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We propose that the early Universe was not Lorentz symmetric and that a gradual transition to the Lorentz
symmetric phase occurred. An underlying form of the Dirac equation hints to such a transition for fermions.
Fermions were coupled to space-time in a non-trivial manner such that they were massless in the Lorentz vio-
lating phase. The partition function is used as a transfer matrix to model this transition on a two level thermody-
namics system that describes how such a transition might have occurred. The system that models this transition
evolves, with temperature, from a state of large to negligible entropy and this is interpreted as describing the
transition to a state with Lorentz symmetry. In addition to this, analogy is created with the properties of this
system to describe how the fields were massless and how a baryon asymmetry can be generated in this model.

I. INTRODUCTION

The idea that the Universe is homogeneous, isotropic and that space-time is Lorentz invariant are important pillars of theo-
retical physics. Whereas the cosmological principal assumes the Universe to be homogeneous and isotropic, Lorentz invariance
is required to be a symmetry of any relativistic quantum field theory. These requirements have robust footings, but there can
possibly be scenarios where these ideas are not sufficient to describe the dynamics of a system. Temperature fluctuations in
the Cosmic Microwave Background (CMB) radiation indicate that the assumptions made by the cosmological principal are not
perfect. There is no conclusive evidence of Lorentz violation to date but this has been a topic of considerable interest and the
Standard Model Extension (SME) has been constructed which includes various terms that preserve observer Lorentz transforma-
tions but violate particle Lorentz transformations [1]. Limits have been placed on the coefficients of various terms in the SME
as well [2]. Another important question is the matter-antimatter asymmetry of the Universe which is not completely resolved.
Sakharov, in 1967 derived three conditions (baryon violation, C and CP violation and out of thermal equilibrium) for a theory to
satisfy in order to explain the baryon asymmetry of the Universe.

Origin of fermion masses is also one of the most intriguing questions which is now close to be answered by the ATLAS
and CMS experiments at the Large Hadron Collider. Hints of the Higgs boson have been seen and we will know for sure soon
whether it exists or not. The formalism presented in this article might also help us answer these two important questions, namely,
the baryon asymmetry of the Universe and the origin of fermion masses.

We intend here to describe the evolution of a theory that violates Lorentz invariance to a theory that preserves it. The fields
that are involved in the Lorentz violating theory can be viewed in analogy with fields traveling in an anisotropic medium. When
the system evolves from the anisotropic to isotropic phase the symmetry of the theory is restored and the partition function
formalism can be used to better understand how this transition takes place. This formalism, we propose, can help explain the
matter-antimatter asymmetry of the Universe.

The paper is organized as follows: In section II and III, we describe these transformations and propose a way to interpret them
as plane wave transitions into anisotropic media. In section IV, the partition function is used to get a better insight into how the
transformations in section II occur. Section V illustrates how some interaction terms lead to Lorentz violating operators which
are suppressed due to the transition of the system to a Lorentz symmetric phase. We conclude in section VI.

II. TRANSFORMATIONS LEADING TO COVARIANT DIRAC EQUATION

In this section we outline a set of transformations that lead to the Dirac equation for a QED (Quantum Electrodynamics) like
theory with no interaction terms. The interaction terms will be discussed in section V. We start with a Dirac-like equation which
involves four massless fields (χa, χb, χc, χd). These fields can be redefined in a simple way such that the covariant form of the
Dirac equation is restored along with a mass term. In this section we will just consider the kinetic terms for the fields in the
underlying theory so as to get the free Dirac equation in covariant form. If we start with the following equation (~ = c = 1):

iχ̄aγ
0∂0χa + iχ̄bγ

1∂1χb + iχ̄cγ
2∂2χc + iχ̄dγ

3∂3χd = 0, (1)
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and transform each of the χ fields in the following manner,

χa(x) → eiαmγ0x0ψ(x), χb(x) → eiβmγ1x1ψ(x)

χc(x) → eiδmγ2x2ψ(x), χd(x) → eiσmγ3x3ψ(x), (2)

we get the Dirac equation in covariant form, along with a mass term (using, for e.g., eiβmγ1x1γ0 = γ0e
−iβmγ1x1 ),

