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We present a simple quantum relativistic model of neutrino oscillations and propagation in space.
Matrix elements of the neutrino Hamiltonian depend on momentum and this dependence is respon-
sible for the observed neutrino velocity. It is possible to choose the Hamiltonian in such a way
that neutrino velocity oscillates around c in a pattern synchronized with flavor oscillations. The
velocity can exceed c during some time intervals. Due to low masses of the neutrino species νe, νµ, ντ
this superluminal effect is too small to be seen in experiments. The consistency of our model with
fundamental principles of relativity and causality is discussed as well.

I. INTRODUCTION

A recent experiment performed by the ICARUS col-
laboration [1] established that neutrino velocity coincides
with the speed of light within experimental uncertainty.
This result refuted an earlier claim by the OPERA team
[2] about superluminal neutrinos. Taking into account
that OPERA measurements were marred with unfortu-
nate problems, like a loosely connected fiber-optics cable
and a miscalibrated oscillator, it is almost certain that
the exciting story of “superluminal neutrinos” was short-
lived. As one blogger colorfully remarked: So ICARUSs
result likely brings us to the final aria of this OPERA,
and I think it is finally fair to alert the stage manager
to prepare to lower the curtain [3]. Before the curtain is
lowered, let us see if we can learn something useful from
this performance besides the trivial conclusion that one
should check and double-check his or her experimental
equipment.
The scientific community was relieved to learn that

Einstein’s universal speed limit has withstood yet an-
other experimental test. Indeed, according to common
views, superluminal propagation of particles and/or sig-
nals is theoretically impossible. In particular, there is a
widespread belief that superluminal effects violate one of
the most fundamental principles of physics – the principle
of causality.
In this work we will challenge the special-relativistic

ban on superluminal velocities. It is true that relativistic
invariance imposes the speed limit (c) on propagation of
free (non-interacting) particles and of the center of energy
of any compound system. However, we argue that veloc-
ities of individual particles in an interacting system can
exceed c in some cases. Neutrinos provide a simplest ex-
ample of such an interacting system, because they expe-
rience permanent interaction responsible for oscillations
between different flavors (νe, νµ and ντ ). In this work we
formulate a quantum relativistic Hamiltonian H, which
describes neutrino oscillations and, at the same time, per-
mits superluminal effects in neutrino propagation. The
key feature of this Hamiltonian is the momentum depen-

∗ eugene stefanovich@usa.net

dence of its matrix elements. In our previous work [4] we
showed that momentum dependence of non-diagonal ma-
trix elements of H can be responsible for a non-vanishing
separation between different neutrino flavors. This may
lead to observable superluminal effects even when veloci-
ties of each neutrino component do not exceed the speed
of light. Here we will focus on momentum dependencies
of diagonal matrix elements of H, which are responsi-
ble for the velocities of neutrino components. We will
demonstrate that in some circumstances these velocities
may oscillate around the constant center-of-energy veloc-
ity, and there may be time periods when instantaneous
velocity of a given neutrino component exceeds the speed
of light.

Superluminal effects are well documented in relativistic
quantum theory of particles. The best known example is
the faster-than-light spreading of localized wave packets
[5–11]. Here we consider a new type of quantum superlu-
minal phenomenon. It is characteristic only to particles
(such as neutrinos) experiencing flavor mixing and os-
cillations. Remarkably, in our model the superluminality
persists even for particle trajectories in the classical limit.

Unfortunately, this model contains a number of un-
specified parameters, so it does not allow us to predict the
numerical magnitude of the superluminal effect. Most
likely this magnitude is very small, much smaller than
the sensitivity of modern instruments. So, we are not
going to compare our results with experiments. We will
be interested in more fundamental questions: Is it the-
oretically possible to have superluminal neutrino veloc-
ities in a relativistic quantum theory? If the answer is
“yes”, then how this result (dis)agrees with the principle
of causality?

II. EXPERIMENTAL DATA

There were four major experiments [1, 2, 12–14] mea-
suring µ-neutrino propagation speed. Their essential pa-
rameters are listed in Table I. All these experiments
shared the same basic design: An energetic proton beam
from accelerator collided with a target thus producing
charged π+ and K+ mesons, which decayed in-flight into
muon and a µ-neutrino. The neutrino beam was captured
by a distant detector. Then, knowing the time-of-flight
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t and the propagation length L one could determine the
apparent propagation speed as vµ ≡ L/t. It is convenient
to express experimental results in terms of the superlu-
minality parameter

δv ≡ vµ − c

c
(1)

Positive values of δv correspond to faster-than-light prop-
agation.

TABLE I. Experiments measuring neutrino velocity.

Property Fermilab [12, 13] MINOS [14] OPERA [2] ICARUS [1] SN1987A [15–17]

Neutrino flavor νµ νµ νµ νµ νe

Neutrino energy E (GeV) 32 - 195 3 13.8 - 40.7 13.8 - 40.7 0.0075 - 0.040

Base L (km) 0.55 - 0.895 734 730 730 15 × 1012

β = L/E (km/GeV) 0.003 − 0.028 245 43 43 (0.38 − 2.0) × 1015

δv (10−5) 0 ± 4 5.1 ± 2.9 2.37 ± 0.43 0.12 ± 0.4 (0 ± 2) × 10−4

In the early experiment at Fermilab [12, 13] this scheme
was not followed as the propagation time t was not ac-
tually measured. Instead, the experimentalists have no-
ticed that neutrinos arrived in the detector almost simul-
taneously with muons originated from the same meson
decay. Since energetic muons are known to travel with
the speed of light, it was concluded that neutrino speed
did not exceed c as well. The experimental limit on the
parameter δv was found to be |δv| < 4× 10−5 for a num-
ber of neutrino energies E ranging from 32 GeV to 195
GeV.
A more recent MINOS experiment [14] used a lower

neutrino energy of about 3 GeV and performed direct
time of flight measurements on a long baseline of 734
km. A significant superluminal effect δv = 5.1 × 10−5

was observed, but experimental uncertainties were too
high to definitively claim the discovery.
A similar design was used in the OPERA experiment

