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Abstract

Linear models have found widespread use in statistical investigations. For every linear
model there exists a matrix representation for which the ReML (Restricted Maximum Like-
lihood) can be constructed from the elements of the corresponding matrix. This method
works in the standard manner when the covariance structure is non-singular. It can also be
used in the case where the covariance structure is singular, because the method identifies
particular non-stochastic linear combinations of the observations which must be constrained
to zero. In order to use this method, the Cholesky decomposition has to be generalized
to symmetric and indefinite matrices using complex arithmetic methods. This method is
applied to the problem of determining the spatial size (vertex) for the Higgs Boson decay
in the Higgs → 4 lepton channel. A comparison based on the χ2 variable from the vertex
fit for Higgs signal and tt background is presented and shows that the background can be
greatly suppressed using the χ2 variable. One of the major advantages of this method over
the currently adopted technique of b-tagging (Tomalin, 2008) is that it is not affected by
multiple interactions (pile up).
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1 Introduction

(Smith, 1995) describes how to efficiently compute both forward and backward derivatives of the

Cholesky decomposition by using methods taken from automatic differentiation (Griewank, 2008).

This technique permits variance-covariance estimation by restricted maximum likelihood (ReML).

While the Cholesky decomposition and its derivatives are finding applications with ReML and in

linear models typical to studies of animal breeding (Meyer and Smith, 1995), these are coming with

additional innovations (Meyer, 2001; Meyer and Kirkpatrick, 2005). The computational methods

have been introduced in general statistical packages, including SAS (SAS Institute, 2009; Meyer,

2007).

Outside of ReML, the Cholesky decomposition and its derivatives are finding the following

applications: in spatial modeling or kriging (Toal, et al., 2009); in lattice models with an ex-

ample showing non-parametric curve fitting and cross-validation (Smith, 1997); in optimization

involving the inverse diffusion problem (Christianson, 1997); to differentiate a Laplace approx-

imation of a likelihood function, thereby permitting estimations of parameters in a population

model (Frimannslund, 2006); to permit Hamiltonian Markov Chain Monte Carlo in the context of

non-linear regression by function factorization (Schmidt, 2009); in calculating price sensitivities

associated with exposure risk of financial portfolios (Capriotti and Giles, 2010); and for optimiz-

ing several hyper-parameters within a gradient-based machine learning algorithm (Bengio, 2000).

(DeHoog, et al., 2011) have introduced a general notation for treating that task involved with

calculating derivatives of functions that depend on triangular matrix factors (including Cholesky’s

factor), and they describe several application areas too.

The above applications consider only the Cholesky decomposition of a positive-definite (or

semi-definite) matrix. This convention is not followed in (Smith, 2001a and 2001b) where consid-

eration is given to a linear state-space model, nor is it followed in the present paper. Smith used

the Cholesky decomposition (and it derivatives) to estimate second moments, but in this different

application the Cholesky decomposition was applied to a symmetric and indefinite matrix. In

general, the Cholesky decomposition may not be possible for an indefinite matrix, in which case

an attempted decomposition may lead to an interruption. Such interruption is possible when a

linear model includes effects that come with a singular variance-covariance matrix structure as is

possible with state-space models. It has been the case that an interrupted Cholesky decomposition
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permits the correct ReML likelihood calculation following (Smith, 2001a and 2001b). However,

Smith’s approach implies that the linear model is consistent with the singular variance structure,

and in general this assumption cannot be made. The purpose of the present paper is to get be-

yond this limitation by introducing linear constraints that guarantee consistency, and hence this

enlarges the set of cases where Cholesky-based ReML can be applied. There are also some minor

typographical errors in the pseudocode listed in (Smith, 2001a), and the corrected pseudocode is

presented in the Appendix (Section 11) of this paper. Furthermore, it is the additional purpose of

this paper to get beyond the common ReML applications and demonstrate a new Cholesky-based

discrimination method that is suitable for enriching data samples that are used in the search for

the Higgs Boson (“Higgs Hunting”) at the Large Hadron Collider (LHC)

The mixed linear model and ReML are reviewed in Section 2. In Section 3, Likelihood eval-

uation is cast in terms of residual error, and the Cholesky decomposition of a symmetric and

indefinite matrix. Section 4 provides mathematical justifications for the constraints that may be

needed when the Cholesky decomposition is interrupted. To treat the possibility of constraints,

Section 5 describes optimization by Lagrange multipliers and Section 6 describes optimization by

penalized maximum likelihood. Both methods are readily adapted to the Cholesky decomposition

and its derivatives. Section 7 treats estimation of fixed effects as an auxiliary calculation to the

Cholesky decomposition by solving an indefinite system of equations. Section 8 presents an exam-

ple coming from experimental physics, where the ReML method is used to devise a discrimination

function to reduce backgrounds and preserve signal events in order to enrich data samples used

for Higgs Hunting. The conclusion follows in Section 9.

2 Mixed Linear Models, Log-Likelihood and ReML

Notation: In the following Sections, we denote the transpose of a matrix R by R′. We also denote

column vector in component form by square brackets, v = [a, b, c, ..], and the corresponding row

vectors with parentheses, v′ = (a, b, c, ...).