ψ(iγµ∂µ − (α+ β + δ + σ)m)ψ = 0, (3)

where α, β, δ and σ are real positive constants. For plane wave solution for particles, ψ = e−ip.xu(p), the above redefinition
for the field χa, for example, is a solution of the following equation:

∂

∂t
χa(x) = −i(E − αmγ0)χa(x), (4)

with similar equations for the other fields. Equation (4), is similar to equation (27) in reference [3] which is a solution of the
differential equation governing linear elastic motions in an anisotropic medium (with a constant matrix, see section III of the
reference). With α = 0 the left hand side is just the Hamiltonian, with the plane wave its eigenstate.

Note that the manner in which we can transform equation (1) to (3) is not unique and there are various ways to do this with
different combinations of the χ fields along with the field ψ. A mass term (mχχ) for the χ fields could have been added to
equation (1), but the transformations (2) can be used to eliminate it. So, if we want our resulting equation to describe a massive
fermion, these fields should be massless or cannot have mass term of the form mχχ. This argument will be further corroborated
with the results we present in section IV. The transformation matrices in equation (2) are not all unitary, the matrix eiαmγ0x0 is
unitary while the rest (eiβmγixi ) are hermitian.

The fields in equation (1) can be considered as independent degrees of freedom satisfying equation (4) in an underlying theory
that violates Lorentz invariance. The transformations (2) can, therefore, be seen as reducing the degrees of freedom of the theory
from four to one. In such an underlying theory, various interaction terms can be written for these fields. Since we intend to obtain
the free Dirac equation, we have considered only kinetic terms involving the fields χ. A quadratic term involving different χ
fields (mχiχj) can be added to equation (1) but this leads to a term that violates Lorentz invariance in the resulting Dirac
equation. A quartic term (cχiχiχjχj) is possible and would result in a dimension 6 operator for the field ψ with the constant c
suppressed by the square of a cutoff scale. So, with the restriction that the resulting Dirac equation only contains terms that are
Lorentz scalars the number of terms we can write for the χ fields can be limited. In other words we impose Lorentz symmetry
in the resulting equation so that various terms vanish or have very small coefficients. The interaction terms are further discussed
in section V of the paper.

III. VISUALIZING FIELD REDEFINITIONS

We can visualize a global and a local transformation as transitions of plane waves to different types of media. The wave
function of a particle, for example, which comes across a potential barrier (E > V ) of a finite width and height undergoes a
phase rotation (eiklψ) upon transmission. If the width of the barrier extends to infinity, the wave function can be viewed as
undergoing a position dependent phase rotation (eikxψ). The transformations (2) can similarly be seen as a plane wave entering
an anisotropic medium. A phenomenon in optics called birefringence can be used to explain why these four fields map on to the
same field ψ. Birefringence results in a plane wave splitting into two distinct waves inside a medium having different refractive
indices along different directions in a crystal. These analogies can serve as crude sketches to visualize how the transformations
in equation (2) can occur.

When a polarized electromagnetic plane wave enters a birefringent material, the wave splits into two distinct waves. This can
be also be seen as a change in the coordinate system of the wave. Similarly, transformations (2) can be seen as rotation of the
field ψ in spinor space or the transition of a wave in a material that splits the field ψ into four distinct waves and is anisotropic.
Based on the latter view, we propose a transition from an anisotropic to isotropic phase in the early Universe whereby it became
Lorentz symmetric. So the form of equation (1) is not a bizarre choice of basis for writing the equation but a possible form of
the equation in an anisotropic space-time. The difference also comes from the interaction terms of these fields, which we shall
discuss in section V. The interaction terms of the fields χ that are due to the anisotropic character of space-time get enhanced in
the anisotropic phase. As the transition takes place these terms become suppressed. This would not be the case if we just choose
a different basis to write the equation. The suppression of the anisotropy is interpreted as the reduction of entropy or increase in
order of the system discussed in section IV.

