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Abstract

| present examples of applications of 3-dimensi@mallytic functions to electrostatics and potential
flows, mainly devoted to engineers and physicists.

Of course, the paper only suggests areas of fdewelopment, despite that a persistent idea, from
Sommerfeld on, seems to be “The powerful tool efttieory of complex functions cannot be used
in three-dimensional potential theory” (SommerféMechanics of Deformable Bodies”,

Academic Press, 1950)
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A survey of basic properties

(Note: in all this paper I'll name the complex qtiaes (x + iy) or (x + iy + jz) asZ in order to
avoid ambiguity with the usual Cartesian coordirgte

Summary of basic formulas.
2 dimensions:

o 0 .0
- 0x lay
9 d
“ox ‘9

3 dimensions:

a*_6+_6+,6
0x lay ]62
9] 9] 9]

—_—— -

a:ax dy ]E

The complex notation I've adopted elsewhere foff@til algebra reduces in this case to “real 1 and
imaginaryi , j, squared-1".
In fact the only property you must remember herkiarthe following is (so as for the imaginary
j*=—jandj?=-1.
More, i andj anticommuteij = —ji. Full stop.
I'll only consider 3 - dimensional analytic funati® in the forml/ = (U; + iU, + jUs).
Analiticity condition (Cauchy — RiemanayU = 0 gives:
U= U, +iU, +jU3)

<a+'a+'a>U+'U +jUs) =0
ax lay ]az(l LU, J) 3)_

and developing:
oU, 0dU, 0dU;

1 ox oy oz 0
ou, aU,

. W, AU _

! d0x + dy

_ oU; 00, _

) dx oz
oUs 0U,

. oy 9z

For the vectol/ having components the conjugateiofie U= (Uy, —U,, —Us) this means
rot,div = 0.



DevelopingdU* instead you have:

a .0
au (a—L@—]a—>(Ul—LU2—]U3)—O
au, du, aJU
1 1 9% _9Ys_
dx  dy 0z
au, aU;
! ox 9y
aU; 0U;
] ox 0z
_ dU; 0U,
. ay 9z

As you can se&)U*is notd*U, but if 3*U = 0 you have alsoU* = 0.
This allows to apply, in 3D, the same propertyra2D

U = 90U + dU* = d(U + U*) = 20Re(U)
le for thed derivative of an analytic functioh = (U; + iU, + jU3) you may make the derivative
only of the real part:
1
EOU = dRe(U)
Of course, due to the analyticity Gf 0*U = 0 and therdU* = 0, you can also write:
oU =0U —oU* =ad(U —U*) = 20Im(U)

and so:
1
=dU = dIlm(U)

2
Summarizing:

1

1

Another interesting property is (as in 2 — dimensjo

Thus thed derivative of an analytic function (+;ea) is equal to the derivative in space in the
direction of the real axis.
This obviously follows frondU = U + 0*U = (0 + 0")U = Z%U.



Summary:
everything goes as in 2 D (almasterything, unfortunately an analytic functiomislonger a
conformal transformation).

In fact the main difference is that we can't wifite the derivative the expressigdzﬂ (however its
role is played in part b§'a). You may note for example thait= x + iy + jz identifies a point in
space, but is nanalytic, neither i% dZ = 1. If you want an analytitunction whose derivativiea
is one you havex + i%+j§ (check).

In the same time you cannmtiild up analytic function neither with the ryiéz) = f(x + iy + j2z),
norf(x +i2+j2).

It is easy to build up analytic functions with fiedowing property, however general:

If A is harmoniclJ = dA is analytic.

In fact, A harmonic means:
00"A =0
Howeverdo* = d*d , so
0"0A =0
ie, if we takelU = 04 , it follows d*U = 0, soU is analytical QED.
This extends the concept of "potential” of a fieldhere the field is thé derivative. But we can
also, again, see this as a empirical way to buldnalytic functions.
Note: aside from mathematics, in a physical probjeon must be aware of the sign, exampl@ if
is the electric potentiaE = —grad® , but in these considerations and in the followlidgn’t care

of this signl will simply take for granted that an exchange in charge (or an exchange
source/sink) means an exchange in the field sign.



