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Abstract:

We demonstrate how the baryons which constitute thvast preponderance of the material universe are
no more and no less than Yang-Mills magnetic monopes, with quarks and gluons confined, and only mess
permitted to net flux in and out. The confinementof color in Yang-Mills theory is fundamentally and
inextricably tied to the absence of magnetic monopes in Abelian Gauge theory.

1. Introduction
In this paper, we pose the following questions:

Why, theoretically, do there exist in nature, naliyroccurring sources, namely baryons, consisting
exactly three strongly-interacting fermion congiits which we call “quarks”? Why, and by what
mechanism, do the massless gauge particles of QuaGhromodynamics (QCD), which we call
gluons, cause these quarks to remain confined rwitie baryons? How, and why is it, that the
interactions between baryons only occur via théharge of mediating quark / antiquark pairs that we
call “mesons,” and not through any free gluon exgfe® And how, despite the absence of any known
symmetry breaking in QCD, and even with the glubethg massless, do these meson mediators
obtain their mass?

These are questions of more than passing intdresause two most-common types of baryon, of coarse,
the proton and neutron, which account for the werst preponderance of the material universe. lildvbe good to
have a theoretical foundation for understandingtviiese baryons actually are.

We do know, because there are three quarks peofnatiyat it is very helpful and can explain manynds
about the strong interactions, if we employ the §&afills color group SU(3) with a wavefunction

wT = (R G B) in the fundamental representation to ensure FBamii-Dirac exclusion, i.e., to make sure that no

two fermions in a given system have the exact ssehef quantum numbers. But this merely desceptand does
not explain the underlying question of why there #iree quarks per baryon and not some differemtben, or the
even more challenging questions about confinemeshingeson interactions. If nature were to proviae 4 or 11, for
example, then we would merely enforce Fermi-Diratistics with SU(4) or SU(7) or SU(11) insteaddavould still
be asking “why?” there were instead 4 or 7 or 14rksi per baryon.

From an historical perspective, Rabi once quipgeeliathe muon, “who ordered this?” Of course, éhieas
been ampleexperimentalevidence for the existence of nucleons since Rigite and Chadwick respectively
discovered the proton and neutron in 1917 and 1828.for these baryons and others, frotheoreticalviewpoint, it
is still not really understood even to this dayhtwordered this?” Today, we know that baryons @orthree quarks,
but we don’t know why this number is three. W jake that as a given and build around thats #tiil a struggle to
understand why and how these quarks remain stulyboomfined, and how an interaction such as SY@E)QCD
which relies on massless gauge bosons (gluons$tdhgive rise to massive quark / antiquark pgirseesons) which
mediate nuclear interactions. Much research has fecused on finding clever ways to “glue” quattgether, but a
fundamental understanding of baryons and quark gmdn confinement remains elusive. In fact, prbper
understanding baryons and confinement and massba®mexchange has proved to be so challengingit tleglt the
Clay Institute to in 2000 to offer a large prize solving the so-called “mass-gap” problem of Yaniljs Theory, [1]
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which today remains unclaimed. And at bottom,llggest barrier to cracking this puzzle emanates fthe fact that
to this day, nobody really knows, theoretically,avla baryon is. “Who ordered baryons?” is stilweuch a live
guestion.

On a seemingly-different front — which this papélt endeavor to show is not at all a differentrfte- almost
as soon as James Clerk Maxwell published his ¥873eatise on Electricity and Magnetisgqyestions arose about
magnetic monopoles: “Why is there not symmetryveen electric and magnetic charges?” “Do magmatinopoles
exist?” “If so, where and how can they be found=r almost 140 years, those questions have béeul aand many
experiments have been done and continue to be odetect magnetic monopoles. t'Hooft & Polyak@} and
others [3], [4] have pointed out and tried to depelhe theoretical observation that Yang-Millsdi¢heory seems to
give rise to magnetic monopoles, but to date, méagobarges have never been conclusively detectddhaey remain
one of the deepest and most elusive mysterieseaidtural world.