[2]: Muon-type neutrinos were produced at the CERN
accelerator site and registered by the OPERA detector
730 kilometers away. A significant superluminal effect
δv = 2.37 × 10−5 was observed in a broad energy in-
terval 13.8 GeV - 40.7 GeV with an impressive 6σ sig-
nificance. After publication of the OPERA preprint [2],
reports have appeared in the press that the accuracy of
measurements was significantly compromised by at least
two mishaps. So, at this point the validity of the OPERA
result is in question. Several laboratories are planning to
repeat OPERA-type neutrino velocity studies. One such
investigation has been completed by the ICARUS collab-
oration [1]. They have not observed any superluminal
effect.
Relevant data from a different kind of observation are

presented in the last column of Table I. In this case elec-
tron antineutrinos and photons emitted by the SN1987A
supernova were detected on Earth [15, 16]. So, the prop-
agation length was L = 160000 light years. It was con-

cluded that parameter δv was essentially zero with an
extremely low uncertainty of 2× 10−9 [17].

For our discussion in this work we will need numeri-
cal values of essential neutrino properties, such as their
masses and mixing angles shown in Table II. Neutrino
masses are not well established: neither their free (non-
interacting) values me,µ,τ nor eigenvalues m1,2,3 of the
interacting mass operator. The present consensus is that
these masses are rather low – on the order of 1 eV/c2. It
is well established that in the course of propagation neu-
trinos change their flavors due to the effect of neutrino
oscillations [18, 19]. Experimental studies of neutrino
oscillation frequencies [20, 21] provide rather precise val-
ues of differences of squared mass eigenvalues shown in
the Table. Observed oscillation amplitudes are related
to mixing angles. Only the θ23 angle is relevant for this
work. Note that the mixing coefficient sin2 2θ23 is only
known to be higher than 0.9 [20]. In our calculations we
used the value of 0.97 for illustration purposes.

TABLE II. Neutrino properties used in this work.

Property Value

Masses m1,2,3 ≈ 1 eV/c2

|m2
3 −m2

2| 2.43 × 10−3 eV2/c4 [20]

m2
2 −m2

1 8.0 × 10−5 eV2/c4 [21]

Mixing coefficient sin2 2θ23 0.97

III. NON-INTERACTING NEUTRINOS

We would like to describe a free neutrino system os-
cillating between two states: µ-neutrino and τ -neutrino.
For simplicity, we will ignore the possible effect of the
third (electron) neutrino species. Then the Hilbert space
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can be constructed as a direct sum of two one-particle
subspaces

H = Hµ ⊕Hτ (2)

This Hilbert space will be used for both non-interacting
and interacting neutrino systems. For simplicity, we for-
mulate our model in one spatial dimension, but its gen-
eralization for the real 3D world is not expected to bring
about any significant changes. This introductory section
will cover the case in which the flavor-mixing interaction
is turned off.

A. Representation of the Poincaré group

Both Hµ and Hτ are Hilbert spaces carrying unitary
irreducible representations of the Poincaré group char-
acterized by (non-observable) free neutrino masses mµ

and mτ , respectively, and zero spins. The noninteract-
ing representation of the Poincaré group acting in the
Hilbert space H can be built as a direct sum of these
two irreducible representations. To write explicit formu-
las we will choose a convenient basis set in (2): For each
momentum p we select two orthonormal basis states of
definite flavor. Then each normalized state vector |ψ⟩ can
be represented as a 2-component momentum-dependent
vector in this (flavor) basis

|ψ⟩ ≡

[
Φµ(p)

Φτ (p)

]

where Φµ,τ (p) are complex wave functions satisfying the
normalization condition

∫
dp
(
|Φµ(p)|2 + |Φτ (p)|2

)
= 1

Projection operators on the particle subspaces Hµ and
Hτ are

Πµ =

[
1 0

0 0

]
(3)

Πτ =

[
0 0

0 1

]
(4)

respectively.
In this paper we adopt Schrödinger representation:

Any inertial change of the observer is reflected in a
change of system’s state vector or wave function. Dif-
ferent observers use the same Hermitian operator to de-
scribe a given observable. Finite transformations from
the Poincaré group (space translations, time translations

and boosts) are represented in the Hilbert space by ex-
ponential functions of generators [22]

e
i
h̄P0a|ψ⟩ =

[
e

i
h̄paΦµ(p)

e
i
h̄paΦτ (p)

]

e−
i
h̄H0t|ψ⟩ =

[
e−

i
h̄ωµ(p)tΦµ(p)

e−
i
h̄ωτ (p)tΦτ (p)

]

e
i
h̄K0cθ|ψ⟩ =

 √ωµ(Λµp)
ωµ(p)

Φµ(Λµp)√
ωτ (Λτp)
ωτ (p)

Φτ (Λτp)


where

ωµ,τ (p) ≡
√
m2

µ,τ c
4 + p2c2

Λµ,τp ≡ p cosh θ − ωµ,τ

c
sinh θ

and parameter θ is related to the boost velocity v by
formula v = c tanh θ.

