit in these solutions indicates that the field vectors 
r
E  and 

r
H  are 

mutually orthogonal.  
Also, we see that the amplitude of an electric field is two times less than the magnetic field 

amplitude. This fact demonstrates that the electromagnetic field’s values, which correspond to 
solution of Dirac equation, are different in comparison to the fields of a linear wave of Maxwell’s 
theory, where HE

rr
= . (We can show that this result provides an electron’s stability).  

4) It is easy to show that in electromagnetic form, the solution of Dirac’s equation is a standing 
wave. Actually, whenever the wave rotates on a circle, we have rp rr

⊥  and, therefore, 0=⋅ rp rr . 
Then, instead of (5.2.2), we obtain the standing wave: 

 ⎟
⎠
⎞

⎜
⎝
⎛−= tib jj  exp εψ

h
,  (5.3.12)                             

5) According to Euler’s formula ,  the solution of Dirac’s equation (5.3.12) 
describes a circle. This corresponds to our theory. 

ϕϕϕ sincos iei +=

6) Let us calculate the normalization factor κ , substituting : 2, mcmcp == ε

 κ =
⎛
⎝⎜

⎞
⎠⎟
−5

4

1
2
,  (5.3.13) 

Now, we will compare it with the normalization factor, which is obtained from the 
electromagnetic representation of the theory. In view of the fact that the electric field is twice as 
small as the magnetic field, the energy density of a semi-photon will be equal to:  

( ) ,
4
5

8
1

2
1

8
1

8
1 22

2
22

phsphsphsphsphsphs HHHHEW −−−−−− =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=+=

πππ
 (5.3.14)  

Using the non-normalized expression for the wave function: 

 ( ) ( )trkitrki
jj e

i
BeBB ωωψ −−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

==
rrrr

0
1

2
1

0

00 ,  (5.3.15) 

(where  is some constant, generally dimensional), and the Hermitian-conjugate function: B0
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 ( ) ( )trkitrki
jj eiBeBB ωωψ −−−−++ ⎟

⎠
⎞

⎜
⎝
⎛ −==

rrrr

01
2
1000 ,  (5.3.16) 

for the field energy, we obtain the following expression: 

 2
04

5
8
1

8
1 BW jj ⋅⋅== +

π
ψψ

π
,  (5.3.17) 

which precisely corresponds to the result of quantum theory. 

4.0. An equation of the electron field motion  

Within the framework of NEPT, the 4-vector 
⎭
⎬
⎫

⎩
⎨
⎧ A

c
ee
r

,ϕ  is a 4-vector of the energy-

momentum of curvilinear wave field { }pr,ε . Therefore, a well-known analysis of the Dirac's 
electron equation in external field can be used to analyze equations of the inner semi-photon 
field, if we use the following: 

 εϕ == epA
c
e    ,r
r

,  (5.4.1) 

As it is known (Akhiezer and Berestetskii, 1965; Schiff, 1955), an equation of the electron’s 
motion in the external field can be found from the next operator equation that has Poisson 
brackets: 

   ( )OO
it

O
dt
Od ˆˆˆˆ1

 

ˆ ˆ
Η−Η+=

h∂
∂ ,   (5.4.2) 

where  is a physical value operator whose variation we want to find, and  is the Hamilton 
operator of Dirac’s equation, which in general case is equal to (Akhiezer and Berestetskii, 1965; 
Bethe, 1964; Schiff, 1955): 

Ô Η̂

     εβα +−−=Η 2 ˆˆ ˆˆ mcPc
rr ,     (5.4.3) 

where pppP rrr
−= ˆˆ  is a full momentum of  a semi-photon.  

Let us note that since the mass is an integral characteristic of an electron, it cannot participate 
in the internal motion of matter of electron, and must be assumed equal to zero. 

If we assume rO r
=ˆ  , then we obtain on the basis (5.4.2) and (5.4.3): 

 α̂
r

r
&r c

dt
rdr ==  

which means that the eigenvalue of electron velocity is equal to c± . In quantum theory (Fock, 
1932), “a question about does have this paradox result physical sense, it remains open”. V. Fock 
and others “proposed to  see here the defect of Dirac's theory”. In NEPT, this result will be 
completely precise if the velocity of fixed electron is not the speed of a whole particle, but the 
speed of the electron’s wave field along a curvilinear trajectory. 

