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Might Baryons be Yang-Mills Magnetic Monopoles? 
 

Jay R. Yablon* 
910 Northumberland Drive 

Schenectady, New York, 12309-2814 
 
Abstract:  
 We demonstrate how the baryons which constitute the vast preponderance of the material universe are 
no more and no less than Yang-Mills magnetic monopoles, with quarks and gluons confined, and only mesons 
permitted to net flux in and out.  The confinement of color in Yang-Mills theory is fundamentally and 
inextricably tied to the absence of magnetic monopoles in Abelian Gauge theory. 
 

1.  Introduction 
  

In this paper, we pose the following questions: 
 

Why, theoretically, do there exist in nature, naturally-occurring sources, namely baryons, consisting of 
exactly three strongly-interacting fermion constituents which we call “quarks”?  Why, and by what 
mechanism, do the massless gauge particles of Quantum Chromodynamics (QCD), which we call 
gluons, cause these quarks to remain confined within the baryons?  How, and why is it, that the 
interactions between baryons only occur via the exchange of mediating quark / antiquark pairs that we 
call “mesons,” and not through any free gluon exchange?  And how, despite the absence of any known 
symmetry breaking in QCD, and even with the gluons being massless, do these meson mediators 
obtain their mass? 

 
These are questions of more than passing interest, because two most-common types of baryon, of course, are 

the proton and neutron, which account for the very vast preponderance of the material universe.  It would be good to 
have a theoretical foundation for understanding what these baryons actually are. 
  

We do know, because there are three quarks per baryon, that it is very helpful and can explain many things 
about the strong interactions, if we employ the Yang-Mills color group SU(3)C with a wavefunction 

( )BGRT =ψ  in the fundamental representation to ensure Fermi-Pauli-Dirac exclusion, i.e., to make sure that no 
two fermions in a given system have the exact same set of quantum numbers.  But this merely descriptive, and does 
not explain the underlying question of why there are three quarks per baryon and not some different number, or the 
even more challenging questions about confinement and meson interactions.  If nature were to provide 4 or 7 or 11, for 
example, then we would merely enforce Fermi-Dirac statistics with SU(4) or SU(7) or SU(11) instead, and would still 
be asking “why?” there were instead 4 or 7 or 11 quarks per baryon. 

 
From an historical perspective, Rabi once quipped about the muon, “who ordered this?”  Of course, there has 

been ample experimental evidence for the existence of nucleons since Rutherford and Chadwick respectively 
discovered the proton and neutron in 1917 and 1933.  But for these baryons and others, from a theoretical viewpoint, it 
is still not really understood even to this day, “who ordered this?”  Today, we know that baryons contain three quarks, 
but we don’t know why this number is three.  We just take that as a given and build around that.  It is still a struggle to 
understand why and how these quarks remain stubbornly confined, and how an interaction such as SU(3)C of QCD 
which relies on massless gauge bosons (gluons) can still give rise to massive quark / antiquark pairs (mesons) which 
mediate nuclear interactions.  Much research has been focused on finding clever ways to “glue” quarks together, but a 
fundamental understanding of baryons and quark and gluon confinement remains elusive.  In fact, properly 
understanding baryons and confinement and massive meson exchange has proved to be so challenging, that it led the 
Clay Institute to in 2000 to offer a large prize for solving the so-called “mass-gap” problem of Yang-Mills Theory, [1] 
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which today remains unclaimed.  And at bottom, the biggest barrier to cracking this puzzle emanates from the fact that 
to this day, nobody really knows, theoretically, what a baryon is.  “Who ordered baryons?” is still very much a live 
question. 

 
 On a seemingly-different front – which this paper will endeavor to show is not at all a different front – almost 
as soon as James Clerk Maxwell published his 1873 A Treatise on Electricity and Magnetism, questions arose about 
magnetic monopoles:  “Why is there not symmetry between electric and magnetic charges?”  “Do magnetic monopoles 
exist?”  “If so, where and how can they be found?”  For almost 140 years, those questions have been asked, and many 
experiments have been done and continue to be done to detect magnetic monopoles.  t’Hooft & Polyakov [2] and 
others [3], [4] have pointed out and tried to develop the theoretical observation that Yang-Mills field theory seems to 
give rise to magnetic monopoles, but to date, magnetic charges have never been conclusively detected and they remain 
one of the deepest and most elusive mysteries of the natural world. 
 
 The thesis of this paper is simple: that the magnetic monopoles characterized classically by 

σµννσµµνσσµν FFFP ∂+∂+∂=  which come into existence in Yang-Mills theory are synonymous with baryons.  
Baryons are Yang-Mills magnetic monopoles. Yang-Mills magnetic monopoles contain exactly three confined quarks, 
interacting with one another via massless gluons, with interactions between these monopoles mediated by massive 
mesons.  To the question what is a baryon? the answer is this: a Yang-Mills magnetic monopole.  To the question do 
magnetic monopoles exist and if so where can we find them? the answer is this: yes, they exist, and they are 
everywhere.  We ourselves and everything we see and touch and hear and smell and taste is built predominantly out of 
Yang-Mills magnetic monopoles.  Whenever we talk about a proton or a neutron or any other baryon, we are talking 
about a Yang-Mills magnetic monopole.  We just don’t realize that, yet.  A theoretical oddity and orphan child for 
close to 140 years, magnetic monopoles are in fact the very heart of the material world, but have been hiding in plain 
sight from our theoretical understanding ever since the time of Maxwell.  Nuclear physics, and the physics of 
confinement and mesons, is the physics of magnetic monopoles, governed classically by Maxwell’s equations plus 
Yang-Mills, and quantum mechanically by QCD.  And to Rabi’s question who ordered this? the answer, for baryons, is 
this: James Clerk Maxwell, Chen Ning Yang and Robert Mills.  They are the theorists who ordered what Rutherford 
and Chadwick found in their laboratories the better part of a century ago. 
 
2.  Maxwell’s Classical Field Equations in Yang-Mills Theory 
 
 Maxwell’s classical field equations of Abelian gauge theory are most often presented in the form of two 
separate equations for electric and magnetic charge densities: 
 

σµννσµµνσσµν

µν
µ

ν

FFFP

FJ

∂+∂+∂=

∂=
. (2.1) 

Taken as is, there is nothing in the above to prevent the existence of a magnetic charge density σµνP  a.k.a. magnetic 
monopole (which we endeavor to demonstrate is a baryon density when fully developed in Yang-Mills theory).  
However, as soon as one defines the field strength density µνF  from the Abelian gauge vector potential µA  (which in 
QED represents the photon) using: 
 

µννµµν AAF ∂−∂= , (2.2) 

the latter equation (2.1) becomes 0=σµνP , by identity.  Thus, the timeless mystery of Maxwell’s equations: no 
magnetic monopoles. 
 

One might think to discard the vector potential µA  in (2.2) entirely, and specify electrodynamics entirely in 
terms of the field strength µνF .  But as Witten points out: ([5] at page 28)  
 

“the vector potential is not just a convenience [but] is needed in 20th-century physics for three very 
good purposes:  
• To write a Schrödinger equation for an electron in a magnetic field.  
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• To make it possible to derive Maxwell’s equations from a Lagrangian. 
• To write anything at all for non-Abelian gauge theory, which – in our modern understanding 

of elementary particle physics – is the starting point in describing the strong, weak and 
electromagnetic interactions.” 

 
 Non-Abelian Yang-Mills gauge theory differs from the Abelian gauge theory in the simple respect that its 

gauge fields µG  are non-commuting, i.e., in the fact that [ ] 0, ≠νµ GG , in contrast to [ ] 0, =νµ AA  which is taken to 

be the case in (2.2) above.  Specifically, for any Yang-Mills gauge group SU(N) with group generators iT  related by 

the group structure [ ]kj
i

ijk TTiTf ,−= , and where 
µνµν

i
i FTF ≡  and 

µµ
i

iGTG ≡  are NxN matrices, the field 

strength (2.2) is simply replaced by: 
 

[ ] ][, νµµννµνµµννµµν GDGDGDGGiGGF =−=−∂−∂= , (2.3) 

where we use the gauge-covariant derivative  
 

µµµ iGD −∂≡  (2.4) 

to put µνF  into a form that facilitates calculation and allows a very transparent comparison to Abelian gauge theory. 
 
 So, as soon as one substitutes the non-Abelian (2.3) into Maxwell’s equation (2.1) for 

σµννσµµνσσµν FFFP ∂+∂+∂= , while the terms based on µννµ GG ∂−∂  continue to zero out by identity in the 
usual way, one nonetheless arrives at a residual non-zero magnetic charge: 
 

[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]( )µνσµσνσµνσνµνσµνµσ

µσνσνµνµσσµν

GGGGGGGGGGGGi

GGGGGGiP

∂+∂+∂+∂+∂+∂−=
∂+∂+∂−=

,,,,,,

,,,
 . (2.5) 

This is all because of the fact that [ ] 0, ≠νµ GG .  The thesis of this paper will be to show that these non-zero σµνP  

objects are baryons, and that these [ ]νµ GG ,  objects are mesons which mediate nuclear and other baryon 
interactions.  In particular, as we shall later see in, for example, equation (4.24), the three cyclically-symmetric 

spacetime indexes σνµ ,,  in σµνP  are indicative of three fermion / anti-fermion propagators within σµνP .  

Meanwhile, the two antisymmetric indexes νµ,  in [ ]νµ GG ,  are indicative of fermion / anti-fermion propagators 
which flow across closed baryon surfaces as mesons.  And, perhaps most fundamentally, the “zero” that signifies 
absence of magnetic monopoles in Abelian gauge theory translates directly into a “zero” that signifies the absence of 
color flux across any closed surface surrounding a non-Abelian magnetic monopole.  
 