The thesis of this paper is simple: that the mtgnaenonopoles characterized classically by

PH =9F* +0*F" +0"F% which come into existence in Yang-Mills theory anonymous with baryons.
Baryons are Yang-Mills magnetic monopoles. Yangidvithagnetic monopoles contain exactly three codfipaarks,
interacting with one another via massless gluori) imteractions between these monopoles mediayethdssive
mesons. To the question what is a baryon? theanswhis: a Yang-Mills magnetic monopole. To thesstion do
magnetic monopoles exist and if so where can wd flrem? the answer is this: yes, they exist, amy tre
everywhere. We ourselves and everything we se¢aaath and hear and smell and taste is built presmmiy out of
Yang-Mills magnetic monopoles. Whenever we talwdba proton or a neutron or any other baryon, weetaking
about a Yang-Mills magnetic monopole. We just doralize that, yet. A theoretical oddity and aphchild for
close to 140 years, magnetic monopoles are intti@cvery heart of the material world, but have bleieing in plain
sight from our theoretical understanding ever sitloe time of Maxwell. Nuclear physics, and the giby of
confinement and mesons, is the physics of magmedicopoles, governed classically by Maxwell's equai plus
Yang-Mills, and quantum mechanically by QCD. AondRabi’'s question who ordered this? the answelbhdoyons, is
this: James Clerk Maxwell, Chen Ning Yang and Rbbills. They are the theorists who ordered whatherford
and Chadwick found in their laboratories the bgtat of a century ago.

2. Maxwell's Classical Field Equations in Yang-Mils Theory

Maxwell's classical field equations of Abelian gautheory are most often presented in the formwaf t
separate equations for electric and magnetic claegsities:

3/ =9, F"

. (2.1)
PH =9°FH +9*EY +9'FH

Taken as is, there is nothing in the above to pretle existence of a magnetic charge denBit§/ a.k.a. magnetic
monopole (which we endeavor to demonstrate is gobadensity when fully developed in Yang-Mills thgo

However, as soon as one defines the field streagytisity F“” from the Abelian gauge vector potentiéf’ (which in
QED represents the photon) using:

F,uv =a/.1AV_aVAl1, (22)

the latter equation (2.1) becomé¥™ =0, by identity. Thus, the timeless mystery of Makigeequations: no
magnetic monopoles.

One might think to discard the vector potent®f in (2.2) entirely, and specify electrodynamicsirefy in
terms of the field strengtk*”. But as Witten points out: ([5] at page 28)

“the vector potential is not just a conveniencet][lisi needed in 20century physics for three very
good purposes:
. To write a Schrodinger equation for an electroa inagnetic field.
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. To make it possible to derive Maxwell's equatiors a Lagrangian.

. To write anything at all for non-Abelian gauge theavhich — in our modern understanding
of elementary particle physics — is the startingnpin describing the strong, weak and
electromagnetic interactions.”

Non-Abelian Yang-Mills gauge theory differs frofnet Abelian gauge theory in the simple respect itlsat
gauge fieldsG* are non-commuting, i.e., in the fact td@”,G”Ji 0, in contrast tolA”,A"J:O which is taken to
be the case in (2.2) above. Specifically, for diayg-Mills gauge group SU(N) with group generatd?srelated by
the group structuref T :—i[Tj,T"J, and whereF* =T'F*" and G* =T'G” are NxN matrices, the field
strength (2.2) is simply replaced by:

F* =9*G’ -9'G* -i[G*,G6"|=D*G’ -D'G* = DG, 2.3)

where we use the gauge-covariant derivative

D# =9* -iG* (2.4)

to put F#” into a form that facilitates calculation and alka very transparent comparison to Abelian gaugeryh

So, as soon as one substitutes the non-AbeliarB) (2nto Maxwell's equation (2.1) for
P* =0?F# +0“F" +0"F% , while the terms based o¥'G” —0"G* continue to zero out by identity in the
usual way, one nonetheless arrives at a residumazem magnetic charge:

P =-i(0°|c*,G"|+0*|c",G7|+0"[c7,G¥)
.(2.5)
= -ioec* 6" ]+[c* 076" ]+ [p#c* ,G°]+[c" 0467 ]+ [0, c*]+[67 0" G¥])
This is all because of the fact t ﬁ”,GVJJt 0. The thesis of this paper will be to show that these-zero P*"

objects are baryons, and that the*@”,G”J objects are mesons which mediate nuclear and otfeyon
interactions In particular, as we shall later see in, for ragke, equation (4.24), the three cyclically-symneetr
spacetime indexesu,v,o in P?*" are indicative of three fermion / anti-fermion pagators within P%" .