Linear models, including mixed linear models, have found widespread use in statistical investi-

gations. The linear model, though additive, is frequently flexible enough for real situations as an

approximation around the mean. Also, linear models and the associated normality assumptions

are well understood. Methods as old as the analysis of variance (ANOVA) are completely consis-
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tent with mixed model methods. Furthermore, while the theory is developing in new areas, such

the Gibbs Sampler or with other Bayesian methods, mixed model methods benefit as new tools

come along. The mixed linear model is represented by:

y = Xβ + Zu + ǫ,

where y is a vector of observations, β is a vector of fixed effects, u is vector of random effects

and ǫ is the observational error. The matrices X and Z are incidence matrices that relate the

various effects to observations. The first moments for the random effects (their expectations) are

E[u] = 0 and E[ǫ] = 0, and the variance-covariance structure is given by var[u] = G, var[ǫ] = R

and cov[u, ǫ] = 0. Additional assumptions are needed to implement maximum likelihood or

computer simulation, and generally y, u, and ǫ are taken as multivariate normal. As indicated in

(Goldberger, 1962), the Best Linear Unbiased Prediction (BLUP) of u is found by evaluating

û = GZ′V−1[y −Xβ̂],

where

V = var(y) = ZGZ′ + R (1)

and where β̂ is the Best Linear Unbiased Estimate (BLUE) of the fixed effects obtained by the

Generalized Least Squares (GSE) problem

(

X′V−1X
)

[β̂] = [X′V−1y]. (2)

These equations can be reformulated so that the solutions can be obtained directly from the mixed

model equations (Henderson, et al., 1959)





X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1









β̂

û



 =





X′R−1y

Z′R−1y



 . (3)

However, Section 7 (see below) provides and alternative method based on the method of (Siegel,

1965).

It is well known that if a non-informative prior is used to describe the fixed effects in a

Bayesian context, the posterior distribution (conditional on y) of a linear combination of b (where

b = [β ′,u′]), say Hb, is multivariate normal. In this case the posterior distribution has mean

vector Hb̂ (where b̂ = [β̂ ′, û′]) and variance-covariance matrix given by HC−1H′, where C is the
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2-by-2 partitioned matrix on the Left Hand Side (LHS) of Eq. (3). Therefore the mixed model

equations are only good when the inverses R−1 and G−1 both exist. If either R−1 or G−1 does

not exist, then C does not exist. Therefore, in the case where the covariance structure is singular,

the mixed model equations will not apply.

The log-likelihood for the Multivariate Normal (MN) is given by

ln(MN) = constant−
1

2
ln |V| −

1

2
(y−Xβ)′V−1(y −Xβ)

The maximum likelihood estimates of β and the dispersion parameters (R and G) are found by

maximizing the log-likelihood. Estimates of the dispersion parameters can be badly biased by

small-sample errors induced by the estimation of β̂. This is a serious problem when the dimension

of β is large relative to the information available to estimate β.

To overcome this problem (Patterson and Thompson, 1971) introduced Restricted Maximum

Likelihood (ReML), where the dispersion parameters are found by maximizing

ln(ReML) = constant−
1

2
ln |V| −

1

2
ln |X′VX| −

1

2
(y −Xβ̂)′V−1(y −Xβ̂), (4)

where β̂ is the solution obtained by GSE, Eq. (2). ReML has the advantage of estimating away the

β parameters from the Likelihood. This is especially useful in cases where one wants to concentrate

on minimizing the deviations from a common mean, without explicitly finding that common mean.

(Wikipedia, 2011) states, “In contrast to conventional maximum likelihood estimation, ReML can

produce unbiased estimates of variance and covariance parameters.” (Harville, 1974) derived the

likelihood in Eq. (4) to treat the “error contrasts” which are found by taking a complete set of

linear combinations of the observations which are sufficient to remove the effect of β while leaving

the maximal amount of information for the purpose of ReML. An early review of ReML can be

found in (Harville, 1977). More reviews can be found in (Speed, 1977 and 1995). The relevance for

the particular application described in Section 8 (see below), is that the χ2 that is determined by

ReML is independent of the central vertex coordinates. It is possible to back-out the coordinates

of the fitted vertex, but it is not necessary to know the coordinates in order to determine the

goodness of fit.
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3 Applying ReML to the Z = 0 Scenario

Consider the following linear model L in the case where Z = 0

L : y = Xβ + ǫ,

where y is an independent observation vector, β is a vector of fixed effects which are to be removed

using the ReML likelihood, and ǫ is a vector of random residuals. The array X is the incidence

matrix that assigns fixed effects to observations. The variance-covariance matrix of the random

residuals is denoted by R

var[ǫ] = R.