Exercises
Exercise 1 - Flow around a sphere.

In 2 D for the flow around a “sphere” it considéne analytic potential
2

A=7+ ¢
_ B Z
Developing:
2

a
A=u+iv =r(cosp + ising) + — (cosp — ising)
a’ '
u=(r+ T)cos<p
a2
\v=(0- T)Sin(p
CallA =u+iv = @ + i¥ where

{Cb velocity potential
Y  stream function

The imaginary par¥ is zero on the “sphere” contour= a. Letv = Z—;‘, which is analytic.
The analyticity forv means-ot?, divv = 0 for ¥ having components the conjugatewfe
v = (v, —1,), See also [1]. So we can assume as velocity faldlytic) the derivative = Z—/Zl.

THIS SITUATION IMMEDIATELY GENERALIZES TO 3D WHERETHE ANALYTICITY
CONDITION 8*U = 0 MEANS rotl, divl = 0 FOR THE VECTORJ HAVING FOR
COMPONENTS THE CONJUGATE OF, IE U = (U, —U,, —U5).

The 3D analogous is build up through the term ag@ls toZ (which gives the flow ato) and the
term analogous t(ia, which respectively are:

Yy .z x+Z
7 Z4i-)=
- (x + i > +7J 2) >
Z*
a? 1,5
il -3
z 2% 7
Both functions are analytical and so is her sum.
Assume as complex potential
x+Z 1 I

—qg3—

A=

7 T79 53



Passing to spherical coordinates withs polar axis

AX
9 ™\
z
x = rcos?Y
¢ {y = rsindcos

z = rsindsing

we get:

s +1a3 ﬁ+_r 1a3 g +_r 1a3 9

=\|r 572 coSs l > 272 SINUCoSY + ) > 272 Ssinvsing

The imaginary part (analogous to the 2D streamtion&’) is zero forr = a, sphere surface.
The derivative of the potential (which canébm ordRe(A) or‘;—i as you want) is:

_ y .z 1 ;x+iy+jz

A= (x+l—+]—)+§a T'—3

1
U =04 = 0Re(4)

1 ,x
U =0Re(A) =0d(x +Ea r_3)
3xz*
72
r3

1 . 1-

The velocity fieldd = (vy, vy, v,) = (Uy, —U,, —Us) is:
3a3x? 1a3

=Ty s tomEtl
3a3xy
WE TS
3a’xz
V2T

This coincides (.... as it should be) with Ashlgy,



Note a term 1 of speed parallel to thaxis The fluid moves in the direction of the positc

y

If we assume for the analytic potential the prayisil name

we have analogies with 2D, example:

0"d = —0"(i¥, +j¥,)
Note that here a doubt arises. The té#n+ j¥, seems "similar” to the stream functiéof the
2D case. However a) it seems that | have just cetaglfor the analyticityhe_ harmonidunction
@ = Re(A) = (x + §a3 :—3) with an_imaginary patm(4) = i¥; + j¥, which ....
b) do not use ifbecause | have not used, | only dd, ie practicallygrad® and .....
c¢) do not know how to interpret, | do not know wiias.
So it seems that’; + j¥, is good for nothing.
Obviously this is not true, but at the moment (...994, n.d.r.) | cannot understand.
Sommerfeld [3] saysin general, no stream functiol# can be associated with the velocity
potential in the three-dimensional case”.




Exercise 2 - Sphere under the effect of a constiaatric field.

| change a sign id

A= x+7Z 1 73 A
2 21 rx3
Re(4) = (x - Ea3 r_3>
Re(A) is zero if%z—z = 1. Let's takeRe(A) as potential and we have:
3xZ*
Uo1_lgl 1
2 r3

AssumeE = (Ey, E,, E,) = (Uy, —U,, —Us) as an electric field.