 The question that naturally arises is whether this approach to Yang-Mills theory via the classical equations 

(2.1) is viable, and this question has two aspects:  First, while σµννσµµνσσµν FFFP ∂+∂+∂=   and µν
µ

ν FJ ∂=  

are the classical field equations for Abelian (commuting field) gauge theory, will they remain the classical field 
equations in Yang-Mills theory?  The answer to this first question is yes:  Start with a path integral.  Apply stationary 
phase (or steepest descent) approximation in the 0→h  limit, that is, in situations where the relevant action being 

considered is much greater than h , i.e., ( ) ( ) h>>= ∫ ϕϕ LxdS 4 , so as to derive the Euler-Lagrange equation.  Use 

this on the electric and magnetic Lagrangians of Yang-Mills theory.  The resulting field equations will be: 
 

µν
µ

ν

µν
µ

ν

FP

FJ

*∂=

∂=
. (2.6) 

Then, apply the “duality” formalism  first developed by Reinich [6] and later elaborated by Wheeler, [7] which uses 
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the Levi-Civita formalism (see [8] at pages 87-89) to µν
µ

ν FP *∂= , to obtain σµννσµµνσσµν FFFP ∂+∂+∂= , 

which was used to obtain (2.5). 
 

 Second, if we can demonstrate that σµνP  does have all the requisite characteristics of a baryon using the 
classical field equations (2.1) for which ( ) h>>ϕS , will these results remain valid even for quantum field theory in 

which ( ) h~ϕS ?  Here too, the answer is yes.  Why?  If we can establish in the classical arena that σµνP  has all the 

properties of a baryon in circumstances where ( ) h>>ϕS , then there is no logic to suggest that σµνP  will cease to be 

a baryon once we consider quantum conditions where ( ) h~ϕS .  Once a baryon, always a baryon!  Just as in classical 

electrodynamics, a classical current density µJ  still remains a current density in quantum electrodynamics; it is just 
subject to a different set of (amplitude) equations (following path integration).  What will happen, however, is that 
once we move into the low-action arena where ( ) h~ϕS , we will have to forego the use of all but the lowest-order 

terms that we develop to establish σµνP  as a baryon.  Any of the higher-order terms will no longer correctly describe, 
mathematically, the behavior of these baryons in the low action arena.  Indeed, using Maxwell’s classical equations to 
try to understand confinement by using Gauss’ law for surface integrals has a distinguished history, not the least of 
which includes the MIT Bag Model, see [9]  at (18.45) and 426. 
 

 So in a very basic sense, using a “bicycle riding” metaphor, we will use the classical equations µν
µ

ν FJ ∂=  

and σµννσµµνσσµν FFFP ∂+∂+∂=  as “training wheels” to demonstrate that σµνP  is in fact a baryon under 
classical, high-action conditions.  In the process, we will establish the lowest-order terms – which will survive intact 
through path integration – to describe this baryon physics from the classical equations.  With the basic connection 
established between Yang-Mills magnetic charges and baryons, we would remove the classical training wheel 
equations, and rely on the path integral formulation of quantum field theory to tell us how these baryons behave in the 
quantum arena in which the higher-order terms from our training wheel equations begin to break down or simply cease 
to work.  But no matter what the action, high or low, the Yang-Mills magnetic monopole σµνP  will still be a baryon!  
It will just adhere to different mathematical equations in different action arenas. 
 
 In the development to follow, we will do no more and no less that than simply combine three equations 
together:  The two classical Maxwell equations µν

µ
ν FJ ∂=  and σµννσµµνσσµν FFFP ∂+∂+∂=  of (2.1), and the 

field strength ][ νµµν GDF =  of (2.3) for non-commuting Yang-Mills fields.  Nothing further is needed to show that 
σµνP  has all the essential features to be a baryon.  We have already combined σµννσµµνσσµν FFFP ∂+∂+∂=  and 

][ νµµν GDF =  to arrive at the non-zero magnetic monopole of  (2.5).  In section 3 we will deduce an inverse σνI  and 

inverse equation σ
σνν JIG ≡  for µν

µ
ν FJ ∂=  by combining µν

µ
ν FJ ∂=  with ][ νµµν GDF = .  In section 4 we 

will employ this inverse in (2.5) to show that σµνP  is a natural system containing exactly three fermions which makes 

it a baryon candidate, and further, that the field commutator [ ]νµ GG ,  is a natural system consisting of a fermion and 
antifermion which makes this a meson candidate.  In sections 5 and 6 and we will examine these classical equations in 

integral form, to examine what does and does not flow across any closed surface surrounding σµνP .  This will show 
that σµνP  exhibits precisely the characteristics that are understood to characterize confinement phenomena, and so 
provide further support for thesis that Yang-Mills magnetic monopoles are natural baryons. 
 
3.  A Classical Yang Mills Inverse, with a “Revealed” Vector Boson Pseudo-Mass 
 
 With the non-zero magnetic monopole of (2.5) already specified, we begin the next stage of development by 

using ][ νµµν GDF =  of (2.3) in Maxwell’s charge equation µν
µ

ν FJ ∂=  of (2.1) to obtain: 

 

( ) µ
νµσ

σ
µνµν

µ
νµ

µ
νµ

µ
µν

µ
ν GDDgGDGDGDFJ ∂−∂=∂−∂=∂=∂= ][ . (3.1) 
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We now want to obtain the inverse expression for µG  in terms of νJ .  That is, we now seek the inverse µνI  of the 

configuration space operator νµσ
σ

µν DDg ∂−∂ , defined such that σ
σνν JIG ≡ , i.e.,  we now wish to obtain: 

 

( ) ( ) ( )( ) α
α

α
α

α
α

λ
µνµνµ

σ
σ

σ
σµν

νλ
νµ

σ
σµν

νλ δ xikxikxik eeGGgIeDDgI =∂−∂∂−∂−∂∂=∂−∂ . (3.2) 

 The presence in the above of the terms such as νµG∂  which are derivatives of fields, introduces a complexity 
that is not encountered in U(1) Abelian gauge theory.  This added complexity occurs because these derivatives in 

νµG∂  do not directly operate on the Fourier kernel α
α xike  but instead operate on the gauge field νG .  Because this 

field ( )σνν xGG =  is a function of spacetime, we may make use of the commutator relationship: 
 

[ ]µσµσ GkiG ,=∂  (3.3) 

to replace then various µσ G∂  which appear in (3.2).  The space components of this relationship, [ ]baba AkiA ,=∂  for 
the photon field are used in Dirac theory to derive the electron magnetic moment, see, for example, [10], just after 

equation (2.964).*  The time component of the above, [ ]µµ GkiG ,00 =∂  is a variant of Heisenberg’s equation of 
motion, see for example [11], equation (3.61), which also uses this four-dimensional expression. 
 
 So, we substitute (3.3) into (3.2), and with some renaming of indexes to get a νµδ  on the right, we obtain:  
 

[ ]( ) [ ]( ) ν
µσµσµ

α
α

α
αµσ

σν δ=+++− GkikkGkikkgI ,, . (3.4) 

Before we try to calculate this inverse, knowing that this might have no inverse (see, e.g., [12], chapter III.4), let us 
add a square mass Proca term 2m  by hand in the usual way.  Also, let us require that this configuration space operator 
be symmetric under σµ ↔  interchange by symmetrizing the above expression using an index anticommutator 

}{
2
1 , σµ Gk .  Thus, we re-specify (3.4) as: 

 
[ ]( ) [ ]( ) ν

µσµσµ
α

α
α

αµσ
σν δ=++−+− }{

2
12 ,, GkikkmGkikkgI  (3.5) 

 Finally, let us also require that σνI  be symmetric under νσ ↔  interchange, by writing this in general form 

for three unknowns A, B and C as: 
 

[ ]}{2
1 , νσνσσνσν GkCikBkAgI ++≡ . (3.6) 

Finally, we plug this into (3.5).  We now need to solve the expression: 
 

[ ]( ) [ ]( ) [ ]( ) ν
µσµσµ

α
α

α
αµσ

νσνσσν δ=++−+−++ }{
2
12

}{2
1 ,,, GkikkmGkikkgGkCikBkAg . (3.7) 

It is very important as we proceed, to keep in mind that the σG  is an NxN matrix for the Yang-Mills gauge 

group SU(N).  Thus, any expressions which put σG  into a denominator have to be understood as requiring the 
                                                 
* One can see how this operates as a derivative by considering the very simple example ( ) xxx 2/ 2 =∂∂ .  The canonical 

Heisenberg commutator in the space dimensions is [ ] ijji gipx h=, .  If we apply this to [ ]jki pxx , , we find that 

[ ] kijjki xgipxx h2, = , which we can write as ( ) [ ]jkikijkij pxxixgxx ,2 −==∂ h .  This is just a fancy way of writing 

( ) xxx 2/ 2 =∂∂ .  But it turns that this works like a derivative for any polynomial containing any order in x, i.e., 

( ) 1/ −=∂∂ nn nxxx , etc., so that any time we have a field ( )xAi
, we can apply ( ) ( )[ ]xApixA ijij ,=∂ . 
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formation of a Yang-Mills matrix inverse.  So that the expressions we develop have a similar “look” to familiar 
expressions from QED, we will generally use a “quoted denominator” notation 1"/"1 −≡ MM  to designate a Yang-

Mills matrix inverse.  Thus, "/"1
1 σσ GG =−

, etc. 
 
 As we start to solve (3.7) in the usual way, we first determine that: 
 

[ ] [ ]( ) 12
2

,
","

1 −−+−=
−+

−= mGkikk
mGkikk

A α
α

α
α

α
α

α
α , (3.8) 

where as stated we use the quotes to denote a matrix inverse.  Putting this back into (3.7), and after absorbing out the 
metric tensor, we find ourselves left with the expression: 
 

[ ]
[ ]

[ ]( ) [ ]( )
[ ] [ ][ ] [ ] σµ

νσ
σµ

νσ
σµ

νσ
σµ

νσ

α
α

α
α

ν
µ

ν
µ

α
α

α
α

ν
µ

ν
µ

kkkBkkkGkCiGkGkCGkikBk

mGkikkGkCikBk

mGkikk

Gkikk

++−+

−++−=

−+
+

}{2
1}{

}{4
1}{

2
1

2
}

{
2
1

2

}
{

2
1

,,,,

,,

","

,

, (3.9) 

Observing that the top line term has a numerator [ ]}
{

2
1 , ν

µ
ν

µ Gkikk +  and the second line term contains 

[ ]}
{

2
1 , ν

µ
ν

µ GkCikBk + , we see that these numerators can be cancelled out if we set B=C, and if the terms on the third 

line can somehow be zeroed out.  In fact, to be able to form this inverse at all, that is exactly what we are required to 
do.  So, we now set B=C, and we also set the entire third line to zero, which as we shall momentarily review, amounts 
to a gauge fixing condition.  We then do some reduction and consolidation to obtain: 
 

[ ]
[ ] ","

","

1

2

2

mGkikk

mGkikk
CB

−+
−+

−==
α

α
α

α
α

α
α

α

, (3.10) 

subject to the gauge condition: 
 

[ ]( ) [ ]( ) 0,, }{
2
1

}{2
1 =++ σµσµ

νσνσ GkikkGkikk . (3.11) 

Again, these result from setting B=C and then setting the third line of (3.9) to zero, which were required in order to 
form an inverse.   
 

