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The first purpose of this chapter is to describe the influence of physical vacuum (PV) on the 
characteristics of particles (e.g. electron) and their interactions. Our second purpose is to show 
that all methods of calculation of this influence, which are used in quantum field theory (QFT), 
can be represented in electromagnetic (EM) form within the framework of nonlinear theory of 
elementary particles (NTEP).  
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1.0. The introduction of physical vacuum in physics 
A physical vacuum is a key issue of fundamental physics. The existence of vacuum  is in many 

respects responsible for the properties of elementary particles and their interactions in quantum 
field theory and needed for the description of such phenomena as radiation effects in quantum 
electrodynamics (the Lamb shift, the anomalous magnetic moments of the electron and muon, 
etc), colour confinement in quantum chromodynamics, spontaneous symmetry breaking in the 
physics of electroweak interactions, the massiveness of W- and Z-bozons, etc.  

1.1. The second quantization and physical vacuum 
The application of quantization principle of discrete particles to the continuous fields is 

conditionally called second quantization. Because of the second quantization the wave functions 
of elementary particles become the operators, which are subordinated to the specified quantum 
conditions - commutation relations. This relates both to the classical wave functions of 
electromagnetic field and to the wave functions of Dirac's electron and other particles. 

The procedure of second quantization confirms the existence of the lowest level of the energy 
state of particles, in which there are no real particles. This state is called physical vacuum (PV). It 
is considered that PV consists of the so-called virtual particles. Nevertheless, it turned out that the 
virtual particles interact with the real particles. Generally this interaction is conditionally called 
the polarization of vacuum. The experimental data, obtained even for the free particles, cannot be 
explained without taking into account this interaction. 

The method of second quantization of the amplitudes due to its expansion in a Fourier integral 
(Medvedev and Shirkov, 1987), which was developed by Dirac (Dirac, 1927b) in application to 
the electromagnetic field and by Jordan (Jordan, 1927) and Jordan and Klein (Jordan and Klein, 
1927) in application to the field of electrons developed into a common theory of an arbitrary free 
quantum field. 

According to this approach a quantum (or quantized) field is a sort of synthesis of the concepts 
of a classical field of the electromagnetic type and of a probability field of quantum mechanics. 
According to the present understanding, it is the most fundamental and universal form of matter, 
underlying all specific manifestations of matter. 
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It should be noted that this hybrid of classical field and field of probability is strange already 
because of their different dimensionality. The explanation of this strangeness is given by  NTEP. 
In NTEP classical field and field of probability do not come out as the synthesis of different fields, 
but as equal concepts. As we showed (see (Kyriakos, 2010a,b)), the field of probability is the 
successful mathematical interpretation of the normalized nonlinear electromagnetic field. This 
restores the unity of the picture of physical fields without any stretch. 

On the other hand, if we speak about the fundamental field, i.e. physical vacuum, between it 
and the real field (especially particles) there is no equality . Fundamental field is the basis, on 
which the elementary particles appear. The opposite assertion is not correct: particles are not the 
basis of existence of fundamental field. Actually, in 1927 (Medvedev and Shirkov, 1987) Dirac 
subjected the variables describing a field to second quantization (Dirac, 1927b), but six years later 
he raised a decisive objection that Heisenberg and Pauli "regard the field itself as a dynamical 
system amenable to Hamiltonian treatment so that the usual methods of Hamiltonian quantum 
mechanics may be applied. There are serious objections to these views.... We cannot... suppose 
the field to be a dynamical system on the same footing as the particles . . . The field should appear 
in the theory as something more elementary and fundamental" (Dirac, 1932). 

The influence of physical vacuum on the particles was also predicted for the first time by P. 
Dirac. In his Solvay report in 1933, Dirac (Dirac, 1934b) stated that external charges should 
polarize the vacuum in his theory, with the result that the electric charges which are normally 
observable for the electron, the proton, and other electrified particles are not the charges which are 
actually carried by these particles and which figure in the fundamental equations; they are instead 
smaller. A calculation which he carried out on this new physical effect reduced to a 
logarithmically divergent integral, whose cutoff at momenta of the order of 100   
(corresponding to the classical radius of an electron; here  is electron mass and is light 
velocity) yields a "radiation correction" to the charge of an electron, which reduced it by a fraction 
of about 1/137. Calculations on the "field" self-energy of a photon also led to an infinite result and 
again violated gauge invariance. 

mc
m c

As early as the middle of 1930s, there were suggestions (Weisskopf, 1936; Euler, 1936) that 
the infinities in higher orders for the observable effects were traces of these fundamental 
ultraviolet divergences and that they could be eliminated by subtracting from the infinite quantity 
for a bound electron the corresponding infinite quantity for a free electron (Kramers, 1938; 
Stuckelberg, 1935, 1938). This was the basic idea of the renormalization method. 

2.0. The mathematical description of physical vacuum 
2.1. The introduction of physical vacuum for free fields 

In order to fix the state of a particle (Medvedev and Shirkov, 1987), it is necessary in quantum 
mechanics to specify the values of a complete set of commuting operators. For a free particle, it is 
convenient to choose the three components of the momentum pr  (or wave vector k

r
) and the 

projection  of the spin  onto some direction. The state of a single free particle is thus 
characterized completely by specifying the six numbers , (for charged 
particles, one adds some other quantum numbers, which we denote by the single letter t ). 

s sl
sppplm zyxs  , , , , ,

A straightforward extension of these arguments to a system of n particles would result in the 
use of n sextets, one for each particle. In 1927 Dirac suggested that the state of an ensemble of n 
identical particles be characterized not by the state of each particle but by the number of particles, 

 - occupation numbers - in each of the one-particle states (Dirac, 1927b). The 
"interpretation" of a wave function gives us not simply the expected numbers of particles, but the 
probability for any given distribution of particles among different states. This probability is 
actually the square of the modulus of the normalized solution of the wave equation. 

tspn ,,r
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2.1.1.  The introduction of  creation and annihilation  operators 
In the occupation-number representation, a state tspn ,,r , is written as the result 

( ) ( )[ ] 0,, ,,21
,,,,

tspn
tsptsp tspann

rr
rr +−=  of an action on a vacuum state (i.e., a state in which there 

are no particles at all) of the creation operators ),,p( tsa
r+ . The creation operators  and their 

Hermitian-conjugate annihilation operators , were introduced by Dirac in the same paper 
(Dirac , 1927b). 

+a
−a

The creation and annihilation operators  describe particles with definite momentum and 
spin values. To take the local properties into account, we need to put the  in the coordinate 
representation. As transformation functions it is convenient to use the classical solutions of the 
equations of motion of Euler-Lagrange of a suitable free field.  

±a
±a

It is possible to show (Landau and Lifshitz, 1975;  Levich et al, 1973; Martynenko, 2001) that 
electromagnetic field can be conditionally represented in the form of the superposition of some 
harmonic oscillators (see in detail (Kyriakos, 2010c)). 
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,     (3.5.4) 

where ε  is the energy and A
r

 is the vector potential of EM field. Here the total energy of the EM 
field can be represented as the sum of energies of harmonic oscillators.  
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2
1 ωε ,    (3.5.5) 

In this sense, the first term in (3.5.4) is a kinetic electromagnetic energy, and the second term is a 
potential energy. Thus, the EM field in space without charges can be considered as the sum of 
independent harmonic oscillators with all possible values of the wave vector k

r
. Note that the 

transition from (3.5.4) to (3.5.5) is clearly artificial assumption. In other words, this is not proof; 
this is only hypothesis.  

Let us examine how on this basis are introduced the creation and annihilation (destruction) 
operators of particles, which lead to the appearance of the concept of physical vacuum. 