3a3x? 143

Er=gs Tzt
3a3xy
BTrE
3a3xz
2727

If %j—z = 1 (surface of sphere with radius “so th;ag = 17) the field is:

c - XX
x = §§/
E,=3-2
Y rr
g =3%%
d rr

Summarizing, thé field on the surface iB = 3 cosd é, ie a radial electric field weighted by

cos?.
The sphere is under the effect of a constant étdatid in the direction of the real axis

9 ™\

NY




Exercise 3 — 3D flow into a trihedron (analogoust® 2D flow into a 90 degree corner).
The analytic function

A= (2x% —y%? —z%) + 2ixy + 2jxz
corresponds to

{ @ = 2x% — y? — 72
¥ =2ixy + 2jxz = i¥; + j¥,
You get¥ = 0 onx = 0 or (y = 0 and z = 0) which means a trihedron.

A
X

v

ya

If we delete the regiom < 0, y< 0, z < 0, we have the internalf the trihedron.
The fluid velocity (analytic) is obtained as

d
v=aA=2(2x+iy+jz)

The velocity fieldd = (vy, vy, v,) = (Uy, —U,, —Us) is:

Uy = 4x
vy, = —2y
v, = =2z

The fluid velocityv,, is very strong and proportional tofor x > 0, going in the positive
direction. Instead it is coming from— oo andz — co.



v

On thex, z plane § = 0) the velocity isv = 2(2x, —z), see figure below.
In figure, a streamline is plotted.
X

»
»

0

On thex = 0 plane the velocity i¥ = 2(—y, —z), see figure below.
In that plane the streamlines correspond to
vy, = =2y
v, = =2z
The IinesZ—y = % = const are straight lines passing from the origin O wigocity towards O.

A

v




Note: the equipotential surfacés= 2x2 — y? — z? = const are respectively

(y? +z? x? .
ety =1 Hyperboloid of one sheet
yZ + ZZ x2 ]
{ T2 = —1 Hyperboloid of two sheets
y2+z% «x? B .
Sy amiaiie 0 Circular cone
X
A
Z X
A
y
X
[0
VA
y
Z
y

More, the analytic functiod = (2x? — y? — z2) + 2ixy + 2jxz simply is(x + iy)? + (x + jz)?,
so it could be interesting to study the more gdrfaraily of analytic function

a(x +iy)? + b(x + jz)4
which presumably gives a lot of shapes.



Exercise 4 — A source/sink, or a point charge.

Note that the aforementioned analytic function

Z
_ T
V=2
has to as "primitive"
A= r ___;_T —j r
o _ _ xX+r r x+r xX+r
which in turn is analytic.
. z . . . 1+Z 1 2 z
In other words i/ = = obtained by the analytic potentiil= —- = - — i — j -
T x+r T x+r x+r

performing the derivativ®l = %614.

The interpretation of this potential as a “souricd/scan be very easy. It can be interpreted as the
potential of a fluid flow, and taking = %aA in order to obtain the velocity field = (vx, vy, vz).

We can simply perform

1 1
U= EGA = aRe(A) = 8;
from which we get:

As usual the velocity field i§ = (vy, vy, v,) = (Uy, —Us, —Us).
The streamlines are radiahd_inwardsink).

N
N

The same can represent a point charge.



Exercise 5 — Line of charge on negative x-axis.