So we now plug (3.8) and (3.10) with B=C into (3.6) in the gauge (3.11), to obtain the inverse: 
 

[ ]
[ ]

[ ]","

","

,

2

2
}{2

1

α
α

α
α

α
α

α
α

νσνσ
σν

σν Gkimkk

Gkikkm

Gkikk
g

I
+−

−−
+

+−
= . (3.12) 

We may also use (3.3) and νσνσ ∂−∂→kk  to convert this inverse fully back into configuration space, thus: 

 

""

""
2

2
}{2

1

α
α

α
α

α
α

α
α

νσνσ
σν

σν Gm

Gm

G
g

I
∂+−∂−∂

∂−∂∂+
∂+∂∂−

+−
= . (3.13) 
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Note that the term  [ ] α
α

α
α GGki ∂=,  appears in two places in the above, but we do not set this to zero here because 

we are using different gauge fixing conditions, namely, those of (3.11), to be further reviewed shortly. 
 
Now, we look at some special cases of (3.13).  First, we compare (3.12) to the usual, well-known propagator 

for a massive vector boson in QED, which is reproduced below for convenience: 
 

εα
α

νµ
µν

µν imkk
m

kk
g

D
+−

+−
=

2

2

. (3.14) 

In the case where [ ] 0, →∂= σνσν GGki , we no longer need to take any matrix inverses, and (3.12) reduces to: 

 

2

2

mkk

kkm

kk
g

I
−

−
+−

=
α

α
α

α
νσ

σν

σν . (3.15) 

This closely resembles (3.14), sans the εi+ , and also with α
α kkm −2  rather than just 2m  appearing in the 

denominator of the right hand term in the numerator.  Were we to wish to make use of (3.15), this does have a pole, 
and so we would need to add εi+  in the usual way. 
  
 But, in comparing the classical Yang-Mills inverse developed in  (3.12)  to the usual massive propagator 
(3.14), we see two substantial differences.  First, the denominators in (3.12) are actually matrix inverses because they 

include the NxN Yang-Mills matrices σG  for SU(N).  Second, and this is an absolutely fundamental point, consider 

what happens to (3.12) and (3.14) when we set the mass term 02 =m .  In (3.14) for the usual propagator, the term 

∞→2/ mkk νσ  because of the 2m  in that denominator.  This originates in the fact that the QED configuration space 

operator νµσ
σ

µν ∂∂−∂∂g  has no inverse.  So the massless propagator becomes infinite!  This is what leads to the 

need for gauge fixing techniques such as Faddeev-Popov, whereby we end up with the massless propagator: 
 

( )
( )

ε

ξ

σ
σ

σ
σ

νµ
µν

µν ikk

kk

kk
g

kD
+

−+−
=

1
, (3.16) 

which has been also reproduced above for the reader’s convenience.  We cannot just set 02 =m  in (3.14) and keep a 
finite expression. 
 

 But in (3.12) or (3.15) derived here via the classical Yang-Mills inverse, we can set 02 =m  with impunity.  

That is, we can make the gauge boson σG  mass 0=m  without causing the inverse to become infinite.  In fact, if we 

do set 02 =m , (3.12) simply becomes a Yang-Mills massless particle propagator: 
 

[ ]
[ ]

[ ]","

","

, }{2
1

α
α

α
α

α
α

α
α

νσνσ
σν

σν Gkikk

Gkikk

Gkikk
g

I
+

+
+

−−
= . (3.17) 

This a perfectly finite expression!  We do not set [ ] α
α

α
α GGki ∂=,  because in (3.11), setting 

[ ]( ) [ ]( ) 0,, }{
2
1

}{2
1 =++ σµσµ

νσνσ GkikkGkikk  in (3.11) to obtain the inverse (3.12) implicitly did all the required 

gauge fixing.  But, most importantly: we have revealed a vector boson “mass” without having ever engaged in 
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spontaneous symmetry breaking.  This is a new mechanism for generating a vector boson mass, even with massless 
m=0 gauge bosons Gσ! 
 
 Specifically, comparing the bottom “denominator” of the usual massive propagator (3.14) with the bottom 
“denominator” of the Yang-Mills inverse (3.17), which denominators are where we expect to find the mass of a vector 
boson, we find the correspondence: 
 

[ ] [ ]( ) 1

2
,

","

11 −+=
+

↔
+− α

α
α

α

α
α

α
α

α
α ε

Gkikk
Gkikkimkk

. (3.18) 

 Most precisely – and this is very important to fully understand – if the interaction under consideration, say 
QCD, contains massless gauge bosons because we have not broken any symmetry to give rise to gauge boson masses 
as we do, for example, in electroweak YW USU )1()2( × , one will be “expecting” a massless propagator / inverse  of 

the usual form that is used for the massless photon of QED, namely (3.16).  But in fact, as seen in (3.18), when 
observing vector particles, one will be “observing” masses which originate from the massless propagator denominator / 

inverse  [ ]( ) 1
,

−+ α
α

α
α Gkikk  for a massless gauge boson in Yang-Mills theory.  Not knowing about this 

[ ]( ) 1
,

−+ α
α

α
α Gkikk  denominator / inverse, one will be expecting a massless propagator (3.16), but upon observing a 

mass, one will compare one’s observations to the denominator εα
α imkk +− 2  which is known for a massive vector 

boson, and will conclude that the (inverted) [ ]α
α

α
α Gkikk ,+  is actually the (inverted) εα

α imkk +− 2  term that is 

expected from the known massive boson propagator (3.14).  And so, the observer will conclude that there are massive 
vector bosons, despite the fact that all the gauge bosons are massless, and will wonder how this can occur and maybe 
even call this a “mass gap” and offer a reward for figuring out how this can happen. 
 

This is how it happens:  The non-linear interactions of Yang-Mills theory give rise to a “pseudo mass” (and 
also a finite lifetime because a complex mass value simply indicates a massive particle with a defined half-life while 
an imaginary mass indicates a massless particle of defined half-life, see [13] at 150) which arises from the observables 
of mass dimension -2 on the right hand side of the ↔  in (3.18) being mistaken for observables of mass dimension -2 
on the left hand side.   A person who is “confused” in this way will wonder why there appear to be non-zero rest 
masses and finite lifetimes when in fact the gauge bosons have zero mass and the symmetry of the Yang-Mills theory 
has never been broken.  Thus, there will appear to be particles with masses and defined half-lives such as the spin 1 π  
mesons, even if the gauge bosons are massless (which they are because we have set 0=m  to get to (3.17) / (3.18)).  
We have therefore “revealed” a “mass” even while the Yang-Mills gauge bosons have remained massless.  This is 
similar to how after ordinary spontaneous symmetry breaking such as that used in electroweak theory, one finds terms 

of the form ( ) σ
σ BBvg 2

2
1

2
1  in the Lagrangian where one expects to see σ

σ BBm2
2
1 , and so associates vgm 2

1=  with 

the mass of the boson σB , that is ( ) σ
σ

σ
σ BBvgBBm 2

2
1

2
12

2
1 ↔ .  But in the present situation, no scalar degrees of 

freedom have been transferred into the observed boson, so this is just a pseudo mass in which the interaction energy 

generated by [ ]α
α

α
α GkiG ,=∂  (which we do not set to zero because here we have a different gauge condition) 

appears to give rise to a mass but in fact does not, because it sits in a propagator “denominator” in the place where one 
ordinarily expects to find a mass.  This is the approach that one uses to fill the so-called “mass gap”! 
 

Note that when it comes to actually calculating masses, the correspondence (3.18) will yield some rich mass 
spectra, particularly because any calculation will require taking SU(N) matrix inverses first.  That is, the NxN matrix 

[ ]α
α

α
α Gkikk ,+  for SU(N) must first be inverted,  and then and only then will the reciprocals of the numeric results 

that emerge correspond to an observed boson mass.  Imagine calculating [ ]( ) 1
,

−+ α
α

α
α Gkikk  in SU(3) for example, 

and all of the complicated real and imaginary and complex terms that will emerge, and then using a transition 
amplitude to pick off masses from the denominators of the resultant expressions.  That, in effect, is how these masses 
are generated to fill the mass gap, and how in principle, a detailed calculation of meson mass spectra would occur.   
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Keep in mind also, that this is all based on classical high-action field equation ][ νµ
µ

ν GDJ ∂=  of (3.1), so in 

fact (3.18) will be modified once quantum fields are accounted for.  In fact, the limitations of using this particular 
expression [ ]α

α
α

α GkiG ,=∂  to generate a pseudo mass here can be seen by realizing that α
αG∂  is not invariant 

under a Yang-Mills gauge transformation [ ]νννν θθ GiGG ,+∂+→ .  Because any mass – pseudo or not – ought not 

depend on the chosen gauge, in a complete theory we require a term that is gauge invariant.  The term which is 

properly gauge invariant is in fact a “perturbation” ( ) σ
σσ

σσ
σ GGGGV +∂+∂=−  rather than merely α

αG∂ , but the 

development of this term V−  from a quantum Yang-Mills field theory is an entirely separate matter from showing 
that Yang-Mills magnetic monopoles are baryons and so is beyond the scope of this paper.  But the basic idea imparted 
by (3.18) will remain intact despite the fact that the expression emerging from the fully-quantum version of the 

foregoing will be different from that shown above and will contain ( ) σ
σσ

σσ
σ GGGGV +∂+∂=−  in place of 

α
αG∂ . 