The one-dimensional harmonic oscillator (Feynman, 1972) has a Hamiltonian of the form 

 2
2

2

22
1ˆ xmp
m

ω
+=Η ,                                   (9.2.1) 

where x and p are the position and momentum operators for the particle and satisfy 
 ,                              (9.2.2) [ ] hipx =,

Lets find the eigenvalues and eigenstates of Η̂ . We define 
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Because and p are Hermitian it follows that x
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2.1.2. Properties of  creation and annihilation  operators 
From (9.2.2) we obtain 

 [ ] 1, =+− aa ,                                       (9.2.5) 



  
                                                    4 

where  denotes the Hermitian conjugate of , and [A, B] is the commutator AB - BA.  +a −a
To find the the eigenvalues and eigenstates of Η̂ , the problem is to find the eigenvalues of the 

Hermitian operator , and to relate the eigenvectors. We may then construct the eigenstatcs 
of  as follows. First we find a state 

−+ aa ,
−+ aa , 0   such that 

 00 =−a ,                 (9.2.6) 

Then we define 01 += a ;  ( ) 0
2

11
2

12
2++ == aa ;  …, and in general 

 ( ) 0
!

1 n
a

n
n += ,          (9.2.7) 

(Note that we could have included arbitrary phase factors in the definition of  n ; for simplicity 

we make them unity.) With this definition, the n  are orthonormal and satisfy 

 11 ++=+ nnna ,  1−=− nnna ,    nnnaa =−+ , ,    (9.2.8) 

The operators  and  are called "raising" and "lowering" operators, respectively, because 
they raise and lower the eigenvalue of . In later applications  will be interpreted as 
the observable representing the number of particles of a certain kind, in which case  and  
are called "creation" and "annihilation" (destruction) operators, or "emission" and "absorption" 
operators.  

−a +a
−+ aa , −+ aa ,

−a +a

Two first equations from (9.2.8) may be alternatively expressed in terms of matrix elements: 

 1, 1 +
+ += nmnnam δ ,  1, −

− = nmnnam δ ,     (9.2..9). 

Equation (9.2.6) through the last equation from (9.2.8) form the answer to the problem of 
finding the the eigenvalues and eigenstates of Η̂ .  

Expressing and p in terms of  and , we have x −a +a

 
2

+− +
=

aa
m

x
ω
h ,  

2

+− −
=

aamp hω ,    (9.2.10) 

We get, for the Hamiltonian, 

 ( ) ⎟
⎠
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2
ˆ aaaaaa ωω

h
h ,   (9.2.11) 

Thus, the eigenstates of Η are those of .  Now we can apply the results of (9.2.6) – 
(9.2.8), obtaining the eigenstates  

ˆ −+aa
2 ,1 ,0 , … that satisfy 

 nnn ωh⎟
⎠
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2
1ˆ ,   (9.2.12) 

The energy levels are thus  ωε h⎟
⎠
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2
1nn  . The eigenstates themselves are given by 

equations (9.2.6) and (9.2.7).  
The eigenstates themselves are given by (9.2.6) and (9.2.7). We can easily obtain the wave 

functions  ( ) nxxn =ϕ   as follows: from (9.2.3) and (9.2.6).  
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Applying  x , and noticing that  ( )dxxdipx ϕϕ h−=  , we get 
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(where  is now a number, rather than an operator.) Equation (9.2.14) is merely Eq. (9.2.6) in 
coordinate representation, in which it takes the form of a differential equation. Solving it, we get 

x

h22
0 xmAex ω−= , where A is a constant.   
Within the framework of electromagnetic theory the entire procedure of second quantization, 

described above, appears much more sequentially and can be without change transferred to 
NTEP. Usually in our days the quantum electrodynamics (QED) and generally the quantum field 
theory (QFT) is constructed with the aid of the potentials. In this case the procedure of second 
quantization is based on the following mathematical apparatus. 

2.2. Second quantization of electromagnetic field 
2.2.1. Second quantization with use of vector potential 

The Lagrangian and Hamiltonian in QFT (Schiff, 1955) is most conveniently expressed in 
terms of the potentials ϕ ,A

r
  that are partially defined by  
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1  is the momentum canonically conjugate to A

r
. As is known, 

this does not specify the potentials completely, since gauge transformations of the potentials can 
still be made without altering the electric and magnetic field strengths computed from (9.2.15). 
The momentum canonically conjugate  to ϕ  vanishes identically, since ϕ  does not appear in the 
Lagrangian density. The Hamiltonian is then  

 ( ) τ
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,    (9.2.16)  

and ϕ  has disappeared. This is in agreement with the usual expression ( ) ( ) τπε d∫ Η+Ε=  81 22 rr
  

for the total energy in the electromagnetic field. 
The commutation relations between the field variables become  
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The equation of motion for a typical component of  and   are  sA sP

 ( ) ( )[ ]Η= ˆ ,,, trAtrAi ss
rr&h ,    (9.2.18) 

 ( ) ( )[ ]Η= ˆ ,,, trPtrPi ss
rr&h ,   (9.2.19) 

where each of the indices s, s' can be x, y, or z.  
Thus if we define (9.2.15), the quantum equations of motion for A

r
 and P

r
agree with the three 

of Maxwell's equations  except the equation 0div =Ε
r

, which corresponds to 0div =P
r

. This 
Maxwell's equations must be imposed as a supplementary condition, as in the classical case. If we 
set P

r
div  equal to zero at a particular time, it is always zero since its time derivative is zero. 

Equation (9.2.9) then shows that the time derivative of A
r

div  is always zero, or that div A is a 
constant in time. It is convenient to restrict the choice of gauge so that A

r
 div  is zero everywhere 

at a particular time, in which case we see that it is zero at all space-time points. It is apparent, 
however, that the introduction of the supplementary condition is inconsistent with the 
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commutation relations (9.2.17). For example, the commutator bracket of  and sA 0 div =P
r

 

should be zero, since 0 div =P
r

 is zero, but is computed from (9.2.17) to be  

 ( ) ( )[ ] ( '
'

,' div'  ,, rr
s

itrPtrAs
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h
r )

rr
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∂
∂

= δ ,    (9.2.20) 

It is not surprising that this inconsistency should arise, since (9.2.17) imply that there are three 
independent pairs of canonical variables, whereas the restrictions 0 div =P

r
 and 0 div =A

r
 cause 

only two of these pairs to be linearly independent. We should therefore modify the commutation 
relations so that they are consistent with the supplementary condition.  

It turns out that the commutator brackets of ( )trA ,r
r

 and ( )trP ,r
r

 do not vanish when 'rr rr
−  is 

finite. This would appear at first to contradict the physical principle that there can be no 
interference between measurements performed at different places and the same time. However, 
the vector potential A

r
 is not in itself a physical quantity; only the electric and magnetic fields are 

directly measurable.  
As we repeatedly noted, the use of potentials not only is not the unique way of constructing the 

quantum field theory, but leads to numerous difficulties. The use of field strengths is not only 
possible and convenient, but makes it possible to avoid these difficulties. 
2.2.2. Second quantization with use of field strengths  

We will now show with the help of (9.2.17) that (Schiff, 1955) the commutation relations of Ε
r

 
and  have the required infinitesimal character and are, moreover, consistent with the 
supplementary condition 

Η
r

0 div =Ε
r

. It can also be shown that the same results are obtained by 
starting with the modified canonical commutation relations.  

