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Abstract

Reviewing a path-integral procedure of recovering gauge invariance from anomalous e¤ective

actions developed by Harada and Tsutsui in the 80�s, it is shown that there is another way to achieve

gauge symmetry, besides the one presented by the authors, which may be anomaly-free, preserving

current conservation. It is also shown that the generalization of Harada-Tsutsui technique to other

models which are not anomalous but do not exhibit gauge invariance allows the identi�cation of

the gauge invariant formulation of the Proca model with the Stueckelberg model, leading to the

interpretation of the gauge invariant mapping as a generalization of the Stueckelberg mechanism.
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I. INTRODUCTION

In the eighties, an amount of discussion about anomalous gauge models in quantum �eld

theory was presented. The central role of the discussion was played by consistence of such

theories. Although some theorists considered such models as inconsistent, some authors

produced works to support the idea that they are not so.

In this sense, we must cite the work of Jackiw and Rajaraman [1], in which it was shown

that a gauge anomalous two-dimensional theory could be well de�ned and able to provide

a mass generation mechanism from chiral anomalies. This work was soon followed by the

one of Faddeev and Shatashvili [2], who noticed that quantum gauge invariance could be

restored by the introduction of new quantum degrees of freedom, that transform second class

constraints into �rst class ones. In adding these extra �elds, the e¤ective anomalous action

is mapped into a gauge invariant one. Then, the works of Babelon, Schaposnik and Viallet

[3] and Harada and Tsutsui [4] showed independently that these new degrees of freedom

could emerge quite naturally by the application of Fadeev-Popov�s method through the

non-factorization of the integration over the gauge group. Soon after, Harada and Tsutsui

recognized that the same procedure could be applied to the Proca model [5], leading to a

possible generalization of their technique. Recently, it was inferred that the gauge anomaly

has null expectation value if the entire quantum theory is considered1 [6], and by imposing

gauge invariance of the bosonic measure.

We can recognize the main strategy to give consistence to these models with the intro-

duction of the new degrees of freedom, which recovers gauge invariance. In this sense, it

seems useful to analyze such mapping and explore its potential. Although restoring gauge

symmetry at the �nal e¤ective action, one may ask whether such technique is able to provide

current conservation or it just preserves the quantum anomaly.

This work is intended to elucidate this question for the particular case of abelian gauge

models. In this sense, in section II, the origin of abelian gauge anomaly is brie�y reviewed in

path integral approach. In section III, the gauge invariant formalism developed by Harada

and Tsutsui is rederived by rede�ning the vacuum functional multiplying it by the gauge

volume, instead of proceeding with Fadeev-Popov�s method, and it is shown that the anom-

1 That obtained by considering the gauge �elds as quantum �elds.
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aly is preserved in the original form proposed by the authors. Section IV is intended to

show that their procedure can be used to obtain an alternative abelian gauge invariant

formulation which may provide an anomaly-free model. In section V, the Harada-Tsutsui

gauge invariant formulation of the Proca model is rederived. Finally, in section VI, a corre-

spondence between the Proca�s gauge invariant mapping and the Stueckelberg mechanism

is pointed out, leading to the interpretation of the enhanced mapping as a generalization of

the Stueckelberg mechanism [7]. The conclusion is, then, presented in section VII.

II. THE ORIGIN OF ABELIAN GAUGE ANOMALY IN PATH INTEGRAL

APROACH

Consider an abelian gauge theory described by the action

I[ ;  ;A�] � IM [ ;  ;A�] + IG[A�]; (1)

where IM [ ;  ;A�] is the matter action minimally coupled to the gauge abelian �eld A�,

and IG[A�] is the free bosonic action. If the action is said to be invariant under local gauge

transformations

 !  � = exp (i�(x)) (2)

 !  
�
= exp (�i�(x)) (3)

A� ! A�� = A� +
1

e
@��(x); (4)

one can say that, classically, the theory exhibits a conserved current given by

J� = �1
e

�IM
�A�

: (5)

Now, if we proceed the quantization of the fermionic �elds, then, after integrating them out,

we will arrive at an e¤ective action given by

exp (iW [A]) =

Z
d d exp

�
iI
�
 ;  ;A

��
: (6)

To �nd the quantum version of the current conservation law, �rst we make a change of

variables in the fermion �elds

exp (iW [A]) =

Z
d d exp

�
iI
�
 ;  ;A

��
=

Z
d �d 

�
exp

�
iI
h
 �;  