The basis of the corresponding representation of the
Poincaré Lie algebra is provided by Hermitian operators
of total momentum P0, total energy H0 and boost K0.
Explicit matrix forms of these generators can be obtained
by differentiation

P0 = −ih̄ lim
a→0

d

da
e

i
h̄P0a =

[
p 0

0 p

]
(5)

H0 =

[
ωµ(p) 0

0 ωτ (p)

]
(6)

K0 = −ih̄

[
ωµ(p)
c2

d
dp + p

2ωµ(p)
0

0 ωτ (p)
c2

d
dp + p

2ωτ (p)

]
(7)

The Newton-Wigner (center of energy) position oper-
ator is given by formula [23]

R0 = −c
2

2
(K0H

−1
0 +H−1

0 K0) = ih̄

[
d
dp 0

0 d
dp

]
(8)

Position operators for individual particles can be ob-
tained by applying projection operators (3) - (4) to (8)

rµ = ΠµR0Πµ = ih̄

[
d
dp 0

0 0

]
(9)

rτ = ΠτR0Πτ = ih̄

[
0 0

0 d
dp

]
(10)
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B. Particle trajectories

The above formalism allows us to obtain classical tra-
jectories of non-interacting neutrinos. By itself, this cal-
culation is rather trivial. We reproduce it here because
it provides a useful template for the more interesting in-
teracting case in section V. Suppose that at time t = 0
we prepared a state vector with one µ-neutrino having a
normalized momentum-space wave function ψ(p)

|ψ(0)⟩ ≡

[
ψ(p)

0

]
(11)∫

dp|ψ(p)|2 = 1

Let us now postulate that this wave function is localized
in a narrow region ∆p of the momentum space and that
the center of the wave packet is at a large positive mo-
mentum ⟨p⟩ > 3 GeV/c. Then we can safely conclude
that our particle is ultrarelativistic

⟨p⟩ ≫ mµc ≈ mτ c (12)

ωµ(p) ≈ ωτ (p) ≈ cp (13)

The expectation value of the µ-neutrino position at
t = 0 is

⟨rµ(0)⟩ ≡ ⟨ψ(0)|rµ|ψ(0)⟩

= ih̄

∫
dp[ψ∗(p), 0]

[
d
dp 0

0 0

][
ψ(p)

0

]

= ih̄

∫
dpψ∗(p)

dψ(p)

dp
(14)

Since rµ is a Hermitian operator, this expectation value
must be real. To make this fact obvious, we can rewrite
(14) in an explicitly real form by using the fact that
the wave function ψ(p) vanishes at infinity ψ(−∞) =
ψ(+∞) = 0

⟨rµ(0)⟩ = ih̄|ψ(p)|2
∣∣∣+∞

−∞
−ih̄

∫
dpψ(p)

dψ∗(p)

dp

=
ih̄

2

(∫
dpψ∗(p)

dψ(p)

dp
−
∫
dpψ(p)

dψ∗(p)

dp

)
= −h̄

∫
Im

dpψ∗(p)
dψ(p)

dp

where
∫
Im

means the imaginary part of the integral. At
a non-zero time instant t

⟨rµ(t)⟩ = ⟨ψ(0)|e i
h̄H0trµe

− i
h̄H0t|ψ(0)⟩

= −h̄
∫
Im

dp[ψ∗(p)e
i
h̄ωµ(p)t, 0]

[
d
dp 0

0 0

][
ψ(p)e−

i
h̄ωµ(p)t

0

]

≈ −h̄
∫
Im

dpψ∗(p)
dψ(p)

dp
+ ct

∫
dp|ψ(p)|2

= ⟨rµ(0)⟩+ ct (15)

If the initial state is in the τ -neutrino sector then, anal-
ogously

⟨rτ (t)⟩ = ⟨rτ (0)⟩+ ct (16)

Within our linear approximation (13) we have ne-
glected the wave function “spreading” effect, which
is known to be superluminal but negligibly small [5–
11]. Formulas (15) - (16) show that high-energy non-
interacting neutrinos propagate with velocities just below
the speed of light. However, this result cannot be applied
directly to real neutrinos that experience an ever-present
interaction responsible for the oscillation effect [18]. Our
goal in this paper is to find out how this interaction af-
fects neutrino trajectories. Our calculation method is,
basically, similar to that outlined above. First, we need
to construct an interacting representation of the Poincaré
group in the Hilbert space H, which is consistent with
observed oscillations. We are especially interested in the
interacting time evolution generator (the Hamiltonian)
H, whose construction will be done in section IV. Then
trajectories of oscillating neutrinos will be obtained in
section V by using H instead of H0 in formulas (15) and
(16).

IV. INTERACTION

A. Interacting Hamiltonian

In the Dirac’s instant form of dynamics [24, 25], rela-
tivistically invariant description of interaction is achieved
by adding extra terms to both the energy operator H =
H0+V and the boost operatorK = K0+Z, while keeping
the total momentum P0 unchanged. The choice of inter-
actions V and Z must ensure that Poincaré commutators
remain the same as in the non-interacting case

[H,P0] = 0 (17)

[K,P0] = − ih̄
c2
H (18)

[K,H] = −ih̄P0 (19)

In this work we will assume that the Hermitian interac-
tion operator is

V =

[
ξ(p) f(p)

f(p) ζ(p)

]

where diagonal elements ξ(p), ζ(p) and the off-diagonal
f(p) are real functions [26]. Then in the flavor basis we
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can write the full Hamiltonian as a 2 × 2 momentum-
dependent matrix

H = H0 + V =

[
Ωµ(p) f(p)

f(p) Ωτ (p)

]
(20)

where Ωµ(p) ≡ ωµ(p) + ξ(p) and Ωτ (p) ≡ ωτ (p) + ζ(p).
The corresponding operator of interacting mass is defined
as M = +

√
H2 − P 2

0 c
2/c2.