The electric and magnetic fields are defined by the equations  
 APc

rrrr
rot   ,4 =Η−=Ε π ,    (9.2.10) 

where the commutation relations for A and P are assumed to have the form (9.2.17). We see at 
once that 
 ( ) ( )[ ] ( ) ( )[ ] 0t,'rΗ  ,t,rΗt,'rΕ  ,t,rΕ s'ss's ==

rrrr ,   (9.2.21) 

where each of the indices '  can be , ss yx, or .   The commutator bracket for typical parallel 
components of  E and H is: 

z

 ( ) ( )[ ] 0t','rΗ  ,t,rΕ xx =
rr

,   (9.2.22) 
For typical perpendicular components of E and H, we obtain: 

 ( ) ( )[ ] ( 'rrδ
z'

4t','rΗ  ,t,rΕ yx
rr

h
rr

−
∂

)∂
= ciπ ,    (9.2.22’) 

Other relations similar to (9.2.13) are obtained by cyclic permutation of zyx ,, .  
Let us examine how the operators of creation and annihilation of particles are introduced in 

EM theory and what physical sense do they make there. The Hamiltonian equation of EM theory 
is: 

    ( ) τ
π

d∫ +=Η  HE
8
1ˆ 22 rr

,                         (9.2.23) 

As would be expected, the field commutation relations (9.2.21), (9.2.22), and (9.2.22’), 
together with the Hamiltonian (9.2.23), can be used in place of the canonical formalism originally 
developed in terms of A

r
 and P

r
.  

The first two of Maxwell's equations then follow as special cases of the general equation of 
motion. The equation of motion for any quantum dynamical variable F is obtained if the Poisson 
bracket is replaced by the commutator bracket divided by : hi
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&

where we write Η̂  as the volume integral of a Hamiltonian density Η̂   

 ∫Η=Η τd ˆˆ ,     (9.2.25)  

The commutator bracket can be evaluated with the help of the quantum conditions for the 
canonical EM field variables (9.2.21)-(9.2.2’): 
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The Hamiltonian density of EM theory Η̂

    ( 22 HE
8
1ˆ )rr

+=Η
π

,                        (9.2.27) 

can be expressed also through various forms of the electromagnetic theory, which are used in 
NTEP. In particular, using the 6-vectors of EM field, it is possible to write down the Hamiltonian 
density in the following form: 

 ( )( )Η+ΕΗ−Ε==Η + rrrr
iiFF

ππ 8
1ˆˆ

8
1ˆ ,    (9.2.28) 

where Η−Ε=+ rr
iF̂  is the Hermitian-conjugate 6-vector of EM field. In the case, using a wave 

function of EM field in the form (see (Kyriakos, 2009a)) 
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it is possible to write down a Hamiltonian density in the following form: 

 ΦΦ=Η +

π8
1ˆ ,     (9.2.29) 

If we consider the quantization of field, then it is necessary to replace the integral in the 
equation (9.2.23) by the sum. 

In the case of normalization of the wave function by maximum field according to M. Born (or 
by other equivalent form through the mass of particle or its energy), it is possible to obtain a 
dimensionless Hamiltonian. In this case the operator of the number of particles is given by  

 Naad ˆˆˆˆ
k

-
kk ==ΦΦ=Η ∑∫ ++

r
rrτ ,    (9.2.30) 

The expressions (9.2.23) and (9.2.27), (9.2.28), (9.2.29) relate to the electromagnetic wave, 
which consists of many photons. This corresponds to the fact that we used commutators (9.2.21) - 
(9.2.13), which are characteristic for the bosons. 

Let us examine how the operators of second quantization act on the state vectorsΦ . Let as 
denote  as the state vector of field without the particles, i.e., the vector of vacuum state. From 

above follows that the state vector    satisfies the condition  for any values of wave 

vector . 

0Φ

0Φ 0ˆ 0
-
k =Φra

k
r
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State vector  describes a single-particle state, i.e. the state of field, in which there is 

one boson in the state . Let us note the equality  and the condition of 

normalization of the vector of vacuum state . Multiparticle states can be obtained, if 
we act on the state vector by the operator of particle production the necessary number of times. 
For example, state vector  describes the state of field with  bosons in the state 

 and m   bosons in the state . 

10kˆ Φ≡Φ+ra

k
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Analysis show (Schiff, 1955) that the energy and momentum of each plane wave are quantized 
in units of  for the energy and  for the momentum.  kch k

r
h

We will therefore require an expression for ( )tr ,rΦ  in the plane wave representation that is 
specified by the eigenvalues  of the operators . A typical wave functional for this 
representation can be written as

k
rn N̂
( ) ( )......, k

r
r ntr Φ=Φ , which describes a state of the electromagnetic 

field in which there are  light quanta with momentum k
rn k

r
h  and polarization k

r
r
ε  (which are the 

unit vectors).  
Expansions for  and Η  in terms of the amplitudes  of plane waves can be found without 

difficulty: 
Ε
r r
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We then see from (9.2.28) that the operators and  have the properties k
ra *

k
ra
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It follows from the structure of (9.2.31) that and  are, annihilation and creation operators 

and , respectively, for a light quantum in the state
k
ra

*
k
ra

−
k
ra +

k
ra { }k,k r

r
ε . Thus the Hamiltonian would give 

rise to the emission and absorption of light quanta. 

2.3. Second quantization of the fermion fields 
Let us pause briefly at the results of second quantization in the case of the fermions. 
In this case the fundamental aspect of the matter remains without change. At the same time the 

concrete formulas will change.  
For the bosons the operators of creation and annihilation satisfy the commutation relations: 

[ ] 0ˆ,ˆ 'kk =++ rr aa ,   [ ] 0ˆ,ˆ 'kk =−− rr aa ,   [ ] ( )'kkˆ,ˆ 'kk

rr
rr −=+− δaa ,     (9.2.33) 

where ( )k
r

δ  is Dirac's delta function and the brackets, as usual, indicate a commutator, i.e. 

. [ ] cbbccb −=,
For fermions the operators of creation and annihilation satisfy the commutation relations of 

another type: 

 { } 0ˆ,ˆ 'kk =++ rr aa ,   { } 0ˆ,ˆ 'kk =−− rr aa ,   { } ( )'kkˆ,ˆ 'kk

rr
rr −=+− δaa ,    (9.2.34) 

where the braces indicate an anti-commutator, i.e. { } cbbccb +=, . Now the wave functions are 
antisymmetric. In this case the occupation numbers can be only equal to 0 or 1. All the other 
formulas remain valid. The rules of commutation for ψ̂ -operators now take the form: 
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 )()(ˆ)(ˆ)(ˆ)(ˆ ξξδξψξψξψξψ ′−=′+′ ++ ,    (9.2.35) 
The antisymmetry and other special features of the quantum description of fermions in 

comparison with the bosons are connected, as we noted (see (Kyriakos, 2010a,b)) with the fact 
that bosons  are formed by full wave period, and fermions are formed by the half-period of wave. 

3.0. The consideration of influence of physical vacuum on free 
electron 
3.1. The quantum-mechanical description 

At present the experiments actually confirmed that there is a special medium - physical 
vacuum (PV), which influences the characteristics of free particles, and also their interaction with 
each other. 

The initial equations of free particles describe the particles as if they were in empty space, 
without the influence of PV. Such particles are called “bare” particles, and their characteristics can 
be named “bare” characteristics. The particles can influence the physical vacuum. In turn this 
produces a change in the characteristics of free particles, and also a change in their interaction 
with each other. 

In QED the free electron in the empty space is described by Dirac's equation 

 ( )[ ] 0  ˆˆ ˆˆˆ 2 =++ ψβαεα cmpc eo
rr ,    (9.3.1) 

It has only one free parameter: a certain constant m . It is assumed that this constant is a 
theoretical mass of electron in an empty space. Therefore this mass is called the mass of “bare” 
electron. In the calculations as mass the experimental mass of electron is used, i.e. a mass, which 
corresponds to the electron in PV. 

Since in the Dirac equation there is no a size of electron, in QED the electron is considered as 
point, i.e., one that has zero size. Therefore, the solution for the stationary field of electron here 
coincides with the formula of Coulomb and has the form 2re  for the force, and r1  for the 
energy. These formulas with  give the infinite values of force and energy (and, therefore, 
of mass) of the electron. 