 
 Having looked at m=0, let us move on to consider the special case where both m=0 and 0→σG .  Here there 
is no longer the need to take any matrix inverses, so we remove the inversion quotes, and (3.17) becomes: 
 

α
α

α
α

νσ
σν

σν kk

kk

kk
g

I

−−
= . (3.19) 

This is just the massless vector boson propagator (3.16) sans εi+ , forced into the gauge 2=ξ , and bypassing 
entirely Faddeev-Popov and the usual approaches to gauge fixing.   
 
 Finally, let us return to (3.12), and consider a particle that is “on mass shell,” with either 02 =− mkk α

α  for a 

massive particle or 0=α
α kk  for a massless particle.  For an on-shell particle, the usual propagators (3.14) and (3.16) 

become ((3.14) becomes (3.16) in Landau gauge 0=ξ ): 
 

ε
α

α
νµ

µν

µν i

kk

kk
g

D
+

+−
=  (massive 3.14) and ( )

( )

ε

ξ
σ

σ
νµ

µν

µν i

kk

kk
g

kD
+

−+−
=

1

 (massless 3.16) (3.20) 

But from (3.12), with either 02 =− mkk α
α  for a massive particle or 0=α

α kk  for one that is massless, we obtain: 

 
[ ]

[ ]
[ ] [ ]

[ ]
[ ][ ]",,"

,

","","

","

,

}{2
1

}{2
1

β
β

α
α

νσνσ

α
α

σν

α
α

α
α

νσνσ
σν

σν GkGk

Gkikk

Gk

ig

Gki

Gki

Gkikk
g

I
+

+=
+

−
+

+−
= . (3.21) 

This is a “naturally-occurring” form of εi+  based on Yang-Mills interactions, with the term [ ] α
α

α
α GGki ∂=+ ,  

(again, which we do not set to zero here because we are using different gauge fixing conditions here) playing a role 
identical to εi+  to avoid poles for on shell particles.  The “confused” observer, who is “expecting” a εi+   term and 

instead observes a [ ]α
α Gki ,+  term, will simply calculate the lifetime parameter ε/1  based on what is produced by 

[ ] 1
,

−
α

α Gk . 

 
 So, the Yang-Mills inverse (3.12) steers around all the usual problems with propagators and inverses.  Not 
only does it explain how vector “pseudo masses” will come into existence even if the gauge bosons of the underlying 
theory remain massless, but it has no problem with becoming undefined (infinite) for a massless boson, and it does not 
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require using the εi+  prescription to avoid infinite poles, because it produces fully finite results under all the usual 
scenarios. 
 
 Now, one may ask, how did we get to a massless vector particle inverse (3.19) forced into the 2=ξ  gauge of 
(3.16) without any apparent gauge fixing?  Keeping in mind that gauge-fixing methods such as Faddeev-Popov are 
about understanding the conditions required to obtain defined inverses, the answer is that we did in fact fix a gauge 
back in (3.11).  Equation (3.11) is to be regarded as the gauge condition which, in Yang-Mills theory, is required to be 
able to form a matrix inverse for the (classical, high action, ( ) h>>ϕS ) configuration space operator 

νµσ
σ

µν DDg ∂−∂  in the  Yang-Mills-Maxwell field equation (3.1).  And, in the process of this, we have been forced 

to fix the Faddeev-Popov gauge to 2=ξ , see (3.19), and to forego the usual covariant gauge condition 0=∂ α
α G .  

That (3.11) is in the nature of a covariant gauge condition which becomes most striking if we also convert (3.11) back 
into configuration space, as we did with the inverse in (3.13).  Doing so yields the rather fascinating operator equation: 
 

( )( )
0}{

}{4
1

}{2
1}{

2
1

}{
2
1

}{2
1

=∂∂+∂∂∂−∂∂∂−∂∂∂∂=

∂−∂∂∂−∂∂
σµ

νσ
σµ

νσ
σµ

νσ
σµ

νσ

σµσµ
νσνσ

GGGG

GG
. (3.22) 

This is the spacetime equivalent of the gauge fixing condition that is required to form an inverse for the Yang-Mills 

configuration space operator νµσ
σ

µν DDg ∂−∂  in (3.1), derived from obtaining the inverse of the classical equation 
µν

µ
ν FJ ∂=  for a non-commuting Yang-Mills field.  This is a sixteen component mixed equation in ν

µ  indexes, and 

when raised or lowered into contravariant or covariant form it is not symmetric under νµ ↔  transposition unless one 
takes additional steps to symmetrize this relationship.  While most physics usually stops at two derivatives from the 

fields (or three if one counts the conservation of sources, 0=∂ µ
µ J  and 0=∂ µν

µT ), this relationship contains fourth 

derivatives σµ
νσ ∂∂∂∂ , as well as third derivatives including a }{ σµG∂ , and finally the term }{

}{
σµ

νσ GG ∂∂  which is 

second order in symmetric field derivatives (contrast the antisymmetric term ][
][

στ
τσ GG ∂∂  that appears in 

Lagrangians).  The above (3.22) replaces any and all of the usual gauge conditions that are used in QED, and all those 
other gauge conditions, most notably 0=∂ α

α G , must not be used here.  And as noted, it forces the Fadeev-Popov 

gauge to be 2=ξ . 
 
 Now that we know the Yang-Mills inverse of the classical field equation (3.1) and the gauge conditions 

required to produce that inverse, let us return to where we started, and make use of this inverse in σ
σνν JIG =  to 

specify νG  as a function of σJ .  Using (3.12) in σ
σνν JIG =  we first obtain: 

 
[ ]

[ ]
[ ]

σ

α
α

α
α

α
α

α
α

νσνσ
σν

σ
σνν J

Gkimkk

Gkikkm

Gkikk
g

JIG
","

","

,

2

2
}{2

1

+−
−−

+
+−

== . (3.23) 

However, in momentum space, the current conservation equation ( ) 0=∂ xJ µ
µ  becomes ( ) 0=kJk µ

µ  (see [12] after 

I.5(4)).  This modifies (3.23) in two respects.  First, the term 0=σ
νσ Jkk .  Secondly, and of special interest because 

it breaks a symmetry, the term [ ] [ ] σ
σν

σ
νσ JGkiJGki ,, 2

1
}{2

1 = .  That is, one of the two terms in the anticommutator 

zeros out, but the second term does not.  Given that σνI  was designed to be symmetric under transposition of the 

νσ ↔  indexes, that symmetry is broken in (3.23).  So with those reductions, (3.23) becomes: 
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[ ]
[ ]

[ ]
σ

α
α

α
α

α
α

α
α

σν
σν

σ
σνν J

Gkimkk

Gkikkm

Gki
g

JIG
","

","

,

2

2
2
1

+−
−−

+−
== . (3.24) 

One can follow the same path outlined above, to derive this inverse for the various special cases already explored: low-
perturbation where [ ] 0, →∂= σνσν GGki   (3.15); massless boson 0=m  (3.17); both 0→σG  and 0=m  (3.19); 

and on shell 02 =− mkk α
α  for a massive or 0=α

α kk  for a massless particle (3.21).  Note that (3.24) is a “recursive” 

expression, i.e., that νG  is defined partly in terms of itself, reflecting the non-linear nature of Yang-Mills theory.  This 

is helpful to keep in mind when thinking about path integration, because normally one uses ( ) ϕδδϕ ⋅= JJ/  to turn 

the field of integration ϕ  into an operator Jδδ /  that is independent of the variable of integration ϕ  to facilitate 

applying the Gaussian integral ( ) ( ) ( )∫ −−=+ AJAJxAxdx 2/exp/2exp 25.2
2
1 π .  Equation (3.24) enables this also, 

but in a different way: one may, recursively, replace νG  with σ
σν JI  to as many orders of recursive “nesting” as 

desired, thereby bypassing the field of integration in a different way, with an exact path integral thereby emerging from 
the limit of infinite recursive nesting.  
 
 This inverse expression (3.24) is what we set out to derive at the start of this section, and it will play a very 

central role in helping us to establish that the Yang-Mills magnetic charge σµνP  is in fact a baryon.  With all of the 
preliminary groundwork now laid, and with the understanding discussed in section 2 that by using field equations such 

as µν
µ

ν FJ ∂=  in (2.8) and σµννσµµνσσµν FFFP ∂+∂+∂=  we are exploring the high-action realm in which 

( ) ( ) h>>= ∫ ϕϕ LxdS 4 , it is time to discover the underlying theoretical basis for the baryons that constitute the very 

nuclear heart of the material universe. 
 
4.  The Baryon and Meson Structure of Yang Mills Magnetic Monopoles, and “Revealed” Fermion Masses 
 
 In section 2 we observed that the Maxwell equation σµννσµµνσσµν FFFP ∂+∂+∂=  for a magnetic 
monopole carries over intact to Yang-Mills theory for high-action arenas where the action ( ) h>>ϕS .  Therefore, we 
can now carry forward on the basis of our earlier equation (2.5), which was derived by the simple substitution the 

Yang Mills field density [ ]νµµννµµν GGiGGF ,−∂−∂=  of (2.3) into the σµννσµµνσσµν FFFP ∂+∂+∂=  of 
(2.1), which is the “classical” magnetic charge equation for Yang-Mills theory as well as Abelian gauge theory. 
 

 The first thing we do is substitute [ ]µσµσ GkiG ,=∂  from (3.3) into (2.5) to yield: 
 

[ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]( )µνσµσνσµνσνµνσµνµσσµν GkGGGkGkGGGkGkGGGkP ,,,,,,,,,,,, +++++= .(4.1) 

If we expand the commutators in the above, terms of the form  νσµνσµ GkGGkG −  appear throughout, so that all 

terms with σk  sandwiched between the two µG  drop out.  Then, re-consolidating the commutators, (4.1) reduces to: 
 

[ ][ ] [ ][ ] [ ][ ]( )νµσµσνσνµσµν kGGkGGkGGP ,,,,,, ++−= . (4.2) 

This will be our starting point for exploring the baryonic properties of σµνP . 
 