Space-time dependent field redefinitions in the usual Dirac Lagrangian result in violation of Lorentz invariance. For example,
the field redefinition ψ → e−iaµxµψ leads to the Lorentz violating terms in the Lagrangian [1]. This particular redefinition,
however, would not lead to physically observable effects for a single fermion. A transformation of this type amounts to shifting
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the four momentum of the field. It can also be viewed in analogy with plane waves entering another medium of a different
refractive index which results in a change in the wave number of the transmitted wave. Similarly, transformations (2) can be
interpreted as transitions of a wave from an anisotropic to isotropic medium or vice versa as done in the Stroh’s matrix formalism
[3].

For plane wave solutions of ψ, the χ fields have propagative, exponentially decaying and increasing solutions (for example,
e±imx, e±mx). This wave behavior is similar to that in an anisotropic medium or a medium made of layers of anisotropic
medium. The eigenvalues of the Dirac matrices being the wave numbers of these waves in this case. The coefficients in the
exponent relates to how fast the wave oscillates, decays and/or increases exponentially. The transfer matrix in Stroh’s formalism
describe the properties of the material and in this case can possibly represent the properties of the anisotropic phase from which
the transition to the isotropic phase occurs.

In the usual symmetry breaking mechanism a Higgs field acquires a vacuum expectation value (VEV) and the resulting mass
term does not respect the symmetry of the underlying group. For example, in the Standard Model, due to its chiral nature, a
Higgs field is introduced in order to manifest gauge invariance. Once the Higgs field acquires a VEV the mass term only respects
the symmetry of the resulting group which is U(1)EM. In our case the mass term arises after symmetry of the Dirac equation is
restored. Consider the simple case where we have one field χa in addition to the field ψ:

iχ̄aγ
0∂0χa + iψ̄γi∂iψ = 0, (5)

and this field transforms to the field ψ as χa(x) → eiαmγ0x0ψ(x), leading to the Dirac equation. In order to discuss the
symmetries of the above equation let’s assume that the two independent degrees of freedom are described by the above equation.
Equation (5) then has two independent global U(1) symmetries and the resulting equation has one. In fact, there is a list of
symmetries of equation (5) not possessed by (3), for example invariance under local transformations, χa → eib

iθ(xi)χ′
a (i, j =

1, 2, 3), where bi can be a constant vector, the matrix γ0 or any matrix that commutes with γ0 (e.g., σij , γ5γi). This implies
invariance under global and local SO(3) transformations (rotations of the fields χa but not boosts). Similarly, ψ → eiA θ(t)ψ′

is a symmetry, where A can be a constant or the matrix iγ0γ5 which commutes with the three Dirac matrices γi. After the
transformation χa → eimγ0tψ the equation is no more invariant under these symmetries and the SO(1,3) symmetry of the Dirac
equation is restored along with a global U(1) symmetry.

IV. PARTITION FUNCTION AS A TRANSFER MATRIX

In the early Universe, a transition from a Lorentz asymmetric to a symmetric phase could possibly induce transformations of
the form (2). Let’s again consider the simple example in equation (5). For this case the eigenvalues of the Dirac matrix γ0 define
the wave numbers of the waves traveling in the anisotropic medium. The direction of anisotropy in this case is the temporal
direction, which means that the time evolution of these waves is not like usual plane waves. It is not straight forward to visualize
the fields, the dynamics of whom are described by the anisotropy of space time, but we can use the partition function method to
get a better insight into this. We can, by using this formalism, calculate the temperature at which the transformations in equation
(2) occur.

We next perform a transition to a thermodynamics system by making the transformation it→ β, where β = 1/kBT [4]. The
partition function is then given by the trace of the transformation matrix eimγ0t,

Z = Tr(emβγ0) = 2eβm + 2e−βm. (6)

In order to represent the transition of the system with the above partition function the temporal transfer matrix should be unitary.
This partition function is similar to that of a two-level system of spin 1/2 particles localized on a lattice and placed in a magnetic
field with each state, in this case, having a degeneracy of two. The lower energy state corresponding to spin parallel to the
field (E = −m,Z1 = eβm). In this case the doubly degenerate states correspond to spins up and down of the particle or anti-
particle. For N distinguishable particles the partition function is ZN , N here is the total number of particles and antiparticles of
a particular species. So, we are modeling our system as being on a lattice with the spin along the field as representing a particle
and spin opposite to the field representing an antiparticle.