Meanwhile, the two antisymmetric indexgsV in lG”,GVJ are indicative of fermion / anti-fermion propagato

which flow across closed baryon surfaces as mesdkxsd, perhaps most fundamentally, the “zero” thighifies
absence of magnetic monopoles in Abelian gaugetheanslates directly into a “zero” that signifigse absence of
color flux across any closed surface surroundingraAbelian magnetic monopole.

The question that naturally arises is whether #éipiproach to Yang-Mills theory via the classicali&ipns
(2.1) is viable, and this question has two aspe#isst, while P** =907F* +0“F" +9"F* andJ" =0 F"

are the classical field equations for Abelian (camting field) gauge theory, will they remain the sdical field
equations in Yang-Mills theory? The answer to firig question is yes: Start with a path integrApply stationary

phase (or steepest descent) approximation infithe O limit, that is, in situations where the relevagtian being
considered is much greater than i.e., S(¢):Id4x£(¢)>> h, so as to derive the Euler-Lagrange equation. Use

this on the electric and magnetic Lagrangians ofg¢ilills theory. The resulting field equations Mak:

3" =a,F"

v e (2.6)
P"=9,*F*

Then, apply the “duality” formalism first develagbéy Reinich [6] and later elaborated by Wheel@},wWhich uses
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the Levi-Civita formalism (see [8] at pages 87-89)P" =d,* F*", to obtain P =9°F* +0“F"” +0"F %,
which was used to obtain (2.5).

Second, if we can demonstrate tHa#" does have all the requisite characteristics ofigydn using the
classical field equations (2.1) for Whi(ﬂ{¢) >> 7, will these results remain valid even for quantiieid theory in

which S(¢) ~n ? Here too, the answer is yes. Why? If we caabéish in the classical arena thaf** has all the

properties of a baryon in circumstances Wh§(¢) >> 71, then there is no logic to suggest tiRt" will cease to be
a baryon once we consider quantum conditions Wﬁ‘é@ ~ k. Once a baryon, always a baryon! Just as irsicials
electrodynamics, a classical current denslty still remains a current density in quantum eleyramics; it is just

subject to a different set of (amplitude) equati¢ioiowing path integration). What will happenowever, is that
once we move into the low-action arena whél(¢) ~ h , we will have to forego the use of all but the é&sivorder

terms that we develop to establiBf¥” as a baryon. Any of the higher-order terms walllanger correctly describe,
mathematically, the behavior of these baryons énlthv action arena. Indeed, using Maxwell’s clesisequations to
try to understand confinement by using Gauss’ lawslrface integrals has a distinguished histooy,the least of
which includes the MIT Bag Model, see [9] at (H).4nd 426.

So in a very basic sense, using a “bicycle ridimgtaphor, we will use the classical equatidkis= GNF”"

and P# =0°F* +0*F" +0"F% as “training wheels” to demonstrate thBf*" is in fact a baryon under
classical, high-action conditions. In the process,will establish théowest-order terms- which will survive intact
through path integration — to describe this barpbgsics from the classical equations. With theidoaennection
established between Yang-Mills magnetic charges lbaxgyons, we would remove the classical trainingesVh
equations, and rely on the path integral formuratd quantum field theory to tell us how these basybehave in the
guantum arena in which the higher-order terms foomtraining wheel equations begin to break dowsiimply cease

to work. But no matter what the action, high arJdhe Yang-Mills magnetic monopol@*" will still be a baryon!
It will just adhere to different mathematical eqaas in different action arenas.