First, we insert the hard-won Yang-Mills inverse (3.24) for νG  into (4.2).  Keep in mind that we have done 

nothing to break the symmetry of the Yang-Mills theory and so the gauge bosons must be presumed to be massless.  
Nonetheless, we will carry the Proca mass term in these equations, so whatever we derive is perfectly general.  If we 
want to explore the special case for 0=m  we can always do so by zeroing out the mass at the time, but at the outset, 
we ought not limit ourselves in this way.   
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Also, to maintain full generality at the outset, because there are six different appearances of νG  in (4.2), there 

will be six independent substitutions of (3.24) into (4.2).  To track this, we will use the first six letters of the Greek 
alphabet ζεδγβα ,,,,,  to carry out the internal index summations within each of the six substitutions of the inverse 
(3.24).  While it ordinarily does not matter what letters one chooses to do summations, the summation index will in 
this case double as a label so we can quickly ascertain where any term originated from as we progress.  And more 

importantly, while β
β

α
α kkkk =  where the momenta are equal, βα kk = , in the event that βα kk ≠  – for example if 

these are momentum vectors for two different particles – then β
β

α
α kkkk ≠ .  So we are using this index convention 

to simultaneously label the momenta and to avoid making any a priori assumptions about the actual physical values 

and meanings of the αk  in each of the six inverse substitutions we are making.  Similarly, substituting (3.24) into each 

of the νG  in (4.2) introduces six Proca mass numbers m.  Here too, we wish to avoid assuming anything a priori.  So, 

we similarly label each mass with one of the ζεδγβα ,,,,, , and so regard these at least at the outset, as six different, 

independent mass numbers.  Thus, the expression below in (4.3) will contain six momenta ζεδγβα kkkkkk ,,,,,  

which may or may not be different form one another, as well as six labeled masses )()()()()()( ,,,,, ζελγβα mmmmmm  

which also may or may not be different from each other and may also be zero or non-zero.  This provides complete 
generality and maximum flexibility to explore.   

 
Finally, prior to substituting this inverse (3.24) into (4.2), for the three σνµ GGG ,,  in the left hand side of the 

commutators in (4.2) we have arranged for the free indexes σνµ ,,  to be in the right hand position of metric tensor 
µααµ gg =  of (3.24).  Conversely, for the three σνµ GGG ,,  from the right hand side of the commutators, we have 

arranged for the free indexes σνµ ,,  to be in the left hand position in µααµ gg =  (3.24).  We may do this because 
µααµ gg =  is a symmetric tensor and the indexes can thus be disposed in either order, and the order makes no 

mathematical difference.  While not needed for this paper, this choice of index placement will be helpful when 
drawing Feynman diagrams. 

 

With all of the foregoing, finally substituting the inverse equation (3.24) for νG  into (4.2) yields: 

 

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]

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


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




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

























+−
−−

+−

+−
−−

+−
+




















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






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
















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


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−−

+−
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−−
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ν
ζ

ζ
ζ

ζζ
ζ

ζ
ζ

ζ
ζ

ζ

ζµ
µζ

ε
ε

ε
εε

ε
ε

ε
ε

ε
ε

εσ
εσ

µ
δ

δ
δ

δδ
δ

δ
δ

δ
δ

δ

δσ
σδ

γ
γ

γ
γγ

γ
γ

γ
γ

γ
γ

γν
γν

σ
β

β
β

ββ
β

β
β

β
β

β

βν
νβ

α
α

α
αα

α
α

α
α

α
α

αµ
αµ

σµν

kJ
Gkimkk

Gkikkm

Gki
g

J
Gkimkk

Gkikkm

Gki
g

kJ
Gkimkk

Gkikkm

Gki
g

J
Gkimkk

Gkikkm

Gki
g

kJ
Gkimkk

Gkikkm

Gki
g

J
Gkimkk

Gkikkm

Gki
g

P
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,

,
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,
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,

,
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,
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,

,
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2
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2
1

2
)(

2
)(

2
1

2
)(

2
)(

2
1

2
)(

2
)(

2
1

2
)(

2
)(

2
1

2
)(

2
)(

2
1

. (4.3) 

To start, we review lowest order terms for which [ ] 0, →=∂ µσµσ GkiG .  This allows us to remove all the “quoted” 
inverses and many other terms, and (4.3) simplifies to: 
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δ
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σδ
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γγ
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γν

σ
β

ββ
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νβ
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αµ

σµν
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g
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. (4.4) 

While both (4.3) and (4.4) are classical insofar as they depend upon an action ( ) h>>ϕS , (4.4) lays out the 

basic structure of σµνP , while (4.3) shows what happens then the µG  dynamics come into play and start to exert a 

dominant role.  The terms in (4.3) involving [ ]τν Gk ,  will generate higher-order interactions via (4.3), but because 
they emerged from the classical equations (2.1), they actually need to be modified once we consider quantum field 

theory (and as noted following (3.18) will become a gauge-invariant “perturbation” ( ) σ
σσ

σσ
σ GGGGV +∂+∂=− ).  

Not so for (4.4).  This is the “skeleton” of σµνP  which reveals the underlying structural characteristics of σµνP  in the 
lowest order, and it will survive intact to establish the Yang-Mills path integral in lowest order.   So we will now 
explore this structural equation (4.4) in earnest, to see what it tells us about what is going on inside of the magnetic 
charges σµνP , at the lowest, classical order. 
 
 We shall at times refer to (4.4) as a “chameleon equation,” because depending on how one manipulates this 
equation, one may highlight the currents / fermions, one may highlight the gauge bosons, and one may explore both 

currents and gauge bosons in a mixed view.  In the gauge boson view, one leaves the µνg  showing explicitly in the 

above, which thereby displays complete boson propagators.  In the current view, the µνg  are absorbed into the 

currents via β
νβν JgJ = .  In “mixed” view, we have little of each.  We start with the current / fermion view, by 

applying α
αµµ JgJ =  to (4.4) thus: 
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The reader should pause at this point to compare this closely, term by term, with (4.2).  While there are other benefits 
that emerges from having the inverse (3.12) developed in section 3, it was to get from (4.2) to (4.5) that we went 

through all the work in section 3 to develop the inverse σνI  of (3.12) and inverse relation σ
σνν JIG =  of (3.24). 

 

 Next, the µJ  above are all NxN matrices for SU(N), and the internal symmetries of these groups are hidden 
inside just to keep notation compact and easy for the calculations we have done thus far.  Now, however, it is time to 

start bringing the internal symmetry explicitly into the picture, so we use 
µµ

i
i JTJ = , 1...3,2,1 2 −= Ni , and similar 

expressions for the other five currents in (4.5).  With some renaming of summed internal symmetry indexes, we obtain:  
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The group structure matrices iT  and their associated commutator may then be factored out of this entire expression 
(the reader can check this by expanding all commutators, factoring these out, and then reconsolidating), so as to write: 
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The group structure constants ijkf  in [ ]ji
k

ijk TTTif ,=  maintain the commutation position of each of the µ
iJ , that is, 

[ ] [ ]νµνµ JJJJTT ji
ji ,, = .  This expression is perfectly symmetrical in appearance as between currents µiJ , but now 

we will take a simple step to break this symmetry: we will simply move both currents into the right hand numerators, 
and rewrite the above as: 
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It is worth noting by the way, that the six currents may be referred to and distinguished by 6=3x2 combinations of the 
spacetime indexes σνµ ,,  and internal symmetry indexes ji, . 
 

For a next step, we drill down even further, by employing ψγψ µµ
ii TJ =  and the like to introduce fermion 

wavefunctions.  So (4.8) now becomes: 
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 Now, the next steps are very important, so let’s walk through them carefully.  We first write the two back-to-

back wavefunctions ψψ  using ( ) α
α

ψ xipepu 1−=  and ( ) α
α

ψ xpepu 2= .  But because these are back to back, they 

represent a single, unbroken, unmediated fermion propagator line, such that αα
12 pp = , and so uu=ψψ .  Keep in 

mind, because we are working with SU(N) in Yang-Mills theory, that uu  is an NxN SU(N) matrix, in addition to 

having the usual 4x4 Dirac structure.  So if some variant of uu  finds its way into any denominators as it momentarily 
will, we have to take an SU(N) matrix inverse, and not just write an ordinary denominator.   
 

Now, in the sum over spins is often written as mpuu
spins

+/=∑  (see [13], section 5.5).  But there is an 

implied normalization in this expression, and to be explicit, this should really be written as: 
 

( ) mpmp
mE

N
uu

spins
+/=+/+

=∑
2

, (4.10) 

where one get to the final term using the covariant normalization in which mEN +=2  (see [13], problem solution 

5.9).  What is attractive about this normalization, is that this does yield the covariant expression mpuu
spins

+/=∑ .  

But there is one problem, which has to do with mass dimensionality.  Specifically, in (4.10), each of uu,  has a mass 

dimension of +3/2, so that uu  has mass dimension of +3.  But in the final term of (4.10), mp +/  only has a mass 

dimension of +1.  We will wish, therefore, to choose a different 2N  normalization in (4.10) a) is still covariant, but 

also b) retains a mass dimension of +3.  So for the moment, we leave open our choice of normalization and employ the 
middle term of (4.10) which is more general. 
 