For , we have the motion equation: PO ˆˆ r
=

     ( ) [ Arot
c
e

t
A

c
eegrad

dt
Pd rr ]

rr

 
 
  

ˆ
×+⎥

⎦

⎤
⎢
⎣

⎡
−−= υ

∂
∂ϕ ,     (5.4.4) 

Substituting 
r r
υ = c $α , where 

r
υ - velocity of the electron matter, we obtain the Newton’s law 

for the motion of electrical charge: 

 [ ] fH
c
eEe

dt
Pd

=×+=
rrr

r

υ ,     (5.4.5) 
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where  is the Lorentz’s force. Since for a motionless electron f 0
ˆ
=

dt
Pd
r

, then it follows from 

(5.4.5): 

 [ ] 0  
 
 

=×−⎟
⎠
⎞

⎜
⎝
⎛ + protgrad

t
p rr
r

υε
∂
∂ ,    (5.4.6) 

Assuming that (5.4.6) is correct for any small volume of the particle τ∆ , we can pass to the 
densities of EM fields of electron:  

 
τ
ε

τ d
du

d
pdg ==   ,
r

r ,    (5.4.7) 

Then we obtain the equation of matter motion of a semi-photon: 

 [ ] 0  
 
 

=×−⎟
⎠
⎞

⎜
⎝
⎛ + grotugrad

t
g rr
r

υ
∂
∂ , (5.4.8) 

Let us analyze a physical meaning of (5.4.8). Let’s remember the motion equation of an ideal 
liquid in the form of Lamb’s-Gromek's equation (Lamb, 1931). In the case when the external 
forces are absent, this equation is as follows: 

 [ ] 0  
 

 
=×−⎟

⎠
⎞

⎜
⎝
⎛ + ll

l grotugrad
t

g rr
r

υ
∂
∂

,   (5.4.9) 

where ll gu r  ,  are the energy and momentum density of an ideal liquid. 
Comparing (5.4.8) and (5.4.9), it is not difficult to see their mathematical identity. An 

interesting conclusion follows from this result: the EM wave’s  field motion may be interpreted 
as a motion of ideal liquid. 

Additionally, according to (5.4.5) and (5.4.6), we have from (5.4.9)  

 fugrad
t
g rr

=+  
 
 
∂
∂ ,   (5.4.10) 

As it is known, the term  [ grot ]rr  ×υ  in (5.4.9) is responsible for the centripetal acceleration. 
Probably, we have the same in (5.4.8). If the "photon liquid" moves along the ring with radius r , 
then the angular velocity ω  of the ring motion of field is tied to rot

r
υ  by expression: 

 zerot rrr
 22 ωωυ == ,   (5.4.11) 

and the centripetal acceleration is 

   rrn ece
r

rota rrrrr   
2
1 2

ωυυυ ==×= ,   (5.4.12) 

where  is a unit radius-vector,  is a unit vector of OZ-axis. As a result, the equation (5.4.25) 
has a form of Newton's law: 

rer
rez

        ,   (5.4.13) fan

rr
= ρ

The results (5.4.5) and (5.4.13) can be considered  (Shiff, 1955) as a representation of the 
Ehrenfest theorem for the motion of electron’s inner fields. These results show also that within the 
framework of NEPT the electron is a stable object. 

Relatively to centripetal acceleration  it is possible to come to an additional interesting 
conclusion. 

na

As it follows from the previous paragraph, the total acceleration of the EM field of convoluted 
semi-photon is centripetal it, i.e., has only a radial component. 
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Using expression (8.2) for describing the change in quantum values (Fock, 1932), it is not 
difficult to obtain the expression for the centripetal acceleration in NTEP. According to 

determination, the total acceleration is written as follows:  2

2

dt
rda
r

r
= . Since α̂

rc
dt
dr

= ,   we have  

 ( ) [ ]H
i
cc

dt
da ˆ,ˆˆ αα

r

h

rr
== ,  (5.4.14) 

Substituting the expression for the Hamiltonian and taking into account that the spin matrices 
 are connected with the -matrices by the relationships: 

r$σ
r$α

 , (5.4.15) 
⎪
⎩

⎪
⎨

⎧

−=
−=
−=

213

132

321

ˆˆˆ
ˆˆˆ
ˆˆˆ

αασ
αασ
αασ

i
i
i

we will obtain after calculations the formula, which expresses the connection of acceleration 
with pulse and spin of twisted semi-photon: 

 ⎥⎦
⎤

⎢⎣
⎡ ×= σ̂ˆ2ˆ

2 rr

h

r
phPca , (5.4.16) 

It is not difficult to see that (5.4.16) gives the right direction for the acceleration (see Fig. 5.4) 

 
Fig. 5.4 

Actually, since the direction of 
r$Pph coincides with the direction of Poynting's vector (in the 

figure: yS
r

−  ), and   is directed along the rotational axis, the acceleration is directed along a 
radius towards center. It, naturally, follows from this that the acceleration is perpendicular to the 
speed of the motion of field 

r$σ

υ
rr

⊥na  ( c=υ ), and therefore the scalar product of acceleration to 
the speed is equal to zero: 0=⋅υ

rr
na  . 