The linear model L is now fully specified and the error matrix satisfies V = R so that the likelihood

given by Eq. (4) reduces to

ln(ReML)→ constant−
1

2
ln |R| −

1

2
ln |X′RX| −

1

2
(y −Xβ̂)′R−1(y−Xβ̂). (5)

(Smith, 2001b) associates a symmetric matrix K with the above linear model L as follows:

K =











R X y

X′ 0 0

y′ 0 0











, (6)

where the 0’s denote the appropriate-sized null square matrices required to fill out the rows and

columns of K and X′ is the transpose of X. Therefore, L implies the existence of a matrix K,

and K implies there exists a model L. Our main interest in Eq. (6) is that R is not required

to be invertible. The method we use is able to identify those linear combination of y which are

associated with the zero-eigenvalues of R. These linear combinations are non-stochastic and can

be eliminated from the stochastic part of the likelihood and treated by the method of Lagrange

constraints. In other words, our method is able to find the natural constraints required for the

maximum likelihood problem for ReML.

It is well known that the Cholesky decomposition runs to completion with any matrix that

is symmetric and non-negative definite. (Smith, 2001b) shows that the Cholesky decomposition

can also be performed on the matrix K, and this is most curious because while K is symmetric,

it is not non-negative definite. K is classified as indefinite. However, the rows and columns of
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K must be first permuted, leaving the last row and column in place as required. This is enough

to permit computation of the Cholesky decomposition, or the lower triangular matrix L, where

Kk×k = LL′ (for some permutation involving the first k − 1 rows and columns). (Smith, 2000

and 2001a) describes the ReML function, or the likelihood that removes the impacts of β, to be

a function of this particular L. This calculation is given neatly as follows:

ln(ReML)→ constant−
∑

i<k

ln |Li,i|+
1

2
L2

k,k,

where the absolute modulus function |Li,i| transforms a possible imaginary number into a positive

number, and the summation is only over the non-zero pivots. When zero pivots are encountered

(when Li,i = 0 for some i) we require that the i-th column of L vanishes and this is enough to

justify likelihood evaluation by the above formula. It is easy to show that this calculation agrees

with the likelihood given in Eq. (5) when R is non-singular. However, in the most general case

we cannot simply skip the zero pivots, and more will be said about this in the Section 4, because

particular constraints must be imposed.

The likelihood function is derived from elements of the Cholesky decomposition, and so there is

nothing else that is needed to perform ReML but to find the derivatives that permit the likelihood

to be optimized by the iterative Newton-Raphson technique. These derivatives come automatically

with the Cholesky decomposition (Smith, 2000 and 2001a), and so there is little beyond the matrix

K, and its decomposition, that must be considered to describe ReML. The corrected pseudocode

for the differentiation of the Cholesky algorithm and directions for how to use it are found in the

Appendix (see Section 11).

4 Justification and Additional Constraints

The Cholesky decomposition of a matrix Kk×k proceeds by identifying a non-zero diagonal element

(the first pivot), and then permuting rows and columns of K to reposition that diagonal to the first

diagonal position. Elementary row operations are now conducted to annihilate elements below

the diagonal in the first column (this is pivoting). The first row of K is now transformed into the

first column of L by replacing the first diagonal by its square root and by dividing the remaining

elements in the first row by that square root. The first row and column of K are now deleted to

produce a smaller sub-matrix of order k− 1. This sub-matrix is called the Schur complement. An
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outline computation of the first Schur complement (of K11 in K) is displayed below.















K11 K12 ... K1k

K21 K22 ... K2k

... ... ... ..

K1k Kk2 ... Kkk















→















K22 K23 ... K2k

K32 K33 ... K3k

... ... ... ...

Kk2 Kk3 ... Kkk















−
1

K11















K21

K31

...

Kk1















(K12, K13, ..., K1k)

When K is symmetric, the Schur complement is symmetric. Therefore, the Cholesky decompo-

sition may proceed by half-storing K. The above steps are now repeated to generate a second

Schur complement, then a third and so on. The algorithm may be organized to overwrite the

half-stored K with L. The operations of the Cholesky decomposition are reversible, and therefore,

the Cholesky decomposition conserves information.

(Smith, 2001b) generalized the Cholesky decomposition for the case when K is symmetric and

indefinite by using a complex representation for the Cholesky diagonals if needed. The sub-matrix

initially containing the zero entries is the non-positive definite partition, and with fill-in (generated

from pivoting from the diagonals of R) the non-positive definite partition becomes more negative.

When pivoting switches over to the diagonals of the non-positive definite partition, then fill-in

results in the partition initially set to R (or the non-negative definite partition) thereby making it

more positive. If a few pivots are selected from the diagonals of the non-negative definite partition

first, before switching over to the non-positive partition and continuing pivoting over the negative

diagonals until the non-positive definite partition returns to a matrix containing zero in all its

entries (expect the last diagonal), then (Smith, 2001b) referred to the particular pivot order as a

standard data reduction.

After the first pivot step within the Cholesky decomposition, the lead row and column is

removed from K, and this reduces the dimension of the resulting Schur complement by 1 as noted

above. After a standard data reduction, the Schur complement is again reduced in dimension from

K but retains the special matrix form (ignoring the last diagonal with no loss in generality):

K1 =











R1 X1 y1

X′
1

0 0

y′
1

0 0











,

where the subscript indicates that K1 was generated from K following the Cholesky decomposition.