0→r

 The problem of infinities  in quantum field theory (Weinberg, 1995) was apparently first noted 
in the papers of Heisenberg and Pauli (Heisenberg and Pauli, 1929, 1930). Soon after, the 
presence of infinities was confirmed in calculations of the electromagnetic self-energy of a bound 
electron by Oppenheimer, and of a free electron by Ivar Waller. They used ordinary second-order 
perturbation theory, with an intermediate state consisting of an electron and a photon: for instance, 
the shift of the energy nE∆  of an electron in the nth energy level of hydrogen is given by 

 ∑∫ −−

Η
=∆

λ,

2

3
',;

m mn
n

ckEE

nhkm
kdE r

rr

,     (9.3.2) 

where the sums and integral are over all intermediate electron states m, photon helicities , and 
photon momenta 

h
k
r

, and  is the term in the Hamiltonian representing the interaction of 
radiation and electrons. This calculation gave a self-energy that is formally infinite; further: if this 
infinity is removed by discarding all intermediate states with photon wave numbers greater than 
1/a, then the self-energy behaves like 1/a

'Η

2 as . Infinities of this sort are often called 
ultraviolet divergences, because they arise from intermediate states containing particles of very 
short wavelength. 

0→a

These calculations treated the electron according to the rules of the original Dirac theory, 
without filled negative-electron states. A few years later Weisskopf (Weisskopf, 1939) repeated 
the calculation of the electron self-mass in the new “hole” Dirac theory, with all negative-energy 
states full. In this case another term appears in second-order perturbation theory, which in a non-
hole-theory language can be described as arising from processes in which the electron in its final 
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state first appears out of the vacuum together with a photon and a positron which then annihilate 
along with the initial   electron.  

Initially Weisskopf found a 1/a2 dependence on the photon wave-number cutoff  1/a. The same 
calculation was being carried out (at the suggestion of Bohr) at that time by Carlson and Furry. 
After seeing Weisskopfs results, Furry realized that while Weisskopf had included an electrostatic 
term that he and Carlson had neglected, Weisskopf had made a new mistake in the calculation of 
the magnetic self-energy. Alter hearing from Furry and correcting his own error, Weisskopf found 
that the 1/a2 terms in the total mass shift cancelled! However, despite this cancellation, an infinity 
remained: with a wave-number cutoff  1/a, the self-mass was found to be: 

 ⎟
⎠
⎞

⎜
⎝
⎛=

mca
mmem

hln 
2
3
π
α ,    (9.3.3) 

The weakening of the cut-off dependence, to as compared with the classical 1/a or the 
early quantum 1/a

aln
2, was mildly encouraging at the time and turned out to be of great importance 

later, in the development of renormalization theory. 
An infinity of quite a different kind (Weinberg, 1995) was encountered in 1933, apparently 

first by Dirac (Dirac, 1933).  He considered the effect of an external static nearly uniform charge 
density )(xeρ on the vacuum, i.e., on the negative-energy electrons in the filled energy levels of 
hole theory, The Coulomb interaction between )(xeρ  and the charge density of the negative-
energy electrons produces a 'vacuum polarization,' with induced charge density 

  ...2
2

+∇⎟
⎠
⎞

⎜
⎝
⎛+= eee mc

BA ρρδρ h  ,                  (9.3.4) 

The constant B is finite, and of orderα . On the other hand, A is logarithmically divergent, of 
order αα ln , where 1/a is the wave-number cutoff. 

It is interesting that the results of the calculations of the effects of scattering of photons on the 
electrons (i.e. interaction of electron and photon) without the consideration of PV (but using the 
real mass of electron), give the final results of the interaction cross-section, which contain as the 
coefficient a classical radius of electron 22

0 cmer e=  (Thomson cross-section and others) In 
QED it is usual to assume that this coefficient does not refer to the dimensions of electron. In 
framework of NTEP the results are other. 

3.2. The description in framework of NTEP 
The equation for “bare” electron is derived here on the basis of the postulate of nonlinearity. 

According to the derivation logic and in accordance with the analysis of the electron equation 
solution (see (Kyriakos, 2010b)) the “bare” electron is the ring field, whose radius is equal to the 
Compton wavelength of free electron . The electron equation in this case takes the form: Cr

 011
=+∇⋅+

∂
∂ ψψαψ

Cr
i

tc

rr ,    (9.3.5) 

Substituting mcrC h=  in (4.5.2), it is not difficult to see that (4.5.2) is Dirac's electron equation 

      01
=+∇⋅+

∂
∂ ψψαψ

h

rr mci
tc

,      (9.3.6) 

which in this record does not contain a size of electron. Nevertheless, the Dirac electron equation 
and the equation of electron in NTEP coincide completely. Obviously, their solutions coincide. 
But we have different interpretation of these solutions in QED and NTEP. Actually, in the first 
case the size is infinite, and in the second case it has a finite value. Why this is possible? 

As we know, in the case of QED the renormalization procedure is used for obtaining of the 
final result. In NTEP this result is obtained without the additional procedures by direct solution of 
problem. The solutions of nonlinear equations in the spherical approximation (Kyriakos, 2011) 
show that in the nonlinear theory there are two types of solution - point and nonpoint. Moreover, 
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the second type of the solution appears as a result of self-action of the electron fields. This self-
action can be described as some “self-polarization” of the electron fields. But this is not a 
polarization of physical vacuum.  

4.0. Influence of vacuum polarization on the electron characteristics 
4.1. Peculiarities of renormalization procedure in quantum field theory 

The polarization of the physical vacuum and the renormalization procedure are considered in a 
number of modern books and papers (Schweber, Bethe, Hoffmann, 1957; Georgi, 1981; etc.). We 
will consider briefly the results of this theory, as classical picture. 

In QED the physical vacuum represents conditionally a number of enclosed in each other 
specific vacuums, formed by the various sorts of the virtual particles. For the dielectric 
permeability of such "dielectric" we can conditionally write: 

 ),,,( βµλγ
((((

VV dd = ,     (9.4.1) 

where Vε  is a full dielectric constant of the physical vacuum as a mixture  of the vacuums 

βµλγ
(((( ,,,  of the virtual photons, leptons, mesons and barions accordingly. 

The Coulomb potential energy of systems of two charges q' and q" in a dielectric is equal to: 

 
rd

qqrW
d

'''
)( =  ,    (9.4.2)  

where  is a dielectric constant of a medium. In classical physics was accepted, that the vacuum 
cannot be polarized and consequently 

dd
1== dV dd . In this case we have some theoretical value 

of the Coulomb potential energy: 

 
r
qq

rW
''

0
'
0)( = ,     (9.4.3) 

The electron characteristics, e.g. a charge , considered without the influence of polarization, 
are referred in QED as "bare": . 

0q

barqq ≡0

On the other hand the electric charge, observable in the experiments, is not equal to theoretical 
value , but some value . So in the quantum field theory the Coulomb potential energy of 
two charges in physical vacuum is equal to 

0q expq

 
r
qq

rd
qq

rW
V

''
exp

'
exp

''
0

'
0)( == ,     (9.4.4) 

Then 

  
VV d

q
q

d
q

q
''

0''
exp

'
0'

exp    , == ,     (9.4.5)  

An electron polarizes the physical vacuum and creates around itself the screening layer from 
dipoles of the electron-positron pairs.  The polarization charge of physical vacuum are referred in 
QED as polarized or screening: . scrpol qq ≡

The theoretical calculation in QED leads to the conclusion that both the “bare” charge and the 
screening charge are equal to infinity: 
 ,  ,     (9.4.6) 1∞=QED

bareq 2∞=QED
scrq

The measured charge can be considered as a difference among the “bare” charge and the 
screening charge: 

 ,     (9.4.7) eqconstqqq QED
scr

QED
bare ≡==∞−∞=−= exp21exp
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The calculation procedure, which leads to the obtaining of experimental values, is named in the 
QED  the renormalization procedure. 

