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Abstract

Quantum arithmetics provides a possible resolution of a long-lasting challenge of finding a
mathematical justification for the canonical identification mapping p-adics to reals playing a key
role in TGD - in particular in p-adic mass calculations. p-Adic numbers have p-adic pinary
expansions

∑
anp

n satisfying an < p. of powers pn to be products of primes p1 < p satisfying
an < p for ordinary p-adic numbers. One could map this expansion to its quantum counterpart
by replacing an with their counterpart and by canonical identification map p→ 1/p the expansion
to real number. This definition might be criticized as being essentially equivalent with ordinary
p-adic numbers since one can argue that the map of coefficients an to their quantum counterparts
takes place only in the canonical identification map to reals.

One could however modify this recipe. Represent integer n as a product of primes l and allow
for l all expansions for which the coefficients an consist of primes p1 < p but give up the condition
an < p. This would give 1-to-many correspondence between ordinary p-adic numbers and their
quantum counterparts.

It took time to realize that l < p condition might be necessary in which case the quantization
in this sense - if present at all - could be associated with the canonical identification map to
reals. It would correspond only to the process taking into account finite measurement resolution
rather than replacement of p-adic number field with something new, hopefully a field. At this
step one might perhaps allow l > p so that one would obtain several real images under canonical
identification.

One can however imagine a third generalization of number concept. One can replace integer
n with n-dimensional Hilbert space and sum + and product × with direct sum ⊕ and tensor
product ⊗ and introduce their co-operations, the definition of which is highly non-trivial. This
procedure yields also Hilbert space variants of rationals, algebraic numbers, p-adic number fields,
and even complex, quaternionic and octonionic algebraics. Also adeles can be replaced with their
Hilbert space counterparts. Even more, one can replace the points of Hilbert spaces with Hilbert
spaces and repeat this process, which is very similar to the construction of infinite primes having
interpretation in terms of repeated second quantization. This process could be the counterpart
for construction of nth order logics and one might speak of Hilbert or quantum mathematics. The
construction would also generalize the notion of algebraic holography and provide self-referential
cognitive representation of mathematics.

This vision emerged from the connections with generalized Feynman diagrams, braids, and
with the hierarchy of Planck constants realized in terms of coverings of the imbedding space.
Hilbert space generalization of number concept seems to be extremely well suited for the pur-
poses of TGD. For instance, generalized Feynman diagrams could be identifiable as arithmetic
Feynman diagrams describing sequences of arithmetic operations and their co-operations. One
could interpret ×q and +q and their co-algebra operations as 3-vertices for number theoretical
Feynman diagrams describing algebraic identities X = Y having natural interpretation in zero
energy ontology. The two vertices have direct counterparts as two kinds of basic topological
vertices in quantum TGD (stringy vertices and vertices of Feynman diagrams). The definition
of co-operations would characterize quantum dynamics. Physical states would correspond to the
Hilbert space states assignable to numbers. One prediction is that all loops can be eliminated from
generalized Feynman diagrams and diagrams are in projective sense invariant under permutations
of incoming (outgoing legs).
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1 Introduction

Quantum arithmetics [15] is a notion which emerged as a possible resolution of long-lasting challenge
of finding mathematical justification for the canonical identification mapping p-adics to reals.

1.1 What quantum p-adics could be?

The basic idea is that p-adic numbers could have quantum counterparts. This idea has developed
through several twists and turns and involved moments of almost despair.

1.1.1 The first attempts

The first attempts where based on the replacement of p-adic numbers with quantum p-adics in the
hope that the arithmetics could be lifted to quantum level.

1. The earlier work with quantum arithmetics [15] suggests a modification of p-adic numbers by
replacing the coefficients an p-adic pinary expansions with their quantum counterparts (an)q
allowing the coefficients an of prime powers to be integers not divisible by p and involving only
primes l < p in the prime decomposition (for l > p the quantum counterpart can be negative).
an > p is allowed for the ”interesting but risky” and an < p is required for ”less-interesting but
safe” option.

2. For the ”interesting” option the assignment of quantum integer to a given p-adic integer is
not unique. A natural looking but not absolutely necessary constraint is that the assignment
respects the decomposition of the p-adic integer to powers of prime. With this assumption the
construction of quantum integers would reduce to that for primes l. The quantum counterpart of
l > p is not unique if the coefficients of powers of p can be larger than p. There exists preferred
quantum counterpart obtained by assuming that an < p. Restricting the consideration to these
quantum integers gives just p-adic integers if one regards quantum map n → nq and canonical
identification as unrelated notions.

3. Quantum p-adic integers for the ”interesting option” could be in some sense to p-adic integers
what the integers in the extension of number field are for the number field and attempts to
identify quantum Galois group for given prime were made. The attempt to define basic arith-
metic operations for quantum p-adics led however to difficulties and motivated to assign to the
conjecture quantum Galois group wave functions so that the quantum sum and product would
be defined for the wave functions assigned for the quantum p-adic integers. This option looked
also too complex to be fundamental. Also the question whether this option gives rise to a gener-
alization of number field, remained open, and no natural identification of quantum Galois group
was found.

Eventually I was forced to ask whether it would be wiser to be conservative and concentrate
on the ”less-interesting” option and try to make it more interesting. Could the emergence 1-to-
many correspondence between ordinary and quantum p-adics be something totally unrelated to the
construction of quantum p-adics? Could it emerge in the quantum map n → nq taking into account
the effects of finite measurement resolution and meaning symmetry breaking: the different p-adic
expansions of n allowing the coefficient an of pn to be integers divisible only by primes l < p but
having also values an > p would be mapped to different quantum p-adic numbers. If this were the
case, quantum p-adics must mean something else than was thought first.

1.1.2 The replacement of numbers with sequences of arithmetic operations and integers
with Hilbert spaces

The first attempt to solve the problems related to the definition of +q and ×q was inspired by
zero energy ontology and led to a replacement of numbers with sequences of arithmetic operations
describable by analogs of Feyman diagrams. The comparison with generalized Feynman diagrams
allowed to realize how ”less-interesting” option could become ”interesting”: numbers could be replaced
with Hilbert spaces and all the conditions would be trivially satisfied!
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1. The notion of generalized Feynman diagram suggests that of arithmetic Feynman diagram de-
scribing a sequence of arithmetic operations performed for a set of incoming integers and pro-
ducing a set of outgoing integers. The basic 3-vertices of the arithmetic Feynman diagram would
be ×q and +q and their co-operations. The moves of Feynman diagrams leaving the amplitude
invariant would code for associativity and distributivity. All loops could be eliminated by these
moves and diagram transformed to a canonical tree diagram in which incoming resp. outgoing
lines could be permuted. This kind of reduction to tree diagrams is an old proposal that I gave
up as too ”romantic” [2] but which re-emerged from zero energy ontology where the assump-
tion that also internal lines (wormhole throats) are massless and on shell although the sign of
energy can be negative, poses extremely powerful kinematical constraints reducing the number
of Feynman diagrams. Incoming lines would correspond to integers decomposing into products
of primes and an attractive interpretation is that these primes correspond to braid strands.

2. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for Feynman
graphs. They correspond at Hilbert space level naturally to tensor product and direct sum.
Could ×q and +q correspond to ⊗ and ⊕ obeying also associativity and distributivity and could
quantum arithmetics for Hilbert spaces apply to quantum TGD? If so, the integers characterizing
the lines of arithmetic Feynman diagrams would correspond to Hilbert space dimensions - or
rather, Hilbert spaces and quantum states - and in the vertices the incoming states fuse to a
direct sum ⊕ or tensor product ⊗!

3. One could assign to integer n a multiple covering defined by the state basis of n-dimensional
Hilbert space. This is just what one wants! The quantum Galois group would be subgroup of
the permutation group permuting the elements of this basis. The analogy with covering spaces
suggests cyclic group Zn. The non-trivial quantum Galois group would thus emerge also for the
”less-interesting” but non-risky option so that the conservative approach might work after all!

4. The Hilbert spaces in question could represent physical states - in p-adic context one could
speak about cognitive representations. It also turns out possible to relate these Hilbert spaces
directly to the singular coverings of imbedding space associated with the hierarchy of Planck
constants assigned with dark matter in TGD Universe. This gives a concrete content for the
quantum Galois group as cyclic permutations of the sheets of the covering of the imbedding
space. Hilbert spaces can be identified as function spaces associated with the discrete point
sets of the covering projected to the same point. Also a beautiful connection with infinite
primes defining algebraic extensions of rationals emerges and infinite primes would characterize
physical states by characterizing their dimensions of Hilbert spaces assignable to the incoming
and outgoing lines.

5. Quantum arithmetics would be arithmetics of Hilbert spaces and of states assigned to them.
This arithmetics allows also extension to rationals and algebraic numbers, and even the Hilbert
space variants of algebraic complex numbers, quaternions and octonions can be considered. Also
quantum adeles can be defined in terms of Hilbert spaces. These generalization are expected to
be crucial for the understanding of generalized Feynman diagrams.

1.2 Quantum TGD and Hilbert adeles

Irrespective of whether the isomorphism holds true quantum adeles - if they exist - could provide a
very powerful tool also for the formulation of quantum TGD and realize the old intuition that AGG
is a symmetry group of quantum TGD [?] .

1. The innocent TGD inspired question posed already earlier is whether the fusion of real and
various p-adic physics together could be realized in terms of adeles providing - if not anything
else - an ingenious book keeping device allowing to do real physics and all p-adic physics simul-
taneously by replacing the whole stuff by single letter A! Now however replaced with Aq.

2. The function spaces associated with quantum adeles decompose to tensor products of function
spaces associated with the completions of rationals and one can speak about rational entangle-
ment between different number fields. Rational entanglement can be generalized to algebraic
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entanglement when one replaces rationals with their algebraic extension and primes with corre-
sponding primes. Could it be that this rational/algebraic entanglement is the rational/algebraic
suggested to characterize living matter and to which one can assign negative entanglement en-
tropy having interpretation as a measure for genuine information?

3. The basic vision of TGD inspired quantum bio-physics is that life resides in the intersection of
real and p-adic worlds in which rational/algebraic entanglement is natural. One can argue that
rational and algebraic entanglement are unstable and that it cannot be realized in any system
- living or not. The objection is that Negentropy Maximization Principle (NMP [7]) favors the
generation of negentropic entanglement and once formed between two material systems described
by real numbers is stable. Could it be that the mechanism producing this kind of entanglement is
the necessary rational/algebraic entanglement between different number fields - between matter
and mind one might say - and that quantum jumps transforming p-adic space-time sheets to real
ones generates rational/algebraic entanglement between systems consisting of matter. Intention
transforming to action would be the interpretation for this process.

4. The construction of generalized Feynman diagrams leads to a picture in which propagator lines
give rise to expressions in various p-adic number fields and vertices naturally to multi-p-adic
expressions involving p-adic primes of incoming lines. This picture has also natural generaliza-
tion to quantum variants of p-adic numbers and the expressions are eventually mapped to real
numbers by canonical identification induced by p → 1/p for quantum rationals appearing in
various lines and in vertices of the generalized Feynman diagram. This construct would natu-
rally to a tensor product of state spaces assignable to different p-adic primes and also reals so
that M-matrix elements would be naturally in this tensor product. Note that the function space
associated with (quantum) adeles is naturally tensor product of functions spaces associated with
Cartesian factors of the adele ring with rationals defining the entanglement coefficients. All this
of course generalizes by replacing rationals by their algebraic extensions.

2 Earlier attempts to construct quantum arithmetics

Quantum arithmetics [15] provides a possible resolution of a long-lasting challenge of finding a math-
ematical justification for the canonical identification mapping p-adics to reals playing a key role in
TGD - in particular in p-adic mass calculations [9].

In [15] several options for quantum arithmetics were discussed. Common feature of all options is
that products of integers are mapped to products of quantum integers achieved by mapping primes l
to quantum primes lq = (ql − q−l)/(q − q−1), q = exp(iπ/p).

In the case of sum one could pose the condition that quantum sums are images of ordinary sums: in
this case (option I) one obtains something reducing to ordinary p-adic numbers and l→ lq accompanies
canonical identification p→ 1/p mapping p-adic rationals to reals.

Option II gives up the condition that quantum sum is induced by p-adic sum and assumes that lq
generate act as generators of Kac-Moody type algebra defined by powers pn such that sum is sum is
completely analogous to that for Kac-Moody algebra: a+ b =

∑
n anp

n +
∑
bnp

n =
∑

n(an + bn)pn.
In this chapter a third and much more general option is discussed. In order to give the needed

context, the options discussed in [15] are however briefly discussed first.

2.1 Quantum arithmetics

The starting point idea was that quantum arithmetics maps products of integers to products of
quantum integers. It has turned out that this need not be the case for the sum and even in the case of
product one can ask whether the assumption is necessary. For Option I sum and product are respected
but this option is more or less equivalent with p-adic numbers. For Option II the images of primes
generate Kac-Moody type algebra and sums are not mapped to sums and the number of elements of
quantum algebra is larger than that of p-adic number field. Also in this case one can consider option
giving up the condition that products are mapped to products.

2.1.1 Are products mapped to products?

The first question is whether products are mapped to products.
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1. The multiplicative structure of ordinary integers is respected in the map taking ordinary integers
to quantum integers:

n = kl→ nq = kqlq . (2.1)

This is guaranteed if the map is induced by the map of ordinary primes to quantum primes.
This means that one decomposes n to a product of primes l and maps l→ lq. For primes l < p
the map reads as l → lq = (ql − q−l)/(q − q), q = exp(iπ/p) and gives positive number. For
l > p this need not be the case and for primes l > p one expands l as l =

∑
lmp

n, lm < p, and
expresses lm as product of primes l < p mapped to lq each to obtain lmq ≥ 0. Non-negativity
is important in the modelling of Shnoll effect by a deformation of probability distribution P (n)
by replacing the argument n by quantum integers and the parameters of the distribution by
quantum rationals [1].

2. One could of course consider giving up the condition that products are mapped to products.
In this case one would simply expess n as n =

∑
nkp

k and map nk to nqk by using its prime
decompositions. Therefore product would be mapped to product only for integers n < p with
product smaller than p.

2.1.2 Are sums mapped to sums?

Second question is about whether quantum map commutes with sum. There are two options.

1. For Option I also the sum of quantum integers is well-defined and induces sum of the quantum
rationals. Therefore the sum +q for quantum integers would reflect the summation of ordinary
integers:

n = k + l→ nq = kq +q lq . (2.2)

Option I can be interpreted in terms of ordinary p-adic integers and therefore it will not be
discussed in the following.

2. For option II one gives up the condition for the sum. This means that p-adic numbers are
replaced with a ring of quantum p-adics generated by the the images lq of primes l < m, where
m defines the quantum phase. In other words, one forms all possible products and sums of the
these generators and also their negatives. The sum is defined as the complete analog of sum for
Kac-Moody algebras: a+ b =

∑
anm

n +
∑
bnm

n =
∑

(an + bn)mn and obviously differs from
m-adic sum. The general element of algebra is x =

∑
xnm

n, where one has

xn =
∑
{ni}

N({ni})
∏
i

xni
i , xi = pi,q, pi < m , q = exp(iπ/m) .

Here N({ni}) is integer. m = p gives what might be called quantum p-adic numbers. Note that
also zeroth order term giving rise to integers as constant term of polynomials is also present. The
map would produc integers from zeroth order terms so that skeptic could see the construction
too complex.

One has what could be regarded as analog of polynomial algebra with coefficients of polynomials
given by integers. Note that the coefficients can be also negative since quantum map combined
with canonical identification maps -1 to -1: canonical identification mapping −1 to (p− 1)q(1 +
p + p2...) would give only non-negative real numbers. If one wants that also the images under
canonical identification form a field (so that −x for given x belongs to the system) one must
assume that −1 is mapped to −1. Also the condition that one obtains classical groups requires
this. One can form also rationals of this algebra as ratios of this kind of polynomials and a
subset of them projects naturally to p-adic rationals.
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3. One can project quantum integers for Option II to p-adic numbers by mapping the the products
of powers of generators lq, l < m to products of ordinary p-adic primes l < m in the sums
defining the coefficients in the expansion in powers of m to ordinary p-adic integers. This
projection defines a structure analogous to a covering space for p-adic numbers. The covering
contains infinite number of elements since also the negatives of generators are allowed in the
construction. The covering by elements with positive coefficients of mn is finite.

4. Quantum p-adics form a ring but do they form a field? This seems to be the case since quantum
p-adics are very much analogous to a function field for which the argument of function is defined
by integer characterizing the powers of p in quantum pinary expansion. One would have the
analogy of function field in the set of integers. This means that one can indeed speak of quantum
rationals M/N which can be mapped to reals by I(M/N) = I(M)/I(N).

2.1.3 About the choice of the quantum parameter q

Some comments about the quantum parameter q are in order.