We will denote K as K0, to maintain consistency. In shorthand, this transformation is denoted
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by K0 → K1.

(Smith, 2001b) notes that K1 also represents a model L1, given by

L1 : y1 = X1β1 + ǫ1,

where β1 is sub-vector of β and the variance-covariance matrix of ǫ1 is R1. The model L1 is

fully determined given the Schur complement K1. Moreover, those observations that have been

processed and eliminated from K are uncorrelated with ǫ1. Also, the extracted information was

accounted for in the previously constructed Cholesky diagonal elements. In other words, the

standard data reduction separates the data into two statistically independent parts. The first

statistically independent part is used to compute that block of the log-likelihood already known

for ReML and consistent with Eq. (5). The remaining part pertains to the treatment of L1, but

because K1 is in the form of K, the process can be iterated and the Cholesky decomposition

continued to the next pivot.

The Cholesky decomposition signifies a tower of standard data reductions:

K0 → K1 → K2 → K3 → K4

And these Schur complements correspond to a tower of models:

L0 → L1 → L2 → L3 → L4

At each transition the dimensions of the Schur complement get smaller and smaller, and all along

the way information is being processed correctly to evaluate the ReML likelihood. The only

question is whether the Cholesky decomposition completes and leads to a final Schur complement

that folds into the likelihood function calculation. However, the last Schur complement may be

one of two special forms which cannot be reduced further. These are the First Special Form:











0 H v

H′ 0 0

v′ 0 p











,

or the Second Special Form:




0 v

v′ p



 ,
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In the case of an incomplete Cholesky decomposition, what is made manifest are the constraints

that must also be imposed on the maximization of the likelihood function. The remarkable con-

clusion is that all the information is contained within the Cholesky decomposition (as we will see),

even when the Cholesky decomposition is unable to finish.

One might question the appropriateness of the standard data reduction, given that the pivot

order in the Cholesky decomposition may be dynamic and may not follow the standard data

reduction. However, (Smith, 2001b) proved that pivot orders come in equivalence classes. Any

dynamic order corresponds to a tower of standard data reductions where the ReML likelihood is

treated correctly. And moreover, Schur complements are invariant to the pivot order that generates

them (including the last diagonal of the Cholesky decomposition), as well as the determinant

calculated as the product of pivots. The correct likelihood is calculated even when the standard

data reduction is not followed, because implicit in any pivot order is a tower of standard data

reductions.

With dynamical pivoting, the Cholesky decomposition is permitted to go as far as it can while

skipping zero diagonals that would otherwise be pivots. Some zero pivots may encounter fill-in

during the computation, and this permits the Cholesky decomposition to continue with additional

rounds of pivoting. If for some reason the Cholesky decomposition in unable to complete the

operations, the matrix that remains (as unfinished) will be a sub-matrix of what had been K and

what was becoming L (but never completed). The unfinished sub-matrix contains the last Schur

complement either in the First or Second Special Forms (noted above), even if the pivot order did

not follow a tower of standard data reductions.

If extraneous parameters remain impacting the likelihood function, they are found involved in

non-stochastic linear combinations, and these combinations are revealed in the Schur complement

(the First Special Form containing both H and v) that could not be reduced by the Cholesky

decomposition:

HβI = v,

where βI is a sub-vector of β, and v is a revealed linear combination of y. If the extraneous

parameters are no longer present, then the matrix H goes away. We are left with the Second

Special Form of the Schur complement that only involves v equated to a column vector of zeros:

v = 0.
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When the Cholesky decomposition is unable to finish, then one of these systems of linear equations

becomes a side condition (a constraint) for the likelihood maximization exercise.

We may be uninterested in the extraneous parameters. However, we are interested in consistent

models that don’t contradict themselves when linear combinations are made of their components.

This concern is quite independent of the extraneous parameters as we will see. The set of non-

stochastic equations that are revealed (by the First Special Form of the Schur complement) will

involve extraneous parameters, and these will be ignored in as much as ReML removes their

impacts from the likelihood. The revealed set of equations can imply whatever they want about

βI and ReML will ignore them. This assumes that the statistical model is already consistent.

However, the non-extraneous parameters that are identified for likelihood evaluation need not

conform to a consistent linear model and that’s where we depart from (Smith, 2001b).

Likewise, if the attempt at Cholesky decomposition ends with a Schur Complement of the

Second Special Form (leading to the equation v = 0), what is revealed are constraints that must

be imposed to guarantee a consistent linear model. In this case there are no extraneous parameters

to confuse the issue.

5 Constraints: Lagrange Multiplier Method

In the event that the Cholesky decomposition encounters a zero and is unable to complete, in

order to to maintain consistency one can consider appending to the ReML likelihood a Lagrange

multiplier expression according to one for the following cases:

Case 1 : F1(L, λ) = constant−
∑

i<k

ln |Li,i|+
1

2
L2

k,k + λ′(HβI − v),

where maximization proceeds with respect to the non-extraneous parameters (s1, s2, s3, s4), βI

and λ. Therefore, the side condition enforces the restriction that v is in the column space of H

independent of βI.