Thus, if it could be possible to measure an electron charge in very small distances from 
electron, it would be found that in the process of penetration behind the screening layer, this 
charge increases. The known measured constant is observed on atomic distances about 10-8 cm. 

What we have now for the electromagnetic (fine structure) constant?  Since 
c
e
h

, we 

can suppose th

=expα

at 
c

qbar

h
,  bar =α

c
qscr , so as in the QED scr
h

=α ∞=barα ,  ∞=scrα  and 

expαα >bare , we have that 
c
e

scrbare
h

=−= ααα exp  is finite value. The direct consequence is, 

that the electromagnetic constant is not actually a constant, but it grows with reduction of distance 
between the interacting particles.  

4.2. Peculiarities of renormalization procedure in NTEP 
The question arises: what is the basis of the subtraction of infinities in the renormalization 

procedure?   
As this is noted above, the screening charge is a function of distance: 

 ( ) 10
∞→≡

→r

QED
bar

QED
bare rqq    ( ) 10

∞→≡
→r

QED
scr

QED
scr rqq ,    (9.4.6’) 

Thus 
 ( ) ( ) erqrqq

r

QED
scr

QED
bar 0exp

→
=−= ,     (9.4.6’’) 

In NTEP a “bare” charge has a final size. Obviously, the screening charge also has a final size: 
 ,      (9.4.8) 

0
2

0
1    ,

→→
==

r

NTEP
scr

r

NTEP
bar qqqq

Obviously  or . Then the experimental charge in NTEP should be defined 
by their difference: 

scrbare qq > 21 qq >

 ,     (9.4.9) eqqq NTEP =−= 21exp

Thus, NTEP does not need the renormalization procedure, which has place in QED, as 
transition from infinite value to finite value. In NTEP the renormalization takes only into account 
the polarization of the physical vacuum, when transition from the “bare” characteristics to the 
experimental characteristics occurs.  

Hence it follows that renormalization in the QED and generally in the quantum field theory is 
needed to take into account the sizes of particles and polarization of physical vacuum.  

With respect to electromagnetic constant we have following. According to (9.4.5) in general 

case we have 
V

bar

d
q

qe == exp  so that  

 Vbare deq = ,     (9.4.10) 

Then  

 VV
bar

bar dd
c

e
c

q
exp

22

αα ===
hh

,    (9.4.11) 

Using (9.4.11) we receive for the fine structure constant: 

 
V

bare

d
α

αα =≡exp ,     (9.4.12) 
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4.2.2. The size of electron in NTEP taking into account the physical vacuum polarization 
According to the representation (9.3.5) of the Dirac electron equation in NTEP, the bare 

(theoretical) size of electron in NTEP is equal to the Compton wavelength. How will change this 
size in the physical vacuum? 

Taking into account (9.4.10) and (9.4.12),  we can obtain:  

 CCC
V

bar

eV

bar rrr
dc

c
cmd

q
mc
er ⋅≡⋅==== αα

α
exp2

2

2

2

0
h

h ,   (9.4.13) 

where 2

2

0 mc
er =  is the known characteristic of the electron energy distribution: the so-called 

classical electron radius 2

2

0 mc
er = . In other words we obtained the result, known from the 

quantum mechanics: at large distance from electron the relation occurs:  

 Crr  0 α=    or   
137

10 ≈= α
Cr
r ,      (9.4.14) 

Taking into account that  and barC rr ≡ exp0 rr ≡ , we obtain from (9.4.13): 

 
V

barbar

d
r

rr
α

=≡ exp0 ,     (9.4.15) 

The relation (9.4.13-15) can be interpreted in the following way: the classical radius of electron 
corresponds to the “bare” (theoretical) electron into polarized physical vacuum. 

5.0. The consideration of the vacuum effects in electromagnetic 
view 

After the appearance of the relativistic Dirac electron equation (Dirac, 1928a, b), calculations 
were carried out on several effects of electromagnetic interactions of electrons: the scattering of 
light by light,  light by an electron, the annihilation of an electron-positron pair, the scattering of 
electrons by electrons, etc. 

Practical calculations on real effects were carried out primarily by means of the perturbation 
theory developed by Dirac (Dirac, 1926, 1927b) for time-dependent perturbations. That theory 
corresponds to the method of the variation of constants in the theory of linear differential 
equations. 

In all these cases, the results found in lowest-order perturbation theory turned out to agree well 
with experimental data, thereby confirming that this new theory was sound. However, attempts to 
refine the predictions through calculations of higher-order approximations led to integrals which 
diverge at large momenta: ultraviolet divergences. 

Until now we examined the nonlinearities, which correspond to the free equation of Dirac. At 
the same time (Collection of article transl., 1959) there are nonlinearities, induced or vacuum, 
obliged to interaction fields with each other, or, clearly speaking, that appear because of the 
mutual transformation of particles’ fields. The simplest examples are the nonlinearities in 
Maxwell's equations, induced by the mutual transformations of electron-positrons and photons, 
examined for the first time by Euler and Kockel and by Heisenberg, and also by Weisskopf and 
by Schwinger. It was shown that it is possible to select nonlinear Lagrangian of electrodynamics 
as the function of two invariants of EM field in the form of the series: 

 ( ) ( ) ( ) ...
4222222 +−++−= HEEHHEL γβα     (9.5.1) 

so to obtain the scattering of light by light. Later Heisenberg and Schwinger obtained closed 
expressions for nonlinear Lagrangian of electrodynamics, without the expansion in series, for the 
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case of arbitrarily strong, but slowly changed fields (the details see (Akhiezer and Berestetskii, 
1965). 

They found the effective Lagrangian to order  induced by static, homogeneous, external 
fields when no real electron-positron pairs could be produced. In their papers they also pointed out 
that the theory contained divergent vacuum self energy contributions that had to be subtracted. 
They also noted that in QED the fourth order contribution to Compton scattering diverged, as did 
the sixth order contribution to the scattering of light by light. 

3α

Below we present briefly the bases and results of the theory of scattering of light by light. They 
show that the quantum-mechanical tasks can be completely solved within the framework of 
nonlinear electromagnetic theory.  As we noted previously this is possible because these two 
theories are two equivalent descriptions of reality. 

5.1. On the scattering of light by light according to the Dirac electron theory in 
electromagnetic form (according to Heisenberg, Euler and Kockel)

 Below  (Heisenberg, 1934; Euler and Kockel, 1935; Euler, 1936; Heisenberg and Euler, 1936) 
m is  mass of electron, e is charge of  electrons, c is speed of light, hπ2=h is Planck's constant; 

  are light quanta before the collision, 21, pp 43 , pp −−   are light quanta after the collision, 
( 4321 0 pppp −− ) is matrix element of the operator 0, 4Η  is 4th order matrix element of the 
Dirac theory;  is field-strength of EM field, ikF τ  is volume of the area. 

Halpern (Halpern, 1934) and Debye  (in a discussion with W. Heisenber) have pointed out  
that according to the Dirac theory, there must be scattering of light by light. In this process one 
must differentiate two cases:  

1) If the energies  and   of the two light quanta and the angle between its momentums 1cp 2cp

1pr , 2pr  are so large that energy and law of momentum permit the production of a real pair 

( )( ) 2
2121 2 mcpppp >⋅− ( )rr . Then we will receive the probability of the dispersion of the light 

quanta by summing up the probabilities of the pair creation. This was accomplished by (Breit and 
Wheeler, 1934) . 

2) Or if energy and momentum of two light quanta are not sufficient for the production of a 
real pair: 

 ( ) ( )22121 2 mcpppp <⋅−
rr ,     (9.5.2) 

(i.e. in suitable reference system: , mcp <1 mcp <2 ), nevertheless the light quanta 1pr , 2pr   can, 
due to the virtual pair creation, in two other light quanta be converted, and this must a dispersion 
of light by light give. 