*

. 1+ 1
The analytic functiorR—=— =-—i
y x+r 2 T

E, = 2 E, = —/—E, = *_ The aforementioned analytic function can be olataiby the
'Y x4r xX+r

harmonic potentia® = In(x + r) if we remember the general rule &fis harmonicg® is

analytic”. Verify.
0P = (——l——] ) 1n(x+\/x2 +y2 4 z2)

Y z
po

— 1 r
] x+r

— represents an electric fieklwhose components are

dy
d 1
o
9 _ y __ v
0y (x+/x2+y2+22)(Jx2+y?+22) (x+1)r
d z
&z(x+r)r

QED.
It may therefore be interesting the following imbestation.
This field of which | spoke has equipotential sogfe® = In(x + r) = const.
Study, for example, in the y plane ¢ = 0) for which we have:

X ++x%2+y%=const =

x+r=const=,
rcosd +r = const = f

r(1 + cos9) = const = f
Here I've plotted the equipotential linfs= 0; £ =0,5; f =1 (intersection of equipotential
surfaces with the = 0 plane). See figure below.

/2 ()/1‘—4:—,».9'/ 2ot . R

e R T
3

;9""’0 ﬁﬂc-wa{j Ce Ceelde 'wa.)\f/&‘wxcu’a’
ter (Rz0,95,4d (W'\L“:{'I’C%OMQ
rCelee - Sepacile eprin ,o—(?a.-%"a—é\”
ce jeaie Q_zo)



Each equipotential surface is a paraboloid of natvoh.
In fact, fromx + /x2 + y2 = const = § (z = 0 plane) squaring and simplifying is obtained:

y*=p*—2px

=

ie a parabola passing on thaxis in the poink = >

\( Ya
The paraboloid of revolution degenerates in a sefimite straight line on the negatiweaxis ie a
line charge.

VR

=L



Exercise 6 — Charged ellipsoid.

It is possible to combine the previous poterdiat In(x + /x? + y? + z2) shifted inx = tc in
the following way:

O=In(x+c+J(x+c)2+y2+22) —In(x —c++(x —c)? +y2 + z2)
This is obviously harmonic becauBgx + /x? + y? + z2) is harmonic.

So the derivative® is analytic and represents an electric figld
Rewrite

(x+c+J(x+c)2+y2+2z2

(x —c+(x—c)2 +y2+272)
and in this form it's quite easy to show that (Seenmerfeld [4]) this expression assumes a
constant value on a family of confocal ellipsoiddwthe separation of focal poins. So this field
is the field of a charged ellipsoid.

b =

The ellipsoid which degenerates to a straightdihkength2c also belongs to that family.

Note that the corresponding 2D problem is alreadylaxwell “Treatise” [5] under the name
“confocal ellipses and hyperbolas”, where it walyed with the method of conjugate functions ie
analytic functions.



Exercise 7 — Point charge in presence of a groundeducting flat plate.

*

. : 1+ 2 2 . .
Consider the analytic potentidl= —- = o= — j—=—, from which we get the analytic
i x+r T x+r x+r
function:
(x+iy+jz)*
_ r
U=- 2

We assumeE = (Ey, E,, E,) = (Uy, —U,, —Us) as electric field.

The electric fieldE is radialand inward.
Consider a 2nd analytic function with opposite sgmfted inx = d. Analytic potential:

y z

1 n A

Ay =——+1i 1 1
! 7 x—d+n ]x—d+r1

A
y \

"~
T

Take the sum of the potentials, which is analytic.
The real part

q)_l 1
o rl_(rl r)rlr

. . d
is zero oy = r, which means the plane= >
We obtain the total field from the analytic functio

(x+iy+jz)r ((x=d)+iy+jz)"
T n 41
r? 1,2

Utor = —



Onr; = r, which means the plane= %, this reduces to
d . ok d : s
Gt+iy+jz)" (F—d)+iy+jz)

41 51 d
Utor = — + = -

T2 12 a
(& evier)

The electric fieldE on that plane is proportional f@ constant fo(y? + z2) = const and is
1

3

directed in the negative direction.

A y

X

/'

\'\\

0

AT rd
|

/

This exercise has of course to do with the metHadeztrical images.