1. The basic formula for quantum integers in the case of quantum groups is

nq =
qn − qn

q − q
. (2.3)

Here q is any complex number. The generalization respective the notion of primeness is obtained
by mapping only the primes p to their quantum counterparts and defining quantum integers as
products of the quantum primes involved in their prime factorization.

pq =
qp − qp

q − q
nq =

∏
p

pnp
q for n =

∏
p

pnp . (2.4)

2. In the general case quantum phase is complex number with magnitude different from unity:

q = exp(η)exp(iπ/m) . (2.5)

The quantum map is 1-1 for a non-vanishing value of η and the limit m → ∞ gives ordinary
integers. It seems that one must include the factor making the modulus of q different from
unity if one wants 1-1 correspondence between ordinary and quantum integers guaranteing a
unique definition of quantum sum. In the p-adic context with m = p the number exp(η) exists
as an ordinary p-adic number only for η = np. One can of course introduce a finite-dimensional
extension of p-adic numbers generated by e1/k.

3. The root of unity must correspond to an element of algebraic extension of p-adic numbers.
Here Fermat’s theorem ap−1 mod p = 1 poses constraints since p− 1:th root of unity exists as
ordinary p-adic number. Hence m = p − 1:th root of unity is excluded. Also the modulus of q
must exist either as a p-adic number or a number in the extension of p-adic numbers.

4. If q reduces to quantum phase, the n = 0, 1,−1 are fixed points of n→ nq for ordinary integers
so that one could say that all these numbers are common tointegers and quantum integers for all
values of q = exp(iπ/m). For p-adic integers −1 = (p−1)(1+p+p2+.. is problematic. Should one
use direct formula mapping it to −1 or should one map the expansion to (p−1)q(1+p+p2+ ....)?
This option looks more plausible.
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(a) For the first option the images under canonical can have both signs and can form a field.
For the latter option would obtain only non-negative quantum p-adics for ordinary p-adic
numbers. They do not form a field. For algebraic extensions of p-adics by roots of unity
one can obtain more general complex numbers as quantum images. For the latter option
also the quantum p-adic numbers projecting to a given prime l regarded as p-adic integer
form a finite set and correspond to all expansions l =

∑
lkp

k where lk is product of powers
of primes pi < p but one can have also lk > p.

(b) Quantum integers containing only the O(p0) term in the binary expansion for a sub-ring.
Corresponding quantum rationals could form a field defining a kind of covering for finite
field G(p, 1).

(c) The image I(m/n) of the pinary expansion of p-adic rational is different from I(m)/I(n).
The formula m/n → I(m)/I(n) is the correct manner to define canonical identification
map. In this case the real counterparts of p-adic quantum integers do not form the analog
of function fields since the numbers in question are always non-negative.

5. For p-adic rationals the quantum map reads as m/n → mq/nq by definition. But what about
p-adic transcendentals such as ep? There is no manner to decompose these numbers to finite
primes and it seems that the only reasonable map is via the mapping of the coefficients xn in
x =

∑
xnp

n to their quantum adic counterparts. It seems that one must expand all quantum
transcendentals having as a signature non-periodic pinary expansion to quantum p-adics to
achieve uniqueness. Second possibility is to restrict the consideration to rational p-adics. If
one gives up the condition that products are mapped to products, one can map n = nkp

k to
nq =

∑
nkqp

k. Only the products of p-adic integers n < p smaller than p would be mapped to
products.

6. The index characterizing Jones inclusion [5] [4] is given by [M : N ] = 4cos2(2π/n) and cor-
responds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series of
more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces and
q = n-adicity. lq < l is in accordance with the idea about finite measurement resolution and for
large values of p one would have lq ' l.

To sum up, one can imagine several options and it is not clear which option is the correct one.
Certainly Option I for which the quantum map is only part of canonical identification is the simpler
one but for this option canonical identification respects discrete symmetries only approximately. The
model for Shnoll effect requires only Option I. The notion of quantum integer as defined for Opion II
imbeds p-adic numbers to a much larger structure and therefore much more general than that proposed
in the model of Shnoll effect [1] but gives identical predictions when the parameters characterizing
the probability distribution f(n) correspond contain only single term in the p-adic power expansion.
The mysterious dependence of nuclear decay rates on physics of solar system in the time scale of
years reduces to similar dependence for the parameters characterizing f(n). Could this dependence
relate directly to the fact that canonical identification maps long length scale physics to short length
scales physics. Could even microscopic systems such as atomic nuclei give rise to what might be called
”cognitive representations” about the physics in astrophysical length scales?

2.2 Summary: the three options for quantum p-adics

I have proposed two alternative definitions for quantum integers.

1. Option I is that quantum integers are in 1-1 correspondence with ordinary p-adic integers and
the correspondence is obtained by the replacement of the coefficients of the pinary expansion
with their quantum counterparts. In this case quantum p-adic integers would inherit the sum
and product of ordinary p-adic integers. This is the conservative option and certainly works but
is equivalent with the replacement of canonical identification with a map replacing coefficients
of powers of p with their quantum counterparts. This option has a m-adic generalization corre-
sponding to the expansion of m-adic numbers in powers of integer m with coefficients an < m.
As a special case one has m = pN . The quantum map would contain the interesting physics.
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2. Option II based on the identification of quantum p-adics as an analog of Kac-Moody algebra
with powers pn in the same role as the powers zn for Kac-Moody algebra. The two algebras have
identical rules for sum and multiplication, and one does not require the arithmetics to be induced
from the p-adic arithmetics (as assumed originally) since this would lead to a loss of associativity
in the case of sum. Therefore the quantum counterparts of primes l 6= p generate the algebra.
One can also make the limitation l < pN to the generators. The quantum counterparts of p-adic
integers are identified as products of quantum counterparts for the primes dividing them. The
counterparts of in the map of integers to quantum integers are 0, 1,−1 are , 0, 1,−1 as is easy
to see. The number of quantum integers projecting to same p-adic integer is infinite. For p = 2
quantum integers reduce to Z2 since primes are mapped to ±1 under quantum map. For p = 3
one obtains powers of 2q. As p increase the structure gets richer. One can define rationals in
this algebra as pairs of quantum integers not divisible with each other. At the limit when the
quantum phase approaches to unit, quantum integers approach to ordinary ones and ordinary
arithmetics results.

3. One can consider also quantum m-adic option with expansion l =
∑
lkm

k in powers of integer
m with coefficients decomposable to products of primes l < m. This option is consistent with
p-adic topology for primes p divisible by m and is suggested by the inclusion of hyper-finite
factors [4] characterized by quantum phases q = exp(iπ/m). Giving up the assumption that
coefficients are smaller than m gives what could be called quantum covering of m-adic numbers.
For this option all quantum primes lq are non-vanishing. Phases q = exp(iπ/m) characterize
Jones inclusions of hyper-finite factors of type II1 assumed to characterize finite measurement
resolution.

The definition of quantum p-adics discussed in this chapter replaces integers with Hilbert spaces of
same dimension and + and × with direct sum ⊕ and tensor product ⊗. Also co-product and co-sum
must be introduced and assign to the arithmetics quantum dynamics, which leads to proposal that
sequences of arithmetic operations can be interpreted arithmetic Feynman diagrams having direct
TGD counterparts. This procedure leads to what might be called quantum mathematics or Hilbert
mathematics since the replacement can be made for any structure such as rationals, algebraic numbers,
reals, p-adic numbers, even quaternions and octonions. Even set theory has this kind of generalization.
The replacement can be made also repeatedly so that one obtains a hierarchy of structures very similar
to that obtained in the construction of infinite primes by a procedure analogous to repeated second
quantization. One possible interpretation is in terms of a hierarchy of logics of various orders. Needless
to say this definition is the really deep one and actually inspired by quantum TGD itself. In this picture
the quantum p-adics as they are defined here would relate to the canonical identification map to reals
and this map would apply also to Hilbert p-adics.

3 Hilbert p-adics, Hilbert adeles, and TGD

One can imagine also a third generalization of the number concept. One can replace integer n with
n-dimensional Hilbert space and sum and product with direct sum and tensor product and introduced
their co-operations, the definition of which is non-trivial. This procedure yields also Hilbert space
variants of rationals, algebraic numbers, p-adic number fields, and even complex, quaternionic and
octonionic algebraics. Also adeles can be replaced with their Hilbert space counterparts. Even more,
one can replace the points of Hilbert spaces with Hilbert spaces and repeat this process, which is
very similar to the construction of infinite primes having interpretation in terms of repeated second
quantization. This process could be the counterpart for construction of nth order logics and one might
speak of Hilbert or quantum mathematics. It would also generalize the notion of algebraic holography.

This vision emerged from the connections with generalized Feynman diagrams, braids, and with
the hierarchy of Planck constants realized in terms of coverings of the imbedding space. Hilbert space
generalization of number concept seems to be extremely well suited for the purposes of TGD. For in-
stance, generalized Feynman diagrams could be identifiable as arithmetic Feynman diagrams describ-
ing sequences of arithmetic operations and their co-operations. The definition of co-operations would
define quantum dynamics. Physical states would correspond to the Hilbert space states assignable to
numbers.
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3.1 Could the notion of Hilbert mathematics make sense?

After having worked one month with the iea I found myself in a garden of branching paths and
realized that something must be wrong. Is the idea about quantum p-adics a disgusting fix idee or is
it something deeper?

The successful manner to make progress in this this kind of situation has been the combination of
existing firmly established ideas with the newcomer. Could the attempt to relate quantum p-adics to
generalized Feynman graphs, infinite primes, and hierarchy of Planck constants help?

Second good strategy is maximal simplification. In the recent case this encourages sticking to the
most conservative option for which quantum p-adics are obtained from ordinary p-adics by mapping
the coefficients of powers of p to quantum integers. This option has also a variant for which one has
expansion in powers of pN defining pinary cutoff. At the level of p-adic numbers different values of
N make no difference but at the level of finite measurement resolution situation is different. Also
quantum m-adicity would have natural interpretation in terms of measurement resolution rather than
fundamental algebra.

3.1.1 Replacing integers with Hilbert spaces

Consider now the argument leading to the interpretation of p-adic integers as Hilbert space dimensions
and the formulation of quantum p-adics as p-adic Hilbert spaces whose state basis defines a multiple
covering of integer defining the dimension of the Hilbert space.

1. The notion of generalized Feynman diagram and zero energy ontology suggest suggests that of
arithmetic Feynman diagram describing a sequence of arithmetic operations performed for a set
of incoming integers and producing a set of outgoing integers. This approach indeed led to the
discovery that integers could be replaced by Hilbert spaces.

2. The basic 3-vertices of the arithmetic Feynman diagram would be ×q and +q and their co-
operations. The moves of Feynman diagrams leaving the amplitude invariant would code for
associativity and distributivity. All loops could be eliminated by these moves and diagram trans-
formed to a canonical tree diagram in which incoming resp. outgoing lines could be permuted.

3. Incoming lines would correspond to integers decomposing into products of primes and an at-
tractive interpretation is that these primes correspond to braid strands for generalized Feynman
diagrams.

4. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for Feynman
graphs. They correspond at Hilbert space level naturally to tensor product and direct sum.
Could ×q and +q correspond to tensor product and direct sum obeying also associativity and
distributivity?! If so, the integers characterizing the lines of arithmetic Feynman diagrams would
correspond to Hilbert space dimensions - or rather, Hilbert spaces - and in vertices the incoming
states fuse to direct sum of tensor product!

5. What this would mean is that one could assign to each p-adic integer a multiple covering defined
by the state basis of the corresponding Hilbert space. This is just what one wants! The quantum
Galois group would be subgroup of the permutation group permuting the elements of this basis.
The analogy with covering spaces suggests just cyclic group. The non-trivial quantum Galois
group would emerge also for the ”less-interesting” but non-risky option so that the conservative
approach might work!

6. The Hilbert spaces in question could represent physical states - maybe cognitively in the p-
adic context. It also turns out possible to relate these Hilbert spaces directly to the singular
coverings of imbedding space associated with the hierarchy of Planck constants assigned with
dark matter in TGD Universe. This gives a concrete content for the quantum Galois group as
cyclic permutations of the sheets of the covering of the imbedding space and Hilbert spaces can
be identified as function spaces associated with the discrete point sets of covering projected to
the same point. Also a beautiful connection with infinite primes defining algebraic extensions of
rationals emerges and infinite primes would characterize physical states by characterizing their
dimensions of Hilbert spaces assignable to the incoming and outgoing lines.
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This approach works for the ordinary p-adic integers. There is no need to allow coefficients
an > p (”interesting” option) in the expansion

∑
anp

n of p-adic numbers but still consisting of
primes l < p. ”Interesting” option would emerge as one takes finite measurement resolution into
account by mapping the Hilbert spaces defining coefficients of Hilbert space pinary expansion with
their quantum counterparts. More precisely.

1. At Hilbert space level pinary expansion of p-adic Hilbert space becomes direct sum ⊕nan ⊗ pn.
an = ⊗ipi, pi < p, denotes tensor product of prime Hilbert spaces for which I use the same label
as for p-adic numbers. pn denotes Hilbert space with dimension pn. In real context it is very
natural to decompose real Hilbert spaces to tensor products of prime Hilbert spaces.

2. Quantum p-adic numbers would be obtained by mapping the Hilbert space valued coefficients
an of the to their quantum counterparts (an)q, which are conjectured to allow precise definition
in terms of inclusions of hyper-finite factors with Jones inclusions associated with the quantum
counterpart of 2-D Hilbert space. The quantum map would reduce to the mapping of the tensor
factors p1 of an to (p1)q. Same would apply to quantum states. The map would be defined as
⊕an⊗ pn → ⊕(an)q ⊗ pn, (an)q = ⊗p1(p1)q. The map p1 → (p1)q would take into account finite
measurement resolution.

3. ”Interesting” option would be obtained as follows. It is possible to express given p-adic number
in many manners if one only requires that the coefficients an in the direct sum are tensor
products of prime Hilbert spaces with dimension p1 < p but does not assume an < p. For
instance, for p = 3 and n = 8 one has 8 = 2 ⊕ 2⊗ or 8 = 2 ⊗ 2 ⊗ 2. These representations are
p-adically equivalent. Quantum map however spoils this equivalence. 2 ⊕ 2 ⊗ 3 → 2q ⊕ 2q ⊗ 3
and 8 = 2⊗2⊗2→ 2q⊗2q⊗2q are not same quantum Hilbert spaces. The ”interesting” option
would thus emerge as one takes into account the finite measurement resolution.

4. One could say that the quantum Hilbert spaces associated with a given p-adic Hilbert space form
a covering space like structure. Quantum Galois group identified as a subgroup of permutations
of these quantum Hilbert spaces need not make sense however.

After this lengthy motivating introduction I want to describe some details of the arithmetics of
p-adic Hilbert spaces. This arithmetics is formally identical with the ordinary integer arithmetics.
What is however interesting is that one can generalize it so that one obtains something that one
could call Hilbert spaces of dimension which is negative, rational, algebraic, or even complex, and
even quaternionic or octonionic. It might be necessary to have these generalizations if one wants full
generality.

1. Consider first what might be called p-adic Hilbert spaces. For brevity I will denote Hilbert
spaces in the same manner as p-adic numbers: reader can replace ”n” with ”Hn” if this looks
more appropriate. p-Adic Hilbert spaces have direct sum expansions of form

n = ⊕kak ⊗ pk .

All integers appearing in the formula can be also interpreted as Hilbert space dimensions. In
the real context it is very natural to decompose real Hilbert spaces to tensor products of prime
Hilbert spaces.

2. How to define Hilbert spaces with negative dimension? In p-Adic context this is not a problem.
Hilbert space with dimension −1 is given by Hilbert spaces with dimension (p − 1)/(1 − p) =
(p− 1)(1 + p+ p2 + ...) converging p-adically and given by

−1 = ⊕k(p− 1)⊗ pk .

In real context one must consider pairs of Hilbert spaces (m,n) and define equivalence (m,n) =
(m+k, n+k). In canonical representation Hilbert space with positive dimension m corresponds
to (m, 0) and Hilbert spaces with negative dimension −m to (0,m). This procedure is familiar
from the theory of vector bundles where one subtracts vector bundles and defines their negatives.
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3. In p-adic context one can also define p-adic Hilbert spaces with rational dimension if the p-adic
norm of the rational (m/n) is smaller than 1. This is achieved simply by the expansion

m

n
= ⊕kak ⊗ pk .

In real context tone can define Hilbert spaces with rational valued dimension just as one defines
rational numbers - that is as pairs of Hilbert spaces (m,n) with equivalence (m,n) ≡ (km, kn).

4. One can even define Hilbert spaces with dimensions in algebraic extensions of rationals.

(a) Consider first the real case and the extension defined by Gaussian integers for which integers
are of form m + in ≡ (m,n). What is needed is just the product rule: (m,n) ⊗ (r, s) =
(m ⊗ r − ⊕(−n ⊗ s),m ⊗ s ⊕ r ⊗ n). This expression is completely well-defined in the p-
adic context and also in real context if one accepts the proposed defined of integer Hilbert
spaces as pairs of ordinary Hilbert spaces. For Q(

√
5) one would have (m,n) × (r, s) =

(m⊗ r ⊕ 5⊗ n⊗ s,m⊗ s⊕ r ⊗ n). In n-dimensional case one just replaces Hilbert spaces
with n-multiple of ordinary Hilbert spaces and uses the multiplication rules.