�
; A
i�
; (7)
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and then, just as in the classical case, we make use of the invariance of the action by noticing

that I
h
 �;  

�
; A
i
= I

�
 ;  ;A��

�
exp (iW [A]) =

Z
d �d 

�
exp

�
iI
�
 ;  ;A��

��
(8)

Now, a subtle di¤erence between the classical and the quantum gauge theory arises: if the

quantum measure is locally gauge invariant, i. e., if

d �d 
�
= d d ; (9)

then, by considering �(x) as an in�nitesimal parameter, we will have

exp (iW [A]) =

Z
d �d 

�
exp

�
iI
�
 ;  ;A��

��
=

Z
d d exp

�
iI

�
 ;  ;A� �

1

e
@��(x)

��
= exp (iW [A])�

Z
dxi�(x)

Z
d d @�

�
�1
e

�I

�A�

�
exp

�
iI
�
 ;  ;A�

��
(10)

)
Z
d d @�

�
�1
e

�I

�A�

�
exp

�
iI
�
 ;  ;A�

��
= 0: (11)

But gauge invariance of the free bosonic action implies that @�
�
�IG
�A�

�
� 0, therefore,Z

d d @�

�
�1
e

�IM
�A�

�
exp

�
iI
�
 ;  ;A�

��
= 0: (12)

Equation (12) is the quantum version of current conservation. However, it was necessary

to impose invariance of the fermionic measure (9) to get the above result. If, instead of (9),

we had

d �d 
�
= exp (i�1 [A; �]) d d (13)

then, instead of (12), we would arrive at

exp (iW [A]) =

Z
d �d 

�
exp

�
iI
�
 ;  ;A��

��
=

Z
d d exp

�
iI
�
 ;  ;A��

�
+ i�1 [A; �]

�
=

Z
d d exp

�
iI
�
 ;  ;A�

�
+ i

Z
dx@��(x)

�
�1
e

�I

�A�

�
+i�1 [A; 0] + i

Z
dx

��1
��

����
�=0

�(x)

�
;
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but @�
�
�1
e
�I
�A�

�
= @�

�
�1
e
�IM
�A�

�
and �1 [A; 0] = 0, therefore

exp (iW [A]) =

Z
d d exp

�
iI
�
 ;  ;A�

�
� i

Z
dx�(x)

�
@�

�
�1
e

�IM
�A�

�
� ��1

��

����
�=0

��
=

Z
d d exp

�
iI
�
 ;  ;A�

���
1� i

Z
dx�(x)

�
@�

�
�1
e

�IM
�A�

�
� ��1

��

����
�=0

��
= exp (iW [A])� i

Z
dx�(x)

Z
d d exp

�
iI
�
 ;  ;A�

�� �
@�

�
�1
e

�IM
�A�

�
� ��1

��

����
�=0

�

)
Z
d d @�

�
�1
e

�IM
�A�

�
exp

�
iI
�
 ;  ;A�

��
= A exp (iW [A]) ; (14)

and we see that, instead of (12), we would have a nonzero right-hand side in equation (14),

where

A � ��1
��

����
�=0

(15)

is called the anomaly and the theory is said to be anomalous.

It is convenient, to our purposes, to rewritte the anomaly (15) by noticing that

��1
��

����
�=0

=
�W

�
A�
�

��

�����
�=0

=

Z
dnx

�W
�
A�
�

�A�� (y)

�����
�=0

�A�� (y)

�� (x)

=

Z
dnx

1

e

�W [A]

�A� (y)
@� [� (x� y)]

= @�

�
�1
e

�W [A]

�A� (x)

�
;

and, therefore

A � ��1
��

����
�=0

= @�

�
�1
e

�W [A]

�A� (x)

�
: (16)

III. GAUGE INVARIANT FORMULATION OF ANOMALOUS MODELS

The anomaly arises from de non-invariance of the e¤ective action. To see this, we notice
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that

exp
�
iW
�
A�
��
=

Z
d d exp

�
iI
�
 ;  ;A�

��
=

Z
d �d 

�
exp

�
iI
h
 �;  

�
; A�
i�

=

Z
d d exp

�
iI
�
 ;  ;A

�
+ i�1 [A; �]

�
= exp (iW [A] + i�1 [A; �]) ; (17)

that is,

) �1 [A; �] =W
�
A�
�
�W [A] : (18)

Therefore, from (14) it seems that current conservation at quantum level may be obtained

only for theories with gauge invariant e¤ective actions.