B. Mass (energy) eigenstates

Our primary goal in this section is to calculate the
time evolution of neutrino states. This can be done most
easily if we find eigenvalues E2,3(p) and eigenstates of H.
So, we need to solve equation

0 =

[
Ωµ(p)− E2,3(p) f(p)

f(p) Ωτ (p)− E2,3(p)

][
Φ2,3

µ (p)

Φ2,3
τ (p)

]
(21)

together with normalization conditions (i = 2, 3)

|Φi
µ(p)|2 + |Φi

τ (p)|2 = 1 (22)

For the eigenvalues E2, E3 we obtain two equations

f2(p) = [Ωµ(p)− E2(p)] [Ωτ (p)− E2(p)]

= [Ωµ(p)− E3(p)] [Ωτ (p)− E3(p)]

A necessary requirement for this theory to be relativisti-
cally invariant is that energy eigenvalues have the stan-
dard momentum dependence

E2,3(p) =
√
m2

2,3c
4 + p2c2 (23)

where m2,3 are neutrino mass eigenvalues. The true
Hamiltonian (20) is not known, so we are free to make
our guesses. We will assume that the mass eigenvalues
are known: m3 > m2 > 0. Then, having at our disposal
three adjustable real functions Ωµ(p), Ωτ (p) and f(p) we
can always choose them in such a way that conditions
(23) are satisfied and

Ωµ(p) + Ωτ (p) = E2(p) + E3(p)

For example, we can express Ωτ (p) and f(p) in terms of
an arbitrarily chosen Ωµ(p)

Ωτ (p) = E2(p) + E3(p)− Ωµ(p) (24)

f2(p) = (Ωµ(p)− E2(p))(E3(p)− Ωµ(p)) (25)

As can be verified by direct substitution in (21) - (22),
common eigenvectors of H,M and P0 are

|2, p⟩ =

[
A(p)

−B(p)

]

|3, p⟩ =

[
B(p)

A(p)

]
where we introduced notation

A(p) ≡ +

√
Ωτ (p)− E2(p)

E3(p)− E2(p)
(26)

B(p) ≡ +

√
Ωµ(p)− E2(p)

E3(p)− E2(p)
(27)

A2(p) +B2(p) = 1 (28)

Parameters A and B can be written in a more standard
form [27]

A(p) ≡ cos θ23(p)

B(p) ≡ sin θ23(p)

but we will stick with A and B to keep our formulas
short.

Next we need to find a connection between the flavor
and mass-energy bases. If (Ψ2(p),Ψ3(p)) is a state vec-
tor written in the basis of mass eigenstates [28], then its
expansion in the flavor basis is obtained by a unitary
transformation

[
Φµ(p)

Φτ (p)

]
=

(
A(p) B(p)

−B(p) A(p)

)(
Ψ2(p)

Ψ3(p)

)
(29)

The transformation from the flavor basis to the mass ba-
sis is provided by the inverse matrix

(
Ψ2(p)

Ψ3(p)

)
=

[
A(p) −B(p)

B(p) A(p)

][
Φµ(p)

Φτ (p)

]
(30)

C. Interacting representation of the Poincaré group

The mass basis is useful because the interacting rep-
resentation of the Poincaré group takes especially simple
form there

e−
i
h̄Ht

(
Ψ2(p)

Ψ3(p)

)
=

(
e−

i
h̄E2(p)tΨ2(p)

e−
i
h̄E3(p)tΨ3(p)

)
(31)

e
i
h̄Kcθ

(
Ψ2(p)

Ψ3(p)

)
=

 √E2(Λ1p)
E2(p)

Ψ2(Λ1p)√
E3(Λ2p)
E3(p)

Ψ3(Λ2p)


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where Λip ≡ p cosh θ − (Ei/c) sinh θ is the usual boost
transformation of momentum.
Poincaré generators in the mass basis can be obtained

by differentiation similar to (5) - (7)

H = ih̄ lim
t→0

d

dt
e−

i
h̄Ht =

(
E2(p) 0

0 E3(p)

)
(32)

K = −ih̄

(
E2(p)
c2

d
dp + p

2E2(p)
0

0 E3(p)
c2

d
dp + p

2E3(p)

)
(33)

P0 =

(
p 0

0 p

)
(34)

In this representation one can easily verify that commu-
tators (17) - (19) are satisfied. So, our theory is relativis-
tically invariant.

V. INTERACTING TIME EVOLUTION

Obviously, the state vector with one µ-neutrino (11) is
not a stationary eigenstate of the Hamiltonian (20). Our
goal in this section is to calculate the time evolution of
such pure flavor states.