Thus, according to our calculations, the velocity of fixed electron (in reality, of its fields) is 
equal to the speed of light and is directed tangentially toward the circular path, and the product of 
its acceleration to the speed is equal to zero. These special features of the motion of fixed electron 
can explain some results of the 4-dimensional kinematics of the theory of relativity. There we 
have two mysterious results (Landau and Lifshitz, 1977):  1) the square of 4- speed (in units of the 
speed of light) is equal to one; and 2) the product of 4-speed for the 4-acceleration is equal to zero. 
From the comparison with the obtained above results we can assume that the kinematics of the 
theory of relativity correspond to the kinematics of the theory of elementary particles. 
Subsequently we will examine this fact in more detail. 

5.0. The physical and mathematical differences between vector and 
spinor wave functions 

From the theory it follows that the wave functions of photon and intermediate boson are 
vectors, whereas the wave functions of electron is spinor. What are the physical and mathematical 
differences between these two objects? We can see that these differences appear during the 
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breaking of an intermediate photon and the production of an electron-positron pair because of the 
change of the transformation properties of electromagnetic fields. 

Let us attempt to describe the differences between the electromagnetic fields 
 of the vector { zxzx ',',',' ΗΗΕΕ } 'Φ -wavefunction of an intermediate photon and 

electromagnetic fields { }zxzx HHEE ,,,  of the spinor ψ -wavefunction of semi-photon (i.e. 
electron) from different points of view.  

5.1. The topological differences 
The spinor’s invariant transformation has the form (Ryder, 1987; Gottfried & Weisskopf, 

1984):  
    ψψ U=' ,   (5.5.1) 
where  

 ( ) θσθθ
2
1sin'

2
1cos rrr

⋅−= ninU ,    (5.5.2)  

is the transformation operator,  is a unit vector on some axis, nr θ  is the angle of rotation around 
this axis, and ( )',','' zyx σσσσ =

r  is a spin vector. The rotation matrix (5.5.2) possesses a 
remarkable property. If the angle of rotation is πθ 2=  (that is returning to the initial reference 
system), then , instead of , as we would otherwise expect. In other words, the state 
function of a system with a half spin in the usual three-dimensional space returns to its initial state 
only after turning by 

1−=U 1=U

π4 . 
This result can be explained only if we assume that the electron and positron are plus and 

minus half-cycles( halfs of wave period) of an intermediate photon, and, therefore, their fields  
need to be rotated twice to return to the initial state.  This confirms the fact that the semi-photon 
is a transformed half-cycle of the photon. Thus in the framework of nonlinear electromagnetic 
representation of theory we can name the spinor wave function as “electromagnetic spinor". 

5.2. The differences from the tensor representation point of view  
The Dirac spinor cannot be equivalent to vector. But already in the early articles it was noted 

that between them there is a specific correspondence. Therefore, previously (A. Sokolov, D. 
Ivanenko, 1952; Goenner, 2004) the spinors were also called “half-vectors” (or tensors of half 
rank), and the equation of Dirac - “half-vector equation”. The spinors obtained this name because 
of the comparison of their transformation law with the transformation law of the vectors. Let us 
describe briefly this comparison (in detail see bibliography). 

In Dirac's theory the 4-vectors are some bispinor constructions. For example, let us find 
transformation law for the 4-vector of energy-momentum dencity { }gu r,  of electron  

 ,   ψψψαψ ++ == 0ˆu ψαψ
r̂r +=g ,  (5.5.3) 

where ψ  is a spinor (or bispinor), αα ˆ,ˆ0
r  are Dirac’s matrices. Using the correlation (5.2.3) we 

can obtain the electromagnetic representation of above relations: 

 uHEo πψαψ 8ˆ 22 =+=+
rr

,  (5.5.4) 

 gcHE rrrr  82ˆ πψαψ =×=+ ,  (5.5.5) 
which actually correspond to relations of electromagnetic theory. 