A gauge invariant formulation of anomalous theories was developed by Harada and Tsut-

sui in [4]. We will derive the same results in a di¤erent way that is more convenient to our

purposes. It is considered the full quantum theory, described by the vacuum functional

Z =

Z
d d dA� exp

�
iI
�
 ;  ;A

��
=

Z
dA� exp (iW [A]) : (19)

The functional can be rede�ned by multiplying it by the gauge volume and, then, a change

of variables in the gauge �eld is performed

Z =

Z
d�dA� exp (iW [A])

=

Z
d�dA�� exp

�
iW
�
A�
��
: (20)

Now we use the fact that the boson measure is gauge invariant, that is dA� = dA��, and we

arrive at a theory containing a scalar �eld �, besides the gauge �eld A�

Z =

Z
d�dA� exp (iW

0 [A; �])

=

Z
dA� exp (iWeff [A]) ; (21)

where

W 0 [A; �] � W
�
A�
�
and exp (iWeff [A]) �

Z
d� exp (iW 0 [A; �]) (22)
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It is easy to see that the new e¤ective action Weff [A] is gauge invariant. To do this, we

notice that

exp
�
iWeff

�
A�
��
=

Z
d� exp

�
iW 0 �A�; ���

=

Z
d� exp (iW 0 [A; � + �])

=

Z
d (� + �) exp (iW 0 [A; � + �])

= exp (iWeff [A]) (23)

One could ask if, after this procedure, the anomaly would survive, and we can say that

it depends on the starting action. Indeed, one may choose an initial action by noticing that

Z =

Z
d�dA� exp (iW

0 [A; �])

=

Z
d�dA� exp

�
iW
�
A�
��

=

Z
d�dA� exp (iW [A] + i�1 [A; �])

=

Z
d�d d dA� exp

�
iI
�
 ;  ;A

�
+ i�1 [A; �]

�
: (24)

The action in eq. (24), with the addition of the Wess-Zumino term �1 [A; �] [9], is known

as the standard action [4]

Ist
�
 ;  ;A; �

�
= I

�
 ;  ;A

�
+ �1 [A; �] : (25)

As one could notice, although the �nal e¤ective action Weff [A] is gauge invariant, the

standard one Ist
�
 ;  ;A; �

�
is not, since �1 [A; �] breaks gauge invariance. To understand

what it means, we see that, if we search for a kind of conserved current from this theory, we

need to start from the gauge invariance of the e¤ective action, which leads to

@�

�
�1
e

�Weff [A]

�A�(x)

�
= 0: (26)
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Then we have

@�

�
�1
e

�Weff [A]

�A�(x)

�
exp (iWeff [A])

=
i

e
@�

�
�

�A�(x)
exp (iWeff [A])

�
=
i

e
@�

�
�

�A�(x)

Z
d�d d exp

�
iIst
�
 ;  ;A; �

���
=

Z
d�d d @�

�
�1
e

�Ist
�A�(x)

�
exp

�
iIst
�
 ;  ;A; �

��
=

Z
d�d d @�

 
�1
e

�IM
�
 ;  ;A

�
�A�(x)

�1
e

��1 [A; �]

�A�(x)

�
exp

�
iIst
�
 ;  ;A; �

��
= 0; (27)

and, since �1 [A; �] is not gauge invariant, one can not say that @�
�
�1
e
��1[A;�]
�A�(x)

�
= 0, which

would lead to the current conservation law. Instead, we haveZ
d�d d @�J

� exp
�
iIst
�
 ;  ;A; �

��
=

Z
d�d d @�

�
1

e

��1 [A; �]

�A�(x)

�
exp

�
iIst
�
 ;  ;A; �

��
6= 0: (28)

Now, we can perform integration over the � � field in the right-hand side of (28), using

(18), (6) and the gauge invariance of Weff [A]. It is straightforward to �ndZ
d�d d @�J

� exp
�
iIst
�
 ;  ;A; �

��
= A exp (iWeff [A]) ; (29)

and we see that the standard formulation still preserves the anomaly. This may be explained

by the switching of gauge symmetry breakdown from the e¤ective action to the starting

one, namely, the standard action. On the other hand, it remains to be veri�ed whether the

anomaly still survives after imposed the equations of motion of this modi�ed theory.