(b) In p-adic context similar approach works when the algebraic extension requires also exten-
sion of p-adic numbers. In p-adic context however many algebraic numbers can exist as
ordinary p-adic numbers. For instance, for p mod 4 = 1

√
−1 exists as well as its Hilbert

space counterpart. For quadratic extensions of p > 2-adic numbers the 4-D extension
involving the addition of two square roots all square roots except that of p exist -adically.

3.1.2 Quantum Hilbert spaces and generalization to extensions of rationals

The map of p-adic integers to their quantum counterparts generalizes so that it applies to Hilbert
spaces. This means that prime Hilbert spaces are mapped to the quantum counterparts. What this
means is not quite obvious. Quantum groups appearing in the context of Jones inclusions lead to
the emergence of quantum spinors that is quantum counterparts of 2-D Hilbert spaces. This suggest
that more general inclusions lead to prime-dimensional quantum Hilbert spaces. The idea is simple:
quantum matrix algebra M/N with quantum dimension (2q)2 is defined as a coset space of hyper-finite
factor M and included factor N ⊂M . This quantum matrix algebra acts in quantum spinor space of
dimension 2q. The generalization would introduce pq-dimensional quantum Hilbert spaces.

A good test for the proposal is whether it generalizes naturally to algebraic extensions of rationals.

1. For algebraic extensions some ordinary primes split into products of primes associated with
the extension. The problem is that for these algebraic primes the factors exp(iπ/P ) fail to
be algebraic numbers and finite roots of unity and its is not at all clear whether the naive
generalization of the notion of quantum p-adic makes sense. This suggests that only the ordinary
primes which do not split into products of primes of extension remain and one can define quantum
p-adics only for these whereas the other primes correspond to ordinary algebraic extension of
p-adic numbers. This would make algebraic extension of rationals the coefficient group of adele
consisting of p-adic numbes fields associated with non-split primes only. Note that rationals or
their extension would naturally appear as tensor factor of adeles meaning that their action can
be thought to affect any of the factors of the adele.

2. For split primes the p-adic Hilbert spaces must be defined for their algebraic prime factors. The
proposed procedure of defining Hilbert space counterparts for algebraic extensions of rationals
provides a recipe for how to achieve this. These Hilbert spaces the quantum map would be
trivial.

3. Hilbert space counterpart for the albebraic extension of rationals and of p-adics makes also sense.
The Hilbert space assigned with integer which splits into primes of extension splits also to a
tensor product of prime Hilbert spaces assignable with the extension. The splitting of integers
and primes is highly analogous to the decomposition of hadron to quarks and gluons. This
decomposition is not seen at the level of rationals reprsenting observed.
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3.1.3 What about Hilbert spaces with real number valued dimension?

What Hilbert space variant of a real number could mean? What Hilbert space with dimension equal
to arbitrary real number could mean? One can imagine two approaches.

1. The first approach is based on the map of Hilbert p-adics to real p-adics by a map used to map
p-adic numbers to reals. The formula would be ⊕nan ⊗ pn → ⊕(an)q ⊗ p−n. (an)q = ⊗ll

el
q ,

were lq is quantum Hilbert space of prime dimension. Also the Hilbert space p−n would be
well-defined as a Hilbert rational defined as a pair of Hilbert spaces.

For hyper-finite factors of type II1 Hilbert spaces with continuous dimension emerge naturally.
The reason is that the dimension of the Hilbert space is defined as quantum trace of identity
operator characterized by quantum phase this dimension is finite and continuous. This allows
a spectrum of sub-Hilbert spaces with continuously varying real dimension. The appearance
of quantum Hilbert spaces in the canonical identification map conforms with this and even for
dimension 0 < n < p gives rise to quantum Hilbert space with algebraic quantum dimension

given as n =
∏
le

l

q for n =
∏

l l
el .

2. Second approach relies on the mimicry of the completion of ordinary rationals to real numbers.
One can define Hilbert space analogs of rationals and algebraics by defining positive and negative
rationals as pairs of Hilbert spaces with equivalence relation (m,n) ≡ (m⊕r, n⊕r). Taking pairs
of these pairs with equivalence relation (M,N) ≡ (K ⊗M,K ⊗N) one obtains Hilbert spaces
corresponding to rational numbers. Algebraic extensions are obtained similarly. By taking limits
just in the same manner as for real numbers one would obtain Hilbert reals with transcendental
dimensions. For instance, e could be defined as the limit of tensor power (1⊕ 1/n)n, n→∞.

Again one must remember that the co-vertices define the hard part of the problem and their defini-
tion means postulate of quantum dynamics. This would be the genuinely new element and transform
mathematics to quantum physics. Every sequences of algebraic operations having a realization as
Feynman diagram involving arithmetic operations as positive energy part of Feynman diagrams and
co-operations as the negative energy part of diagram connected by single line.

It should not go un-noticed that the direct sum and tensor product decompositions of possibly
infinite-dimensional Hilbert spaces are very essential for the interpretation. For infinite-dimensional
Hilbert spaces these decompositions would be regarded as equivalent for an abstract definition of
Hilbert space. In physical applications tensor product and direct sum representations have also very
concrete physical content.

3.1.4 Hilbert calculus?

What this approach suggests is a generalization of calculus in both real and and p-adic context. The
first thing to do is to define Hilbert functions as Hilbert space valued functions as x → f(x). This
could be done formally by assigning to Hilbert space associated with point x Hilbert space associated
with the point f(x) for all values of x. Function could have representation as Taylor series or Laurent
series with sum replaced with direct sum and products with tensor products. The correspondence
x → f(x) would have as a counterpart the analog of Feynman diagram describing the Taylor series
with final line defining the value f(x). Also derivatives and integrals would be at least formally
defined. This would requite separate diagram for every point x. One can consider also the possibility
of more abstract definition of f(x). For instance the set of coefficients {fn} in the Taylor series of f
would defined a collection of Hilbert spaces.

One should be able to define also co-functions in terms of co-vertices. The value of co-function at
point y would give all the values of x for which one has f(x) = y. Co-function would correspond to
a quantum superposition of values of inverse function and to time reversed zero energy states. The
breaking of time reversal would be inherent in the very definition of function as an arrow from one
Hilbert set to another Hilbert set and typically the functions involved would be many-valued form
beginning. Perhaps it would be better to speak from the beginning about relations between two sets
rather than functions. The physical realization of Hilbert calculus would be obtained by assigning to
incoming arguments represented as Hilbert space quantum states.
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3.1.5 Quantum mathematics?

Could one transform entire mathematics to quantum mathematics - or would it be better to say
Hilbert mathematics? Reader can decide. Consider first Hilbert set theory. The idea wold be to
replace numbers with Hilbert spaces. This would give Hilbert structure. By replacing Hilbert spaces
with their quantum counterparts characterized by quantum dimensions nq one would obtain which
might be called quantum Hilbert structure.

1. At the level of set theory this would mean replacement of sets with Hilbert sets. A set with n
elements would correspond intuitively to n-dimensional Hilbert space. Therefore tHilbert sets
would provide much more specific realization of set theory than abstract set theory in which
the elements of set can be anything. For n-dimensional Hilbert space however the ordering of
the elements of basis induces automatically the ordering of the elements of the set. Does the
process of counting the elements of set corresponds to this ordering. Direct sum would be the
counterpart of set theoretic union. One could construct natural numbers inductively as direct
sums (n+1) = n⊕1. To be subset would correspond to sub-Hilbert space property. Intersection
of two Hilbert sets would correspond to the direct sum of common direct summands. Also set
difference and symmetric difference could be defined.

2. The set theoretic realization of Boolean logic would have Hilbert variant. This would mean that
logical statements could be formulated using Hilbert variants of basic logical functions.

3. Cartesian product of sets would correspond to a tensor product of Hilbert spaces. This would
bring in the notion of prime since Hilbert integers would have decomposition into tensor products
of Hilbert primes. Note that here one can consider the symmetrization of tensor product modulo
phase factor and this could give rise to bosonic and fermionic statistics and perhaps also to
anyonic statistics when the situation is 2-dimensional as it indeed is for partonic 2-surfaces.

4. What about sets of sets?

(a) The elements of n-dimensional Hilbert space consist of numbers in some number field.
By replacing these numbers with corresponding Hilbert spaces one would obtain Hilbert
space of Hilbert spaces as a counterpart for sets of sets. One would have Hilbert space
whose points are Hilbert spaces: Hilbert-Hilbert space!. This process could be continued
indefinitely and would give rise to a hierarchy formed by Hilbertn-spaces. This would be
obviously something new and mean self-referential property. For Hilbertn-spaces one would
the points at n:th level of hierarchy with points of the number field involved and obtain
a concrete realization. The construction of infinite primes involves formations of sets of
rationals and sets of these sets, etc.... and would have also interpretation as formation of
a hierarchy of Hilbert sets of sets of.....

(b) Power set as set of subsets of set would be obtained from direct sum of Hilbert spaces, by
replacing the points of each Hilbert space with corresponding Hilbert spaces.

(c) One could define the analog of set theoretic intersection also for tensor products as the set
of common prime Hilbert factors for two Hilbert sets. For ordinary integers defined as sets
the intersection in this sense would correspond to the common prime factors. In Cartesian
product the intersection would correspond to common Cartesian factors.

5. The completely new and non-trivial element bringing in the quantum dynamics is brought in
by co-operations for union and intersection. The solution to the equation f(x) = y could be
represented as a number theoretic Feynman diagram in zero energy ontology. Positive energy
part would correspond to y and diagram beginning from y would represent co-function of f(x)
identifiable as its inverse. Negative energy state would represent a quantum superposition of the
values of x representing the solutions.

6. One can ask whether a Feynman diagrammatic representation for the statements like ∃x ∈ A
such that f(x) = g(x) and ∀x ∈ Af(x) = g(x) exists. One should be able to construct quantum
state which is superposition of solutions to the condition f(x) = g(x). If this state is non-
vanishing the solution exists.
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This kind of statements are statements of first order logic involving existential quantifiers whereas
the statements of predicate logic would correspond simply to a calculation of a value of function
at given point. The hierarchy of Hilbertn spaces brings in mind strongly the hierarchy of infinite
primes assigned already earlier to a hierarchy of logics. Could the statements of n:th order
logic require the use of Hilbertn- spaces. The replacement of numbers with Hilbert spaces
could correspond to formation of statements of first order logic. The individual quantum states
satisfying the statement would represent the statements of predicate logic.

The construction of infinite primes can be regarded as repeated second quantization in which
the many particle states of the previous level become single particle states of the new level.
Maybe also the hierarchy of Hilbertn-spaces could be seen in terms of a hierarchy of second
quantizations.

Infinite primes lead to the notion of algebraic holography meaning that real point has infinitely
rich number theoretical anatomy due to the existence of real units expressible as ratios of infinite
integers reducing to real unit in real topology. The possibility to replace the points of space-time
with Hilbert spaces and to continue this process indefinitely would realize the same idea.

3.1.6 Number theoretic Feynman diagrams

Could one imagine a number theoretical quantum dynamics in which integers are replaced with se-
quences of arithmetic operations? If numbers are replaced with Hilbert spaces and if one can assigns
to each number a state of the Hilbert space accompanying it, this seems to be possible.

1. All algebraic functions would be replaced with their algebraic expressions, which would be
interpreted as analogs of zero energy states in which incoming arguments would represent positive
energy part and the result of operation outgoing state. This would also unify algebra and co-
algebra thinking and the information about the values of the arguments of the function would
not be forgotten in the operations.

2. The natural constraints on the dynamics would be trivial. In +q vertex a direct sum of incoming
states and in ×q gives rise to tensor product. This also at the level of Hilbert spaces involved.
The associativity and commutativity of direct sum and tensor product guarantee automatically
the these properties for the vertices. The associativity and commutativity conditions are analo-
gous to associativity conditions for 3-point functions of conformal field theories. Distributivity
condition is something new. Co-product and co-sum obey completely analogous constraints as
product and sum.

3. For product the total numbers of prime factors is conserved for each prime appearing in the
product meaning that the total momenta nilog(pi) are conserved separately for each prime in
the process involving only products. This kind of conservation law is natural also for infinite
primes and one can indeed map the simplest infinite primes at the lowest level analogous to free
Fock states of bosons and fermions to ordinary rationals so that the addition of Galois degrees
of freedom tentatively identified as cyclic permutations of the state basis for Hilbert space asso-
ciated with given prime would give for a particle labelled by prime p additional internal degrees
of freedom. In fact, one can illustrate infinite prime as in terms of two braids corresponding to
the numerator and denominator of corresponding rational and the primes appearing in rationals
take the role of braid strands. For ×q the conservation of quantum numbers would correspond
to conservation of representations. This guarantees commutativity and associativity of product.
One can also allow co-product and co-sum and they obey completely analogous constraints as
product and sum and they have counterparts at the level of Hilbert spaces two studied in the
theory of quantum groups.

One can represent algebraic operations using the analogs of Feynman diagrams and there is an
intriguing analogy with generalized Feynman diagrams which forces to ask whether the generalized
Feynman diagrams of quantum TGD could be interpreted in terms of quantum counterparts algebraic
equations transformed if one extends the number field to quaternions and their possibly existing p-adic
counterparts.
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1. Multiplicative and additive inverses - in the case that they exist - can be seen as kind of conjuga-
tion operations analogous to C and P which commute with each other. Their product n→ −1/n
could be seen as the analog of T if CPT = 1 is taken as identity. Co-product and co-sum would
would be obtained from product and sum by CP or T.

2. One can represent the integer X = X({nk}) resulting from a sequence of algebraic operations
+q and ×q performed for integers nk appearing as inputs of a Feynman diagram having the
value of X as outgoing line. n+,k represent incoming external lines and intermediate products
of algebraic operations appear as internal ”off-mass-shell” lines. +q and ×q represent the basic
vertices. This gives only tree diagrams with single outgoing line representing the (quantum
value) of X.

Associativity and commutativity for +q resp. ×q would mean that the lines of diagram with
3 incoming particles and two vertices can be modified by permuting the incoming lines in all
possible manners. Distributivity a×q (b+q c) = a×q b+q a×q c does not correspond anything
familiar from conformal field theories since the line representing a appears twice on the right hand
side of the identity and there are 3 vertices whereas left hand side involves 2 vertices. In TGD
framework the interpretation of the analogs of stringy decay vertices in terms of propagation
along two different paths allows however to interpret these vertices as counterparts of +q whereas
the TGD counterparts of vertices of Feynman diagrams would correspond to ×q. +q would
correspond at state space level to direct sum and ×q to tensor product.

3. The lines of Feynman diagrams are naturally replaced with braids - just as in quantum TGD.
The decomposition of the incoming quantum rational q = m/n to primes defines a braid with
two colors of braid strands corresponding to the primes appearing in m and n so that a close
connection with braid diagrams emerges. This of course raises the question whether one could
allow non-trivial braiding operation for two braid strands represented by primes. Non-triviality
would mean that p1p2 = p2p1 would not hold true only in projective sense so that the exchange
would induce a phase factor. This would suggest that the commutativity of the basic operations
- or at least multiplication - might hold true only apart from quantum phase factor. This would
not be too surprising since quantum phases are the essence of what it is to be quantum integer.

4. The diagrammatical counterparts of co-operations are obtained by time reversal transforming
incoming to outgoing lines and vice versa. If one adds co-products and sums to the algebraic
operations producing X one obtains diagrams with loops. If ordinary algebraic rules generalizes
the diagrams with loops must be transformable to diagrams without them by algebraic ”moves”.
The simplification of arithmetic formulas that we learn in elementary school would correspond
to a sequence of ”moves” leading to a tree diagram with single internal line at the middle and
representing X = Y . One can form also diagrams of form X = Y = Z = ... just as in zero
energy ontology.

5. In zero energy ontology a convenient manner to represent a identity X = Y - call it a ”quantum
correlate for mathematical thought” - involving only sums and products and therefore no loops is
as a tree diagram involving only two kinds of 3-vertices, namely +q and ×q and their co-algebra
vertices representing time reversed processes. In zero energy ontology this kind of representation
would correspond to either the condition X/Y = 1 or as X − Y = 0. In both cases one can say
that the total quantum numbers would be conserved - that is net quantum numbers assignable
to prime factors of X vanish for zero energy state. The diagram involves always single integral
line representing the identical values of X and Y . Line representing X would be preceded by
a tree diagram involving only product and sum vertices and Y would involve only co-product
and co-sum. For ordinary arithmetics every algebraic operation is representable in this kind of
diagram, which suggests that infinite number of different diagrams involving loops are equivalent
to this diagram with single internal line.

6. The resulting braid Feynman diagrammatics would obey extremely powerful rules due to the
possibility of the ”moves”. All possible independent equations X = Y would define the basis
of zero energy states. In quantum TGD the breaking of time reversal invariance is unavoidable
and means that only the positive or negative energy parts of the diagram can have well defined
quantum numbers. The direct translation would be that the zero energy states correspond
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to sums over all diagrams for which either positive/negative energy part corresponds to given
rationals and the negative/positive energy part of the state is superposition of states consisting of
rationals. This would mean non-trivial U-matrix dictated by the coefficients of the superpositions
and genuine arithmetic quantum dynamics.