The rotation transformation law in the xt -plane (the Lorentz transformation) for Dirac wave 
function can be write in the form: 

 ψγαγψ ⎟
⎠
⎞

⎜
⎝
⎛ −=

22 1
' shch ,  '

1 22
ψγαγψ ⎟
⎠
⎞

⎜
⎝
⎛ += shch ,  (5.5.6) 
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where γ  is the imaginary angle of rotation. Let us find now transformation law for the 4- vector of 
energy-momentum: 

  ,   ,  (5.5.7) ψψ +=u ψαψ 1ˆ+=xg

In this case, using (5.5.6), we can write: 
 ;  , (5.5.8) 'ψψ xtΩ= +++ Ω= xt

'ψψ

where  

 
2

ˆ
2 1

γαγ shchxtxt +=Ω=Ω + ,  (5.5.9)  

are operators of the transformation of the Dirac wave function. Then, substituting (5.5.8) into 
(5.5.7) we obtain, using (5.5.9): 
 γγ shgchuu x'' += ,   

 γγ shuchgg xx '' += ,   

as it must be in this case.  
Since 

 , (5.5.10) ''2' ψψψψψψ xtxt Q+++ =Ω=

the operator  
 γαγ shchQxt 1ˆ+= , (5.5.11)  

can be considered as the transformation operator of the vectors.  Thus, we have:  

 xtxt Q=Ω ,  (5.5.12)  

Consequently, the Dirac wavefunction is not tensor in the usual sense; however, the observed 
physical quantities, which are quadratic combinations from the wavefunctions, are real tensors. 

According to above we can name the transformation law for the wavefunctions as the half-
vector transformation law, and the equation, to which they obey - the  “half-vector equation” 

Thus, there are no foundations to doubts that the special (non-Maxwellian) electromagnetic 
field can organize objects with the spin ½.  

5.3. The differences from a point of view of the group theory  
It is known that the vector fields of a photon are transformed as elements of the group O(3). At 

the same time, the spinor fields of the Dirac equation are transformed as elements of the group 
SU(2), and (Ryder, 1987) two spinor transformations correspond to one vector transformation. 

Consequences 
Проведенный выше анализ показывает, что теория электрона Дирака может быть 

представлена в виде особой (не максвелловской) электромагнитной теории. Но за 
пределами этого анализа остались многочисленные результаты и интерпретации квантовой 
теории, которые присущи только квантовой теории. Очевидно, для обоснования нашей 
теории важно объяснить их в рамках представлений нелинейной электромагнитной 
теории. Чтобы не перегружать данную часть книги, рассмотрение этих результатов и 
интерпретаций будет изложено в следующих частях. 

 The analysis, carried out above, shows that Dirac's electron theory can be presented in the 
form of special (not-Maxwellian) electromagnetic theory. But beyond the limits of this analysis 
remained numerous results and interpretations of the quantum theory, which are inherent only in 
framework of quantum theory. Obviously, for the substantiation of our theory it is important to 
explain them within the framework of the representations of nonlinear electromagnetic theory. In 
order to not overload this chapter of the book, the examination of these results and interpretations 
will be stated in the following chapters.  



  
                                                    18 

Bibliography 
Akhiezer, A.I. and Berestetskii,. W.B. (1965). Quantum electrodynamics. Moscow,  Interscience publ.,  New  York. 

Archibald, W.J. (1955). Canadian Journal of Physics, 33, 565.  
Bethe, H. A. (1964) Intermediate Quantum Mechanics. W. A. Benjamin, Inc., New   York - Amsterdam.  
Born, M. and Infeld, L. (1934a). Proc. Roy. Soc. A 144, 425 (1934) 
Born, M. and Infeld, L. (1934b). Proc. Roy. Soc. A 147, 522 (1934) 
Campolattoro, A.A. (1980). International Journal of Theoretical Physics, 19, No 2,   p.99-126.   

Dirac, P. A. M., (1931). ”Quantised singularities in the electromagnetic field”.   Proc.Roy. Soc., A33, 60  
Fermi, E. (1960). Notes on quantum mechanics. The University of Chikago Press 
Fock, V. (1932). The principles of the quantum mechanics. (in Russian) Leningrad,  (Part III, Chapt. I, § 5)  
Gell-Mann, M. (1983). From renormalizability to calculability? In: Proc. Shelter Island Meeting IICaltech preprint 

CALT-68-1153 (1983). [UFN, 1987, v. 151, n. 4, p. 683. In Russian] 
Goenner, Hubert F. M. (2004). On the History of Unified Field Theories http://www.livingreviews.org/lrr-2004-2  
Gottfried, K. and Weisskopf, V.F. (1984). Concepts  of Particle Physics. Oxford. 