In addition to (4.10) introducing mp +/ , we also know that ( ) ( ) ( )mpmppmp −/=−+/ /1/ 2
β

β .  So suddenly, 

we find that terms which started as vector boson propagators interacting with currents in (4.4) are turning, chameleon-
like in (4.9), into a fermion propagator, complete with a “revealed” mass for the fermion.  For example, in the top line 
of (4.9), we make the following progression of substitutions:  
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Specifically, first, we use uu=ψψ  and sum over all spin states.  Then we set ( )( )( )mpmENuu +/+=∑ /2  as in 

(4.10).  Next, we take the affirmative step (which as we will discuss shortly requires some accounting for degrees of 
freedom and so will render the gauge bosons massless) of setting the rest mass in the resultant mp+/  to be equal to 

the labeled mass )(βm  in the denominator, that is, we now set )(βmm = , identifying )(βm  with the fermion rest mass 

in ∑spins
uu .  (This )(βm , of course, started out in (4.4) as a gauge boson mass in a gauge boson propagator 

denominator, and has now turned into a fermion rest mass – more chameleon-like behavior!  In a moment, we see how 

to account for degrees of freedom to make this all work properly.)  And we simultaneously promote ββ pk →  into 

the momentum four-vector βp  for an actual fermion, and label )(βEE =  and )(βNN = .  Finally, we set: 
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ββββ

β
ββ mp

mpmpp
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 (4.12) 

in recognition of the fact, which was discussed in section 3, that whenever an SU(N) matrix (including the 

mpuu +/=∑ ) needs to go into a “denominator,” we must form its inverse.  So, these fermion rest masses )(βm , etc., 

such as they are, will be obtained via SU(N) matrix inversion.  To maintain a clear visual comparison with familiar 
equation forms, we will continue to use the “quoted denominators” to designate inverses. 
 
 So, we now use (4.11) to rewrite all three terms in (4.9), yielding: 
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Here, we have also lowered the index on the left-hand vertices in order to reintroduce the αµg  to the left-hand terms 
which once again display explicitly, the appearance of a gauge boson propagator.  This “chameleon equation” is now 
in a fully-mixed fermion / boson view, because we now see three fermion propagators and three gauge boson 
propagators.  And, we see how simply moving both currents into the right hand numerators in (4.8) broke the initial 
symmetry, led to both fermion and boson propagators in each term of (4.13), and turned three of the six masses 

)()()( ,, ζδβ mmm  into fermion masses while leaving the other three masses )()()( ,, εγα mmm  intact as boson masses.  

What we have done here, is break a mass symmetry that started out with all boson masses, into a mass asymmetry 
containing both boson and fermion masses.   
 
 But there is one final piece of the puzzle that is required to make this all work properly, which is to account for 
the degrees of freedom in what we just did to turn (4.9) into (4.13).  In going from (4.9) to (4.13), (or from (4.4) to 
(4.13) where this is even more evident), we started with six vector bosons with presumed Proca masses 

)()()()()()( ,,,,, ζελγβα mmmmmm .  A massive vector boson has three degrees of freedom, so the six bosons we started 

with in (4.4) brought 3x6=18 degrees of freedom into σµνP .  But then between (4.9) and (4.13) we took three of those 
boson masses and turned them into fermion masses.  Massive fermions, however, have four degrees of freedom, not 
three.  So for us to promote a massive boson mass into a fermion mass, we must transfer one degree of freedom over 
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from the boson to the fermion.  So, by associating )()()( ,, ζλβ mmm  in (4.13) with fermion masses, we are required to 

steal one degree of freedom from each remaining vector gauge bosons.  So, now these bosons must drop down to two 
degrees of freedom apiece and must become massless, which means that all of )()()( ,, εγα mmm  now must be set to 

zero.  Now, the 18 degrees of freedom that initially belonged three apiece to six massive vector bosons have been 
redistributed: 12 of these now belong to the 3 fermions, and only 6 belong to the 3 remaining bosons.  This should 
seem very familiar, as this is the same way in which massless gauge bosons first become massive by swallowing a 
degree of freedom from a scalar field via the Goldstone mechanism.  So, to balance the degrees of freedom to account 
for what we just did, we must now set all of the remaining 0,, )()()( =εγα mmm .  Raising the index on the currents once 

again, (4.13) now becomes: 
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. (4.14) 

The above, (4.14), can now be said to be equal to (4.9) in all respects, including a proper degrees of freedom 
accounting.  (While we shall not explore this here, this seems to suggest a “cascade” to generate fermion masses:  
First, start with scalar fields in the usual way and apply gauge symmetry.  Next, break the symmetry using the Higgs 
mechanism to give mass to some of the vector bosons, by transferring Goldstone scalar degrees of freedom into the 
gauge bosons.  Finally, pass along those extra degrees of freedom to from the massive gauge bosons to the fermions, 
rendering the fermions massive, while reverting the gauge bosons back to massless status.  The scalar degrees of 
freedom that originate in the scalar fields, finally reside in the fermions to give them a rest mass!) 
 

Now we see that σµνP  contains three fermions, with terms ( ) 1
)(

−−/× β
ν

α ψγγψ mpTT ji  that look exactly like 

the expressions for the Compton scattering of a fermion with a gauge boson, such as ee γγ →  of an electron with a 
photon in QED. (e.g., [13] at 141)  As we now see clearly from (4.14), Pσµν naturally contains three fermions, just like 
a baryon, along with all the machinery for fermion propagation, right alongside of propagators for associated, now 
massless, gauge bosons.  As a result, for the first time, we will stop referring to this as a Yang-Mills magnetic charge, 
and think of it as a true “baryon candidate.”  Now we need to show that this really has all the required formal 
characteristics to be a real, physical baryon. 
 

Looking closely at (4.14), we now also see a path to choosing a normalization 2N  which simultaneously a) is 

covariant b) retains the original mass dimensionality of +3 for uu , and c) greatly simplifies (4.14).  Specifically, we 
now choose the covariant normalizations: 
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making use of the α
α kk  to supply the two mass dimensions lost in the usual covariant normalization.  This greatly 

simplifies (4.14) to: 
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In this variation of the “chameleon,” all we see are propagating fermions in Compton scattering form. 
 

 Proceeding apace, the commutator [ ]ji TT ,  is still sitting out front of (4.16), so let’s now work with that.  The 

[ ]ji TT ,  operates to commute the vertices ( )( )νµ γγ ji TT , and in particular, the operation it now performs on each 

current / fermion term in (4.14) is: 
 

[ ] ( )( ) [ ]ψγγψψγγψ νµνµ ,, =ji
ji TTTT , (4.17) 

which is the same commutation [ ]νµ GG ,  of free indexes νµ,  with which everything started back in (4.2), and even 

further back, in the underlying field density [ ]νµµννµµν GGiGGF ,−∂−∂=  of (2.3) which is the heart of Yang-
Mills theory.  So, using the above in (4.16) now yields: 
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 Now it is time for mesons to make their first appearance.  Using the first term of (4.18) for an example, let us 
first expand the commutator: 
 

[ ] ψγγψψγγψψγγψ µννµνµ −=, . (4.19) 

Now let’s look at the charge conjugates (antiparticles) of the above.  Using the Dirac conjugation relationships 
T

C Cψψ = , 1−−= CT
C ψψ , ( )TCC νν γγ −= , and ( )TCC µµ γγ −=−1 , we obtain: 

 

( ) ( ) ψγγψψγγψψγγψψγγψ µννµνµνµ −=−−−=−= − TTTTTT
CC CC 1 . (4.20) 

This means that (4.19) may be rewritten as: 
 

[ ] CC ψγγψψγγψψγγψψγγψψγγψ νµνµµννµνµ +=−=, . (4.21) 

The commutator – which is central to Yang-Mills theory – naturally pairs a particle wavefunction with an antiparticle 
wavefunction to produce a meson!  So we go back to (4.18), and now write: 
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.(4.22) 

The above also tells us that the antifermions have the same masses as the fermions, because they are all over a 
common propagator denominator / inverse. 
 

All that now remains in (4.22) is the final commutator with momentum terms such as σk .  Going back to 

(3.3), which tells us that commuting a spacetime field with σk  is just a clever way to take its derivatives, we can write 

that in general, for a second rank tensor field )( σµν xM : 
 

[ ]µνσµνσ MkiM ,=∂ . (4.23) 

With this, (4.22) above may finally be expressed without any commutators, as: 
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In the above, we have now also added a K+ , because going back to (4.3), we see that these are the lowest order terms 
in this candidate baryon.  No matter what other interactions may take place, and even as we start to consider quantum 
fields where the classical field equations no longer apply, these basic, zero-order terms will always remain.  Different 
conditions and special cases may and will change the higher order terms, but what appears in (4.24) will always remain 
the fundamental backbone of a baryon.  (Notably and importantly, at lowest order (4.24) is free of any appearance of 

µG , which is especially helpful when it comes to having terms which are quadratic-only in the fields for path 
integration.) 
 
 Comparing the first term in (4.22) with the like term in (4.2) also yields one other very important result, which 
will be used momentarily to formally show that mesons are the only particles allowed to leave a baryon, thus confining 
quarks and gluons.  Specifically, this comparison yields: 
 

[ ] K+
−/

+=
""

,
)()( ββ

νµνµ
νµ ψγγψψγγψ

mp
GG CC . (4.25) 

 Before concluding, there is one final point to note, dealing generally with Yang-Mills theory, and not 

specifically with baryons or QCD.  The commutator [ ]νµ GG ,  in (4.25) above is central to Yang-Mills theory.  In fact, 
it appears in the very foundational equation of Yang-Mills theory, namely, (2.3).  So this often-seen equation can be 
written in a totally novel form, as: 
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mp
iGGGGiGGF CC . (4.26) 

This tells us at the lowest order, what the non-commuting field term [ ]νµ GG ,  brings to the field strength µνF  that 
does not appear in U(1) Abelian (commuting field) gauge theory: a paired fermion and anti-fermion wavefunction, 
which means that this meson-like character is endemic to Yang-Mills gauge theories.  One may use this to go back to 
all the equations of Yang-Mills theory, make use of the field strength in the form of (4.26), and see what sorts of new 

insights emerge.  This includes the path integral, because (4.26) is quadratic (not cubic or quartic!) in νG and the 
associated Gaussian can be solved exactly.  Keep in mind also, that one can exercise this chameleon-like expression 

for [ ]νµ GG ,  into a variety of other forms as well, including backtracking through the development in this section.  
Those chameleon exercises are also very helpful if one wishes to draw Feynman diagrams for baryons and mesons, 
and they lead to term combinations we have not elaborated here because they were not essential to the main line of 
development.  Now, we turn to confinement. 
 