The probability of the transition of two light quanta 1pr , 2pr  in two different , 3pr− 4pr−  is 
given by the square of the matrix element 4Η  of the Dirac theory. 

The direct calculation of this matrix 4Η  of the Dirac theory would be very difficult. It can be 
attributed however to the simpler problem of the calculation of two matrix elements by the 
following general views. 

If two light waves disperse themselves one to other, this means a deviation from the 
superposition principle. The optical superposition principle is expressed by the linearity of the 
vacuum Maxwell equations. Thus the dispersion of light by light could be described by a 
nonlinear additive to the Maxwell vacuum equations, if a direct description is possible. This direct 
description, possibility of which we later proves, is suggested by the following analogy, which 
exists in the Dirac theory between light quanta and electrons. 

Two electrons can produce the light quanta and enter into mutual interaction, which can be 
expressed in the dispersion of the electrons or in the Coulomb law. Likewise two light quanta can 
produce a virtual quantity of electron-positron pairs so that between them an interaction develops, 
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which leads to the dispersion of light by light. Also for this interaction of the light quanta with one 
another one should expect a simple, similar to the Coulomb law, direct expression. 

It is the analogue of the Coulomb interaction of electrons: 

 21
12

21

r
ττ

ρρ dd∫∫
⋅

,   (9.5.3) 

where 21,ρρ  is charge densities,  is a distance between two charges. 12r
The Coulomb interaction in a matter field, which is described by a density operator ψψ * , is 

 ( ) ( ) ( ) ( )
( ) ττ

ξξ
ξψξψξψξψ ddeU  

'
''**

2

2

∫∫ −
= ,     (9.5.4)    

The effective cross-section for the dispersion of an electron with an electron is received from 
the square of the matrix element (9.5.4) for a transition in the matter field, which means the 
dispersion of two electrons with each other. 

In order to find an interaction of the light quanta, similar to (9.5.4), one must search for a 
function  of the degrees of freedom of the radiation field, and also for the field strengths . 
The matrix element  for a transition in the radiation field, which means the dispersion of two 
light quanta with each other, is equal to this, which was discussed above. Then matrix element 

 of the Dirac theory for this process can be computed. About this interaction  of the light 
quanta as function of the field strengths we can the following say. 

1U ikF

ikF

4
inΗ 1U

Since it must lead to processes, during which two light quanta disappear and originate  two 
other,  the field strengths or their derivatives in the 4th  power then must contain: 

 ∫ ⎥⎦
⎤

⎢⎣
⎡ +

∂
∂

∂
∂

+= τdFF
x
F

x
FconstFFFFconstU ...'1 ,    (9.5.5) 

(indices of tensors and vectors are here and in the following omitted). 
Since the interaction  , which have dimension of an energy, but (as term of 41U th order of the 

Dirac theory) the electron charge in the 4th  power must contain (and due to the fact that from  4 
universal units e, m, c, h only one dimensionless number, which can form the Sommerfeld fine 
structure constant 1371~2 ce h ), is the constant up to a numeric factor determined: 

2
0

2
1

Ee
cconst h

= , so that 
( )2220

mce

eE =  is the "field strength at the edge of the electron". 

For the same reason the terms with the derivatives of the field strengths must contain still 
another length independent of the electron charge, such as the Compton wave length mch  as 
additional factor. 

First of all the fact is surprising that in the vacuum electrodynamics the electron mass is to 
occur, while is nevertheless presupposed that only light quanta and no electrons are present. 

Although the terms, regarded here, have only validity as long as no real pairs are produced, 
they come off only by the virtual possibility of the pair creation and are disclosed itself in the 
occurrence of the electron mass. It can expect also (close to the Maxwell energy of the individual 
light quanta) a mutual interaction energy of the light quanta of the form: 

 ∫ ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+= τdFF
x
F

mcx
F

mc
FFFF

Ee
cU ...1

2
0

21
hhh ,    (9.5.6) 

It will be shown later that the matrix element 4Η  discussed above, which follows from the 
Dirac theory, can be also really transformed into the matrix element such as an expression (9.5.6). 
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Since we want by soft light ( mcp < )r  and also by slowly variable fields ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<

∂
∂ F

x
F

mc
h  

according to (9.5.2) to be limited, we can into (9.5.6) the terms with the derivatives of the field 
strengths let go away. 

We take also now, as a subject to the later proof  that the dispersion of soft light by light by an 
additional energy density in the radiation field of the form 

 FFFF
Ee

cu 2
0

21
1h

= ,    (9.5.7) 

can be described as: 

 ( )43121
4 ppdupp −−=Η ∫ τ ,    (9.5.8) 

For this, by the ordinary perturbation of the Dirac theory, the matrix element of 4th order for 

this process is calculated and designed for light quantum energies  (or cp 2mc
hν ) 

 ( )
4

0

22

2
4 r,lim1

12
1

∫ ⎟
⎠
⎞

⎜
⎝
⎛⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
=Η

→ r
Ad

cc
e

r
ξξ

π hh
,    (9.5.9) 

( A
r

 is a potential of the radiation field). 

The terms of 1st , 2nd  and 3rd order disappeared, and the element of 4th order by 2mc
hν  could be 

represented formally as a matrix element of a function of the radiation field, so that for the 
considered processes, the ordinary Hamiltonian, which contains the energies of light and matter 
(see (Heisenberg and Pauli, 1930)), can be replaced by the following, which depends only on the 
radiation field: 

( ) ( ) ( )∫ ∫ ∫ ⎥⎦
⎤

⎢⎣
⎡ ⋅+−−+= τ

π
τ

π
τ dDBDB

Ee

c
dDBud

2222
2
0

22
22 7

1

360

1
8
1 rrrrhrr

,    (9.5.10)  

Here  is the electric displacement, D
r

B
r

 is the magnetic induction, 
( )2220

mce

eE =  is the value 

of  "field strength at the edge of the electron" This stands ArotB
rr

= , D
r

 is canonically conjugate 
to A

r
, i.e.: 

 ( ) ( ) ( ) ( ) ( ) ikikki ciDAAD δξξδξξξξ '2'' −⋅=− h ,    (9.5.11) 

or 

  ( ) ( ) ( ) ( ) ( '
'

2'' ξξδ
ξ

ξξξξ −⋅
∂

)∂
=− ciDBBD ikki h ,    (9.5.12) 

(with cyclic ) lki ,,
If one introduce by the usual way the quantities E

r
 and H

r
 by the equations: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+−

=+=−

01

01  :i.e.   ,1
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r&r

r&rr&r

,      (9.5.13) 

then follows:  



  
                                                    17 
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,      (9.5.14) 

The relationship between the variables  B
r

 and D
r

 on the one hand, E
r

 and H
r

 on the other 
hand, in this theory is not linear, because the scattering of light by light means a deviation from 
the principle of superposition. 

The addition to Maxwell's energy in (9.5.10): 

 ( ) ( ) τ
π

dDBDB
Ee

c  71
360

1 2222
2
0

22 ∫ ⎥⎦
⎤

⎢⎣
⎡ ⋅+−−

rrrrh  ,      (9.5.15) 

can vividly as the interaction energy of the light-quantum to be interpreted. It is analog to the 
Coulomb interaction of electrons (9.5.3). The fact that in (9.5.15), unlike (9.5.3) only a simple 
integral is, means that two photons can interact in the same place only. 

The non-linear correction of Maxwell's equations of the vacuum will be essential, when the 
field strengths are close to “the edge of the electron"; the derived here formulas are valid only as 
long as they are not became too large ( 0 , , , EHDBE <<

rrrr
).. 