A. Time-dependent wave function

In analogy with (12) - (13) and using neutrino param-
eters from Table I we can approximate

⟨p⟩ ≫ m2,3c

E2(p) =
√
m2

2c
4 + p2c2 ≈ cp

E3(p) =
√
m2

3c
4 + p2c2 ≈ cp+ γ(p)

dE2(p)

dp
≈ dE3(p)

dp
≈ c (35)

γ(p) ≈ (m2
3 −m2

2)c
3

2p
(36)

dγ(p)

dp
≈ 0 (37)

To find the time evolution of the initial state (11) we
use (30) to expand it in the mass basis

|ψ(0)⟩ = ψ(p)

(
A(p)

B(p)

)

and apply (31)

|ψ(t)⟩ = e−
i
h̄Ht|ψ(0)⟩ = ψ(p)

(
A(p)e−

i
h̄E2(p)t

B(p)e−
i
h̄E3(p)t

)
(38)

Wave function components in the flavor basis can be
found using transformation (29)

|ψ(t)⟩

= ψ(p)

(
A(p) B(p)

−B(p) A(p)

)(
A(p)e−

i
h̄E2(p)t

B(p)e−
i
h̄E3(p)t

)

= ψ(p)

[
A2(p)e−

i
h̄E2(p)t +B2(p)e−

i
h̄E3(p)t

A(p)B(p)
(
e−

i
h̄E3(p)t − e−

i
h̄E2(p)t

) ] (39)

B. Oscillations

The probabilities for finding µ-neutrino and τ -neutrino
in the state (39) can be found as expectation values of
operators (3) - (4) projecting on the corresponding flavor
subspaces. Before evaluating these integrals let us make a
few comments about how we are going to deal with mo-
mentum integrals in this work. The integrands always
contain the momentum-space wave function ψ(p) which
was assumed to be localized within a small interval ∆p
centered at momentum ⟨p⟩ ≈ E/c, where E is particle’s
energy. Inside this interval we can treat functions A(p),
B(p), E2,3(p) and γ(p) as constants (denoted simply by
A, B, E2,3 and γ). These constants can be moved out-
side the integral sign. In some integrals we will also meet
derivatives dA(p)/dp, dB(p)/dp, dΩµ(p)/dp, etc. We will
ignore their variations within ∆p as well and replace them
by constants denoted dA/dp, dB/dp, dΩµ/dp . . .. With
these considerations in mind we find that flavor proba-
bilities are sinusoidal functions of time [18]

ρµ(t) ≡ ⟨ψ(t)|Πµ|ψ(t)⟩ ≈
(
A2e

i
h̄E2t +B2e

i
h̄E3t

)(
A2e−

i
h̄E2t +B2e−

i
h̄E3t

)∫
dp|ψ(p)|2

= A4 +B4 + 2A2B2 cos

(
γt

h̄

)
= 1− sin2 2θ23 sin

2 γt

2h̄
(40)

ρτ (t) ≡ ⟨ψ(t)|Πτ |ψ(t)⟩ ≈ A2B2
(
e

i
h̄E3t − e

i
h̄E2t

)(
e−

i
h̄E3t − e−

i
h̄E2t

)∫
dp|ψ(p)|2

= 2A2B2 − 2A2B2 cos

(
γt

h̄

)
= sin2 2θ23 sin

2 γt

2h̄



7

1 = ρµ(t) + ρτ (t)

In our ultrarelativistic limit the oscillation period is

T =
2πh̄

γ
≈ 4πh̄E

∆m2c4
(41)

C. Conservation laws

The oscillatory behavior of neutrinos described above
may raise doubts about the validity of conservation laws.
However, there is no reason for concerns. Conservation
laws for the total momentum P0 and energy H are easily
verified using mass basis representation formulas (32),
(34) and (38)

⟨P0(t)⟩ ≡ ⟨ψ(t)|P0|ψ(t)⟩ = ⟨p⟩
⟨H(t)⟩ ≡ ⟨ψ(t)|H|ψ(t)⟩ = c⟨p⟩

More work is required to prove another conservation
law that says that the center of energy of any isolated
physical system moves with a constant velocity along a
straight line. This law follows from definition of the in-
teracting center-of-energy position

R = −c
2

2
(KH−1 +H−1K)

and the relationship (written in the Heisenberg represen-
tation)

K(t) ≡ e
i
h̄HtKe−

i
h̄Ht = K − P0t

which is a direct consequence of basic commutators (18)
- (19). Combining these two formulas we obtain the fol-
lowing linear time dependence for the center-of-energy
expectation value in any state

⟨R(t)⟩ = ⟨R(0)⟩+ c2⟨P0(0)⟩
⟨H(0)⟩

t = ⟨R(0)⟩+ ct (42)

To verify this result explicitly for our state (38) we use
the matrix form of the boost operator (33) and definition

⟨K(0)⟩ =
∫
dpψ∗(p)Kψ(p)

Then with the help of eq. (28) we obtain

⟨K(t)⟩ ≡ ⟨ψ(t)|K|ψ(t)⟩

= −ih̄
∫
dpψ∗(p)

(
A(p)e

i
h̄E2(p)t, B(p)e

i
h̄E3(p)t

)( E2(p)
c2

d
dp + p

2E2(p)
0

0 E3(p)
c2

d
dp + p

2E3(p)

)
ψ(p)

(
A(p)e−

i
h̄E2(p)t

B(p)e−
i
h̄E3(p)t

)

≈
(
Ae

i
h̄E2t, Be

i
h̄E3t

)(
Ae−

i
h̄E2t

Be−
i
h̄E3t

)∫
dpψ∗(p)Kψ(p)

− ih̄⟨p⟩
c

(
Ae

i
h̄E2t, Be

i
h̄E3t

)( dA
dp e

− i
h̄E2t − iA

h̄ cte
− i

h̄E2t

dB
dp e

− i
h̄E3t − iB

h̄ cte
− i

h̄E3t

)∫
dp|ψ(p)|2

= ⟨K(0)⟩ − ih̄⟨p⟩
c

(
A
dA

dp
− iA2

h̄
ct+B

dB

dp
− iB2

h̄
ct

)
= ⟨K(0)⟩ − ⟨p⟩t

This means that the center-of-energy ⟨R(t)⟩ = −c2⟨K(t)⟩/⟨H⟩ moves with the light speed c, as expected from (42).