3.2 Quantum adeles

Before saying anything about Hilbert space adeles it is better to consider ordinary adeles.

1. Fusing reals and quantum p-adic integers for various values of prime p to Cartesian product
AZ = R × (

∏
p Zp) gives the ring of integer adeles. The tensor product Q ⊗Z AZ gives rise to

rational adeles. Z means the equivalence (nq, a) ≡ (q, na). This definition generalization to any
number field including algebraic extensions of rationals. It is not quite clear to me how essential
the presence of R as Cartesian factor is. One can define ideles as invertible adeles by inverting
individual p-adic numbers and real number in the product. If the component in the Cartesian
product vanishes, the component of inverse also vanishes.

2. The definition of a norm of adele is not quite straightforward.

(a) The norm of quantum adeles defined as product of real and p-adic norms is motivated by the
formula for the norm of rational numbers as the product of its p-adic norms. This definition
of norm however looks non-physical and non-mathematical. For instance, it requires that
all p-adic components of quantum adele are non-vanishing and most of them have norm
equal to one and are therefore p-adic integers of norm one. This condition would also break
general coordinate invariance at the level of quantum adelic imbedding space very strongly.
Also for adelic spinors and adelic Hilbert space this condition is definitely non-sensical.

(b) The physically acceptable norm for adeles should reflect the basic properties of p-adic norm
for a given p-adic field in the product but should also have the characteristic property of
Hilbert space norm that the norm squared is sum of the norms squared for the factors of
the adele. The solution to these demands seems to be simple: map the p-adic number to
its quantum counterpart in each factor and map this number to real number by canonical
identification. After this form the real Hilbert space norm of the resulting element of
infinite-dimensional real Hilbert space. This norm generalizes in a natural manner to linear
spaces possessing adeles as components. Most importantly, for this norm the elements of
adele having finite number of components have a non-vanishing norm and field property is
possible.

Consider now what happens when one replaces p-adic integers with p-adic Hilbert spaces and
p-adic numbers as components of the vectors of the Hilbert space.

1. As far as arithmetics is considered, the definition of Hilbert space adeles for p-adic number fields
is formally the same as that of ordinary adeles. It of course takes time to get accustomed to
think that rationals correspond to a pair of Hilbert spaces and their product is formulated for
this pair.

2. p-Adic Hilbert spaces would be linear spaces with p-adic coefficients that is vectors with p-adic
valued components. Inner product and norm would be defined by mapping the components
of vectors to real/complex numbers by mapping them first to quantum p-adics and them to
reals by canonical identification. Note that the attempts to define p-adic Hilbert spaces using
p-adic norm or formal p-adic valued norm mapped to real number by canonical identification
lead to difficulties since already in 2-D case the equation x2 + y2 = 0 has solution y =

√
−1x for

p mod 4 = 1 since in this case
√
−1 exists p-adically.

3. A possible problem relates to the fact that all p-adic numbers are mapped to non-negative real
numbers under canonical identification if the coefficients an in the expansion

∑
n anp

n consists
of primes l < p for which quantum counterpart is non-negative. For ordinary p-adic numbers
orthogonal vectors in a given basis would be simply vectors with no common non-vanishing
components. Does this mean the existence of a preferred basis with elements (0, .., 0, 1, 0...)
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so that any other unitarily related basis would be impossible. Or should one introduce cyclic
algebraic extension of p-adic numbers with n-elements exp(i2πk/n) for which one obtains linear
superposition and can form new unitarily related basis taking into account the restrictions
posed by p-adicity. This option is suggested also by the identification of the Hilbert space as
wave functions in the local singular covering of imbedding space. The phases form also in a
natural manner cyclic group Zn identifiable as quantum Galois group assignable to integer n
and decomposing to a product of cyclic groups Zpi , pi|n.

Also real numbers form a Cartesian factor of adeles. The question what Hilbert spaces with
dimension equal to arbitrary real number could mean has been already discussed and there are two
approaches to the problem: one based on canonical identification and quantum counterparts of p-adic
numbers and one to a completion of Hilbert rationals.

4 Generalized Feynman diagrams as quantum arithmetic Feyn-
man diagrams?

The idea that the generalized Feynman diagrams of TGD could have interpretation in terms of arith-
metic QFT is not new but the quantum arithmetic Feynman diagrams give much more precise content
to this idea.

1. The possibility to eliminate all loops is by ”moves” is an old idea (briefly discussed in [2]),
which I introduced as a generalization of the old fashioned s-t duality of string models. One
motivation was of course the resulting cancellation of diverges. I however gave up this idea as
too romantic [2]. The properties of the counterparts of twistor diagrams in zero energy ontology
re-inspires this idea.

2. The basic question concerns the possible physical interpretation of the two kinds of 3-vertices
and their co-vertices, which are also included and mean decomposition of incoming particle
characterized by integer m to quantum superposition of two particle states characterized by
integers n, p satisfying m = n+ p for the co-sum and m = n× p for co-product. The amplitudes
of different state pairs n, p in fact determine the quantum dynamics and typically the irreversible
dynamics leading from state with well-defined quantum number characterized by integers would
be due to the presence of co-vertices meaning delocalization.

3. If quantum p-adic integers correspond to Hilbert spaces then the identifications +q = ⊕ and
×q = ⊗ become possible. The challenge is to fix uniquely their co-vertices and this procedure
fixes completely number theoretic Feynman amplitudes. Quantum dynamics would reduce to
co-arithmetics. Or should one say that mathematics could reduce to quantum dynamics?

4. ×q and +q alone look very quantal and the generalization of string model duality means that
besides cyclic permutations arbitrary permutations of incoming resp. outgoing lines act as
symmetries. The natural question is whether this symmetry generalizes to permutations of all
lines. This of course if commutativity in strict sense holds true also for quantum arithmetics:
it could be that it holds true only in projective sense. Distributivity has however no obvious
interpretation in terms of standard quantum field theory. The arithmetics for integers would
naturally reflect the arithmetics of Hilbert spaces dimensions induced by direct sum and tensor
product

4.1 Quantum TGD predicts counterparts for ×q and +q vertices

Also quantum TGD allows two kinds of vertices identifiable in terms of the arithmetic vertices and
this gives strong physical constraints on +q vertices.

1. First kind of vertices are the direct topological analogs of vertices of ordinary Feynman diagrams
and there are good arguments suggesting that only 3-vertices are possible and would mean
joining of 3 light-like 3-surfaces representing lines of generalized Feyman diagram along their
2-dimensional ends. At the these vertices space-time fails to be a manifold but 3-surface and
partonic 2-surface are manifolds. These vertices correspond naturally to ×q or equivalently ⊗.
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2. The vertices of second kind correspond to the stringy vertices, in particular the analog of stringy
trouser vertices. The TGD based interpretation - different from stringy interpretation- is that no
decay takes place for a particle: rather the same particles travels along different routes. These
vertices correspond to four-surfaces, which are manifolds but 3-surfaces and partonic 2-surface
fail to be manifolds at the vertex. There is a strong temptation to interpret +q - or equivalently
⊕ - as the counterpart of stringy vertices so that the two lines entering to +q would represent
same incoming particle and should have in some sense same quantum numbers in the situation
when the particle is an eigenstate of the quantum numbers in question? This would allow to
understand the strange looking quantum distributivity and also to deduce what can happen in
+q vertex.

3. What does the conservation of quantum numbers mean for quantum Galois quantum num-
bers identified in the proposed manner as quantum number associated with the cyclic groups
assignable to the integers appearing in the vertex? For ×q vertex the answer is simple since ten-
sor product is formed. This means that the number theoretic momentum is conserved. For direct
sum one obtains direct sum of the incoming states and one cannot speak about conservation of
quantum numbers since the final state does not possess well-defined quantum numbers.

4.2 How could quantum numbers of physical states relate to the number
theoretic quantum numbers?

Quite generally, the above proposal would allow to represent all n-plets of rationals as zero energy
states with either positive or negative arrow of time and one could assign to these states M -matrices
as entanglement coefficients and define quantum jump as a sequence of two state function reductions
occurring to states with opposite arrow of time. This kind of strong structural similarities with
quantum TGD are hardly not a accident when one takes into account the connection with infinite
primes and one could hope that zero energy states and generalized Feynman graphs could represent the
arithmetics of Hilbert adeles with very dramatic consequences due to the arithmetic moves allowing to
eliminate loops and permuted incoming lines without affecting the diagram except by a phase factor.
The hierarchy of infinite primes suggests strongly the generalization of this picture since the resulting
states would correspond only to the infinite integers at the lowest level of the hierarchy and identifiable
in terms of free Fock states of super-symmetric arithmetic QFT.

The possible reduction of generalized Feynman diagrams to Hilbert adelic arithmetics raises several
questions and one can try to proceed by requiring consistency with the earlier speculations.

1. How the quantum numbers like momentum, spin and various internal quantum numbers relate
to the number theoretic quantum numbers k = n2π/p defined only modulo p? The natural
idea is that they find a representation in the number theoretical anatomy of the state so that
these quantum numbers corresponds to waves with these momenta at the orbits of quantum
Galois group. Momentum UV cutoff would have interpretation in terms of finite measurement
resolution completely analogous to that encountered in condensed matter physics for lattice like
systems. This would realize self-reference in the sense that cognitive part of the quantum state
would represent quantum numbers characterizing the real part of the quantum state.

2. What about the quantum p-adics themselves characterizing incoming and out-going states in
number theoretic vertices? There would be a conservation of number theoretical ”momentum”
characterized by logarithm of a rational in ×q vertex. Does this momentum have any concrete
physical counterpart? Perhaps not since it would be associated with quantum p-adic degrees of
freedom serving as correlates for cognition. In fact, the following argument suggest interpreta-
tion in terms of a finite dimension (finite by finite measurement resolution) of a Hilbert space
associated with the orbit of a partonic 2-surface.

(a) The prime factors of integer characterizing the orbit of a partonic 2-surface correspond
naturally to braid strands for generalized Feynman diagrams. This suggests that the primes
in question can be assigned with braid strands and would be indeed something new. The
product of the primes associated with the particles entering ×q vertex would be same as
the product of primes leaving this vertex. In the case of +q vertex the integer associated
with each line would be same. One cannot identify these primes as p-adic primes since
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entire orbit of partonic 2-surface and therefore all braid strands are characterized by single
common p-adic prime p.

(b) Hilbert spaces with prime dimension are in a well-defined sense primes for tensor product,
and any finite-dimensional Hilbert space decomposes into a product of prime Hilbert spaces.
Hence the integer n associated with the line of a generalized Feynman diagram could
characterize the dimension of the finite-dimensional Hilbert space (by finite measurement
resolution) associated with it. The decomposition of n to prime factors would correspond
to a decomposition of this Hilbert space to a tensor product of prime factors assignable to
braid strands. This would define a direct Hilbert space counterpart for the decomposition of
braid into braid strands and would be very natural physically and actually define the notion
of elementarity. The basic selection rule for ×q vertex would be that the prime factors of
incoming Hilbert spaces recombining to form Hilbert spaces of outgoing particles. For the
+q incoming Hilbert spaces of dimensions n1 and nb would fuse to n1 + n2 dimensional
direct sum. a(b + c) = ab + ac would state that the tensor product with direct sum is
sum of tensor products with direct summands. Therefore the two kind of vertices as well
as corresponding vertices of quantum TGD would correspond to basic algebraic operations
for finite-dimensional Hilbert spaces very natural for finite measurement resolution.

(c) Could the different quantum versions of p-adic prime l > p correspond to different direct
sum decompositions of a Hilbert space with prime dimension to Hilbert spaces with prime
dimensions appearing in the quantum pinary expansion in powers of p? The coefficients of
powers of p defined as products of quantum primes l < p would be quantum dimensions
and reflect effects caused by finite measurement resolution whereas the powers of p would
correspond to ordinary dimensions. This decomposition would correspond to a natural
decomposition to a direct sum by some natural criterion related to finite measurement
resolution. For instance, power pn could correspond to n-ary p-adic length scale. The
decomposition would take place for every strand of braid.

The objection is that for algebraic extensions of rationals the primes of the extension
can be algebraic number so that the corresponding Hilbert space dimension would be
complex algebraic number. It seems that only the primes l > p which do not split for the
algebraic extension used (and thus label quantum p-adic number fields in the adele) can
be considered as prime dimensions for the Hilbert spaces associated with braid strands.
The latter option is more natural and would mean that the number theoretic evolution
generating increasingly higher-dimensional algebraic extensions implies selection of both
preferred p-adic primes and preferred prime dimensions for state spaces. One implication
would be that the quantum Galois group assignable to given p-adic integer would in general
be smaller for an algebraic extension of rationals than for rationals since only the non-
splittable primes in its factorization would contribute to the quantum Galois group.

(d) As already discussed, the most plausible interpretation is that the pair of co-prime integers
defining the quantum rational defines a pair of Hilbert space dimensions possibly assignable
to fermions and bosons respectively. Interestingly, for the simplest infinite primes repre-
senting Fock states and mappable to rationals m/n the integers m and n could be formally
associated with many-boson and many-fermion states.

(e) Because of multiplicative conservation law in ×q vertex quantum p-adic numbers does not
have a natural interpretation as ordinary quantum numbers - say momentum components.
The problem is that the momentum defined as logarithm of multiplicatively conserved
number theoretic momentum would not be p-adic number without the introduction of an
infinite-dimensional transcendental extension to guarantee the existence of logarithms of
primes.

(f) If this vision is correct, the representation of ordinary quantum numbers as quantum Galois
quantum numbers would be a representation in a state space formed by (quantum) state
spaces of various quantum dimensions and thus rather abstract but quite possible in TGD
framework. This is of course a huge generalization from the simple wave mechanical pic-
ture based on single Hilbert space but in spirit with abstract category-theoretical thinking
about what integers are category-theoretically. The integers appearing as integers in the
Cartesian factors of adeles would represent Hilbert space dimensions in the case of gener-
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alized Feynman diagrams. The arithmetic Feynman rules would be only a part of story: as
such very abstract but made concrete by braid representation.

3. Note that the interpretation of + and × vertices in terms of Hilbert space dimensions makes
sense also in the real context whereas the further decomposition into direct sum in powers of pn

does not make sense anymore.

4.3 Number theoretical quantum numbers and hierarchy of Planck con-
stants

What could be the TGD inspired physical interpretation of these mysterious looking Hilbert spaces
possessing prime dimensions and having no obvious identification in standard physics context?

1. As already noticed, the decomposition of integer to primes would naturally correspond to its
decomposition to braid strands to which one can assign Hilbert spaces of prime-valued dimension
D = l appearing as factors of integer n. This suggests a Hilbert space is defined by wave functions
in a set Bn with n points,. This Hilbert space naturally decomposes into a tensor product of
Hilbert spaces with Hilbert spaces associated with point sets Bl containing l of points with l|n.

2. The only space of this kind that comes in mind relates to the proposed hierarchy of (effective)
Planck constants coming as integer multiples of ordinary Planck constant. For the simplest
option Planck constant ~n = n~0 would correspond to a local (singular) covering of the imbed-
ding space due to the n-valuedness of the time derivatives of the imbedding space coordinates
as function of canonical momentum densities which is due to the huge vacuum degeneracy of
Kähler action.

3. The discrete group Zn would act as a natural symmetry of the covering and would decomposes
a Zn =

∏
l|n Z

el
l and the orbits of Zl in the covering would define naturally the sets Bl. Given

prime l in the decomposition would correspond to an l-fold covering of a braid strand and to a
wave function in this space.

4. The proposal for the hierarchy of Planck constants assumes that different sheets of this singular
covering degenerate to single sheet at partonic 2-surfaces at the ends of CD. Furthermore, the
integers n would decompose to to products n = n1n2 corresponding to directions of time-like
braids along wormhole throat and along the space-like 3-surface at the end of CD defining by
effective 2-dimensionality (strong form of holography) two space-time coordinates playing the
role of time coordinate in the field equations for preferred extremals. Note that the information
about the presence of covering would be carried at partonic 2-surfaces by the tangent space data
characterized by the ni-valued normal derivatives.

5. p-Adic prime p would make itself manifest in the further decomposition of the l-dimensional
Hilbert spaces to a direct sum of sub-Hilbert spaces with dimensions given by the terms ln,qp

n

in the expression of l as quantum integer. The fact that the only prime ideal for p-adic integers
is pQp should relate to this. It is quite possible that this decomposition occurs only for the
p-adic sectors of the Hilbert adelic imbedding space.

What suggests itself is symmetry breaking implying the decomposition of the covering An of
braid strand to subsets An,m with numbers of elements given by #n,m = lmp

m with lm divisible
only by primes p1 < p. Wave functions would be localized to the sets An,m, and inside An,m

one would have tensor product of wave functions localized into the sets Al with l < p and l|lm.

Hilbert space dimensions would be now quantum dimensions associated with the quantum phase
exp(iπ/l): this should be due to the finite measurement resolution and relate to the fact that
one has divided away the hyper-finite factor N from the factor M ⊃ N .