It is interesting, that this additive, which is added to the Maxwell energy, can be compared 
with the Born (Born and Infeld, 1934) considerations proposed in the classical theory, where first 
expansion term is: 

 ( ) ( ) ( ) τ
π

dDBDB
Ee

c  41
32
2361,1 2222

2
0

2
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⎤
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⎡ ⋅+−

− rrrrh ,    (9.5.16)    

Apart from the fact that the ratio of the coefficients of the two additional terms by Born is 1: 4, 
and  by us is 1: 7, two expressions differ by a factor: 

 
( ) 242361,145
4

e
ch

⋅
⋅π

,    (9.5.17) 

Due to the actual value of the Sommerfeld fine structure constant the numeric value of this 
factor is ~ 1.7, and it is remarkable that the quantum-theoretic modification of Maxwell's 
equations in any case has the magnitude that would be expected from classical notion due to the 
self energy. 

The equations (9.5.10), (9.5.13), (9.5.14), which follows from the Dirac theory, have a place 
only in case of the condition that the wavelengths of light are large than the Compton wavelength. 
Otherwise, in contrast to Born's theory, a developing higher terms on the light quantum energy 
levels will arise, and also other additives to the interaction of the 4th order in the  derivatives of the 

field strengths (multiplied with 
mc
h ).   

The experimental test of the deviations from the Maxwell's theory is difficult because the 
alleged effects are extremely small. The cross section for scattering of light by light of average 
wavelength λ  is in the Dirac theory by (9.5.10) of the order: ( ) ( ) ( )64422 1~ λmcmceQ h  

So, it is about  for gamma-rays and  for visible light. 23010 cm− 27010 cm−

6.0. Modern calculation of particle interactions (S-matrix, Feynman 
diagrams, etc) 
6.1. Calculations in quantum field theory 

The quantum-mechanical calculations in contemporary QFT are produced with the aid of the 
mathematics, which includes the operators of creation and annihilation of particles, and also with 
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the aid of the apparatus of Feynman's diagrams, connected with them. In the following paragraphs 
we will consider the representation of calculated apparatus both in QFT and in NTEP. 

As it was described above, in the quantum field theory, the functions µψψ A,, +  are 

substituted by the operators µψψ Â,ˆ,ˆ + , which satisfy the same commutation relations (for one 
and the same moment of time), as for the free fields. 

We have for the operator of the energy density of interaction (Hamiltonian): 

 ( )ψαψ µµµµ ˆˆˆˆˆ1ˆ
intint AeAj

c
L +−=−=−=Η ,          (9.6.1) 

where  is current density. ( ψαψ µµ ˆˆ ++−= ecj )
Introducing designation , we rewrite formula (9.6.1) as follows: µµα AA ˆˆˆ =

 ( )ψψ ˆˆˆˆ
int Ae +−=Η ,    (9.6.2) 

Solutions of the free-field equations are proportional to the creation and annihilation operators 
of stationary states of particles. In order to incorporate cases in which certain particles affect the 
motion of others or convert into others, we need to make the equations of motion nonlinear. In 
other words, we need to introduce in the Lagrangian terms  of higher powers in addition to 
the quadratic terms. 

intL

From the standpoint of the above theory, such interaction Lagrangians  might be any 
functions of the fields and their first derivatives, provided only that they satisfy some simple 
conditions of invariance. 

intL

 )()(ˆ)( tt
t
ti ψψ

Η=
∂

∂
h   ,    (9.6.3) 

On the other hand, one can, as in ordinary quantum mechanics, transform by means of a 
unitary transformation  ( ) tiet Η=

ˆψ  from the Heisenberg representation with constant state 
amplitudes to the Schrödinger representation, in which the state amplitude evolves in time in 
accordance with a Schrödinger equation,  

 )()(ˆ)( tt
t
ti ψψ

Η=
∂

∂
h ,    (9.6.3)  

and the field operators are constant. 
In quantum field theory, a third representation proved to be most convenient. This 

representation is usually called the interaction representation ( )tΘ  . 

   )()(ˆ)( tt
t
ti ΘΗ=

∂
Θ∂

h ,    (9.6.4) 

where 

  ,    (9.6.5) ( ) titi eet 00 ˆˆ ˆˆ Η−Η Η=Η

is the Schrödinger Hamiltonian of the interaction representation, which, as can be seen from 
(9.6.5), depends on time. 

The general solution of (9.6.4) can be written in the form ( ) ( ) ( )00, tttSt ΘΘ , where the 
evolution operator S(t, t0) satisfies the same equation (9.6.4) in terms of t and can be written as a 
chronological exponential function: 

 ,    (9.6.7) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Η−= ∫

t

t

dttiTttS
0

''ˆexpˆ, 0
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where  is the operator of normal product, who makes it possible to pass in the interaction 
representation to the products for different time moments. 

T̂

For a comparison with experiment, the most interesting problem is that of scattering, for which 
we need an evolution operator over an infinite time interval, which transforms a stationary state 

, in which the system is before the scattering, at ∞−Θ −∞→t , into a stationary state , which 
the system reaches after the scattering, at 

∞+Θ
+∞→t : 

 ,    (9.6.8) ∞−∞+ Θ=Θ  S
where S is the scattering matrix (Heisenberg, 1943). Taking the limit +∞→t ,  in (9.6.7), 
and expressing the Hamiltonian  in terms of a spatial integral of the interaction Lagrangian 

−∞→t
( )tΗ̂

( ) ( )∫−=Η
t

xLxdt int
3  ˆ ; where it is to be understood that the interaction Lagrangian is written not 

in terms of Heisenberg fields, but in the form of the same function of the fields (15) in the Dirac 
representation, we find a compact expression for the scattering matrix: 

 ,    (9.6.9) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Η−= ∫∫

∞+

∞−

∞+

∞−

xxLdiTtdtiTS int
3expˆˆexpˆ

This expression is explicitly relativistically invariant. The scattering matrix can be used to find 
probabilities for physical processes without plunging into the details of the time evolution, 
described by the amplitude .  ( )tΘ

We need to underline, however, that expression (9.6.9), despite its simple form, is not a ready 
solution for further use; it is only a compact symbolic equation.  

For this reason is necessary to resort to the assumption that the interaction is weak and to 
assume that the interaction Lagrangian  is proportional to a small interaction constant g. It 
then becomes possible to expand the chronological exponential function (9.6.9) in a power series 
according to perturbation theory: 

intL

∑
≥

+=
1

1
n

n
nSgS . 

In this case the matrix elements for each order of the perturbation theory are expressed by 
terms of the matrix elements of chronological products of the corresponding number of interaction 
Lagrangians: ( ) ( ) ( ){ } nn dxdxdxxLxLxLT ......ˆ

2121
*∫ ΘΘ . 

Individual terms of -matrix are integrals of the mixed products of operators S Â,ˆ,ˆ ψψ . 
Using the second Wick theorem, we can reduce arbitrary products of operators to sums of 
products of pairs of these operators.        

A practical calculation of the matrix elements and integrals over   of  these elements is 
carried out by a technique proposed by R. Feynman in 1949. This technique includes the known 
Feynman diagrams (graphs) and correspondent rules. 

nxx ,...,1

Each of normal product it is possible to compare with the Feynman diagram (Akhiezer and 
Berestetskii, 1965). 