The evolution of this system with temperature represents the time evolution of the system in equation (1). In other words the
partition function describes the evolution of these waves from anisotropic to isotropic phase as the temperature decreases. For a
two level system the orientation of the dipole moments becomes completely random for large enough temperatures so that there
is no net magnetization. In our case we can introduce another quantity, namely a gravitational dipole, which would imply that
the four states (particle/antiparticle, spin up/down) of N such particles at high enough temperatures orient themselves in a way
that the system is massless. This just serves as an analogy and does not mean that the masses are orientating themselves the
same way as dipoles would do in space. The anisotropic character can be seen as mimicking the behavior of the field in a two
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FIG. 1. Plot of heat capacity CV for the mass of electron, up quark, neutrino and W boson. The maximum of the heat capacity of the
electron occurs at 4.8 × 109K, for the up quarks is 1.9 × 1013K, for neutrinos is 291K and for the W bosons is 7.8 × 1014K. We use
kB = 8.6× 10−5 eV/K and mν = 0.03 eV.

level system. The population of a particular energy level is given by,

np(p) =
Ne±βm

eβm + e−βm
. (7)

Which shows that the number density of particles and antiparticles vary in a different way with respect to temperature. In
the early Universe, therefore the anisotropic character of space-time seems to play an important role such that particles and
anti-particles behave in different manners. As the temperature decreases the number density of the anti-particles decreases and
is vanishingly small for small temperatures (∼ e−2βm). When the decoupling temperature is attained there is a difference in
the number density of the particles and antiparticles as described by equation (7). This leads to an excess of particles over
antiparticles. The decoupling temperature of a particular species of particle with mass m and which is non-relativistic is given
by, kBT . 2m. Below this temperature the particles annihilate to photons but the photons do not have enough energy to produce
the pair. This can be used to get the ratio of antiparticles over particles (matter radiation decoupling). For βm ≈ 0.5, we get,

np − np
np

≈ 0.6 . (8)

Which implies an excess of particles over antiparticles and thus can serve as another possible way to explain the matter anti-
matter asymmetry of the Universe. This number is very large compared to the one predicted by standard cosmology (∼ 10−9).
The above expression yields this order for βm ≈ 10−9 which implies a large temperature. For electrons this would imply
a temperature of the order 1018K which is large and the electrons are relativistic. So if we assume that the decoupling takes
place at a higher temperature, the baryon asymmetry can be explained. Even without this assumption the conditions proposed by
Sakharov can also enhance the number of particles over the antiparticles. Sakharov’s conditions involve the interaction dynamics
of the fields in the early Universe whereas in our case the statistical system serves more as a model describing the dynamics of
space-time to a more ordered phase.

Statistical mechanics, therefore, enables us to visualize this transition in a rather lucid way. In a two level system the net
magnetization at any given temperature is analogous to the excess of particles over antiparticles in the early Universe. The
time evolution of this anisotropic to isotropic transition is modeled on the evolution of a statistical thermodynamics system with
particles on a lattice placed in a magnetic field. The particles on the lattice are localized, static and have no mutual interaction.
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The free energy of the system is given by:

F = −NkBT ln{4cosh [mβ]} (9)

From this we can calculate the entropy S, heat capacity CV and mean energy U of the system:

S = −
(
∂F

∂T

)
V

= NkB ln {4 cosh [mβ]} −mkBβ tanh [mβ] (10)
U = F + TS = −Nm tanh [mβ] (11)

CV =

(
∂U

∂T

)
V

= NkBm
2 β2 sech2 [mβ] (12)

In Fig.1, the peaks in the heat capacity represent phase transition of a particular particle species. These are second order phase
transitions and the peak in the heat capacity is usually referred to as the Schottky anomaly [5]. Note that the phase transition
we model our system on is a magnetic one. So, modeling the complex system in the early Universe on a lattice with spin 1/2
particles can reduce the complications of the actual system by a considerable amount.