The index characterizing Jones inclusion [5] [4] is given by [M : N ] = 4cos2(2π/n) and cor-
responds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series of
more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces and
q = n-adicity. Note that lq < l is in accordance with the idea about finite measurement resolu-
tion and for large values of p one would have lq ' l.
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If the above identification is correct, the conservation laws in ×q and +q vertices would give rather
precise information about what can happen for the values of Planck constants in thes vertices. In
×q co-vertices Planck constants would combine multiplicatively and in ⊕q co-vertices additively. The
phase transitions changing Planck constant, for instance for photons, are central for quantum TGD
and the selection rules would not allow them only if they correspond to a formation of a Bose-Einstein
condensate like state or its decay by ×q- or +q-vertex

1. In ×q-vertex the Planck constants for the outgoing particles would be smaller and factors of
incoming Planck constant. In ×q co-vertex Planck constant would increase. I have considered
analogous selection rules already earlier. ×q vertex does not allow the fusion of photons with
the ordinary value of Planck constant to fuse to photons with larger value of Planck constant.

By conservation of energy the frequency of a photon like state resulting in the fusion is given
by f =

∑
nkfk/Nout

∏
k nk for ~k = nk~0, where Nin and Nout are the numbers of quanta

in the initial and final state. For a common incoming frequency fk = f0 this gives f/f0 =∑
k nk/(Nout

∏
k nk). If one assumes that spin unit for photon increases to

∏
k nk~0 and spins

are parallel one obtains from angular momentum conservation Nout

∏
k nk = Nin

∑
nk giving

Nout =
∏

k nkNin/
∑
nk = nNin/Ninn, which in turn gives f/f0 = 1/Nin. This looks rather

natural.

In the presence of a feed of r = ~/~0¿1 particles ×q vertex could lead to a phase transition
generating particles with large values of Planck constant. Large values of Planck constant are
in a key role in TGD based model of living matter since Compton lengths and other quantum
scales are proportional to ~ so that large values of ~ make possible macroscopic quantum phases.
The phase transition leading to living matter could be this kind of phase transition in presence
of feed of r > 1 particles.

2. For +q co-vertex r = ~/~0 could be additive and for incoming photons with same frequency
and Planck constants ~k the outgoing state with Planck constant

∑
k ~k energy conservation

is guaranteed if the frequency stays same. This vertex allows the transformation of ordinary
photons to photons with large Planck constant, and one could say that effectively the photons
fuse to form single photon. This is consistent with the quantization of spin since the unit of
spin increases. For this option the presence of particles with ordinary value of Planck constant
is enough to generate particles with r > 1 and this in turn could lead to a the phase transition
generation living matter.

3. One can of course ask whether it should be r − 1 = ~/~0 + 1, which corresponds to the integer
n. For this option the third particle of +q vertex with two incoming particles with ordinary
Planck constant would have ordinary Planck constant. For ×q vertex containing two incoming
particles with r = n, n = 1 (n = 2), also the third particle would have n = 1 (n = 2). ×q and
+q vertices could not generate n > 1 particles from particles with ordinary Planck constant.
The phase transition leading from inanimate to living matter would require n > 1 states as a
seed (one has 2 + 2→ 3 for +q vertex). A quantum jump generating a CD containing this kind
of particles could lead to this kind of situation.

4. These selection rules mean a deviation of the earlier proposal that only particles with same
values of Planck constant can appear in a given vertex [4]. This assumption explains why dark
matter identified as phases with non-standard value of Planck constant decouples from ordinary
matter at vertices. In the more general framework this explanation is however not lost. If ×q

vertex contains two particles with r = n+ 1 for r = n option (r = 1 or 2 for r = n+ 1 option),
also the third particle has ordinary value of Planck constant so that ordinary matter effectively
decouples from dark matter. For +q vertex the decoupling of the ordinary from dark matter
occurs for r = n+ 1 option but not for r = n option. Hence r = n+ 1 could explain the virtual
decoupling of dark and ordinary matter from each other.

4.4 What is the relation to infinite primes?

Already quantum p-adics would mean a dramatic generalization of number concept by assigning to
rationals ane even algebraic numbers Hilbert spaces and their states. Quantum adeles would mean a



4.4 What is the relation to infinite primes? 23

further generalization of number concept by gluing together reals and Hilbert space variants of p-adic
number fields.

TGD leads also to another generalization of number concept based on the hierarchy of infinite
primes [10]. This generalization also leads to a generalization of real number in the sense that one can
construct infinite number of real units as infinite rationals which reduce to units in real sense. This
would mean that space-time point has infinitely complex number theoretic anatomy not visible at the
level of real physics [11].

The possibly existing relationship between these generalizations is of course interesting. Infinite
primes can be mapped to polynomial primes and this means that one can assign to them algebraic
extensions of rationals and corresponding Galois groups and in [14] I discussed a conjecture that the
elements of these Galois groups could be represented as symplectic flows assignable to braids which
emerge naturally as counterparts of partonic 2-surfaces in finite measurement resolution. This would
suggest a possible relationship.

The construction of infinite primes relies on the product X =
∏

p p of finite primes interpreted
physical as analog of Dirac vacuum with all negative energy states filled. Simplest infinite primes are
constructed by kicking away fermions from this vacuum and by adding also bosons labeled by primes.
One obtains also the analogs of bound states as infinite primes which can be mapped to irreducible
polynomials. The roots of the polynomial code for the infinite prime and the algebraic extension. The
infinite primes corresponding to nth order polynomials decompose to products of n simplest infinite
primes of algebraic extension so that the corresponding Galois group emerges naturally.

The construction can be repeated endlessly by taking the infinite primes of the existing highest
level and forming the product X of them and repeating the process. What these means that the
many-particle states of the previous level define single particle states of the new level. One can map
these infinite primes to polynomial primes for polynomials of several variables. Also this hierarchy
might allow generalization obtained by assigning to infinite primes the orbits of their Galois groups.
The earlier considerations [8] suggest strongly a reduction of the description to the lowest level and
involving only algebraic numbers.

4.4.1 What do we understand about infinite primes?

Let us first try to summarize what we understand about infinite primes. What seems very natural
is the postulate that arithmetic QFT associated with infinite primes conserves multiplicative number
theoretic momenta defined by ordinary primes with separate conservation law for each prime. This
law would hold for ×q vertices very naturally whereas for +q vertices it would be broken. Recall
that these two vertices correspond to the TGD counterparts of 3-vertices for Feynman diagrams and
stringy diagrams respectively and also to tensor product and direct sum.

1. What seems clear is that infinite prime characterizes an algebraic extension of rationals (or of
its extension) in the case that infinite primes is defined in terms of finite primes of extension.
Infinite prime dictates also the p-adic primes which are possible and appear in the quantum
adele assignable to infinite prime.

2. The integer exponents of ordinary primes appearing in the infinite and finite part of the simplest
lowest level infinite prime could define infinite number of conserved number theoretic momenta,
one for each prime p and having log(p), p prime, as a unit. Separate conservation follows from the
algebraic independence. These number theoretic momenta do not make sense p-adically, which
means that in p-adic context the multiplicative form of the conservation law is the appropriate
one. Therefore it is appropriate to speak of multiplicative momenta. Therefore the relationship
with ordinary additively conserved momenta does not lok plausible.

Arithmetic QFT interpretation allows also to interpret the numbers np in pnp as particle numbers
assignable to bosonic quanta and fermionic quanta in the case of the simplest infinite primes
with ”small part” representing fermions kicked out from the Dirac sea possibly accompanied by
bosonic quanta. The conservation law at ×q vertices would mean conservation of total particle
numbers assignable to primes p.

3. For the simplest primes at the lowest level identifiable as linear polynomials with integer coef-
ficients there are two separate integers defining number theoretic momenta. The first integer
corresponds to the finite part of infinite prime and the second one to the finite part of the
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infinite prime to which one assigns number theoretic fermions. These two parts are separately
conserved. Since the integers have no common prime factors, one can also speak about rational
valued multiplicative number theoretic momentum. The physical interpretation for the absence
of common factors would be that given mode cannot simultaneously containing and not con-
tain fermionic excitation. For higher irreducible polynomials of order n interpreted in terms of
bound states there are n+1 integers defining a collection of number theoretic momenta. For the
representation as a monic polynomial one has a collection of n rational valued number theoretic
momenta.

4. The notion of multiplicative number theoretic momentum generalizes.

(a) At the second level of the hierarchy ordinary primes are replaced with prime polynomials
Pn(x) of single variable. At the nth level they are prime polynomials Pn(x1, ..., xn−1) of
n− 1 variables. The value of the number theoretic momentum at nth s level can be said to
be a polynomial Pn(x1, ..., xn−1) rather than integer.

(b) This looks very abstract but can be concretized. For instance, each coefficient of Pn(x, y)
at second level as polynomial of y defines a polynomial Pk(x) at the first level and Pk(x) is
characterized by a collection of number theoretic momenta defined by its integer coefficients
in the representation as a polynomial with integer coefficients. Therefore Pk(x) can be
identified as the collection of k+1 integer coefficients or k rational coefficients in the monic
representation identified as number theoretic momenta for a k-particle state. Pn(x, y)
in turn corresponds to a collection of n many-particles states with ith one containing ki
particles, i = 1, ...n. The interpretation in terms of n-braid with braid strands decomposing
to ki braid strands is natural and conforms with the fractality of TGD Universe.

(c) This example allows to deduce the number theoretic interpretation of the polynomial at
the nth level and one can continue this abstraction hierarchy ad infinitum. Eventually each
prime at a given level of hierarchy reduces to a collection of number theoretic momenta
defined by ordinary integers grouped in a manner characterized by the infinite prime.
Physically this would characterize how these number theoretic elementary particles group
to particles at the first level, these to particles at second level, and so on.

(d) The possibility to express the irreducible polynomial as a product of first order polynomials
with zeros which algebraic numbers gives for the bound state a representation as free many-
particle state but with number theoretic momenta which are algebraic rationals in algebraic
extension of rationals. These number theoretic momenta can be also complex and therefore
do not allow interpretation as Hilbert space dimensions. This decomposition is analogous
to a decomposition of hadron to quarks. The rational coefficients expressible in terms of the
roots of the polynomial code for Galois invariants analogous to the observables assignable
to hadrons and accessible to the experimenter.

5. The basic conservation law of arithmetic QFT and of TGD would be that the multiplicative
number theoretic momenta labelled by finite primes are separately conserved in ×q vertices but
not in +q vertices. The conservation number theoretic quantum numbers allows the interpreta-
tion of Hilbert space dimensions in terms of the hierarchy of Planck constants, and this leads to a
proposal that infinite primes code the pairs of finite integers with no common factors assignable
to the pairs of time-like and space-like braid strands.

If one takes seriously the notion of number theoretic fermion, one could assign to space-like braid
strands only bosonic excitations and to time-like braid strands fermion and possibly also bosonic
excitations. The interpretation could be in terms of the super-conformal algebras containing
both fermionic and bosonic generators. The hierarchy of infinite primes would correspond to a
hierarchy of braids containing lower level braids as their strands as suggested already earlier [14].
What would be new would be a concrete assignment of primes to braid strands and detailed
identification in terms of time-like and space-like braids.

This kind of assignment would mean a rather dramatic step of progress in the understanding of
the complexities of generalized Feynman diagrams. One not completely settled old question is
what selects the p-adic prime assignable to given partonic 2-surface.

http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#infmotives
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This is the stable looking part of the vision about infinite primes, and any attempt to relate it to
quantum p-adics and quantum adeles should respect this picture.

4.4.2 Hyper-octonionic primes correspond to p-adic primes in extension of rationals

The earlier interpretation hyper-complex and appropriately defined quaternionic and octonionic gen-
eralizations is in terms of standard model quantum numbers [5]. It seems that also this identification
survives under the selective pressures by new ideas but that one cannot replace hyper-complex primes
with their infinite counterparts. Rather, hyper-complex prime generalizes p-adic prime as a preferred
prime by replacing ordinary integers with hyper-complex integers. The definition of infinite primes
in quaternionic and octonionic context is plagued by the problems caused by non-commutativity and
associativity so that the conclusion is well-come.

1. The solutions of modified Dirac equation suggest the interpretation of the M2 projections of
four-momenta as ”hyper-complex” primes or perhaps more realistically. their integer multiples.
These momenta are conserved additively rather than multiplicatively at vertices to which ×q is
assigned and only their exponents - naturally phase factors - would be conserved multiplicatively.

2. Could this identification generalize from hyper-octonionic primes to hyper-octonionic infinite
primes? This does not seem to be the case. The multiplicative conservation in ×q vertices
for number theoretic momenta is in conflict with additive conservation for ordinary quantum
numbers. Additive conservation is also in conflict with interpretation in terms Hilbert space
dimensions allowing concretization in terms of the hierarchy of Planck constants. Of course,
hyper-complex Hilbert space dimension does not make sense either.

3. One must remember that there are many kinds of primes involved and a little list helps to see
what the correct interpretation for hyper-complex primes could be.

(a) There are the primes l appearing in the decomposition of infinite primes and having inter-
pretation in terms of Hilbert space dimensions. The conservation of multiplicative number
theoretical momenta is natural at ×q vertices.

(b) There are the p-adic primes p, and on basis of p-adic mass calculations it is this prime to
which it is natural to assign additively conserved momenta. p characterizes the ”active”
sector of adeles and therefore also the various quantum variants of the prime l in which
quantum primes p1 < p appear as factors. p characterizes partonic 2-surface.

(c) The Abelizanization of the quantum Galois group assignable to prime l decomposes into
prime factors Zp2

and the phases exp(i2π/p1) might provide cognitive representations in
finite measurement resolution for various standard model quantum numbers.

4. The only reasonable interpretation seems to be that the hyper-complex momenta and possible
other quantum numbers assignable to them correspond to p-adic prime p for rationals or for an
algebraic extension of rationals to the ring hyper-complex rationals. The failure of field property
implies that the inverse of hyper-complex number fails to exist when it defines a light-like
vector of M2. This has however a concrete physical interpretation and light-like hyper-complex
momentum for a massless state is massless only when the momentum of the state transverse to
M2 vanishes so that also propagator defined by M2 momentum diverges.

What the identification of M2 momenta as hyper-complex integers really means, deserves some
comments.

1. Suppose that particle’s p-adic mass squared is of form m2 = np as predicted by p-adic mass
calculations. Assume that m2 corresponds to M2 momentum squared with preferred M2 char-
acterizing given causal diamond CD. Assume also that total M4 mass squared vanishes in
accordance with the idea that all states - even those representing virtual particles - carried by
wormhole throats are massless. In accordance with the adelic vision, assume that the prime p
does not split in the algebraic extension of rationals used (simplest extension would be Q[

√
−1]).

This requires p mod 4 = 3 in accordance with Mersenne prime hypothesis. The idea is that p
does not split for ordinary algebraic extension but splits in the ring of hyper-complex numbers.

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#Dirac
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2. The preferred plane M2 ⊂ M4 corresponds to a preferred hyper-complex plane of complexified
(by commuting imaginary unit i) hyper-octonionic space M8. M2-momentum has therefore
purely number theoretic interpretation being due to the slitting of M2 = np to a product of
hypercomplex integer N = N0+eNz and its conjugate N0−eNz). The hyper-complex imaginary
unit e = iI satisfying e2 = 1 and I2 = −i2 = −1 would correspond to z-axes of M2. Here is
I is the preferred octonionic imaginary unit and i an imaginary unit commuting with it. One
could say that 2-D particle momentum emerges via the emergence of hyper-complex extension
of rationals of their extension. This would also generalize to quaternions and one could say that
M4 momentum emerges via extension of rationals to hyper-quaternions.

3. M2 momentum squared would satisfy P 2
0 − P 2

z = (P0 − ePz)(P0 + ePz) = np. The prime p
does not split in the algebraic extension of rationals used but splits in the ring of hyper-complex
numbers. Assume first n = 1. In this case the splitting of p mod = 3 (p mod = 1) to
p = (p0 + epz)(p0 − epz) implies p0 is even (odd) and pz is odd (even). For n > 1 one must
have (n0− en1)(n0 + en1) = n and similar conditions apply to n so that one would have for M2

momentum P0 + ePz = (n0 ± enz)(p0 ± epz).

4. Momentum components are hyper-complex integer multiples of hyper-complex prime so that that
the allowed momenta would form an ideal of hyper-complex numbers. This is mathematically
very nice but might be quite too strong a condition physically although it is typically encountered
in systems in which particle is enclosed in box. Now the box would correspond to CD with
periodic boundary conditions at the ends of CD for the modified Dirac equation. One could
consider also a weaker condition for with the integer n is replaced with a rational (m/n) such
that neither m nor n contains p as a prime factor.

5. The peculiar looking prediction would be that M2 momentum cannot be purely time-like. In
other words, the particle cannot be at rest M2. Observer for which CD defines the rest system
could not perform a state function reduction leading to a situation in which the particle is at
rest with respect to the observer! In fact, this kind of situation is encountered also for particle
in box since boundary conditions do not allow constant mode. If one recalls that all particles
would be massless in M4 sense, this condition does not look so strange.