In the development to follow, we will do no moradano less that than simply combine three equations
together: The two classical Maxwell equatioh$ =d ,F** and P* =9°F* +0“F" +9"F% of (2.1), and the

field strengthF* = D'*G"! of (2.3) for non-commuting Yang-Mills fields. Nohg further is needed to show that

P?" has all the essential features to be a baryon.h&Ve already combineB*” =9°F*" +0“F" +0"F% and
F* =D“G" to arrive at the non-zero magnetic monopole ab)(2In section 3 we will deduce an inversg and

inverse equatiorG, =1,,J for J* =9 ,F* by combiningJ” =9 F* with F* =DG". In section 4 we

will employ this inverse in (2.5) to show thB™" is a natural system containing exactly three fermiwhich makes

it a baryon candidate, and further, that the ftmmmutator[G”,G"] is a natural system consisting of a fermion and
antifermion which makes this a meson candidatesettions 5 and 6 and we will examine these claksguations in
integral form, to examine what does and does ot ficross any closed surface surroundrfd”. This will show

that P?" exhibits precisely the characteristics that ardenstood to characterize confinement phenomenasand
provide further support for thesis that Yang-Miliggnetic monopoles are natural baryons.

3. A Classical Yang Mills Inverse, with a “Reveald@” Vector Boson Pseudo-Mass

With the non-zero magnetic monopole of (2.5) alyespecified, we begin the next stage of developrbgn
using F*" = D'“G" of (2.3) in Maxwell's charge equatioh” =d,F*” of (2.1) to obtain:

J'=a,F"” =9,0¥G" =9 ,D*G" -4,D"G* =(g""9,D’ -9"D" |G, . (3.1)



We now want to obtain the inverse expression(ﬁzr in terms of J¥. That is, we now seek the invertgv of the

configuration space operatg’d,D? —0#D", defined such thaB, =1,,J7, i.e., we now wish to obtain:
1,,(g"a8°D, -0#D" )e¥™ =1, (g™ (079, -9°G,)- (09" —07G" )"~ =5,  (3.2)

The presence in the above of the terms sua¥‘&” which are derivatives of fields, introduces a ctariy
that is not encountered in U(1) Abelian gauge theofhis added complexity occurs because theseatdmes in

0“G" do not directly operate on the Fourier kere&™ but instead operate on the gauge fi@f. Because this
field G =G" (X”) is a function of spacetime, we may make use ottmemutator relationship:

9°G* =i[k?,G*| (3.3)

to replace then varioud”G* which appear in (3.2). The space componentsisn’rdalhationship,66"Ab = ilka, Ab] for
the photon field are used in Dirac theory to detive electron magnetic moment, see, for exampl@, jlist after

equation (2.964). The time component of the above’G* = ilkO,G”] is a variant of Heisenberg's equation of
motion, see for example [11], equation (3.61), Whatso uses this four-dimensional expression.

So, we substitute (3.3) into (3.2), and with sameaming of indexes to getd&’, on the right, we obtain:
1, (- 9% koK, +i[k,G, |)+ k“Kk +ilk*,G|)= 5%, . (3.4)
Before we try to calculate this inverse, knowingttthis might have no inverse (see, e.g., [12]ptdralll.4), let us

add a square mass Proca temf by hand in the usual way. Also, let us requi this configuration space operator
be symmetric underz —~ o interchange by symmetrizing the above expressginguan index anticommutator

1k G?. Thus, we re-specify (3.4) as:
B I ] 8 es

Finally, let us also require thdt,, be symmetric undeo — V interchange, by writing this in general form
for three unknowng\, B andC as:

|, = Ag,, +Bk,k, +1Cilk,.,G, . (3.6)
Finally, we plug this into (3.5)We now need to solve the expression
(Ag,, +BKk k, +1Cilk,.G, (- g* k7K, +i[k*,G, |-m?)+k*k? +1ilk*, G2 |)=6,.  (3.7)

It is very importantas we proceed, to keep in mind that B€ is an NxN matrix for the Yang-Mills gauge
group SU(N). Thus, any expressions which @ft into a denominator have to be understood as lieguthe