The Schottky anomaly of such a magnetic system, therefore, represents phase transitions in the early Universe. For a particular
species of particles the Schottky anomaly shows a peak around mc2 ≈ kT . The phase transition for the electrons occurs at the
temperature where nuclei start forming in the early Universe. For the quarks the transition temperature refers to confinement
into protons and neutrons. Similarly, W boson’s transition occurs at the electroweak breaking scale. The W boson, being a spin
1 particle, is not described by the Dirac equation, but the heat capacity entails this feature of showing a phase transition for the
energy scale relevant to the mass of a particle.

The curve for neutrinos implies that the transition temperature for neutrinos is around 291 K, which means that the density
of antineutrinos from the big bang for present neutrino background temperatures (∼ 2 K) is not negligible. The ratio of an-
tineutrinos over neutrinos for T = 2 K, is nν/nν = e−2βmν ∼ 10−15000 (mν = 2 eV). For an even smaller neutrino mass,
mν = 1 × 10−4 eV, the ratio is nν/nν ∼ 0.3, which for other more massive particles is much smaller. A cosmic neutrino
and antineutrino background is one of the predictions of standard cosmology but is still unobserved. This model predicts an
antineutrino background much less than the neutrino one.

In Fig.2, the plots of mean energy and entropy are shown in dimensionless units. In the massless limit for fermions, the
entropy attains its maximum value of NkB ln4. The plots show that the energy of the system approaches zero as the temperature
approaches infinity. This situation is analogous to the spins being completely random at high temperatures for the two level
system. The same way that the magnetic energy of the system on the lattice is zero at high temperatures, the mass of this system
is zero in the very early Universe. As the temperature decreases the energy of the system attains it minimum value (U = −Nm)
and the particles become massive at the temperature less than the value given by the peak of the heat capacity. The entropy for
high temperatures asymptotically approaches its maximum value of NkB ln4.

The value of the parameter kBT/m at the peak of the heat capacity curves gives the temperature at which the transition takes
place for a particular species. The transition for each field, therefore, depends on the energy scale relevant to its mass. So,
this means that each field was experiencing the anisotropy of space time in a different manner whereas space-time itself was
expanding towards a Lorentz symmetric phase. This can be understood if we imagine a material with anisotropies. Plane waves
of different wavelengths inside the material experience the anisotropies in different ways. So the analogy discussed in section III
tells us that the more massive the field, the faster it will oscillate, exponentially increase or decrease. A less massive field having
a larger wavelength (λ = ~/mc) therefore would experience the anisotropies when their scale is much larger.

According to the statistical thermodynamics model that describes this transition, as this phase transition occurs antiparticles
will start changing into particles and as can be seen from the figure the system will move towards all spins aligned parallel
with the “field", i.e., towards being particles. From Fig.2 we can see that the energy of the system starts attaining the minimum
value as the temperature decreases where all particles are aligned with the field and are “particles". The plot of entropy vs.
temperature also represents an important feature of these transformations. The entropy decreases with decreasing temperature
and this represents the transition to a more ordered phase using equations (2). The plots of energy of the system U in Fig.2 show
that the system will eventually settle down to the lowest energy state which in this case means that the system will have almost
all particles with negligible number of antiparticles. In short, the plot of the heat capacity reflects the phase transitions, the plot
of energy U represents the transition from massless to massive states and the plot of entropy represents the transition of space
time to a more ordered phase.

The Big Bang theory is one of the most promising candidates to describe how the Universe began. According to this theory,
the Universe expanded from a singularity where curved space-time, being locally Minkowskian, eventually became flat. It is
possible that there even was a transition to the Minkowski space from a non-Minkowski one. If the Universe began with a
state of maximum entropy than we can very well assume that space-time was not Minkowskian even locally. The fields that
dwell in space-time are representation of the symmetry group that describes it. The χ fields in the underlying theory, described
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FIG. 2. Plot of entropy and energy for a particle of mass m. For large enough temperatures the energy of the system approaches zero and the
entropy approaches the limiting value of NkB ln4.

by equation (1), are therefore, not representations of the Lorentz group. The CPT theorem assumes symmetries of Minkowski
space-time in implying the similarities between particles and antiparticles. If the underlying theory is not Minkowskian than
particles and antiparticles can behave differently and this is what the model described in this section implies.