Graphs with n  vertexes correspond to the term n of  S-matrix. Because in the electrodynamics  
an  nth term is proportional to the factor ( ) ( )nnce 1371=h ,  the matrix elements, obtained from it, 
will be also proportional to ( )nce h . The graphs, which depict such processes, are called graphs of 
n-order. One and the same graph, which corresponds to a certain normal product of field 
operators, can describe a number of different processes of scattering. The terms, the Feynman 
graphs of which are characterized only by the transposition of the indices of vertexes, are called 
equivalent. The equivalent products describe one and the same totality of processes and they are 
equal to each other. 
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To the first term of -matrix one graph of Feynman of the first order of the type S ( )ψψ ˆˆˆA  
corresponds. To the second term -matrix 6 different graphs of Feynman of the second order of 
the type 

S
( )( )( )ψψψψψψ ˆˆˆˆˆˆˆˆˆ AAA  correspond. The third term -matrix describes all effects of the 

third order and count 15 graphs, which have a type 
S

( )( )( )ψψψψψψ ˆˆˆˆˆˆˆˆˆ AAA . And so forth. 

6.2. Calculations in framework of NTEP 
The Hamiltonian and Lagrangian of the NTEP, as the non-linear theory, must contain all 

possible invariants of non-linear electromagnetic field theory. Thus we can suppose that a 
Lagrangian must be some function of the field invariants: 
 ,        (9.6.10) ),( 21 IIfL L=

where ( ) ( )HEIHEI
rrrr

⋅=−= 2
22

1 , . 
Hamiltonian is fully defined through the Lagrangian. Thus, if the function (9.6.10) is known, it 

is easy, using the formulas (12.1.13), to calculate the Hamiltonian, which will be now the function 
of the various powers of electromagnetic field vectors:  
 ),(ˆ HEf

rr
Η=Η ,    (9.6.11) 

Apparently, for each problem the functions  and   will have their special form, which is 
unknown before the  solution of  problem. As it is known the approximate form of the function 

   can be found on the basis of the Schrodinger or Dirac wave equation, using the so-called 
perturbation method.  

Lf Ηf

Ηf

We suppose here that  an expansion of the function   in Taylor–MacLaurent power series 
with unknown expansion coefficient exists. Then the problem is to calculate these coefficients.  

Ηf

The solution for each term of expansion is searched separately, starting from first. Usually this 
is the problem for a free particle, whose solution is already known. Then using the equation with 
the two first terms, we find the coefficient of the second term. Further using the equation for the 
three first terms, we find the coefficient for the third term of expansion, etc. In many cases by this 
method it is possible to obtain the solution with any desirable accuracy. 

In case of function of two variables ),( yxf=ξ  the Taylor – MacLaurent  power series nearly 
to a point  is: ),( 00 yx

( n
kn
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, (9.6.14) 

 Etc. (In case when  we obtain the MacLaurent series). 0,0 00 == yx
Obviously, for the most types of the functions   the expansion contains approximately the 

same set of the terms, which distinguish only by the constant coefficients, any of which can be 
equal to zero (as examples,  see the expansions of the quantum electrodynamics Lagrangian for 
particle at the presence of physical vacuum (Akhiezer and  Berestetskii,. 1965; Schwinger, 1951; 
Weisskopf, 1936). Generally the expansion will look like: 
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 ( ) '
8
1 22 LBELM +−=

rr

π
,     (9.6.15) 

where 

 
( ) ( ) ( )( )
( ) ( )( ) ...      

'
222322

222222

+⋅−+−+

+⋅−+⋅+−=

BEBEBE

BEBEBEBEL
rrrrrr

rrrrrrrr

ζξ

γβα
,   (9.6.16) 

is the part, which is responsible for the non-linear interaction (here ,...,,,, ζξγβα  are some 
constants). 

The corresponding Hamiltonian will be defined as follows: 

 ( ) '
8
1ˆ 22 HBEL

E
LE

i i
i ++=−
∂
∂

=Η ∑
rr

π
,    (9.6.17) 

where the Hamiltonian part responsible for non-linear interaction is: 

  
( )( ) ( )
( )( ) ( )( ) ...35       

3'ˆ
2222222

22222

+⋅−++−

+⋅+−−=Η

BEBEBEBE

BEBEBE
rrrrrrrr

rrrrrr

ζξ

βα
,    (9.6.18) 

It is not difficult to obtain the quantum representation of Hamiltonian (9.6.18) of non-linear 
theory. Replacing the electromagnetic wave field vectors by quantum wave function, we will 
obtain a series of type:  

 
( ) ( )( )

( )( )( ) ...ˆˆˆ      

ˆˆˆˆ

2

10

++

++=Η

∑
∑

+++

+++

ψαψψαψψαψ

ψαψψαψψαψ

kjii

jii

c

c
,   (9.6.19) 

where iα̂ , jα̂ , kα̂  are Dirac matrixes,  are the coefficients of expansion.  ic

7.0. Comparison of representations QED and NTEP  
7.1. On the physical sense of the terms of  Feynman graphs 

As it was said above, the terms, Feynman's graphs of which are characterized only by the 
transposition of the indices of vertexes, are called equivalent. The equivalent products describe 
one and the same totality of processes and are equal to each other. The question arises: how can 
explain this equivalence (i.e. the presence of the certain number of terms of identical degree)? 

The electromagnetic Hamiltonian of interaction in the quantum form, given above, in the first 
approximation, contains the sum of terms of the type of the diagrams of the second order of type 
( )( )ψψψψ ˆˆˆˆˆˆ AA . Continuing expansion and calculating the terms of the expansion of the third 
order, we will , obviously, obtain the sum of termss of the type of the diagrams of the third order 
of  type ( )( )( )ψψψψψψ ˆˆˆˆˆˆˆˆˆ AAA , and so forth. Thus, it is not difficult to see that expression (9.6.18) 
is the electromagnetic representation of expansion of  S-the matrix of the quantum field theory. 
This proves that all special features of the quantum-field calculations of interaction energy of 
elementary particles can be represented by electrodynamics forms NTEP. 

The electromagnetic Hamiltonian of interaction in the quantum form, given above, in the first 
approximation, contains the sum of terms of the diagrams of the second order of type 
( )( )ψψψψ ˆˆˆˆˆˆ AA . Continuing expansion and calculating the terms of the expansion of the third 
order, we will, obviously, obtain the sum of terms of the diagrams of the third order of  type 
( )( )( )ψψψψψψ ˆˆˆˆˆˆˆˆˆ AAA , and so forth. Thus, it is not difficult to see that expression (9.6.18) is the 
electromagnetic representation of expansion of  S-matrix of the quantum field theory. This proves 
that all special features of the quantum-field calculations of interaction energy of elementary 
particles can be represented by electrodynamics forms NTEP. 
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Note that using the analysis, which is outlined above, can explain the electrodynamicc sense of 
the special features of S-matrix theory within the framework of NTEP. 

7.2. On the physical sense of the terms of the expansion of the Hamiltonian 
As we see, the terms of the series of Lagrangian and Hamiltonian expansions contain the 

limited number of uniform elements, such as ( ) ( ) ( )22222 ,, BEBEBE
rrrrrr

−⋅+ , and some other. It is 
possible to assume that each term of the expansion of the Hamiltonian of nonlinear theory and 
each element of term of series have a certain constant physical sense. 

For example, it is obvious that the first term of the expansion of Hamiltonian ( )22 BE
rr

+  
(which corresponds to the term of Lagrangian ( )22 BE

rr
− ), is charged with the interaction of the 

currents of electrons and photons. The second term of expansion of Hamiltonian ( )2BE
rr

⋅  
corresponds to the term ( )BE

rr
⋅  of Lagrangian, which, according to studies, is charged with the 

currents of the helicity of electromagnetic field (according to NTEP the currents of helicity there 
are own currents of neutral elementary particles). 

 In this case it is not difficult to see the analogy with expansion of fields on the electromagnetic 
moments, and also with decomposition of a S-matrix on the elements (Akhiezer and  
Berestetskii,, 1965), each of which corresponds to the particularities of interaction of separate 
particles. But the detailed analysis of the physical sense of the terms of the expansion of 
Lagrangian and Hamiltonian of nonlinear theory requires a separate study and lies beyond the 
limits of the purpose of this monograph. 
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