5. Confinement Part 1: Integral Equation Symmetries and Color confinement 
 

The so-called “MIT Bag Model” [14], [15] [9] Chapter 18, which was one of the first efforts to understand 
confinement, pays close attention – very properly so – to what does and does not flow across a closed surface around a 

baryon.  As such, analogies to Maxwell’s charge equation in integral form, ∫∫∫∫∫∫ = FdJ ** , are very apt.  But it is 

important to explain quark and gluon confinement without any backpressure or other ad-hoc contrivances, and also 
explain why the nuclear interaction is mediated by mesons.  That will be the subject of these next two sections. 

 
Let’s therefore start to use the language of differential forms to examine issues pertaining to confinement, 

which helps to establish our “candidate” baryons and mesons as true, physical baryons and mesons.  For the field 

strength [ ]νµµννµµν GGiGGF ,−∂−∂= , we multiply through by νµdxdx , and use the differential forms 

µ
µdxGG = , νµ

µν dxdxFF = , [ ] νµ
νµ dxdxGGG ,2 = , and ( ) νµ

µννµ dxdxGGdG ∂−∂= , in a well-known fashion, to 
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compact this to (see [12], Chapter (4.5)): 
 

2iGdGF −= . (5.1) 

For σµνP  we use the magnetic three-form νµσ
σµν dxdxdxPP = , as well as 

( ) νµσ
σµννσµµνσ dxdxdxFFFdF ∂+∂+∂=  and [ ] [ ] [ ]( ) νµσ

µσνσνµνµσ dxdxdxGGGGGGdG ,,,2 ∂+∂+∂=  to multiply 
σµννσµµνσσµν FFFP ∂+∂+∂=  through by νµσ dxdxdx  and then express this in the compacted form: 

 

( ) 22 idGiGdGddFP −=−== . (5.2) 

This includes the well-known application of 0=dd : the exterior derivative of an exterior derivative is zero.  This is 

what made the QED magnetic charge vanish back in (2.1) and (2.2), while 2idG−  compacts the residual Yang-Mills 
terms of (2.5). 
 

Similarly, the chromoelectric charge equation is: 
 

( )2*** iGdGdFdJ −== . (5.3) 

 Now, we apply Gauss’ law to (5.3), to write: 
 

( ) ( )∫∫∫∫∫∫∫∫∫∫∫∫∫ −==−== 22 ***** iGdGFiGdGdFdJ . (5.4) 

and most importantly, to (5.2) to write: 

( ) ∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫ −=−==−=−== 2222 GiGidGFdGiiGdGddFP . (5.5) 

These are the “Maxwell’s equations” in integral form for “classical,” i.e., high action h>>S  
chromodynamics, (and indeed, for any “classical” Yang-Mills theory) and they mirror the usual Maxwell equations of 
electrodynamics: 

 

∫∫∫∫∫∫∫∫∫∫ === dAFFdJ **** . (5.6) 

and 
 

0===== ∫∫∫∫∫∫∫∫∫∫∫∫∫ dAFddGdFP . (5.7) 

 In (5.5), ∫∫∫P  describes a three dimensional volume which contains the three-fermion / antifermion object 

σµνP  of (4.24) which is our candidate baryon.  But while Maxwell’s (5.7), particularly 0=∫∫F , tells us that nothing 

flows out of a volume which contains a magnetic charge, equation (5.5) for Yang-Mills theory says something very 
different.  The crux of (5.5) is the part that reads: 
 

∫∫∫∫∫∫∫ −== 2GiFP . (5.8) 

This says that across any closed two-dimensional surface surrounding a three-dimensional volume which contains a 

magnetic charge P as developed in (4.24), there is a net field flux, and it is a net flux ∫∫− 2Gi  of 

[ ] νµ
νµ dxdxGGG ,2 =  objects.  But what are these objects?  From (4.25), we learn that these [ ]νµ GG ,  objects 
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contain fermion and antifermion wavefunctions [ ] K+
−/

+
−=

""
,

)()( ββ

νµνµ
νµ ψγγψψγγψ

mp
GG CC , and so appear to be 

mesons!  So, we have our first glimpse of why mesons are enabled to flow across a closed surface surrounding a 
baryon.  
 
 What does not flow across this surface are the gauge bosons (gluons).  This confinement of gluons and the 
“colorless” nature of nuclear interactions are highlighted by contrasting the final two terms of (5.5), from which one 

may then deduce the companion equation identical to the “no-magnetic monopoles” equation 0=∫∫dA  of QED: 

 

0=∫∫dG . (5.9) 

Therefore, in integral form, we find that ∫∫F  is invariant under the local gauge-like transformation 

 

( ) ∫∫∫∫∫∫∫∫ =−=′→ FdGFFF . (5.10) 

Expanded in terms of the field density tensor, this transformation is ][' µνµνµνµν GFFF ∂−=→ .  This means that the 

flow of the field strength ∫∫∫∫ −= 2GiF  (in the form of mesons) across a two dimensional surface is invariant under 

the local gauge-like transformation ][' µνµνµνµν GFFF ∂−=→ .  Now, we know that the invariance of the QED 

Lagrangian under the similar transformation Λ∂+=→ µµµµ AAA '  means that the gauge parameter Λ  is not a 

physical observable.  Similarly, the invariance of the gravitational Lagrangian under }{' νµµνµνµν Λ∂+=→ ggg  

means that the gauge vector νΛ  is not a physical observable (and we know νΛ is in fact connected merely with a 

coordinate transformation )( νµµµµ xxxx Λ−=′→ ).  In this case, the invariance of ∫∫F  under the transformation 

][' µνµνµνµν GFFF ∂−=→  similarly tells us that the gauge field µG  is not an observable over the surface through 

which the meson field ∫∫∫∫ −= 2GiF  is flowing.  But µG  is simply the gauge field, that is, the gluon candidate.  So, 

simply put: the gauge fields Gµ (gluon candidates) are not observables across any closed surface surrounding a baryon.  
Whatever goes on inside a baryon, the nuclear interaction is colorless and gluons remain confined inside the baryon!  
Only mesons cross this boundary.   
 
 Taking this a step further, we see that the origins of confinement in fact lie in the 140-year old mystery as to 
why there are no magnetic monopoles in Abelian gauge theory.  In differential forms language, the statement of this is 

0=ddG .  But in integral form, that becomes 0=∫∫dG , equation (5.9).  And, it is precisely this same “zero” which 

renders ∫∫∫∫∫∫ =′→ FFF  invariant under ][' µνµνµνµν GFFF ∂−=→  in (5.10).  So the physical observation 

that there are no magnetic monopoles in Abelian gauge theory becomes translated into a symmetry condition in non-
Abelian gauge theory that gauge boson flow is not an observable over the surface of a magnetic charge.  Again: In 
Abelian gauge theory there are no magnetic monopoles.  In non-Abelian theory, this Abelian absence of magnetic 
monopoles translates into there being no flow of gauge bosons (e.g., gluons) across any closed surface surrounding a 
Yang-Mills magnetic monopole.  Consequently, the absence of Abelian magnetic monopoles is fundamentally, 
organically equivalent to the absence of gluon flux, hence color, across surfaces surrounding non-Abelian chromo-
magnetic monopoles.  And, because this is turn originates in 0=dd , we see that this confinement is geometrically 
mandated.  Had nothing else been developed in this paper, this alone, would make Yang-Mills magnetic monopoles 
extremely compelling baryon candidates!  The very same “zero” which in Abelian gauge theory says that there are no 
magnetic monopoles, in non-Abelian gauge theory says that there is no observable flux of Yang-Mills gauge fields 
across a closed surface surrounding a Yang-Mills magnetic monopole.  We do not find a free gluon (hence free color 
charge) in Yang-Mills theory any more than we find an Abelian magnetic monopole in electrodynamics, for identical 
geometric reasons.  And as Close makes clear in [9] at 426: “quark confinement arises out of colour confinement . . . a 
boundary condition that confines the coloured gluons has, by Gauss, confined the coloured quarks.”  Here, unlike in 
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the MIT Bag Model, the boundary conditions are not ad hoc.  They are naturally endemic to magnetic monopoles. 
 

Let us now examine all of this more specifically, in terms of the baryon candidate we earlier derived in (4.24).  
 
6.  Confinement Part II: Quark Confinement and Baryon Flux in a Form Analogous to Maxwell’s Equations 
 

We now wish to explicitly examine quark confinement and meson flux by applying (5.5) in the form 

∫∫∫∫∫∫ −= 2dGiP  to the results developed here.   This equation is more explicitly written as: 

 

[ ] [ ] [ ]( )∫∫∫∫∫∫ ∂+∂+∂−= νµσ
µσνσνµνµσ

νµσ
σµν dxdxdxGGGGGGidxdxdxP ,,, . (6.1) 

Now, although we have designated the expression on the right hand side of (4.24) as σµνP , the manner in which this 
term was developed in section 4 should make clear that this is really equal to the cyclic expression 

[ ] [ ] [ ]( )µσνσνµνµσ GGGGGGi ,,, ∂+∂+∂− .  We now wish to find a different σµνP  to use on the left hand side of 
(6.1) so that (6.1) is not merely an identity restatement of Gauss’ law for integration. 
 
 To achieve this objective, we will wish to obtain then use the first rank dual νστ

µνστµ ε PP !3
1* =  of the 

expression for σµνP  in (4.24) which eliminates the derivatives σ∂  that appear in the right hand side of (6.1), and 

which allows us to use (6.1) somewhat analogously to how we use Maxwell’s equation µν
µ

ν FJ ∂=  of (2.1) with 

Gaussian integration.  Starting with (4.24) we may use µνµννµ σγγ ig −=  and 0=µν
ασµνε g  and some renaming of 

summation indexes to specify this dual as: 
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where we now use the labels “1, 2, 3” to label the three fermion masses and momenta, rather than ζδβ ,, .  Similarly, 
we label the associated fermion wavefunctions themselves with “1, 2, 3,” and to save space, we include a summation 

∑ = 3,2,1n
 over the three fermions which naturally subsist in σµνP . 