The occurrence of the Schottky anomaly has motivated the study of negative temperatures [6]. Note that the partition functions
is invariant under the transformation T → −T but the equations for the free energy, entropy and energy are not. The existence
of negative temperatures has been observed in experiments. Negative temperatures, for example, can be realized in a system of
spins if the direction of the magnetic field is suddenly reversed for a system of spins initially aligned with the magnetic field [5].
Similarly, as described in reference [6] the allowed states of the system must have an upper limit. Whereas this is not the case
for the actual particles in the early Universe, the statistical mechanics system on which it can be modeled on has this property.
A negative temperature system would eventually settle down to the lower energy state (U = Nm) which in our case would
mean that the Universe would ends up having more antiparticles than particles. This is yet another interesting insight we get by
modeling the early Universe on a two state system.

The system on the lattice eventually has only spins aligned with the field and which are interpreted as particles. This means
that the partition function can be written as,

Z = eβm = e(−β)(−m).

Which implies that the system can eventually be seen as spins aligned towards the field evolving in a positive temperature system
or spins aligned opposite to the field evolving in a negative temperature system. This gives a correlation of particles with positive
temperature systems and antiparticles with negative temperature systems. This view in a way coincides with the fact that the
resulting space-time configuration describes both particles and antiparticles in a similar but independent way.

We can also notice that in the statistical system modeled for the transition, the reason due to which entropy of the system
decreases is the presence of an external field. As in a paramagnet, the spins remain randomly align in the absence of a magnetic
field. In the system considered, spins interact with the magnetic field and not with each other. It is difficult to say what played
the role of this field in the early Universe, but since the field is the reason entropy reduces, there should be a physical quantity
present in the early Universe playing an analogous role. This quantity, for instance, can be speculated to be the expansion of the
Universe.

V. INTERACTION TERMS AND THE SME

In section II we only considered terms in the underlying theory that lead to the free Dirac equation. In this section we shall
include some interaction terms and see how they lead to LV operators one of which is considered in the SME. Since we do
not have Lorentz symmetry, the underlying theory can have a large number of terms. We will therefore restrict ourselves to
interaction terms that lead to dimension 4 operators and only involve the gamma matrices. Also, the form of the Dirac equation
restricts the number of ways we can start with an underlying LV theory. In the following we add a few interaction terms to
equation (1):

iχ̄aγ
0∂0χa + iχ̄bγ

1∂1χb + iχ̄cγ
2∂2χc + iχ̄dγ

3∂3χd + Iint1 + Iint2 = 0, (13)
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where Iint1 and Iint2 include operators that lead to dimension 4 LV operators after the transformations,

Iint1 = c1χaγ
0χaa0 + c3χbγ

1χba1 + c5χcγ
2χca2 + c7χdγ

3χda3

+ c9χaγ
0γ5χab0 + c11χbγ

1γ5χbb1 + c13χcγ
2γ5χcb2 + c15χdγ

3γ5χdb3 + .... ,

Iint2 = c2mχaχb + c6χaγ
0χba0 + c4χbγ

1χca1 + c6χcγ
2χda2 + c8χdγ

3χaa3 + ... ,

where Iint1 includes interaction terms of the same fields and Iint2 involve different fields. As the system transits to a more ordered
phase using (2) the coefficients of the terms leading to LV operators become suppressed. For example, after the transformations,
the terms in Iint1 would lead to the term in the SME with coefficient aµ. The term ψγµψaµ in the SME do not have any physical
effects for a single fermion since the term can be canceled with a redefinition of the field ψ → eia

µxµψ, but can have physical
effects if the theory has more than one fermions. Note that the SME term ψγµγ5ψbµ with a constant bµ is not generated from
Iint1 .