Case 2 : F2(L, λ) = constant −
∑

i<k

ln |Li,i|+
1

2
L2

k,k + λ′v,

where maximization proceeds with respect to the non-extraneous parameters (s1, s2, s3, s4) and λ.

Therefore, the side conditions enforces the restriction that v = 0.
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In both cases, we find an objective function so constructed from the known elements of the

unfinished Cholesky decomposition. First and second derivatives are available (Smith, 2001a)

and constrained optimization is straightforward by the technique of Newton-Raphson iteration as

applied in Section 8 below.

In paradoxical cases, the data may produce an inconsistent model. In which case, we recom-

mend constrained maximization as noted above, and in this way useful information is included

that would otherwise be ignored.

In case the Cholesky decomposition is unable to finish and the Schur complement is of the

Second Special Form, then the particular linear combination of elements corresponding to v can

be constrained to zero by adding a Lagrange multiplier term λv as indicated above. An alternative

method involves adding a quadratic penalty term to the likelihood (see Section 6) can be used to

adjust the constraints to zero within estimated precision.

Case 1 and Case 2 above represent possible objective functions. However, we concentrate on

Case 2 because that is the one relevant to our example. The objective function to be maximized

is of the form F2(L, λ). The three algorithms of Section 11 are used to construct the Newton-

Raphson linear system. If required, the first derivatives with respect to the Lagrange multipliers

(the λ vector) come directly out of the v elements of the corresponding Schur complement of

the unfinished matrix L. Table 1 sketches the Cholesky decomposition which is used to calculate

the components of the ReML likelihood and the possible non-stochastic linear combinations that

will be subject to the constraint conditions. We initialize the array F of Table 2 to the array

∂F2(L, λ)/∂Lij that represents the constrained objective function including the Lagrange multi-

pliers. We then find the mixed second derivatives directly from Q (see Table 3, which represents

the forward derivative calculations.)

6 Constraints: Penalized Likelihood Method

There is another method of implementing constraints besides Lagrange multipliers. Instead of

introducing a set of Lagrange multipliers which are treated as independent parameters to be

varied in a maximum likelihood procedure, the terms which they multiply can be squared and

then multiplied by a fixed constant. This is known as the “Penalized Likelihood” method. In the

Penalized Likelihood method the Lagrange equations for Case 1 and Case 2 above are modified
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to the form

Case 1 : F1(L) = constant−
∑

i<k

ln |Li,i|+
1

2
L2

k,k +
∑

ci(HβI − v)2
i
,

where the ci are nominated constants and maximization proceeds with with respect to the non-

extraneous parameters (s1, s2, s3, s4) and βI.

Case 2 : F2(L) = constant−
∑

i<k

ln |Li,i|+
1

2
L2

k,k +
∑

ci(vi)
2,

where ci are nominated constants and maximization proceeds with respect to the non-extraneous

parameters (s1, s2, s3, s4). The squares of the column vectors in the last term on the RHS of the

above are to be understood as vector dot products.

The main difference between the Lagrange Multiplier method and the Penalized Likelihood

method is that the auxiliary constraints are imposed to the maximum machine precision by the La-

grange Multiplier method, whereas the constraints are imposed in a less extreme manner with the

Penalized Likelihood method. The point of the nominated constants is to adjust the enforcement

of the constraints to within reasonable limits set by the known precision of the measurements.

This allows the possibility, for example, of not demanding that the constraints be satisfied with

more rigor than the measurement uncertainties can justify.

7 Estimating the Fixed Effects β̂

(Siegel, 1965) described a method to compute generalized least squares (GLS) estimates by way

of a system of equations with a symmetric and indefinite coefficient matrix. In our notation, this

system of equations is presented below:





R X

X′ 0









λ

β̂



 =





y

0



 ,

where β̂ is the GLS estimate of β, and λ are the Lagrange multipliers. This Section will fol-

low (Smith, 2001a), and show how to calculate both β̂ and λ as adjunct operations that depict

backward substitution, given that the Cholesky decomposition of K is available.
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Note that the both the coefficient matrix and right-hand side of Siegel’s equations are sub-

matrices of K: the coefficient matrix is the lead sub-matrix in K, and the right-hand side is fixed

to the last column (or row) and remains there for all permitted row-column permutations of K.

Now rewrite Siegel’s equations in simple terms:

Cb = r,

where C and r signify the coefficient matrix and right-hand side, respectively; and b is a column

vector containing λ and β̂. To solve these equations, we might permute the rows and columns of

C, and compute the Cholesky decomposition: TT′ = C. To permute the rows and columns of

C, and the rows of b and r are also permuted to leave Siegel’s equations intact. Now multiplying

both sides of Siegel’s equations by the same elementary row operations that transform C into T′

gives:

T′b = a.

When C is non-singular, a = T−1r. The coefficient matrix in this new system of equations is

upper triangular. Therefore, vector b can be solved by backward substitution.