4.4.3 Infinite primes and Hilbert space dimensions

Arithmetic QFT picture would strongly suggests that the number theoretic momenta at the lowest
level are conserved in ×q vertices at least. For +q vertices the conservation cannot hold true. The
conservation could mean that the total number of powers of given prime in state is same for positive
and negative energy states.

Of course, much richer spectrum of conservation laws can be imagined since one could require
similar conservation laws also at the higher levels of hierarchy, where various number theoretic mo-
menta correspond to numbers prime polynomials at lower level present in the state. The physical
interpretation would be that the numbers of bound states particles are conserved meaning that these
particles can be regarded as stable. On physical grounds this kind of conservation laws can be only
approximate.

1. Could infinite primes label infinite-dimensional prime Hilbert spaces as finite primes do? Could
the interpretation for the object X =

∏
p p be in terms of a tensor product of all prime-

dimensional Hilbert spaces. Infinite primes with positive finite part would have interpretation
as direct sums of this space and finite integer-dimensional Hilbert space. When the finite part of
the infinite prime is negative the interpretation would not be so straightforward, and this option
does not look attractive.

2. A much more plausible option is that infinite prime at the first level defines an algebraic exten-
sion of rationals (or of its extension) and that this gives rise to a collection of norm for algebraic
extension induced by complex norm. As a matter fact, these points at which this norm vanishes
might have interpretation as complex coordinates for a corresponding braid strand in n-strand
bound state braid in preferred complex coordinates for the partonic 2-surface. A possible ge-
ometric interpretation for these points inspired by the notion of dessins d’enfant is that the
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partonic 2-surface as an abstract Riemann surface representable as a covering of sphere becomes
singular at these points as several sheets of covering co-incide.

3. The infinite primes of the lowest level of the hierarchy formally representing Fock states of free
bosons and fermions can be mapped to rationals. These rationals could define pairs of Hilbert
space dimensions assignable to bosonic and fermionic parts of the state and could this allow
identification as quantum p-adic integer in each sector of the adele and the identification in
terms of integer dimension in the real sector of quantum adeles. The fact that the two integers
have no common factors would only mean that given mode cannot both contain and not contain
fermionic excitation.

One could even consider the possibility of concrete assignment of the first dimension in terms
of fermionic braid strands with bosonic excitations and second dimension in terms of purely
bosonic braid strands. This interpretation is very natural since the super-conformal algebras
creating states have both purely bosonic and purely fermionic generators. These braids could
correspond to space-like and time-like (actually light-like) braids having their ends at partonic
2-surfaces.

The Galois groups associated with primes appearing as factors of the primes would correspond
naturally to additional internal degrees of freedom. This identification makes sense also for the
infinite primes represented by irreducible polynomials since the coefficients of the polynomial
representable in terms of the roots of polynomials define rationals having interpretation as
number theoretic momenta. Therefore the interpretation in terms of Hilbert space dimensions
makes sense when rationals are interpreted as pairs of dimensions for Hilbert spaces.

4. What about the infinite primes representing bound states and mappable to irreducible poly-
nomials with rational coefficients and defining polynomial primes characterized by a collection
of roots [8]. These roots define an algebraic extension of rationals and this suggests that the
quantum adele associated with the infinite prime in question is defined accordingly. The infinite
primes mappable to nth order monic polynomials would have interpretation as many particle
states consisting of single particle states which correspond to algebraic number rather than ra-
tional. The rational coefficients of the monic polynomial would define the rationals defining
pairs of Hilbert space dimensions.

5. The natural identification for the Hilbert spaces in question would be in terms of the singular
local coverings of imbedding space associated with the hierarchy of Planck constants suggested
to emerge from the vacuum degeneracy of Kähler action. The integer n decomposing to primes
would correspond to sub-braids labeled by prime factors l of n and consisting of l strands in the
l-fold sub-covering.

The consistency with the quantum adeles would force the following highly speculative picture.
Main justification comes from its internal consistency and consistency with generalize Feynman graphs.

1. Infinite prime (integer, rational) defines the algebraic extension used and the allowed quantum
p-adic number fields contributing as factors to the corresponding quantum adele. p-Adic primes,
which can be also algebraic primes if one starts from extension of rationals, by definition do not
split in the algebraic extension. Infinite primes assignable to particle states obey the conser-
vation of multiplicative number theoretic momenta and define naturally collections of pairs if
Hilbert space dimensions assignable to the particles and decomposing to primes l assignable to
braid strands. The integers characterizing the rational defining number theoretic momentum
correspond to time-like and space-like braid strands and only the time- or space-like strand
carries fermionic quantum numbers.

2. These Hilbert spaces have a natural interpretation in terms of the hierarchy of Planck constants
realizable in terms of local singular coverings of the imbedding space forced by the enormous
vacuum degeneracy of Kähler action.

3. Hyper-complex primes are identifiable as generalizations of p-adic primes and have nothing to
do with infinite primes. They could code for standard model quantum number.

http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#infsur
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#infsur
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4. The quantum Galois quantum numbers assignable to primes l for given p-adic prime p and
appearing in the infinite prime characterizing the state would provide a cognitive representation
of the standard model quantum numbers.

5. Mersenne primes and primes near powers of 2 and p = 2 also should be selected as a p-adic
prime in this manner.

6. The basic uncertain aspect of the scenario is whether the notion of quantum p-adic with coef-
ficients in quantum pinary expansion satisfying only the condition xn < pN for N > 1, with
N dictated by the pinary cutoff, makes sense. Physically N > 1 is very natural generalization.
Most of the preceding considerations remain intact even if N = 1 is the only internally consistent
option. What is lost is the representation of quantum numbers using quantum Galois group and
the crazy proposal that quantum Galois group could be isomorphic to AGG.

This is only the simplest possibility that I can imagine now and reader is encouraged to imagine
something better!

4.4.4 The relationship between the infinite primes of TGD and of algebraic number
theory

While preparing this chapter I experienced quite a surprise as I learned that something called infinite
primes emerges in algebraic number theory [1]. Infinite primes in this sense looked first to me like a
heuristic concept characterizing norms for algebraic extensions of rationals induced by the complex
norm for the imbeddings of the extension to complex plane. The nomenclature is motivated by the
analogy with p-adic norms defined by algebraic primes. It however turns out that there is a close
connection with infinite primes at the first level of the hierarchy.

1. The embeddings (ring homomorphisms) of Galois extension to complex plane induce a collection
of norms induced by the complex norm. The analogy with p-adic norms labelled by primes serves
as a partial motivation for calling these norms infinite primes. The imbeddings are induced by
the imbeddings of the roots of an irreducible monic polynomials Pn(x) = xn + ... with rational
coefficients, which defines a polynomial prime so that infinite primes in the sense of algebraic
number theory correspond to a polynomial primes.

2. The imbeddings (ring homomorphisms) of the extension ofK in C an be defined to those reducing
to imbeddings in R and those not. The imbeddings to R correspond in one-one manner to real
roots and complex imbeddings come in pairs corresponding to complex root and its conjugate.
The norm is defined as |z − zk|, where zk is the root. The number of imbeddings and therefore
of norms is r = r1 + 2r2, where r is the the degree of the extension K/Q and also the degree of
its Galois group for Galois extensions (defined by polynomials with rational coefficients).

3. Also in TGD framework the infinite primes at the lowest level of hierarchy can be mapped
to irreducible monic polynomials of single variable: at nth level polynomials of n variables is
required. Now however also polynomials P1(x), whose roots are rationals and have interpretation
in terms of free Fock states, are included. Note that the replacement of the variable z with
z − m/n shifts the roots of a monic polynomial by m/n so that the corresponding algebraic
extension is not modified. For the simplest infinite primes the norm would correspond to |z −
m/n|. Therefore infinite prime indeed characterizes the algebraic extension and its imbeddings
and the ”real” factor of quantum adeles is identifiable with this algebraic extension endowed
with any of these norms.

4.5 What selects preferred primes in number theoretical evolution?

Preferred p-adic length scales seem to correspond to primes near powers of two, in particular Mersenne
primes. The proposed explanation is that number theoretic evolution as emergence of higher-dimensional
extensions of rationals and also of p-adics somehow selects Mersenne primes as fittest. But what fit-
ness could mean? This is the question. The answer to the question might be banally simple. The
fittest primes could be stable in the process of generation of algebraic extensions! Stability means
very concretely that primes do not split into products of primes of the extension and therefore can

http://en.wikipedia.org/wiki/Algebraic_number_theory
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define p-adic primes for quantum adeles! Number theoretic evolution by algebraic extensions would
gradually kill p-adic primes.

The splitting to primes need not be unique (if it is one speaks of principal ideal domain). For
instance, in Q[

√
−5] for which factorization to algebraic primes is not unique (but is unique to prime

ideals): 6 = 2 × 3 = (1 +
√
−5)(1 −

√
−5). In this kind of situation it is better to speak about

prime ideals since this makes the splitting unique for what is known as Dedekind domains. The ideal
class group characterizes the non-uniqueness of splitting to primes and consists of equivalence classes
of fractional ideals (essentially integers defined by some fixed integer) under equivalence defined by
multiplication by a rational of extension. The non-uniqueness of the factorization is characterized by
so called ideal class group [4].

Are Mersenne primes especially stable against splitting to algebraic primes? Generally, for an
especially large set of algebraic extensions, or for some special but physically important extensions?
The cautious guess is that Mersenne primes could be special in the sense that the set of (physically
relevant) algebraic extensions for which they do not split is especially large. This in turn would raise
the infinite primes defining these special algebraic extensions in a special physical role. A possible
physical interpretation for these infinite primes would be in terms of bound states. Therefore the
stability of Mersenne primes could be translate to the stability of the bound states for which Mersenne
primes are stable.

quadratic fields Q[
√
d] are the simplest algebraic extensions of rationals since they correspond to

second order prime polynomials and are also relatively well-studied so that one can look them at first.
For Q[

√
d] there are general results about the splitting of primes.

1. Quite generally, given prime p can be inert, split to a product of two distinct prime ideals, or
can be ramified. The so called discriminant D characterizes the situation: for d mod 4 = 1
equals to D = d and otherwise to D = 4d.

2. If p - say Mk - is an odd prime not dividing d, p splits only if one has

D mod p = x2

In this case one has (D/p) = 1, where (D/p) is Legendre symbol having values in the set
{0, 1,−1}. (D/p) = −1 means stability of p against slitting.

Legendre symbol is a multiplicative function in the set of integers D meaning that if p splits
under D1 and D2 it splits also under D1D2 , and if p does not split under D1 nor under D2 it
splits under D1D2. The multiplicative property implies (4p1/p) = (2/p)2 × (p1/p) = (p1/p). It
is obviously enough to check whether the splitting occurs for primes p1. Non-splitting prime p1
gives rise to a set of non-splitting integers obtained by multiplying p1 with any splitting prime.
Also odd powers of non-splitting p1 define this kind of sets.

3. Also the following properties of Legendre symbol are useful. One has (D/p) = (p/D) if either
D mod 4 = 1 or p mod 4 = 1 holds true. D mod 4 = 3 and p mod 4 = 3 one has (D/p) =

−(p/D). One has also (−1/p) = (−1)(p−1)/2 and (2/p) = (−1)(p
2−1)/8.

4. If the p-adic number fields, which do not allow
√
−1 as ordinary p-adic number are in special

role then there might be hopes about the understanding of the special role of Mersenne primes.
Mersenne primes are also stable for Gaussian integers and quadratic extensions Q[

√
±d] of

rationals defined by positive integers d, which are products d = d1d2 of two integers. d1 factorizes
to a product of primes p1 mod 4 = 1 splitting Mk, and d2 is a product of an odd number of
primes p1 mod 4 = 1 not splitting Mk.

5. One must also distinguish between the algebraic extensions of rationals and finite dimensional
extensions of p-adic numbers (also powers ek, k < p define finite-dimensional extension). For
instance, one can consider a quadratic extension Q[

√
−1] for rationals defining similar extension

for the allowed p-adic primes p mod 4 = 3 and fuse it with a quadratic extension Q[
√
d] for

which d mod 4 = 1 holds true. For adeles the extension of rationals and the extensions of
p-adic numbers can be said to separate.

Some special examples are in order to make the situation more concrete.

http://en.wikipedia.org/wiki/Ideal_class_group
http://en.wikipedia.org/wiki/Quadratic_field
http://en.wikipedia.org/wiki/Legendre_symbol


4.6 Generalized Feynman diagrams and adeles 30

1. A good example about physically very relevant quadratic extension is provided by Gaussian
integers, which correspond to Galois extension Q[

√
−1] [3]. p = 2 splits as 2 = (1 + i)(1− i) =

−i(1 + i)2 = i(1− i)2 and the splitting to primes is non-unique. The splitting to prime ideals is
however unique so that p = 2 is not ramified.

The primes p mod 4 = 1 split also as stated by Fermat’s theorem of two squares. Mersenne
primes satisfy p mod 4 = 3 but some additional criterion is needed to select them. Primes
p mod 4 = 3 do not and cannot define p-adic primes appearing in quantum adele for Gaussian
rationals. Note that for p mod 4 = 1

√
−1 exists as p-adic number, which might cause problems

in the p-adic formulation of quantum mechanics. These observations suggest that p-adic primes
p mod4 = 1 suffer extinction when

√
−1 emerges in the number theoretic evolution and only

the primes p mod4 = 3 remain. One could also start from the extension Q[
√
−1] rather than

rationals as the role of
√
−1 in quantum theory suggests so that the primes p mod4 = 3 would

be the only allowed quantum p-adic primes.

2. for Q[
√

2] for which 2-adicity would not be possible. What happens for Mersenne primes? One
can write M3 = 7 = (

√
2 + 3)(−

√
2 + 3) where 3 ±

√
2 is an algebraic integer as a root of a

monic polynomial P (x) = x2 − 6x + 7 so that the splitting of M3 occurs in Q[
√

2]. Therefore
it seems that the absence of

√
2 and allowance of 2-adicity is necessary for Mersenne-adicity.

This conforms with the naive physical picture that the p-adic scales defined by Mersennes are
in excellent approxiation n-ary 2-adic length scales.

One should check whether the extension defined by
√

2 is somehow special as compared to the
extensions defined by odd primes. Certainly the fact that this prime is the only even prime
makes it rather special. It allows extension with

√
−1 and p-adic extension allowing all square

roots except those of 2 is spanned by four square roots unlike similar extensions for other p-adic
numbers fields which require only two square roots.

3. Suppose D = p1 with p1 mod 4 = 1. For p = Mk quadratic resiprocity implies that the
condition is equivalent with Mk mod p1 = x2. Neither the extensions Q[

√
p1] nor Q[

√
−p1]

induce splitting of Mk for p1 mod 4 = 1. For M3 = 7 and p1 ∈ {5, 13, 17} no splitting of
M3 takes place but for p1 = 29 splitting occurs. This suggests that there is no general rule
guaranteing the stability of Mersenne primes in this case.

4. Suppose D = p1 mod 4 = 3. One has (4p1,Mk) = (p1,Mk) by the multiplicative character of
the Legendre symbol. Quadratic resiprocity gives now (p1,Mk) = −(Mk, p1) so that splitting
occurs for Mk only if it does not occur for p1. If splitting occurs for p1 it does not occur for
−p1 and vice versa. p1 = 7 and M2 = 3 serve as a testing sample. One has (3, 7) = 1 so that
the splitting of M2 = 3 takes place for Q[

√
7] but not for Q(

√
−7) and the splitting of M3 = 7

takes place for Q[
√
−3] but not for Q(

√
3).No obvious general rule seems to hold.

4.6 Generalized Feynman diagrams and adeles

The notion of Hilbert adeles seems to fit nicely with the recent view about generalized Feynman
diagrams. The basic heuristic idea is the idea about fusion of physics in various number fields. p-Adic
mass calculations lead to the conclusion that elementary particles are characterize by p-adic primes
and inside hadron quarks obeying different effective or real p-adic topologies are present. One can
speak about real and p-adic space-time sheets and real and p-adic spinors and also WCW has real and
p-adic sectors. There is a hierarchy of algebraic extensions of rationals and presumably of also p-adic
numbers. Even more general finite-dimensional extensions containing for instance Neper number e
and its roots are also possible and involve extensions of p-adic numbers.

At the level of Feynman graphs this means that different lines correspond to different p-adic
topologies and I have already proposed how this could give rise p-adic length scale hypothesis when
the Feynman amplitudes in the tensor product of quantum variants p-adic number fields are mapped
to reals by canonical identification [13]. Rational or even more general entanglement between different
number fields would be essential.

The vertices of generalized Feynman diagrams for different incoming p-adic number fields could be
multi-p p-adic objects in quantum sense involving powers expansions in powers of integer n decomposed
to product of powers of quantum primes associated with its factors with coefficients not divisible by

http://en.wikipedia.org/wiki/Splitting_of_prime_ideals_in_Galois_extensions
http://en.wikipedia.org/wiki/Quadratic_reciprocity
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the factors. An alternative option is that vertices are rational numbers common to all number fields
serving as entanglement coefficients. A third option is that they are real numbers in corresponding
tensor factor. One should also formulate symmetries in p-adic sectors and the simplest option is
that symmetries represented as affine transformations simply reduce to products of the symmetries in
various p-adic sectors of the imbedding space.