D. Neutrino trajectories

We find averaged trajectories of the two neutrino species as expectation values of their position operators (9) - (10)
scaled by corresponding probabilities ρµ,τ (t)

⟨rµ(t)⟩ =
⟨ψ(t)|rµ|ψ(t)⟩

ρµ(t)
(43)

⟨rτ (t)⟩ =
⟨ψ(t)|rτ |ψ(t)⟩

ρτ (t)
(44)



8

For the νµ trajectory we obtain

⟨ψ(t)|rµ|ψ(t)⟩

= −h̄
∫
Im

dpψ∗(p)
(
A2(p)e

i
h̄E2(p)t +B2(p)e

i
h̄E3(p)t

) d

dp
ψ(p)

(
A2(p)e−

i
h̄E2(p)t +B2(p)e−

i
h̄E3(p)t

)
≈ −h̄

(
A2e

i
h̄E2t +B2e

i
h̄E3t

)(
A2e−

i
h̄E2t +B2e−

i
h̄E3t

)∫
Im

dpψ∗(p)
d

dp
ψ(p)

− h̄ Im

[(
A2e

i
h̄E2t +B2e

i
h̄E3t

)(dA2

dp
e−

i
h̄E2t − iA2ct

h̄
e−

i
h̄E2t +

dB2

dp
e−

i
h̄E3t − iB2ct

h̄
e−

i
h̄E3t

)]∫
dp|ψ(p)|2

= ⟨rµ(0)⟩ρµ(t)− h̄

(
B2 dA

2

dp
sin

γt

h̄
− A4ct

h̄
− A2B2ct

h̄
cos

γt

h̄
−A2 dB

2

dp
sin

γt

h̄
− A2B2ct

h̄
cos

γt

h̄
− B4ct

h̄

)
= ⟨rµ(0)⟩ρµ(t) + ρµ(t)ct− h̄

(
B2 dA

2

dp
−A2 dB

2

dp

)
sin

γt

h̄

= ⟨rµ(0)⟩ρµ(t) + ρµ(t)ct+ h̄
dB2

dp
sin

γt

h̄

With the help of (27), (35) and (37) we can simplify

dB2

dp
=

d

dp

(
Ωµ − E2

γ

)
≈ 1

γ

(
dΩµ

dp
− c

)

In what follows we place the origin of our coordinate
system at the point where µ-neutrino was created at t =
0. Then, finally, we obtain our main result for the µ-
neutrino trajectory

⟨rµ(t)⟩ ≈ ct+
h̄

γρµ(t)

(
dΩµ

dp
− c

)
sin

γt

h̄
(45)

The second term on the right hand side is the interac-
tion correction. This term can take both positive and
negative values depending on the yet unspecified value
dΩµ/dp and on time t. Thus µ-neutrino position os-
cillates around the center-of-energy (42). Defining the
apparent propagation velocity as vµ(t) ≡ ⟨rµ(t)⟩/t we
obtain the time-dependent superluminality parameter

δv(t) ≡ vµ(t)− c

c
=

h̄

γρµ(t)ct

(
dΩµ

dp
− c

)
sin

γt

h̄
(46)

E. The νµ − ντ asymmetry

To get trajectory of the ντ component of the state (38)
we evaluate (44)

⟨rτ (t)⟩ = − h̄

ρτ (t)

∫
Im

dpψ∗(p)A(p)B(p)
(
e

i
h̄E3(p)t − e

i
h̄E2(p)t

) d

dp
ψ(p)A(p)B(p)

(
e−

i
h̄E3(p)t − e−

i
h̄E2(p)t

)
= ⟨rτ (0)⟩ −

h̄A2B2

ρτ (t)
Im

[(
e

i
h̄E3t − e

i
h̄E2t

)(
− ict
h̄
e−

i
h̄E3t +

ict

h̄
e−

i
h̄E2t

)]
= ⟨rτ (0)⟩+

A2B2ct

ρτ (t)

(
e

i
h̄E3t − e

i
h̄E2t

)(
e−

i
h̄E3t − e−

i
h̄E2t

)
= ⟨rτ (0)⟩+ ct (47)

This means that, unlike its νµ counterpart, the τ -
neutrino trajectory always coincides with the center of
energy (42).

Interestingly, if the τ -neutrino were created first, i.e.,
the initial state was

|ψ(0)⟩ ≡

[
0

ψ(p)

]
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Ωμ(p)

FIG. 1. Neutrino energy diagram. Theoretical consistency
requires function Ωµ(p) to remain within the shaded area for
a broad range of momenta.

instead of (11), then the ντ trajectory would exhibit the
oscillatory pattern, while the accompanying µ-neutrino
would travel with the constant velocity c.
It seems strange that behaviors of νµ and ντ depend

so much on which species was created originally (at time
t = 0). For example, suppose that in the case of full
mixing (A2 = B2 = 1/2) we have prepared a pure µ-
neutrino state (11) at t = 0. According to (39), at time
equal to the half-period of oscillation t = T/2 = πh̄/γ
the system evolves into a τ -neutrino state

|ψ(T/2)⟩ ≈ ψ(p)e−
i
2h̄E2T

[
A2 +B2e−iπ

AB
(
e−iπ − 1

) ]

= ψ(p)e−
i
2h̄E2T

[
0

−1

]
(48)

At the first sight this state is supposed to behave in the
same manner as if the τ -neutrino was prepared initially
(with the exception of the overall time shift by T/2 and
spatial shift by cT/2), i.e., the µ-component should have
a straight trajectory while the ντ trajectory should oscil-
late in disagreement with our results (45) and (47). This
“paradox” is caused by approximation used in (48). In a
rigorous treatment, the vector components on the right
hand side of (48) are not exactly 0 and -1. They have
small (but not negligible) p-dependent contributions. So,
|ψ(T/2)⟩ is not a pure ντ state and it is not required to
behave exactly as the pure ντ state.