With L computed, where K = LL′, note that T is the leading sub-matrix in L and a′ is the

last row vector of L (excluding the last diagonal). Therefore, having computed L we need only

enter backward substitution to evaluate b. The GLS estimates β̂ will be found scattered in b,

noting that b is permuted.

When the i-th pivot encountered in L is zero, and the i-th column vanishes, a singularity is

present and b is not estimated uniquely. We place a restriction on b: set its i-th entry to zero.

This modification is implemented when the Cholesky decomposition is unable to finish but ends

with a Schur complement of the Second Special Form. The associated column of L will also be

constrained to vanish. When the Cholesky decomposition ends with the First Special Form then

an auxiliary estimate of βI is available from the main optimization and this estimate is used in

backward substitution given that what had been computed for the rest of L is lower triangular.
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8 Example: Spatial Errors in Track Extrapolations and

Vertexing in Higgs→ 4 lepton Searches

One of the most important decay modes of the Higgs Boson is into 4 charged leptons (Higgs →

4 leptons). In a solenoidal detector there is a large magnetic field present which is represented

as a constant vector, ~B, which is taken by convention to point in the z-direction. Each of the

charged leptons will approximately trace out a right-circular (or left-circular) helix with symmetry

axis also parallel to the z-direction. Tracks undergo multiple scattering and energy losses as they

traverse the detector which limit the accuracy of the helical path assumption. These effects are

usually very small for tracks in the central solenoid region that have high transverse momentum

pT (momentum component perpendicular to the z-axis). The radius of a track’s helical path

depends its pT . Each helix in 3-d has the form ~r(s) = [x(s), y(s), z(s)] and is a function of an

independent position parameter s that marks the location along the track path. The components

of the position vector ~r(s) are given by

x(s) = (ρ− dxy) sinφ− ρ sin(φ− s/ρ)

y(s) = ρ cos(φ− s/ρ)− (ρ− dxy) cosφ

z(s) = Z + s cot θ

(7)

The parameters on the RHS of Eq. (7) are obtained from the track-fitting algorithm and have the

following meaning:

q = charge of particle

k = curvature of track circle, R = 1/k = radius of curvature

Z = z-coordinate of the point on the track helix closest to z-axis

θ = polar angle of the tangent to track at Z

φ = azimuthal coordinate (tanφ = −x/y) of the track helix at Z

ρ = qR

D = signed distance from beam axis to track helix at Z

dxy = qD

dsz = Z/ sin(θ)
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where the sign of the distance for D is given as positive if the track circle (projection of helix into

the x-y plane) contains the z-axis and negative otherwise. A typical track fitting program will pro-

duce the 5-parameters (ρ, φ, θ, dxy, dsz) along with a 5-by-5 covariance matrix which can be used

to estimate the spatial error matrix in terms of the 3-by-3 correlation matrix for x(s), y(s), z(s),

for example, by the method of “propagation of errors”. Once these track parameters are measured,

then the track can be extrapolated to any position along its trajectory by using the parametric

equation of a helix as a function of s. One of the interesting properties of these spatial extrap-

olations is the the 3-by-3 spatial error matrix is very close to rank-2 (almost singular). Fig. (1)

illustrates the reason that the spatial error matrix has a near-zero eigenvector lying almost entirely

in the x-y plane. If the radius of the track circle is much larger than the radius of the tracking

detector, then only a small fraction of the circumference of the track is measured. This creates a

measurement or observational bias in the sample of hits along the track. Such an observational

Figure 1: Relation of Error Ellipsoid of Center of Curvature and Tracking Hits.

bias creates a highly eccentric error matrix for the reconstructed x and y coordinates of the center-
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of-curvature. This highly eccentric error matrix produces a spatial error matrix along the track

helix which has a very small eigenvalue in the direction of the projection of the track tangent

vector in the x-y plane. This property is independent of the method used to determine the track

parameters precisely because the tracks we are most interested in have high pT and, therefore,

have very large diameter track circles compared to the diameter of the tracking chamber.

In order to determine if a Higgs candidate has been selected in the data-analysis of the exper-

iment, one of the criteria applied to the 4 selected tracks is: Are these 4 tracks consistent with

originating at a common position in space? Do these 4-tracks form a “vertex” in space? If the

hypothetical Higgs Boson decayed into 4 charged leptons, then each lepton would follow its own

helical trajectory, but all 4 leptons would converge on a common point in space corresponding to

the point of decay of the Higgs Boson. Reducible 4-lepton background events, would be inconsis-

tent with originating from the same common location. Therefore constructing a likelihood for the

hypothesis that the 4 tracks originate at the same location is a very useful algorithm to separate

signal events (Higgs candidates) from reducible backgrounds.