The coefficients ci are dimensionless quantities which measure the anisotropies of the system and therefore can be taken to
be proportional to the entropy S/kB of the system in equation (10). As the system moves towards a Lorentz symmetric phase
the entropy approaches zero and therefore the coefficients become vanishingly small. We can also impose four global U(1)
symmetries in equation (13) and this would forbid the terms in Iint2 . The symmetries can then be gauged to get interactions
of each of the χ fields with each component of the gauge field (e.g. χaγ

0χaA0(x)) and this would convert to the usual gauge
interaction term in the resulting covariant Dirac equation.

As mentioned earlier, the properties of the gamma matrices and the form of the Dirac equation restricts the ways we can start
with an underlying LV theory. The gamma matrices commute with only the identity matrix and anti-commute with γ5. The other
possible way to start with an underlying theory is to use the γ5 matrix. If we just include the γ5 matrix with the gamma matrices
in (1) than we do not retrieve the Dirac equation. This is also the case when the γ5 matrix is included in the transformations.
However, if we start with both a γ5 in the equation (e.g. χaγ

0γ5∂0χa) and perform the transformations (2) with a γ5 (e.g.
χa → eimγ0γ5tψ) than the Dirac equation is retrieved with a γ5 and this can be rotated away with a redefinition of the field ψ
in the free Dirac equation. Since the temporal transfer matrix is not unitary in this case, the analogy made in section IV will not
apply and we get an oscillating partition function. This would also effect the resulting LV terms we get in the SME. In this case
we get a term ψγµγ5ψbµ with a constant four vector bµ, whereas aµ is not constant in ψγµψaµ.

VI. CONCLUSIONS

Considering that the Dirac equation can be written in the form of an underlying theory that violates Lorentz invariance,
we suggest that such a transition took place for fermions in the early Universe. We propose that space-time was not Lorentz
symmetric and that a gradual transition to the Lorentz symmetric phase occurred. The fields in the underlying Lorentz violating
theory are massless and transformations were performed that restore the Dirac equation to its covariant form along with a mass
term for the fermions.

The underlying theory depicting the Lorentz violating phase has interaction terms of the fields. As the transition takes place,
these interaction terms result in suppressed Lorentz violating terms some of which can be identified with terms in the SME
(Standard Model Extension). The partition function formalism is then used to model these transformations on the evolution of
a system of spin 1/2 particles on a lattice placed in a magnetic field. Symmetry breaking in this case takes place on this lattice,
whereas, it is restored in the Dirac equation. The transition to the Lorentz symmetric phase in the early Universe can be modeled
on this thermodynamic system.

The behavior of the fields in the anisotropic phase is suggested to be similar to that of plane waves in anisotropic media. The
eigenvalues of the transfer matrices give the wavenumbers of the waves in the anisotropic media. The wavelengths given by the
temporal transfer matrix (~/mc) show that each fermion field experienced the anisotropy of space-time in different ways. The
reason entropy decreases in the statistical system is the presence of an external magnetic field. The expansion of the Universe
is interpreted as playing this role. The fields with small masses, and hence large wavelengths, undergo phase transitions later as
the scale of the anisotropies get larger with the expansion.

We showed that modeling the transition in such a manner can describe three important features of the early Universe: (1) The
heat capacity shows occurrence of phase transitions. (2) The mean energy of the system shows how the particles became massive
from being massless. (3) The plot of entropy depicts the occurrence of a transition to a more ordered phase interpreted as the
Lorentz symmetric phase. At any given temperature the net magnetization measures the excess of particles over antiparticles.
We suggest that this model can be used to explain the matter antimatter asymmetry of the Universe. Also, since space-time is
not Minkowskian in the underlying theory, the CPT theorem does not hold, implying a difference in the behavior of particles
and antiparticles. This is in agreement with the analogy created with the statistical system whereby spin up and down particles
behave in different ways with the evolution of the system. This formalism can arguably serve as another possible way to explain
the origin of fermion masses till the final results related to the Higgs boson are presented.
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