The challenge is to formulate all this in a concise and elegant manner. It seems that adeles
generalized to Hilbert adeles might indeed provide this formulation. The naive basic recipe would
be extremely simple: whenever you have a real number, replace it with Hilbert adele. You can even
replace the points of Hilbert spaces involved with corresponding Hilbert spaces! One could replace
imbedding space, space-time surfaces, and WCW as well as imbedding space spinors and spinor fields
and WCW spinors and spinor fields with the hierarchy of their Hilbert adelic counterparts obtaining
in this manner what might be interpreted as cognitive representations.

5 Speculations related to Hilbert adelization

This section contains further speculations related to realization of number theoretical universality in
terms of Hilbert adeles and to the notion of number theoretic emergence. One can construct infinite
hierarchy of Hilbert adeles by replacing the points of Hilbert spaces with Hilbert spaces repeatedly:
this generalizes the repeated second quantization used to construct infinite primes and realizes also
algebraic holography since the points of space have infinitely complex structure. There are strong
restrictions on the values of coordinates of Hilbert space for the p-adic sectors of the adele and the
number of state basis satisfying orthonormality conditions is very restricted: a good guess is that
unitary transformations reduce to a permutation group and that its cyclic subgroup defines quantum
Galois group. Also the Hilbert counterpart of real factor of adeles is present and in this case there
are no such restrictions.

A logical use of terms is achieved if one refers by term ”quantum Hilbert adele” to the adele
obtained by replacing the Hilbert space coefficients an < p of pinary expansions with their quantum
Hilbert spaces. On the other hand the hierarchy of Hilbert adeles is very qunalta since it is analogous
to a hierarchy of second quantizations so that Hilbert adeles could be also called quantum adeles.
Reader can decide.

5.1 Hilbert adelization as a manner to realize number theoretical univer-
sality

Hilbert adelization is highly suggestive realization of the number theoretical universality. The very
construction of adeles and their Hilbert counterparts is consistent with the idea that rational numbers
are common to all completions of rationals. This suggests a generalization of the formalism of physics
allowing to realize number theoretical universality in terms of adeles and their Hilbert counterparts.
What this would mean the replacement of real numbers everywhere by adeles containing real numbers
as one Cartesian factor. Field equations make sense for the adeles separately in each Cartesian factor.

If one can define differential calculus for the Hilbert reals and p-adics as seems to be the case,
this abstraction might make sense. There seems to be no obvious objection for field property and the
entire hierarchy of n-Hilbert spaces could be seen as a cognitive self-referential representation of the
mathematical structure allowing perhap also physical realization if the structure is consistent with
the general axioms.

Field equations would thus make sense also for an infinite hierarchy formed by Hilbertn adeles.
The fascinating conjecture is that quantum physics reduces to quantum mathematics and one might
hope that TGD provides a realization for this physics because of its very strong ties with number
theory.

5.1.1 Hilbert adelication at imbedding space level

The Hilbert adelization at the level of imbedding space makes senses if adelization works so that one
can consider only adelization.

1. Could imbedding space coordinates regarded as adeles? In the p-adic sectors general coordinate
invariance would require some preferred coordinate choices maybe unique enough by symmetry
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considerations. One can also consider a spontaneous breaking of GCI by cognitive represen-
tations. Adelization would code field equations in various p-adic number fields to single field
equation for adeles and would not bring anything new.

2. What could field equations mean for Hilbert adeles? One could imagine that ordinary field
equations as local algebraic statements are expressed separately at each point of space-time
surface giving infinite number of equations of form F k(x) = 0, where k labels imbeding space
coordinates. Moving to the first level of hierarchy would mean that one replaces the points of
Hilbert spaces involved with Hilbert spaces. The connection with the first order logic would
suggest that the points of the Hilbert spaces representing points of imbedding space and space-
time - in general infinite-dimensional for real and p-adic numbers - represent points of imbedding
space and of space-time. This second quantization would transform infinite number of statements
of predicate logic to a statement of first order logic.

This certainly sounds hopelessly abstract and no-one would seriously consider solving field equa-
tions in this manner. But maybe mathematical thinking relying on quantum physics could indeed
do it like this? At the next level of hierarchy one might dream of combining field equations for
entire families of solutions of field equations to single equation and so on. Maybe these families
could correspond to supports of WCW spinor fields in WCW. At the next level statements would
be about families of WCW spinors fields and so on - ad infinitum. In fact, WCW spinors can be
seen as quantum superpositions of logical statements in fermionic Fock space and WCW spinor
fields would assign to WCW a direct sum of this kind of statements, one to each point of WCW.
This sounds infinitely infinite but one must remember that the sub-WCW consisting of surfaces
expressible in terms of rational functions is discrete.

3. The conjecture that field equations reduce to octonion real-analyticity requires that octonions
and quaternions make sense also p-adically. The problem is that the p-adic variants of octonions
and quaternions do not form a field: the reason is that even the equation x2 + y2 = 0 can have
solutions in p-adic number fields so that the inverses of quaternions and octonions, and even
p-adic complex numbers need not make sense. The p-adic counterparts of quaternions and
octonions however exist as a ring so that one could speak about polynomials and Taylor series
whereas the definition of rationals and therefore rational functions would involve problems.
Octonion real-analyticity and quaternion real-analyticity and therefore also space-time surfaces
defined by polynomials or even by infinite Taylor series could make sense also for the p-adic
variants of octonions and quaternions.

Could imbedding space spinors be regarded as adelic and even Hilbert adelic spinors? Again the
problems reduce to the adelic level.

1. Adelization could be perhaps seen as a convenient book keeping device allowing to encapsulate
the infinite number of physics in various quantum p-adic number fields to single physics. Hilbert
adelic structures could however provide much deeper realization of physics as generalized number
theory. One can indeed ask whether the action of the p-adic quantum counterparts of various
symmetries could representable in the quantum quantum Galois groups for Hilbert adeles: these
groups might reduce to cyclic groups and might relate to cyclic coverings of imbedding space at
the level of physics.

The minimal interpretation would be as a cognitive representation of quantum numbers of
physical states at the first ”material” level of hierarchy using the number theoretic Hilbert space
anatomy of the point to achieve the representation. The representative capacity would be infinite
for transcendental numbers with infinite number of pinary digits and finite for rational numbers.
For real unit if would be miminal and zero could not represent anything. Quantum entanglement
would be possible for tensor product coefficients and quantum superposition would be possible
due to direct sum of pinary digits.

2. Imbedding space spinor fields could be regarded as Cartesian products (direct sums) of spinor
fields in real and various p-adic imbedding spaces having values in the same number field. Also
the induced metric and spinor connection would correspond to Cartesian product rather than
tensor product. The isometries of the imbedding space would have matrix representation in
terms of adeles on the adelic omponents of spinors and imbedding space coordinates.
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5.1.2 Hilbert adelication at the level of WCW

What about quantum TGD at the level of WCW? Could Hilbert adelication apply also at this level?
Could one use the same general recipes to adelize? The step from adele to the hierarchy of Hilbert
adeles does not seem to be a conceptual problem and the basic problem is to understand what adele
means.

1. Could WCW described in terms of generalized number theory? Could adelic WCW be defined
as the Cartesian product of real WCW and p-adic WCWs? The observations about dessins
d’enfant [2] [16] suggest that the description of WCW could be reduced to the description in
terms of orbits of algebraic 2-surfaces identified as partonic 2-surfaces at the boundaries of CDs
(also the 4-D tangent space data at them codes for physics).

2. For a Cartesian product of finite-dimensional spaces spinors are formed as tensor products
associated with with the Cartesian factors. Adelic WCW is Cartesian sum of real and p-adic
variants. Could Hilbert adelic WCW spinors be identified as a tensor product of WCW spinors
defined in the Hilbert adelic variant of WCW. This would conform with the physical vision that
real and p-adic physics (matter and cognition) correspond to tensor factors of a larger state
space. Furthermore, spinos generalizes scalar functions and the function space for adele valued
functions with adelic argument forms in a natural manner tensor product of function spaces for
various completions of reals. Note that one can speak about rational quantum entanglement
since rational numbers are common to all the Cartesian factors.

3. Could also the moduli space of conformal equivalence classes of partonic 2-surfaces be regarded as
adele in the sense that Teichmueller parameters from adele. This requires that the Teichmueller
space of conformal equivalence classes of Riemann surfaces corresponds to the p-adic version of
real Teichmueller space: this has been actually assumed in p-adic mass calculations [3, 6].

One could start from the observation that algebraic Riemann surfaces are dense in the space
of all Riemann surfaces. This means that the algebraic variant of Teichmueller space is able
to characterize the conformal equivalence classes. What happens when one adds the Riemann
surfaces for which the coefficients of the Belyi function and rational functions defining are allowed
to be in real or p-adic completion of rationals. A natural guess is that completion of the algebraic
variant of Teichmueller space results in this manner. If this is argument makes sense then adelic
moduli space makes sense too.

There are however technical delicacies involved. Teichmueller parameters are defined as values of
1-forms for the homology generators of Riemann surface. What does one mean with the values of
these forms when one has a surface containing only algebraic points and ordinary integral is not
well-defined? Also in the p-adic context the definition of the integral is problematic and I have
devoted a lot of time and energy to this problem (see for instance [14]). Could the holomorphy
of these forms help to define them in terms of residue calculus? This option looks the most
plausible one.

What about the partial well-ordering of p-adic numbers induced by the map n→ nq combined
with canonical identification: could this allow an elegant notion of integration by using the partial
well-ordering. Note that one cannot say which of the numbers 1 and −(p − 1)

∑
n = 1∞pn is

bigger in this ordering, and this induces similar problem for all p-adic integers which have finite
number of pinary digits.

5.1.3 Problems to solutions and new questions

Usually one becomes fully conscious of a problem only after one has found the solution of the problem.
The vision about Hilbert adeles - as a matter fact, already adeles- solves several nasty nuisances of
this kind and I have worked hardly to prevent these problems from running off under the rug.

1. What one means with integer -1 is not a problem for p-adic mathematics. It becomes a problem
for physical interpretation when one must relate real and p-adic physics to each other since
canonical identification maps p-adic numbers to non-negative reals. This leads to problems with
Hilbert space inner product but algebraic extensions of p-adic numbers by roots of unity allow to
define p-adic Hilbert spaces but it seems that the allowed state basis are very restricted since the
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number of unitary isometries of Hilbert space is restricted dramatically by number theoretical
existence requirement. The optimistic interpretation would that full quantum superposition is
highly restricted in cognitive sectors by the condition of number theoretic existence.

2. What one means with complex p-adics is second problem.
√
−1 exists p-adically for p mod 4 =

1 so that one cannot introduce it via algebraic extension of p-adics in this case. This is a
problem of p-adic quantum mechanics. Allowance of only p-adic primes p which do not split for
the extension containing imaginary unit seems to be a general solution of the problem.

3. p-Adic counterparts of quaternions, and octonions do not exist for the simple reason that the
p-adic norm can be vanishing even for p-adic complex number for p-adic fields allowing

√
−1.

This problem can be circumvented by giving up the requirement that one has number field.

4. The norm for adeles exist as a product of real and norm and p-adic norms but is not physical.
Also the assignment of Hilbert space structure to adeles is problematic. Canonical identification
combined with n→ nq allows the mapping p-adic components of adele to real numbers and this
allows to define natural inner product and norm analogous to Hilbert space norm for adeles and
their Hilbert counterparts.

5. p-Adic numbers are not well ordered. This implies that difficulties with the definition of integral
since definite integral relies heavily on well-orderness of reals. Canonical identification suggests
that quantum p-adics are well ordered: a < b holds true if it holds true for the images under
canonical identification. This gives hopes about defining also definite integral. For integrable
functions the natural definition of quantum p-adic valued integral would be by using substitution
for integral function. One - and rather ugly - option is to define the integral as ordinary real
integral for the canonical image of the quantum p-adic valued function. This because this image
is not expected to be smooth in real sense even if p-adic function is smooth.

6. p-Adic integration is plagued also by the problem that already for rational integrals one obtains
numbers like log(n) and π and is forced to introduce infinite-dimensional extension of p-adic
numbers. For log(n) one could restrict the consideration to p-adic primes p satisfying n mod p =
1 but this looks like a trick. Could this difficulty be circumvented somehow for p-adic numbers?
The only possibility that one can imagine would be canonical identification map combined with
n→ nq and the interpretation of integral as a real number.

This could provide also the trick to interpret the integrals involving powers of π possible emerging
from Feynman diagrams in sensible manner. All integrals can be reduced with the use of Laurent
series to integrals of powers of x so that integral calculus would exist in analytic sense for analytic
functions of quantum p-adic numbers.

7. What does one mean with the p-adic counterpart of CP2 or more generally, with the p-adic
counterpart of any non-linear manifold? What does one mean with the complex structure of p-
adic CP2 for p mod 4 = 1? Should one restrict the consideration to p mod 4 = 3? What does
one mean with groups and coset spaces? One can inceed have a satisfactory looking definition
based on algebraic extensions and effective discretization by introducing roots of unity replacing
complex phases as continuous variables [14].

One could consider two options.

(a) Could the p-adic counterpart of real M4 × CP2 be M8? The objection is that alge-
braic groups are however fundamental for mathematics and typically non-linear manifolds.
Therefore there are excellent motivations for their (Hilbert) adelic existence. Projective
spaces are in turn central in algebraic geometry and in this spirit one might hope that CP2

could have non-trivial p-adic counterpart defined as quantum p-adic projective space.

(b) Another option accepts that adeles contain only those p-adic number fields as Cartesian
factors for which the prime does not split. This excludes automatically p mod 4 = 1
if
√
−1 is present from the beginning in the algebraic extension of rationals defining the

adeles. What happens if one does not assume this. Does CP2 degenerate to real projective
spae RP2? What happens to M4 if regarded as a Cartesian product of hyper-complex
numbers and complex numbers. Does it reduce to M2. Could the not completely well
understood role of M2 in quantum TGD relate to this kind of reduction?
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The new view raises also questions challenging previous basic assumptions.

1. Could adeles and their octonionic counterpart allow to understand the origin of commutative
complexification for quaternions and octonions in number theoretic vision about TGD? How
could the commutative imaginary unit emerge number theoretically?

2. One must also reconsider M8−M4×CP2 duality. For instance, could M8 be the natural choice
in p-adic sectors and M4 × CP2 in the real sector?

3. The preferred extremals of Kähler action are conjectured to be quaternionic in some sense.
There are two proposals for what this means. Could it be that the sense in which the space-time
surfaces are quaternionic depends on whether the surface is real or quantum p-adic?

4. The idea that rationals are in the intersection of reals and p-adics is central in the applications
of TGD. How does this vision change? For p = 2 quantum rationals in the sense that pinary
coefficients are quantum integer, are ordinary rational numbers. For p > 2 the pinary coefficients
are in general mapped to algebric numbers involving lq, 0 < l < p. The common points with
reals would in general algebraic numbers.

5.1.4 Do basic notions require updating in the Hilbert adelic context?

In the adelic context one must take a fresh look to what one means with phrases like ”imbedding space”
and ”space-time surfaces”. The phrase ”space-time surface as a preferred extremal of Kähler action”
might be quite too strong a statement in adelic context and could actually make sense only in the real
sector of the quantum adelic imbedding space. Also the phrase ”p-adic variant of M4 × CP2” might
involve un-necessarily strong implicit assumptions since for p-adic integers one has automatically the
counterparts of compactness even for M8. The proposed identification of the quantum p-adic numbers
as Hilbert p-adic quantum numbers reduces the question to whether p-adic counterparts of various
structures exist or are needed as such.

1. We ”know” that the real imbedding space must be M4 ×CP2. What about p-adic counterpart
of the imbedding space? Is it really possible to have a p-adic counterpart of CP2 or could non-
linearity destroy this kind of hopes? Are there any strong reasons for having the counterpart
of M4 × CP2 in p-adic sectors? Could one have M4 × CP2 only in real sector and M8 in
p-adic sectors. Complex structure of CP2 requires p mod 4 = 3. This is not a problem if
one assumes that adeles contain only the p-adic primes which do not split in the extension of
rationals containing imaginary unit. Definition as coset space CP2 = SU(3)/U(2) is one possible
manner to proceed and seems to work also.

One can also wonder whether octonion real-analyticity really makes sense for M4 × CP2 and
its p-adic variants. The fact that real analyticity makes sense for S2 suggests that it does. In
any case, octonion real-analyticity would make life very easy for p-adic sectors if regarded as
octonionic counterpart of M8 rather than M4 × CP2.

2. If the p-adic factors are identified as linear spaces with M8 regarded as sub-space of the ring of
complexified p-adic octonions, octonion real-analyticity for polynomial functions with rational
coefficients could replace field equations in the ring formed by Zp. Note however that octonion
real-analyticity requires the Wick rotation mapping to ordinary octonions, the identification of
the 4-surface from the vanishing of the imaginary part of the octonion real-analytic function, and
map back to Minkowski space by Wick rotation. This is well-defined procedure used routinely in
quantum field theories but could be criticized as mathematically somewhat questionable. One
could consider also the definition of Minkowski space inner product as real part of z1z2 for
quaternions and use similar formula for octonions. This would give Minkowski norm squared
for z1 = z2.