VI. SUPERLUMINAL EFFECTS

A. Model parameters

For illustration purposes in this section we will per-
form numerical calculations of the µ-neutrino trajectory

(45) - (46) for a specific choice of interaction parameters.
Our Hamiltonian (20) depends on just one adjustable pa-
rameter Ωµ(p) with two other matrix elements Ωτ (p) and
f(p) given by formulas (24) and (25), respectively. It is
clear from (46) that in order to have a sizeable superlumi-
nal effect one needs to assume that dΩµ(p)/dp ̸= c. So,
we are going to postulate that this derivative is nearly
constant

dΩµ

dp
≈ 1.0000237c (49)

within the entire energy range 3 - 40 GeV characteristic
for the MINOS, OPERA and ICARUS experiments (see
Table I).

It is not easy to satisfy condition (49). The trouble is
that the right hand side of (25) must be positive. This
can happen only if Ωµ(p) is in the interval [E2(p), E3(p)],
which means that the line representing function Ωµ(p) in
Fig. 1 should lie entirely within the shaded area. But
this is difficult to achieve, because the tiny width of this
area γ < 10−12 eV cannot accommodate the slope (49) so
different from c. The only possibility to squeeze function
Ωµ(p) inside the narrow band [E2(p), E3(p)] is to assume
that Ωµ(p) has a sawtooth shape shown by the thick line
in the Figure. This is a rather unnatural behavior, but
it does not contradict any fundamental principles. So,
for illustration purposes in this section we will accept
neutrino Hamiltonian (20) with Ωµ(p) specified in (49)
and in Fig. 1.

B. Model predictions

Now, with our Hamiltonian being fully specified, we
can evaluate how the superluminal effect depends on the
neutrino energy E and propagation distance L ≈ ct. In-
serting (49) in formulas (45) - (46) we obtain

⟨rµ(L/c)⟩ ≈ L+
2.37× 10−5h̄c

γρµ(t)
sin

γL

h̄c
(50)

δv ≈ 1

L
(⟨rµ(L/c)⟩ − L) =

2.37× 10−5h̄c

Lγρµ(L/c)
sin

γL

h̄c

To evaluate these expressions we use formulas (36), (40)
and neutrino parameters from Table II. For further sim-
plification we introduce parameter β = L(km)/E(GeV),
whose values for relevant experiments are listed in Table
I. Then δv becomes a universal function of β, which is
applicable for all values of L and E

δv(β) =
3.85× 10−3 sin(6.2× 10−3β)

β(1− 0.97 sin2(3.1× 10−3β))
(51)

This function is plotted in Fig. 2 [29]. The maximum
superluminal effect δv ≈ 5 × 10−5 occurs at β ≈ 430
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FIG. 2. Deviation of the apparent µ-neutrino velocity from
the speed of light as a function of parameter β = L/E.

km/GeV. Unfortunately, this is exactly the region of
β where the probability of finding a µ-neutrino in the
beam is at its lowest point ≈ 3%. For higher val-
ues β > 430 km/GeV the superluminal effect rapidly
decreases, and the propagation becomes subluminal at
β > 505 km/GeV. For even higher β the function δv(β)
oscillates between positive and negative values and grad-
ually decays δv ∝ β−1 as β tends to infinity [30].
It is also interesting to calculate trajectory (50) for

a single νµ particle with fixed energy E. On average
this trajectory coincides with the path r(t) = ct of the
center of energy (c.o.e). However, the second term on the
right hand side of (50) is responsible for small oscillations
around this linear path. Right after the emission neutrino
speed exceeds the light speed by the factor 1 + δv(0) =
1.0000237. Then the neutrino slows down, so that at the
end of the first half-period (T/2) the c.o.e. catches up.
During the second half-period neutrino moves behind the
c.o.e., and at t = T their positions coincide again. This
cycle repeats indefinitely, so, if averaged over a long time
interval, neutrino speed is the same as the speed of light.
It is convenient to measure neutrino position oscilla-

tions in terms of neutrino-c.o.e. separation ∆L = Lδv.
This quantity is plotted in Fig. 3 as a function of the
traveled distance L for two neutrino energies E = 3
GeV and E = 17 GeV taken from the MINOS and
OPERA/ICARUS experiments, respectively.

VII. DISCUSSION

In this article we have formulated a simple model of os-
cillating neutrinos. This model satisfies all requirements
of relativistic quantum theory: A unitary representa-
tion of the Poincaré group is constructed explicitly in
the neutrino Hilbert space, and this representation takes
into account interaction responsible for neutrino oscilla-
tions. Relativistic invariance requires that matrix ele-
ments Ωµ(p),Ωτ (p), f(p) . . . of the neutrino Hamiltonian
have non-trivial momentum dependencies. This implies
that in the classical limit neutrinos are not required to

L(km)
1000 1500 2000 2500 3000

-30

-60

30

60 ΔL (m)

500

E=3GeV

E=17GeV

MINOS

OPERA

Fermilab ICARUS

FIG. 3. Separation between the µ-neutrino and r(t) = ct
trajectory as a function of traveled distance for two particle
energies 3 GeV and 17 GeV. Positive values of ∆L correspond
to superluminal propagation.

propagate with the constant speed c. Their speed can
oscillate around the speed of light, so that in some con-
ditions one can observe a superluminal propagation.