Gsponer, A. (2002) On the “equivalence” of the Maxwell and Dirac equations. Int. J. Theor. Phys. 41, 689,   694.  

Ivanenko, D. and Sokolov, A. (1949). The classical field theory (in Russian). Moscow-Leningrad 

Jackson, J.D. (1999). Classical Electrodynamics, 3rd ed., 808 pp. Wiley, New York. 
Koga, T. (1975).  International Journal of Theoretical Physics, 13, No 6, p.377-385.  
Kyriakos, A.G. (2010a). Nonlinear Theory of Elementary Particles:  4. The Intermediate Bosons and Mass Generation 

Theory.  http://vixra.org/abs/1009.0066  
Kyriakos, A.G. (2010b). Nonlinear Theory of Elementary Particles: 2. The Photon Theory. 

http://vixra.org/abs/1006.0029  
Kyriakos, A.G. (2010c). Nonlinear Theory of Elementary Particles: 3 . The Mass Origin Theories. 

http://prespacetime.com/index.php/pst/article/viewFile/83/75
Lamb. H. (1931). Lehrbuch der Hydrodynamik, 2 Aufl. Leipzig, B.G.Treubner 
Landau, L. D. and Lifshitz, E. M. (1977). The Classical Theory of Fields (Course of  Theoretical Physics, V. 2) 
Madelung, E. (1943). Mathematical Tools for the Physicist. New York: Dover (1943). 
Mie, G. (1912a). Grundlagen einer Theorie der Materie. – Ann. der Physik, 37, 511. 

Mie, G. (1912b). Grundlagen einer Theorie der Materie. – Ann. der Physik, 39, 1.  

Mie, G. (1913).   Grundlagen einer Theorie der Materie. – Ann. der Physik, 40, 1.  
Mie, G. (2007). Foundations of a theory of matter (excepts). Springer. 
Nambu, Y. (1982). Prospects of elementary particle physics. The collection of translation from Japan to Russian. 

Edited by A.S. Davydov. – Kiev, Publication: Naukova Dumka, 1982. 
Pauli, W. (1958).Theory of Relativit.y.  Pergamon, London.  

Philipov, A.T. (1990). Multifaceted soliton (in Russian). Moscow, Edition house “Science”. 

Rodrigues,  W.A., Jr. (2002). E-print arXiv: math-ph/0212034 v1.  

Ryder, L.H. (1985) Quantum field theory, 2nd ed., Cambridge Univ. Press., Cambridge, UK.  

Schiff,  L.T., (1955). Quantum Mechanics, 2nd edition, McGraw-Hill Book  Company, Jnc, New York.  
Schrödinger, E. (1927). Ann. Phys., 1927, 82, 178. 
Schrödinger, E. (1929); (1930); (1931a); (1931b); Sitzungber. Preuss. Akad. Wiss., (Berl.Ber.) (Phys.-math. kl.), S. 668-682 

(1929); S. 418-428 (1930); S.  63-72 (1931); S. 238-347 (1931). 

 Schrödinger E. (1932). Berliner Berich., S.105.  
Sommerfeld, A. (1952). Electrodynamics. Lectures of theoretical physics, Vol. III, Academic Press Inc., New York, 

1952. 
Thomas, L.H.  (1926). Nature, 117, p. 514 (1926) 
Tonnelat M.-A., (1959). Les Principes de la Theorie Electromagnetique et de la Relativite. Masson et C., Paris.  
 
 

http://www.livingreviews.org/lrr-2004-2
http://vixra.org/abs/1009.0066
http://vixra.org/abs/1006.0029
http://prespacetime.com/index.php/pst/article/viewFile/83/75

	Nonlinear theory of elementary particles:  5.The electron an
	1.0. Introduction. Nonlinear non-Maxwellian electromagnetic 
	2.0. The equations of particles, generated from the breaking
	2.1. Derivation of equations
	2.2. Electromagnetic representation of Dirac’s equations
	2.3. The “field diagram” of the photoproduction of the elect

	3.0. Analysis of the free electron’s equation solution from 
	4.0. An equation of the electron field motion
	5.0. The physical and mathematical differences between vecto
	5.1. The topological differences
	5.2. The differences from the tensor representation point of
	5.3. The differences from a point of view of the group theor

	Consequences
	Bibliography