Exercise 8 — Point charge in the presence of angiedi conducting sphere

. 1+Z Y z
Let’s start from the analytic potential= = I —j—=
x+r T X+

x+r
you get the analytic function:

. 1 2 .
o from which, byga or——as you will,
(x+iy+jz)

U=-— .
r

with minus sign.
The electric fieldE = (Ey, E,, E,) = (Uy, —U,,—Us) is radialand inward.
Shifted in a poind with x = x; and weighted by-a, we have the analytic potential:

y VA

T i T

t+a(——1i L - L
Tl x—x1+T1 x—x1+7‘1

n=y(x—x)?+y?+22
and the analytic field:

((x—x) +iy+jz)°

UA = —Qa ::;12
y
A
\J x
N\
\

V4

Consider a 2nd analytic function with opposite sgmfted in a poinB with x = x, and weighted
by b:

Z
_b(i_l rz _] TZ
) X—X,+1 X—Xy+ 1

r =y (x—x)% +y% + 22
The analytic field is:

((x—x) +iy+jz)°
)

52

UB:b



The analytic field everywhere is of courdg+ Up.

4

T

Take the sum of the potentials, which is analyftee real part = ari — bri = ar:;rbrl is zero if:
1 2 271
n_a
r, b

Squared and written explicitly:
2

a
(x—x1)2+y2+zz—ﬁ[(x—x2)2+y2+zz]
= (x% — 2xx; + 2y _ @ Z—2xx; + 2+1—a2 2 4 722
= (% = 201+ 3%) = 15 (2 = 200+ 0) + (1= )07 + 2)
a’ 2 & @z 2
=2x(—x1+ﬁx2)+x1 — X ﬁ+(1—b—2)(x +y°+2z%)

Let now

) a R X1
R =x;x, and sz_z(zﬁ)

and finally we get
2 2

a a
(1- 5@ +y2 +78) = (L= )R?

ie the equation of a sphere of radRiground the cente?, whereR? = x;x,, and with the other
relations = £ (= 1),

b Xy R
What does this mean? We can quote the brilliants/of Maxwell [5], Chap. XI, “Theory of
electric images and electric inversion™:
“Since this spherical surface is at potential zérae suppose it constructed of thin metal and
connected with the earth, there will be no alteyatof the potential at any point either outside or
inside, but the electrical action everywhere wéirain that due to the two electrified points A and
B.
If we now keep the metallic shell in connectiorhlie earth and remove the point B, the potential
within the sphere will become everywhere zeroplitdide it will remain the same as before. For
the surface of the sphere still remains at the spatential, and no changes has be made in the
exterior electrification.



Hence, if an electrified point A be placed outsadgpherical conductor which is at potential zero,
the electrical action at all points outside the sphwill be that due to the point A together with
another point B within the sphere, which we may tte electrical image of A.

In the same way we may shew that if B is a poattqul inside the spherical shell, the electrical
action within the sphere is that due to B, togethih its image A”.

In short, this is the method of reciprocal radeydloped trough the pioneering work of William
Thomson , Cambridge and Dublin Math. Journ., (1848)
Sommerfeld [6] says:

“The term “reciprocal” arises from the (bad) habaf setting R=1, in which casg = xi For
2

reasons of dimensionality we consider it betteretain the radius R as a length”.

Summing up, the (analytic) field outside the spheié, + Ug.and the shape of the electric fiekd
is like that:




Conclusion

I've presented here some examples of applicatib@sdimensional analytic functions to
electrostatics and fluid flow, mainly devoted t@ereers and physicists.

Aiming of this work were:

1 st: show how easy is the complex notation I'veped elsewhere for Clifford algebra. In this
case it reduces to real and imaginary, squared-1:

2 nd: suggest the idea that “the powerful toohef theory of complex functions can be used
three-dimensional potential theory”.

In fact each analytic function means a problemaalyesolvedapplied to a certain shape). So it is
my opinion that it would be very interesting to pue studies on this topic.
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