The tracks are assumed to come from a common point by hypothesis and the likelihood is

obtained by first constructing the K matrix of Eq. (6) above with the yi(si) = [x(si), y(si), z(si)]

for coordinates x(si), y(si), and z(si) for each track (i is numbered 1 through 4) with its respective

independent variable s1, s2, s3 or s4. The R matrix in Eq. (6) is obtained by the “propagation

of errors” method which involves Taylor expansion of the functions x(s), y(s) and z(s) about the

mean positions. The overall matrix is obtained by appending each of the contributions from each

track to the form the assembly y = [y1,y2,y3,y4] and similarly for R. The incidence matrix

X is similarly constructed using Xi= 3-by-3 unit matrices (for i = 1, 2, 3, 4) and stacking four

such matrices one-above-the-other. Given 3-by-3 unit incidence matrices for Xi = I3 (for the i-th

track), then β = ~rc. The extraneous parameters β are the central position coordinates of the

vertex which can be estimated using the method of Section 7. This relationship completes the

definition of the Linear Model.

Since the extrapolated spatial error matrices have the nearly rank-2 property, it is necessary to

utilize the methods described above to construct a consistent ReML for testing the hypothesis of

the common spatial origin of the 4 selected leptons as well as automatically constructing the non-

stochastic linear combinations which have to be constrained to zero (a la the Second Special Form
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mentioned above). The constraints are determined based on comparing the size of the respective

diagonal element in the Cholesky decomposition to a tunable threshold value which is optimized

for signal events. When such a zero is encountered, the location on the main diagonal is noted and

stored for subsequent determination of the constraint itself. The ReML likelihood and collateral

constraints are determined as outlined above and the system of first and second derivatives are

calculated using the Tables 1, 2, and 3 of the appendix. A linear system of equations is then

formed by Taylor expansion of the objective function and a step is taken by Newton-Raphson

(NR) iteration to move towards the maximum likelihood position. The coordinate functions of

Eq. (7), evaluated at s = 0, produce the coordinates of the helix at closest approach to the beam-

axis (z-axis). Since a real Higgs would be produced very close to the colliding beam axis, then

s1, s2, s3, s4 should all be initialized to 0 at the beginning of the first NR step for fast convergence.

Alternatively, one could perform a binary search about s = 0 (for each track) to determine

appropriate initial values for the NR method.

After convergence, the algorithm produces a set of four parameter values s1, s2, s3, s4 which give

the location along each track such that the assumptions of the model are satisfied. The χ2 value

is obtained as the square of the last element on the main diagonal of the resulting decomposed K

matrix (χ2 = −L2

k,k). This variable is only approximately χ2 coming with degrees of freedom that

are underestimated (by the number of positive pivots minus the number of negative pivots plus 1,

minus 4 from estimating the position variables s1, s2, s3, s4) and we use the empirical distribution

for χ2 in applications. ReML and χ2 are invariant with respect to the coordinates of the central

position (the vertex), because the impact of the central position was removed from the likelihood.

The crucial assumption of the the model is that there be a common origination point for the four

tracks somewhere. If the χ2 from the fit is small, the model is satisfied and the hypothesis that

the 4-tracks originated from a common point is consistent with the data. This is what we expect

for Higgs → 4 leptons. Reducible background events (such as tt, Zbb → 4 leptons) where the

4-leptons do not originate from the same point will not fit the hypothesis of the model and will

have large χ2 values.

In order to implement the above algorithm a sample of events was generated using the PYTHIA

(Sjöstrand, et al., 2006) Event Generation program. These events were then simulated using the

LDT Monte Carlo Program (Regler, et al., 2007) and (Valentan, et al., 2011) to determine the
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detector response and to obtain fits to the track parameters and their covariance matrix. The

analysis of the fitted tracks and their error matrices was done using the Rave/Vertigo datahar-

vesting and vertexing environment (Waltenberger, 2011) with the above ReML algorithm inserted

internally in the package.

Applying the ReML method to the case of 4 leptons from Higgs decay and also from a known

major source of background (tt→ 4 leptons), where the leptons can be either electrons or muons,

we arrive at a comparison of signal and background shown in Fig. (2). Only events in which all

four tracks had pT > 5 GeV/c were used.
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Figure 2: Red histogram: Expected number of Higgs events at L = 7.62 femptobarn−1 as a

function of the ReML
√

χ2. Blue histogram: Expected number of tt background events at the

same luminosity.

As can be seen Fig. (2), even though the Higgs signal events have a smaller cross section and

a smaller number of expected events than tt events, they are much more peaked near zero
√

χ2

for the same acceptance conditions of the detector. This results in a much higher efficiency (CDF

value) for detecting Higgs as compared to retaining background events as can be seen in Fig. (3).

This means that we can preferentially select Higgs candidates and reject tt background by cutting
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on the χ2 value.

In the case of high luminosity collisions, there can be multiple events detected every time the

detector is triggered. These multiple events are recorded by the detector in the same time window

and are called “pile up”. The ReML method, as well as other 4-track vertexing methods, have

the advantage of being robust against the effects of high pile up since it does not depend on an

auxiliary determination of the best vertex (the Primary Vertex) that matches with the 4-tracks

used in the above analysis. Finding the correct Primary Vertex increases with difficulty as the

proton-proton collision luminosity increases. Discrimination methods, such as b-tagging (Tomalin,

2008), will be adversely affected as the number of pile up events increases. At the LHC design

luminosity, approximately 200 pile up events per beam crossing are expected. The issue of finding

the best Primary Vertex is irrelevant to the 4-track vertex method. If one of the 4-tracks does not

match with the other 3 because it is from an un-related pile up event, then both the b-tagging

algorithm and the 4-track vertex method will assign a large χ2 to that event and it will be rejected.