IV. RECOVERING CURRENT CONSERVATION

The standard action is not the only one that can provide the gauge invariant e¤ective

theory given by (22). Indeed, from (21) we have

Z =

Z
d�dA� exp (iW

0 [A; �])

=

Z
d�dA� exp

�
iW
�
A�
��

=

Z
d�d d dA� exp

�
iI
�
 ;  ;A�

��
: (30)
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Thus, we can see that the same procedure that leads to (21) and (22) can be performed by

means of the enhanced action, de�ned by

Ien
�
 ;  ;A; �

�
� I

�
 ;  ;A�

�
: (31)

The advantage of the enhanced action is that it is really gauge invariant. Moreover, if we

start from the gauge invariance of Weff [A] and proceed the same calculations which lead to

(28), we will arrive at

@�

�
�1
e

�Weff [A]

�A�(x)

�
exp (iWeff [A])

=

Z
d�d d @�

�
�1
e

�Ien
�A�(x)

�
exp

�
iIen

�
 ;  ;A; �

��
=

Z
d�d d @�

 
�1
e

�I
�
 ;  ;A�

�
�A�(x)

!
exp

�
iIen

�
 ;  ;A; �

��
= 0 (32)

In fermionic theories, generally the gauge �elds are coupled linearly to the fermions. So,

expanding the matter action to the �rst order, we will obtain

I
h
 ;

_

 ;A
i
= IM

h
 ;

_

 ;A
i
+ IG[A]

= IF

h
 ;

_

 
i
+

Z
dnx

�IM [ ;
_

 ;A]

�A�(x)
A�(x) + IG[A]; (33)

where IF

h
 ;

_

 
i
� IM

h
 ;

_

 ; 0
i
corresponds to the free fermionic action. However,

�IM [ ;
_
 ;A]

�A�(x)
= �eJ�(x), therefore

I
h
 ;

_

 ;A
i
= IF

h
 ;

_

 
i
+ IG[A]� e

Z
dnxJ�(x)A�(x) (34)

IM

h
 ;

_

 ;A
i
= IF

h
 ;

_

 
i
� e

Z
dnxJ�(x)A�(x): (35)

Thus, evidently

�1
e

�IM

h
 ;

_

 ;A�
i

�A�(x)
= �1

e

�IM

h
 ;

_

 ;A�
i

�A��(x)
= �1

e

�IM

h
 ;

_

 ;A
i

�A�(x)
= J�: (36)

Since IG[A] is gauge invariant, which means that @�
�
�1
e
�IG[A]
�A�(x)

�
= 0, eq. (32) leads to

@�

�
�1
e

�Weff [A]

�A�(x)

�
= 0,

Z
d�d d @�J

�(x) exp
�
iIen

�
 ;  ;A; �

��
= 0 (37)
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Eq. (37) means that the current is conserved in this alternative approach with no quantum

breakdown. Therefore, we see that the gauge invariant formulation constructed by Harada

and Tsutsui, but alternatively built with the enhanced action, instead of the standard one,

provides a theory with no current conservation breakdown and, thus, anomaly-free.

To �nish this section, we shall analyze the classical equations of motion obtained from

original abelian anomalous models

�I[ ;  ;A�]

� 
=
�IM [ ;  ;A�]

� 
= 0 (38)

�I[ ;  ;A�]

� 
=
�IM [ ;  ;A�]

� 
= 0 (39)

�I

�A�
=
�IM
�A�

+
�IG
�A�

= 0 (40)

and compare them with those from the enhanced theory Ien
�
 ;  ;A; �

�
� I

�
 ;  ;A�

�
�I
h
 ;

_

 ;A��

i
� (x)

=
�IM

h
 ;

_

 ;A��

i
� (x)

= 0 (41)

�I
h
 ;

_

 ;A��

i
� 

=
�IM

h
 ;

_

 ;A��

i
� 

= 0 (42)

�I
h
 ;

_

 ;A��

i
�A�

=
�IM

h
 ;

_

 ;A��

i
�A�(x)

+
�IG

�
A��
�

�A�(x)
=
�IM

h
 ;

_

 ;A�

i
�A�(x)

+
�IG [A�]

�A�(x)
= 0 (43)

�I

��
= @�

 
�1
e

�IM [ ;
_

 ;A]

�A�(x)

!
= @�J

� = 0 (44)

As one could see, the equation (44) for � is redundant, since it is just the current con-

servation law imposed by global gauge invariance. The equation of motion for the gauge

�eld is the same in both theories, since it is gauge invariant. Finally, the equations for the

fermionic �elds are reducible one to the other by a simple rede�nition of the gauge �eld

which is nothing but a generic gauge transformation A� ! A0� = A� +
1
e
@�� that does not

change the other equations. Thus, classically both formulations are completely equivalent

one to the other, and the scalar is not even noted. On the other hand, at quantum level,

the simple original theory is anomalous, while the enhanced one, with the addition of the