It is true that our numerical example with the saw-
tooth form of the matrix element Ωµ(p) shown in Fig. 1
does not seem realistic. It is more likely that Ωµ(p) is a
smooth monotonous function, which means that super-
luminal effects (if present) are many orders of magnitude
smaller than those depicted in Figs. 2 and 3. Neverthe-
less, it seems disturbing that our model, while satisfy-
ing all requirements of relativistic quantum theory, still
permits faster-than-light particle trajectories. According
to common views, even small violations of the universal
speed limit are forbidden, because they imply violations
of the causality principle as well. So, it appears that we
have a paradox here.

A. Comments on causality

To clarify this situation recall that traditional argu-
ments establishing the propagation speed limit invoke
Lorentz transformations of special relativity. They say
that if (x, t) are space-time coordinates of a physical
event in the reference frame at rest, then in the iner-
tial frame moving with velocity v ≡ c tanh θ space-time
coordinates of the same event are given by formulas

x′ = x cosh θ − ct sinh θ (52)

t′ = t cosh θ − (x/c) sinh θ (53)

Special relativity postulates that these formulas remain
valid in all circumstances, independent on the physical
nature of the event occurring at (x, t) and on interactions
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responsible for this event. The tacit or explicit assump-
tion used in many discussions of quantum relativistic ef-
fects is that space-time arguments of wave functions must
transform by the same formulas, i.e., that the position-
space wave function in the moving frame is

ψ(θ;x, t)

= ψ(0;x cosh θ − ct sinh θ, t cosh θ − (x/c) sinh θ)(54)

If this were true, then the observed superluminal prop-
agation of neutrinos would be scandalous, because, ac-
cording to (52) - (54), one would be able to find a moving
reference frame in which neutrino arrival in the detector
happened before its creation in the meson decay process.
So, in this moving frame the effect would occur before its
cause, which is impossible.
However, there are logical gaps in the above argu-

ments. These gaps allow us to suggest that violation of
causality in our model is not obvious at all. In our work
we have used fully relativistic approaches: the Newton-
Wigner’s definition of particle’s position [31] and Wigner-
Dirac formulation of quantum dynamics [24]. In these
theories formula (54) is not valid even in the case of non-
interacting particles. The correct non-interacting wave
function transformation law is [32]

ψ(θ;x, t) = ⟨x|e− i
h̄H0te

i
h̄K0cθ|ψ⟩ (55)

where |x⟩ is an eigenvector of the particle position oper-
ator. Clearly, this formula is not the same as (54). The
fundamental difference is exemplified by the well-known
effects of superluminal spreading of wave packets and the
loss of particle localization in the moving frame [5–10]
predicted by (55).
In the interacting case the picture is even more com-

plicated as one needs to use interacting energy and boost
operators to find the wave function transformation

ψ(θ;x, t) = ⟨x|e− i
h̄Hte

i
h̄Kcθ|ψ⟩ (56)

We will not analyze this formula in detail here, just men-
tion two remarkable features of (56) that disagree with
traditional interpretations of special relativity. First, the
neutrino oscillation period observed from a moving frame
does not scale with velocity according to the usual Ein-
stein’s time dilation formula: T ′ ̸= T cosh θ [33]. Sec-
ond, if according to the observer at rest the initial state

(at t = 0) is prepared as a 100% µ-neutrino then in the
moving frame (even at t = 0) the probability of finding µ-
neutrino is less than 1 and the probability of finding other
flavors is greater than 0. This means that definitions
of neutrino flavors are different for different observers.
This also implies that the oscillating system lacks sharply
defined and observer-independent local events (such as
points where ρµ = 1), whose space-time coordinates can
be used in a rigorous discussion of causality. These un-
usual features are very similar to properties of unstable
particles discussed in [34–37].

Even if the above difficulty with event definitions is re-
solved, formula (56) cannot provide a clear answer about
causality in the moving frame, because in real experi-
ments we are not dealing with free (albeit oscillating)
neutrinos: The event that causes neutrino appearance
in the detector is the meson decay at t = 0. Thus, in
order to investigate the cause-effect relationships in dif-
ferent frames one needs to consider a realistic model of
this event, which incorporates the unstable meson and
its decay products as well as interactions responsible for
the meson decay and neutrino oscillations. To the best of
author’s knowledge, a rigorous quantum relativistic time-
dependent description of such a complicated interacting
system has not been developed yet.

From a more general standpoint one can argue that
superluminal propagation of signals is not forbidden
in interacting systems. Just as in the above discus-
sion, the crucial point is that transition to the moving
frame should be performed by using a boost operator
K = K0 +Z that depends on interactions. Therefore, in
relativistic Hamiltonian systems of interacting particles
boost transformations of space-time locations of events
are different from simple and universal Lorentz formu-
las of special relativity (52) - (53) even in the classical
(non-quantum) limit [38]. This fact is essential for the
proof that instantaneous action-at-a-distance potentials
remain instantaneous in all reference frames, so that the
principe of causality is not violated even if interactions
between particles are not retarded [39].

These arguments lead us to the conclusion that the
oscillating neutrino system does not behave in a way
expected from a näıve application of special relativity.
However, this does not mean that the causality postulate
is violated by superluminal effects. A proper discussion
of causality requires more realistic modeling of the neu-
trino preparation and propagation in different reference
frames. Such a modeling would be a promising line of fur-
ther research, but it is beyond the scope of the present
article.
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