 

 The calculation of αP*  is rather involved, so we do not show the derivation explicitly in this paper.  But this 

calculation makes use of the following ingredients:  a) expressing the relationship 532101 γγγγγi=  among all of the 

Dirac gamma matrices as µν
ασµνασ σεγσ 2

15 −= ; b) writing the wavefunctions in (6.2) more generally in the chiral 

form ( ) nnAnVn cc ψγψ 5−=  and ( )5γψψ nAnVnn cc +=  and similarly for the conjugate wavefunctions; c) making 

use of the Dirac spinors ( ) α
α

ψ xip
nn

nepq −≡  and ( ) α
α

ψ xpi
nn

nepq ′≡  and similarly for conjugates; d) as a central step, 

making use of the Gordon decomposition in the form of: (see, e.g., [10] at 343-345) 
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 (6.3) 

 to recompose a vector current nn qq αγ  and also shed the derivatives σ∂  from (6.2) (which derivatives become 

represented in ( )σpp −′ ), where ng  are the gyromagnetic g-factors of each fermion (these are equal to 2 for a 

structureless, non-interacting point particle such as the Dirac electron) and nm  are the fermion masses; e) reducing and 

solving to determine that 2
1=±= nAnV cc ; f) applying these two solutions to the overall set of equations developed; 



23 

and g) forming linear combinations of these two solutions.  The result of all of this is that: 
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 Then, from (6.4), we form the desired alternative expression for σµνP , which is:  
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We then use (6.5) in the left hand side of (6.1), and (4.24) in the right hand side, thus writing: 
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This equation, which also displays (5.5) (which in turn embeds gluon confinement via 0=∫∫dG , see (5.9) and (5.10)), 

summarizes the entire thesis of this paper in a nutshell.  In the above, we have again used µνµννµ σγγ ig −=  and the 

“1, 2, 3” labels for the fermions, together with the fact that 0=νµ
µν dxdxg  given the antisymmetric nature of 

{ } 0, =νµ dxdx  in differential forms.  The numerator of the first term contains the meson-like four current density 

CnCnnnnCn JJ ψγψψγψ αααα +=+ .  The numerators of the terms after the equal sign contain meson-like 

magnetization and polarization bivectors: (see, e.g. [16]) 
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Thus, in (6.6), the magnetization three-vector CMM +  takes the place of the electric field vector E  in Maxwell’s 

theory while the polarization three-vector CPP +  takes the place of the magnetic field vector B .  And in general, 

CC ψσψψσψ µνµν +  takes the place of the dual field strength tensor µνF* . Keep in mind that the SU(N) group 

generators are embedded though not shown explicitly in the foregoing, see the development in section 4. 
 

Using µνµν η=g  to raise and lower indexes, as well as CCJJ ρρ +=+ 00  to represent the meson charge 
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density, and also using (6.7), the time component equation in (6.6) is seen to be as follows: 
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where 321 dxdxdxdV = .  The terms inside the integral should be compared to the analogous Maxwell equation 

ρ=⋅∇ E , which is Gauss’ law for electricity, in which the ME →  correspondence is apparent.  In integral form, 
applying Gauss’ law, (6.8) becomes: 
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where we have defined the total meson (quark plus anti-quark) charge enclosed within the volume as 

( )∫∫∫ +=+ dVQQ nCnnCn ρρ .  Equation (6.9) should be contrasted with Maxwell’s ∫∫ =⋅ QdAE .  In 

electrodynamics, an electric field flows across the surface in proportion to the enclosed electric charge.  Here, a 
magnetization field flows across the surface in proportion to the enclosed chromoelectric charge and, due to its 

nCn MM +  character combining a field with the conjugate field, this may also be thought of as a meson field which is 

classically responsible for nuclear interactions in the same manner that the electric field is classically responsible for 
electrodynamic interactions.  In sum: the total flow of the meson magnetization field nCn MM +  across a closed 

surface dA   is proportional to the total meson-like quark charge nCn QQ +  contained within the volume enclosed by 

that surface.  However, individual fermion magnetizations do not flow across this surface by themselves, but only in 
particle / antiparticle pairs. 
 

 Turing again to (6.6), and again using (6.7) and µνµν η=g , we now extract the space components equation: 
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where we also employ CnCnnnC ψψψψ γγJJ +=+ .  The terms inside the integral should be compared to the 

analogous Maxwell equation t∂∂+=×∇ /EJB , which is Ampere’s law.  As noted after (6.7), we see the 
magnetization M  behaving similarly to the electric field E  and the polarization P  behaving similarly to the magnetic 
field B .  Now converted into integral form using Gauss’ law, (6.10) becomes: 
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with the total current flow specified as ( )∫∫∫ ⋅+=+ dAJJII dtnCnnCn .  This should be contrasted with Ampere’s 

law in integral form ∫ ∫∫ ⋅
∂
∂+=⋅ dAEIdLB
t

.  In electrodynamics, for a time-independent electric field E , the line 

integral dL  of the magnetic field B  around any closed loop is proportional to the total electric I  current flowing 
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through the loop.  Here, for a time-independent meson magnetization field nCn MM + , the line integral of the meson 

polarization field nCn PP +  around any closed loop is proportional to the total chromoelectric meson current nCn II +  

flowing through that loop.  What we do not see anywhere, is a free flow of individual quarks.  They always travel 
through any surface in pairs, and so as individuals, are confined. 

 
7.  Conclusion 
 

At the end of section 5, we showed on the basis of formal symmetry considerations that the gauge fields µG  
are confined and do not flow across a closed surface surrounding P by virtue of the invariance of 

( )∫∫∫∫∫∫ −=′→ dGFFF  under the gauge-like transformation ][' µνµνµνµν GFFF ∂−=→ .  In section 6 we 

showed that only mesons flows are permitted to flow in and out of P, and that quark currents never appear separately 
from conjugate (antiparticle) quark currents. 

 
So in sum, all that is permitted to net flow across a closed two-dimensional surface are the quark / anti-quark 

objects we call mesons, and their associated magnetizations.  Gluons, and individual quarks not paired with an 
antiquark, can never in isolation show a net flux over any closed surface.  Interactions between baryons thus occur 
only via meson exchange.  Because of the foregoing, not only does P resemble a baryon insofar as it naturally contains 
three fermions, but it also exhibits all of the hallmarks of a baryon in terms of quark and gluon confinement and meson 

flow.  Because of the foregoing, we now promote the P to actual physical baryons, the 2G  to actual physical mesons, 
and the J to actual physical quark currents! 
  
 Because P is now a three-quark system, we must because of Fermi-Dirac statistics make certain that no two 
quarks in this system have the same quantum numbers.  So now, for the first time, we formally may select the gauge 
group SU(3) as our Yang-Mills gauge group, set each of fermion wavefunctions to ( )nn

T BGR=ψ , and thereby 

enable each of the three quarks inside of P quark to occupy three distinct color eigenstates and so enforce a Fermi-
Dirac exclusion principle.  And in the process, we have answered the very first question we posed:  “Why, 
theoretically, do there exist in nature, naturally-occurring sources, namely baryons, consisting of exactly three 
strongly-interacting fermion constituents which we call ‘quarks’?”  The answer: because the Yang-Mills magnetic 
monopoles – which are indeed baryons – naturally contain three quarks.  Baryons do not contain three quarks because 
SU(3) is the QCD gauge group.  The causal arrow is reversed: SU(3) is the QCD gauge group because each Yang-
Mills magnetic monopole – now a baryon – contains three quarks and we need to enforce exclusion.  And so, the horse 
is properly before the cart.  And, for reasons developed to go from (4.13) to (4.14), we do not break any symmetries 

for this group, now formally SU(3)C, but maintain the eight gauge bosons µG  – now gluons – as massless. 
 
 Having fully developed the baryon and quarks and mesons according to (6.6), another point should now be 
made, which brings us back to the very beginning of this paper.  Equation (6.6) which is the upshot of the thesis 
developed in this paper is no more and no less than the logical result of combining the two classical Maxwell equations 

µν
µ

ν FJ ∂=  and σµννσµµνσσµν FFFP ∂+∂+∂=  of (2.1) in the context of Yang-Mills gauge theory with the field 

strength [ ]νµµννµµν GGiGGF ,−∂−∂=  of (2.3) for non-commuting gauge fields.  (To be perfectly fair, we did 
also use the Gordon decomposition (6.3) which has its roots in Dirac’s equation, so there is really a fourth fundamental 
equation involved as well, namely that named for Dirac.)  Just find the inverse of Maxwell’s charge equation 

µν
µ

ν FJ ∂= , plug it into σµννσµµνσσµν FFFP ∂+∂+∂= , do the calculations, and arrive at (6.6).  In short, (6.6) is 

what one obtains when Maxwell’s two equations in the context of Yang-Mills theory are merged together into a single 
equation.  Think about this again: both of Maxwell’s equations are embedded in (6.6), i.e., (6.6) is what one inexorably 
gets from joining together both of Maxwell’s equations in Yang-Mills theory.  No more, no less.  That simple!  For 
anyone who has ever wondered what Maxwell equations would look like if they were all one equation rather than two, 
(6.6) is the answer!  Maxwell’s equations, for non-commuting fields, when combined into one, are the classical 
equations of baryon nuclear physics! 
 
 One final, overarching point, which returns us to section 3.  As made clear throughout, (6.6) is a classical 
equation, valid for high-action ( ) h>>ϕS .  This means that (6.6) (and even the more general equation developed from 
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(4.3) with [ ] 0, ≠=∂ µσµσ GkiG ) will become inexact in the quantum arena.  Does this mean that σµνP  will stop 

being a baryon?  Of course not.  No more than a classical current density µJ  stops being a current density in quantum 
electrodynamics.  It merely means that we will be using different (quantum amplitude) equations, derived via path 
integration, in order to describe the behaviors of these baryons in the low-action arena.  It merely means that the higher 
order terms will change from what we have seen here.  But the lowest-order, baryon structural terms in (6.6) will 
always remain intact.  
 

So to conclude: the long-sought and pursued and ever-elusive magnetic monopole, in Yang-Mills theory, is a 
baryon, and it exists everywhere and anywhere that there is matter in the universe, hiding in plain sight! 
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