Linear space would also allow to realize the idea that partonic 2-surfaces are in some sense trivial
in most sectors reducing to points represented most naturally by the tips of causal diamonds
(CDs). For p-adic sectors CP2 would be replaced with E4 and for most factors M8

p the partonic
2-surfaces would reduce to the point s = 0 of E4 representing the origin of coordinates in which
E4 rotations act linearly.
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3. The conjecture is that preferred extremals correspond to loci for the zeros of the imaginary or
real part of octonion real-analytic function. Is this identification really necessary? Could it
be that in the real sector the extremals correspond to quaternionic 4-surfaces in the sense that
they have quaternionic tangent spaces? And could the identification as loci for the zeros of the
imaginary or real part of oction real-analytic function be the sensible option in the p-adic sectors
of the adelic imbedding space: in particular if these sectors correspond to octonionic M8. If this
were the case, M8−M4×CP2 duality would have a meaning differing from the original one and
would relate the real sector of adelic imbedding space to its p-adic sectors in manner analogous
to the expression of real rational as a Cartesian product of powers of p-adic primes in various
sectors of adele.

My cautious conclusion is that the earlier vision is correct: M4 × CP2 makes sense in all sectors.

5.2 Could number theoretic emergence make sense?

The observations made in this and previous sections encourage to ask whether some kind of number
theoretic emergence could make sense. One would end up step by step from rationals to octonions by
performing algebraic extensions and completions. At some step also the attribute ”Hilbert” would lead
to a further abstraction and relate closely to the evolution of cognition. This would mean something
like follows.

Rationals → algebraic extensions → algebraic numbers → completions of rationals to reals and
p-adics → completions of algebraic 2-surfaces to real and p-adic ones in algebraic extensions reals and
classical number fields→ hierarchy of Hilbert variants of these structures as their cognitive reprsenta-
tions.

The Maximal Abelian Galois group (MAGG) for rationals is isomorphic to the multiplicative group
of ideles and involves reals and various p-adic number fields. How could one interpret the Hilbert
variant of this structure. Could some kind of physical and cognitive evolution lead from rationals to
octonions and eventually to Universe according to TGD? Could it be that the gradual emergence of
algebraic numbers and AGG (Absolute Galois Group defined as Galois group of algebraic numbers as
extension of rationals) brings in various completions of rationals and further extensions to quaternions
and octonions and symmetry groups like SU(2) acting as automorphisms of quaternions as extension
of reals and SU(3) ⊂ G2 where G2 acts as Galois for the extension of octonions as extension of reals?

5.2.1 Objections against emergence

The best manner to develop a new idea is by inventing objections against it. This applies also to
the notion of algebraic emergence. The objections actually allow to see the basic conjectures about
preferred extremals of Kähler action in new light.

1. Algebraic numbers emerge via extensions of rationals and complex numbers via completion of
algebraic numbers. But can higher dimensions really emerge? This is possible but only when
they correspond to those of classical number fields: reals, quaternions, and octonions. This is
enough in TGD framework. Adelization could lead to the emergence of real space-time and its
p-adic variants. Completion of solutions of algebraic equations to p-adic and real number fields
is natural. Also the extensions of reals and complex numbers to quaternions and octonions are
natural and could be seen as emergence.

2. All algebraic Riemann surfaces are compact but the reverse of this does not hold true. Partonic
2-surfaces are fundamental in TGD framework. Once the induced metric of the compact partonic
2-surface is known, one can regard it as a Riemann surface. Only if it is algebraic surface, the
action of Galois group on it is well-defined as an action on the algebraic coefficients appearing
in rational functions defining the surface. This is consistent with the basic vision about life
as something in the intersection of real and p-adic worlds and therefore having as correlates
algebraic partonic 2-surfaces. The non-algebraic partonic 2-surfaces are naturally present and if
they emerge they must do so via completion to reals occurring also at adelic level.

All partonic 2-surfaces allow a representation as projective varieties in CP3 which forces again
the question about possible connection with twistors.
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Representation as algebraic projective varieties in say CP3 does not imply this kind of repre-
sentation in δCD × CP2. This kind of representation can make sense for 3-surfaces consisting
of light like geodesics emanating from the tip of the CD. If one wants to obtain 2-surfaces one
must restrict light-like radial coordinate r to be a real function of complex variables so that the
2-surface cannot be algebraic surface defined as a null locus of holomorphic functions unless r is
taken to be a constant equal to algebraic number. Note that the light rays of 3-D light-cone are
parametrized by S2, which corresponds to CP1 ⊂ CP3. This kind of partonic 2-surfaces might
correspond to maxima for Kähler function.

3. Could one do without the non-algebraic partonic 2-surfaces? This is not the case if one believes
on the notion of number theoretic entanglement entropy which can be negative for rational
or even algebraic entanglement and presumably also for its quantum variant. Non-algebraic
partonic 2-surfaces would naturally correspond to reals as a Cartesian factor of adeles. All
partonic 2-surfaces which do not allow a representation as algebraic surfaces would belong to
this factor of adelic imbedding space. The ordinary real number based physics would prevail
in this sector and entanglement in this sector would be in generic case real so that ordinary
definition of entropy would work. In quantum p-adic sectors entanglement probabilities would
be quantum rational (in the sense of n → nq) and the generalization of number theoretic
entanglement entropy should make sense. Completion must be taken as would be part of the
emergence.

Could imbedding space spinors really emerge? The dimension of the space of imbedding space
spinors is dictated by the dimension of the imbedding space. Therefore it is difficult to image how
8+8-complex-dimensional spinors could emerge from spinors in the set of algebraic numbers since
these spinors are naturally 2-dimensional for algebraic numbers which are geometrically 2-dimensional.
Does this mean that one must introduce algebraic octonions and their complexifications from the very
beginning? Not necessarily.

1. The idea that also the imbedding space spinors emerge algebraically suggests that imbedding
space spinors in p-adic sectors are octonionic (p-adic octonions form a ring but this might be
enough). In real sector both interpretations might make sense and have been considered [12].
For octonionic spinors ordinary gamma matrices are replaced with the analogs of gamma ma-
trices obtained as tensor products of sigma matrices having quaternionic interpretation and of
octonionic units. For these gamma matrices SO(1,7) as vielbein group is replaced with G2.
Physically this corresponds to the presence of a preferred time direction defined by the line
connecting the tips of CD. It would seem that SO(1, 7) must be assigned with the ordinary
imbedding space spinors assignable to the reals as a factor of quantum adeles. The relationship
between the ordinary and octonionic imbedding space spinors is unclear. One can however ask
whether the p-adic spinors in various factors of adelic spinors could correspond to the octo-
nionic modification of gamma matrices so that these spinors would be 1-D spinors algebraically
extended to octonionic spinors.

2. Also quaternionic spinors make sense and could emerge in a well-defined sense. The basic
conjecture is that the preferred extremals of Kähler action are quaternionic surfaces in some
sense. This could mean that the octonionic tangent space reduces to quaternionic one at each
point of the space-time surface. This condition involves partial derivatives and these make sense
for p-adic number fields . The ”real” gamma matrices would be ordinary gamma matrices.
In p-adic sectors at least octonion real-analyticity would be the natural condition allowing to
identify quaternionic 4-surfaces [11] if one allows only Taylor series expansions.

5.2.2 Emergence of reals and p-adics via quantum adeles?

MAGG (Maximal Abelian Galois Group) brings in reals and various p-adic number fields although one
starts from algebraic numbers as maximal abelian extension of rationals. Does this mean emergence?

1. Could one formulate the theory by starting from algebraic numbers? The proposal that octonion
real-analytic functions can be used to define what quaternionicity looks sensible for quantum
p-adic space-time surfaces. For real space-time surfaces octonion real-analyticity might be an
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unrealistic condition and quaternionicity as the condition that octonionic gamma matrices gener-
ate quaternionic algebra in the tangent space looks more plausible alternative. Quantum p-adic
space-time surfaces would be naturally algebraic but in real context also non-algebraic space-
time surfaces and partonic 2-surfaces are possibe. In real sector partial differential equations
would prevail and in quantum p-adic sectors algebraic equations would dictate the dynamics.

2. The p-adic variants of quaternions and octonions do not exist as fields. The vanishing of the sum
of Euclidian norm for quaternions and octonions for p-adic octonions and quaternions makes it
impossible to define p-adic quaternion and octonionic fields. There are also problems due to the
fact that

√
−1 exists as p-adic number for p mod 4 = 1.

3. The notion of quaternionic space-time surface requires complexified octonions with additional
imaginary unit i commuting with octonionic imaginary units Ik. Space-time surfaces are identi-
fied as surfaces in the sub-space of complexified octonions of form o0 + i

∑
okI

k. Could i relate
to the algebraic extensions of rationals and could complexified quantum p-adic imbedding spaces
have complex coordinates x+ iy?

4. Polynomial equations with real algebraic coefficients make sense even if adeles where not a
field and one can assign to the roots of polynomials with quaternionic and octonionic argument
Galois group if one restricts to solution which reduce to complex solutions in some complex
plane defined by preferred imaginary unit. For quaternions Galois group consist of rotations in
SO(3) acting via adjoint action combined with AAG. For octonions Galois group consists of G2

elements combined with AAG. SU(3) leaves the preferred imaginary unit invariant and U(2)
the choice of quaternionic plane. Are there any other solutions of polynomial equations than
those reducing to complex plane?

5.2.3 Is it really necessary to introduce p-adic space-time sheets?

The (Hilbert) adelization of imbedding space, space-time, and WCW as well as spinors fields of imbed-
ding space and WCW would be extremely elegant manner to realize number theoretic universality.
One must however keep the skeptic attitude. The definition of p-adic imbedding space and space-
time surfaces is not free of technical problems. The replacement of M4 × CP2 with M8 in p-adic
sectors could help solve these problems. The conservative approach would be based on giving up
p-adicization in imbedding space degrees of freedom. It is certainly not an imaginative option but
must be considered as a manner to gain additional insights.

1. p-Adic mass calculations do not mention anything about the p-adicization of space-time sheets
unless one wants to answer the question what is the concrete realizations of various conformal
algebras. Only p-adic and adelic interpretation of conformal weights would be needed. Adelic
interpretation of conformal weights makes sense. The replacement n→ nq (interpreted originally
as quantum p-adicization) brings in only O(p2) corrections which are typically extremely small
in elementary particle scales.

2. Is the notion of p-adic or Hilbert p-adic (Hilbert adelic) spinor field in imbedding space abso-
lutely necessary? If one has p-adic spinors one must have also p-adic spinor connection. This
does not require p-adic imbedding space and space-time surface if one restricts the consideration
to algebraic points and if the components of connection are algebraic numbers or even ratio-
nal numbers and allow p-adic interpretation. This assumption is however in conflict with the
universality of adelization.

3. What about Hilbert adelic WCW spinor fields. They are needed to give both p-adic and real
quantum states. These fields should have adelic values. Their arguments could be algebraic
partonic surfaces. There would be no absolute need to perform completions of algebraic partonic
2-surfaces although this would be very natural on basis of number theoretical universality.

4. p-Adic space-time sheets are identified as correlates of intention and cognition. Transformation
of intention to action as leakage from p-adic to real sector of imbedding space. This idea provides
strong support for p-adic space-time. But could one assume only that the quantum states are
p-adic or quantum p-adic but that space-time is real? Does it mean only that the WCW spinor
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field or zero energy state assignable to light-like 3-surface or partonic 2-surface is Hilbert adelic.
Quantum transitions between states for which initially WCW spinor field is pi-adic and in the
final state pf -adic. Only the number field for WCW spinors would change in the transition. One
could say that partonic 2-surface is p-adic if the value of WCW spinor field assigned with it is
p-adic. This idea does not look attractive and is in complete conflict with the adelization idea.

5. The vision about life in the intersection of real and p-adic worlds is very attractive. The p-
adicization of algebraic surfaces is very natural as completion meaning that one just solves the
algebraic equations using series in powers of p. Imaginary unit is key number of quantum
theory and the fact that

√
−1 exists for p mod 4 = 1 is potential problem for p-adic quantum

mechanics. For these primes also splitting occurs in the ring of Gaussian integers. For quantum
adeles this problem disappears if one allows only the p-adic number fields for which p does not
slit in algebraic extension (now Gaussian rationals).

6 Appendix: Some possibly motivating considerations

The path to the idea that quantum adeles could represent algebraic numbers originated from a question
having no obvious relation to quantum p-adics or quantum adeles and I will proceed in the following
by starting from this question.

Function fields are much simpler objects to handle than rationals and their algebraic extensions.
In particular, the objects of function fields have inverses and inverse is well defined also for sum of
elements. This is not true in the ring of adeles. This is the reason why geometric Langlands is easier
than the number theoretic one. Also the basic idea of Langlands correspondence is that it is possible
to translate problems of classical number theory (rationals and their extensions) to those involving
functions fields. Could it be possible to represent the field of rationals as a function field in some
sense? Quantum arithmetics gives a slight hope that this might be possible.

6.1 Analogies between number theoretic and function field theoretic ram-
ification

Consider first the analogies between number theoretic and geometric ramification (probably trivialities
for professionals but not for a physicist like me!). The relationship between number theoretic and
geometric ramification is interesting and mathematician could of course tell a lot about it. My
comments are just wonderings of a novice.

1. The number theoretic ramification takes place for the primes of number field when it is extended.
If one knows the roots of the polynomials involved with the rational function f(z) defining Belyi
function one knows the coefficient field F of polynomial and its algebraic extension K and can
deduce the representations of ordinary primes as products of those of F and of the primes of
the coefficient field F as products of those of K. In particular, one can find the ramified primes
of ordinary integers and of integers of F .

2. The ramification however occurs also for ordinary integers and means that their decomposition
to primes involves higher powers of some primes: n =

∏
l l

el with el > 1 for some primes l
dividing n. Could one introduce an extension of some ring structure in which ordinary primes
would be analogous to the primes in the extension of rationals?

3. Geometric ramification takes place for polynomials decomposing to products of first order mono-
mials P (z) = z− zk with roots which are in algebraic extension of coefficients. The polynomials
can however fail to be irreducible meaning that they have multiple roots. For multiple roots
one obtains a ramified zero of a root and for Belyi functions these critical points correspond to
zeros which are ramified when the degree is larger than zero. The number theoretic ramification
implies that the polynomials involved have several algebraic roots and when they coincide, a
geometric ramification takes place. Degeneration of roots of polynomial implies ramification.

4. Ordinary integers clearly correspond to the space of polynomials and the integers, which are not
square free are analogous to polynomials with multiple roots. The ramification of prime in the
extension of rationals and also the appearance of higher powers of p in non-square free integer
is analogous to the degeneration of roots of polynomial.
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6.2 Could one assign analog of function field to integers and analogs prime
polynomials to primes?

Could one assign to integer (prime) a map analogous to (prime) polynomial? Prime polynomial can
be labeled by its zero and polynomial by its zeros. What kind of maps could represent ordinary primes
and integers. What could be the argument of this kind of maps and do zeros of these map label them?
What could be the ring in which the counterparts of polynomials are defined?

Could quantum arithmetics [15] help to answer these questions?

1. Quantum arithmetics involves the map fq : n =
∏

l|n l
el → nq =

∏
l|n l

el
q , where l are primes

in the prime decomposition of n and quantum primes s lq = (ql − q−ln)/(q − q−1) are defined
by the phase q = exp(iπ/p), where p is the preferred prime. Note that one has pq = 0 and
(p + 1)q = −1. Note also that one has q = exp(iπ/p) rather than q = exp(i2π/p) (as in the
earlier version of article). This is necessary to get the denominator correctly also for p = 2 and
to make quantum primes lq non-negative for l < p . Under n → nq all integers n divisible by
p are mapped to zero. This would suggest that the counterparts of prime polynomials are the
maps fq, q = qp and that the analogs of polynomials are products

∏
p fqp defined in some sense.

2. The more conventional view about quantum integers defines analogous map as n → nq =
(qn − q−n)/(q − q−1). Choosing q = exp(iπ/p) one finds also now that integers divisible by p
are mapped to zero. By finding the primes for which n is mapped to zero one finds the prime
decomposition of n. Now one does not however have a decomposition to a product of quantum
primes as above. Similar statement is of course true also for the above definition of quantum
decomposition: the maps n→ nq are analogous to polynomials and primes are analogous to the
zeros of these polynomials.

3. One can also consider q = exp(iπ/m) and used decomposition primes which are smaller than
m. This would give non-vanishing quantum integers. They would correspond to quantum q-
adicity with q = m integer: q-adic numbers do not form a field. q could be even rational. As
a special case these numbers give rise to multi-p p-adicity. The Jones inclusions of hyperfinite
factors of type II1 [4] suggests that also these quantum phases should be considered. The index
[M : N ] = 4cos2(2π/n) of the inclusion would correspond to quantum matrix dimension 22q,
for q = exp(iπ/n) corresponding to quantum 2-spinors so that quantum dimension pq could be
interpreted as dimension of p-dimensional quantum Hilbert space.
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