� � field, is not.
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V. GAUGE INVARIANT FORMULATION APPLIED TO NON-ANOMALOUS

THEORIES - THE PROCA MODEL

As shown by the authors in the work of ref. [5] to the case of the massive vector �eld,

the Harada-Tsutsui procedure of mapping a theory that does not exhibit quantum gauge

symmetry into a gauge invariant one does not need to be tied to the particular class of

classically symmetric models. Indeed, to proceed this mapping, it was only necessary to

consider the exponential of the e¤ective action exp (iW [A]), gauge transforming it into

exp
�
iW
�
A�
��
, and then to perform an integration over the � � field to obtain, �nally,

the exponential of the gauge invariant e¤ective action Weff [A]. But any action that does

not exhibit gauge invariance could, in principle, be attached to this procedure. Lets us

reconsider, for instance, the massive vector �eld interacting with fermions, whose action is

I
h
 ;

_

 ;A�

i
= IM

h
 ;

_

 ;A�

i
� 1
4

Z
d4xF ��F�� +

m2

2

Z
d4xA�A�: (45)

Clearly, the massive term breaks gauge invariance. If we consider the quantum version

of this model and proceed the gauge invariant mapping, we will getZ
d� exp

�
iW
�
A�
��
=

Z
d�d d exp

�
iI
�
 ;  ;A�

��
=

Z
d�d d exp

�
IM

h
 ;

_

 ;A��

i
� 1
4

Z
d4xF ��F�� +

m2

2

Z
d4xA��A��

�
=

Z
d�d �d 

�
exp

�
IM

�
 �;

_

 
�
; A��

�
� 1
4

Z
d4xF ��F�� +

m2

2

Z
d4xA��A��

�
;

(46)

and if the theory is not anomalous, that is, if d �d 
�
= d d , we will arrive at an enhanced

model given by

exp (iWeff [A]) =

Z
d�d d exp

�
iIen

�
 ;  ;A; �

��
; (47)

where

Ien

h
 ;

_

 ;A�; �
i
= IM

h
 ;

_

 ;A�

i
+

Z
d4x

�
�1
4
F ��F�� +

1

2

m2

e2
@��@�� +

1

2
m2A�A� +

m2

e
A�@��

�
:

(48)
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If we proceed integration over the gauge parameter, we will �ndZ
d� exp

�
i

2
m2

Z
dx

�
2

e
A�@

�� +
1

e2
@��@

��

��
= exp

�
� i
2
m2

Z
dxA�

@�@�

� A�

�Z
d� exp

�
�im

2

2e

Z
dx
h� e
�@

�A� + �
�
�
� e
�@

�A� + �
�i�

:

(49)

Performing the change of variables � ! �0 = � + 1
�@

�A�; d�
0 = d�, we will arrive atZ

d� exp

�
i

2
m2

Z
dx (2A�@

�� + @��@
��)

�
� exp

�
� i
2
m2

Z
dxA�

@�@�

� A�

�
: (50)

Using this result into (47), we �nally obtainZ
d�d d exp

�
iIen

h
 ;

_

 ;A�; �
i�
=

Z
d d exp

�
iI 0
h
 ;

_

 ;A�

i�
; (51)

with

I 0
h
 ;

_

 ;A�

i
� IM

h
 ;

_

 ;A�

i
+

Z
dnx

�
�1
4
F ��F�� +

1

2
m2A�

�
��� � @�@�

�

�
A�

�
: (52)

It is easy to see that, classically, the gauge invariant formulation of Proca model (52)

may be thought as equivalent to its correlate (45), since one is reducible to the other, with

no loss of physical meaning, by the Lorentz gauge choice @�A� = 0 in (52). Therefore, this

example clearly shows that the Harada-Tsutsui technique may be used as a procedure to

map a theory with no gauge symmetry into a gauge invariant one even in some cases where

we are dealing with classical models.

VI. THE ENHANCED FORMALISM AND THE STUECKELBERG MECHA-

NISM

In the enhanced anomalous model�s formalism, we start with a gauge invariant action

Ien

h
 ;

_

 ;A; �
i
, and reach an e¤ective one Weff [A] which is also gauge invariant. However,

there is an intermediate action W 0 [A; �] = W
�
A�
�
with no gauge symmetry. Nevertheless,

it is obviously invariant under generalized gauge transformations

A� ! A� +
1

e
@��

� ! � � � (53)
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It means that we can set �(x) = k by a simple gauge choice and get back to the original

formalism. In other words, classically, � is not noted, but must exist and be quantized in

order to provide an anomaly-free model. In section 4, we saw that the classical equations of

motion of the enhanced version of anomalous models are reducible to those of the original

one by a simple rede�nition of the gauge boson. By the generalized gauge symmetry point

of view (53) above, thus, it simply means a gauge choice where the scalar is set constant.