However, if the wrong Primary Vertex is used as a reference for the b-tagging then all 4-tracks

will register a large χ2 even though they might be matched to a common spatial position by

the 4-track vertex algorithm. These events should not be discarded just because the wrong and
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irrelevant Primary Vertex was used as a reference marker. If the 4-tracks have a small value of χ2

from the 4-track vertex method, then that alone is sufficient to decide if they should be further

analyzed.

9 Conclusion

This paper presents an automated matrix procedure for constructing the ReML likelihood function

and also to identify non-stochastic linear combinations that represent quantities that must be

constrained to zero in the event that the error matrix describing the data is singular. The method

is applied to the problem of determining how close four tracks from a Higgs → 4 lepton decay

approach a common position in space. This method can be used to discriminate between signal

and background events at experiments at the LHC. It has an advantage of being independent of

pile up which is not the case for b-tagging.
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11 Appendix: Pseudocode for Differentiation

of Cholesky Decomposition
This Section includes corrections (shown in red) to the pseudocode which was given in (Smith,

2001a). Construction of the Cholesky decomposition for an indefinite matrix KN×N is summarized

in the following table

Initializations:

L is lower triangular and Lij ← ij-th element of KN×N(x1, x2, ..., xp).

⊖k = “+” if k-th diagonal is part of non-negative submatrix, “−” otherwise.

±k = −⊖k.

Algorithm:

For k = 1, ..., N do

if |Lkk| ≈ zero, check to see if remaining Ljk ≈ zero, j = k + 1, ..., N and skip k-th pivot.

Otherwise, Lkk ← sqrt[⊖kLkk] and do:

Ljk ← ⊖kLjk/Lkk, for j = k + 1, ..., N ,

Lij ← Lij ±k (Ljk × Lik), for j = k + 1, ..., N & i = j, ..., N .

end k

Table 1. Pseudocode for Cholesky Decomposition with Possible Negative Diagonals.

First derivatives, ∂F (L)/∂xv , are summarized in the following table
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Initializations:

L is provided (see Table 1).

FN×N is a work space with elements Fij, defined respectively for i ≥ j.

⊖k = “+” if k-th diagonal is part of non-negative submatrix, “−” otherwise.

±k = −⊖k.

Fij ← ∂F (L)/∂Lij

Algorithm:

(a) F← T (F) by following operations:

For k = N, ..., 1 (N.B. Decreasing Order) do

if |Lkk| > zero, then do:

Fik ← Fik ±k (Fij × Ljk), Fjk ← Fjk ±k (Fij × Lik), for j = k + 1, ..., N & i = j, ..., N

Fjk ← ⊖kFjk/Lkk, Fkk ← Fkk ±k (Fjk × Ljk), for j = k + 1, ..., N

Fkk ← ⊖k(1/2)Fkk/Lkk

end k

(b) ∂F (L)/∂xv =
∑

i≥j Fij × ∂Kij/∂xv, v = 1, 2, ...p.

Table 2. Pseudocode for Backward Differentiation of F (L).

Second derivatives, ∂2F (L)/∂xv∂xu, are summarized in the following table
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Initializations:

L is provided (see Table 1).

⊖k = “+” if k-th diagonal is part of non-negative submatrix, “−” otherwise.

±k = −⊖k.

F← T (∂F (L)/∂Lij) provided (see Table 2).

SN×N and QN×N are work spaces with elements Sij, Qij , defined respectively for i ≥ j.

Qij ← ∂Kij/∂xv, i ≥ j, v ∈ {1, 2, ..., p}.

Algorithm:

(a) For k = 1, ..., N do forward sweep

if |Lkk| > zero, then do:

Qkk ← ⊖k(1/2)×Qkk/Lkk,

Skk ← ±k2×QkkFkk,

Qjk ← [⊖kQjk −QkkLjk]/Lkk,

Sjk ← ±kQkk × Fjk,

Skk ← Skk ±k (Qjk × Fjk), for j = k + 1, ..., N

Qij ← Qij ±k (Qik × Ljk)±k (LikQjk),

Sik ← Sik ±k (Fij ×Qjk), Sjk ← Sjk ±k (Fij ×Qik), for j = k + 1, ..., N & i = j, ..., N

(b) for i ≥ j, Sij ← Sij +
∑

m≥n Qmn × ∂2F (L)/∂Lmn∂Lij .

(c) reverse sweep, S← T (S) (see Table 2).

(d) ∂2F (L)/∂xv∂xu =
∑

i≥j
Sij × ∂Kij/∂xu +

∑

i≥j
Fij × ∂2Kij/∂xv∂xu, u = 1, 2, ..., p.

Table 3. Pseudocode for Backward Differentiation Applied Twice to F (L).
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