On the other hand, the pure enhanced Proca model, which is also invariant under (53),

is described by

IP [A; �] =

Z
dnx

�
�1
4
F ��F�� +

1

2

m2

e2
@��@�� +

1

2
m2A�A� +

m2

e
A�@��

�
: (54)

If we simply rede�ne the � � field by a multiplicative constant

B(x) � m

e
�(x); (55)

then we will just �nd the Stueckelberg action [7]

IStueck [A;B] =

Z
dnx

�
�1
4
F ��F�� +

1

2
(mA� + @�B) (mA� + @�B)

�
; (56)

and (53) becomes Pauli�s gauge transformations [8]

A� ! A� + @��(x) (57)

B ! B �m�(x): (58)

Therefore, we see that the Harada-Tsutsui formalism, using the enhanced form in the case

of abelian anomalous models, may be in closed conection with the Stueckelberg mechanism,

and may be viewed as its generalization, which might be stated as follows: every gauge boson

has to be accompanied by a scalar in such a way that its gradient must be added up to the

gauge boson itself.

The biggest advantage of the Stueckelberg massive abelian model, which coincides exactly

with the enhanced formulation of the Proca model, is that it was rigorously proved to be

renormalizable and unitary [10].

We started by the integration over what we called the gauge parameter, but now we can

reinterpret it by saying that it is not the gauge parameter which is actually integrated, but

the Stueckelberg scalar, a compensating quantum �eld which is hidden in conventional gauge

symmetry, but becomes necessary in order to recover it when the symmetry is broken, and

able to provide an abelian anomaly-free theory as well as a renormalizable massive vector

model.
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VII. CONCLUSION

Revisiting a procedure to transform e¤ective actions of anomalous generic models into

gauge invariant ones, built in the 80�s, it was found that it might be much more pro�cuous

than it might have seem to be at a �rst sight. Indeed, the gauge invariant formulation

is not only able to map an anomalous model into a gauge invariant one, but it may also

be able to remove abelian gauge anomalies, which simply disappear when the � � field is

introduced into the theory by gauge transforming the gauge �eld. Moreover, it provides a

bridge between the gauge invariant formulation of anomalous models and a generalization

of the Stueckelberg mechanism, where the � � field, identi�ed as the Stueckelberg scalar,

may be present together with the gauge �eld in any abelian theory, instead of being present

only in the particular case of the massive vector model.

On the other hand, such discussion may raise a paradox: If one formalism is mapped

into another one by simple manipulations over the functional integral, which would suggest

that both formalisms are equivalent, how, in the anomalous case, one might present current

conservation breakdown while the other has it conserved? As we have seen, the original

formalism is anomalous, which would mean that it is closer to the standard formalism, that

preserves its anomaly, than to the enhanced one. In this sense, one might ask which of the

two gauge invariant formalisms may be equivalent to the original one. Work is in progress

in order to clarify this question.

The relevance of the Stueckelberg mechanism is that it is able to deal with gauge symme-

try breaking and, since it is renormalizable, it provides a mechanism alternative to the Higgs

[11]. Moreover, it can be recovered in a rather singular limit of the Higgs mechanism [12].

In our generalization of the Stueckelberg mechanism, we saw that it is also able to provide a

gauge anomaly-free model. On the other hand, It is well known, for the simplest case of the

anomalous Jackiw-Rajaraman model, that there is an alternative mass-generation mecha-

nism to the gauge boson from quantum corrections of anomalous 2�D chiral fermions [1].

Perhaps it is not mere coincidence that a breaking in the gauge symmetry in both cases is

related to vector boson�s mass generation, and that it may be recovered by an introdution

of a scalar. The generalization of the Jackiw-Rajaraman mass generation mechanism from

chiral anomalies to higher dimensions is under consideration.

Finally, we can point out that, besides the correspondence between gauge invariant map-
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ping and the Stueckelberg mechanism, this kind of procedure might be generalized to other

symmetries than gauge one, and it may be a road to a technique that leads to restore other

kind of symmetry breakdowns, like chiral or gravitational anomalies, for example.
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