" One can see how this operates as a derivativeohgidering the very simple examp(@/ax)x2 =2X. The canonical
Heisenberg commutator in the space dimensionsl_)dis ij=ihgij. If we apply this to |_XiXk, pj], we find that
lXiXk, ij: 2ihg"x*, which we can write a®)’ (Xixk): 2hg" X« = —il_XiXk, pj]. This is just a fancy way of writing
(t?/@X)X2 =2X. But it turns that this works like a derivativerfany polynomial containing any order iy i.e.,

(O/OX)Xn =nx"", etc., so that any time we have a fieAii(X), we can apphd’ A (X) = ilpj A (X)J
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formation of aYang-Mills matrix inverse So that the expressions we develop have a siridak” to familiar
expressions from QED, we will generally use a “gdotienominator” notatiot/"M"=M ™ to designate a Yang-

Mills matrix inverse. ThusG°  =1/"G", etc.
As we start to solve (3.7) in the usual way, wst filetermine that:

A= KK, +i k}',G T ~(kek, +ilke. G, ]-m?)", (3.8)

a

where as stated we use the quotes to denote arnmaerse. Putting this back into (3.7), and aftbsorbing out the
metric tensor, we find ourselves left with the esgsion:

k“k, +3ilk“,G,,|
"kk, +i[k?, G, |-m?"
= —(BK*k, +1Cilk”, G, kK, +i[k*.G,]-m?) , (3.9)
+1Bk k ik, 67 ]|-1clk,.G, [k*,6?]+1cilk,.G, |k“ke + Bk, k k“k®

Observing that the top line term has a numerakdik, +%ilk“‘,GV}J and the second line term contains

Bk“k, +%Cilk“’,GV}J, we see that these numerators can be cancelldéfiveeitsetB=C, and if the terms on the third

line can somehow be zeroed out. In fact, to be abform this inverse at all, that is exactly whett arerequiredto
do. So, we now s&=C, and we also set the entire third line to zeraictvias we shall momentarily review, amounts
to a gauge fixing condition. We then do some rédoand consolidation to obtain:

1
ny,a i, a _ 2n
B=C=— KK #ilk, Gy f=m (3.10)
"kk, +ik”,G, -m"

subject to the gauge condition:

(k,k, +2ik,.G, k“k* +3i[k*,c?])=0. (3.12)

Again, these result from setti=C and then setting the third line of (3.9) to zemhjch were_required in order to
form an inverse.

So we now plug (3.8) and (3.10) wi*C into (3.6) in the gauge (3.11), to obtain the nsee
_g + kakv+%i|_k{7’Gv}]

»orm? -k, —ik?,G,|"
v "k, —m* +ilk”,G, |"

(3.12)

We may also use (3.3) atkgk, — —0,0, to convert this inverse fully back into configicat space, thus:

- aaav +%a{UGV}

-q. +
9T v 0%, —0°G,"
o "—9°9_ -m’+9°G,"

(3.13)



Note that the termi[k”’ ,GD,J =0°G, appears in two places in the above, but we dseithis to zero here because
we are using different gauge fixing conditions, eamthose of (3.11), to be further reviewed slhortl

Now, we look at some special cases of (3.13).t,Aive compare (3.12) to the usual, well-known pogztar
for a massive vector boson in QED, which is repoedubelow for convenience:

kK,

_gyv + m2

Kk, P +ig

D (3.14)

In the case wheria[kV,GU] =0,G, - 0, we no longer need to take any matrix inverses,(@ri2) reduces to:

_g + kUkV
” m*-kk,
T (3.15)

This closely resembles (3.14), sans thes, and also withmz—k"ka rather than justm® appearing in the

denominator of the right hand term in the numeratdfere we to wish to make use of (3.15), this duege a pole,
and so we would need to add £ in the usual way.

But, in comparing the classical Yang-Mills inverdeveloped in (3.12) to the usual massive prapaga
(3.14), we see two substantial differences. Firg,denominators in (3.12) are actually matrixenses because they

include the NxN Yang-Mills matrice&“ for SU(N). Second, and this is an absolutely imental point, consider
what happens to (3.12) and (3.14) when we set #msrrermm® = 0. In (3.14) for the usual propagator, the term
Kk K, /m? o because of then® in that denominator. This originates in the fdaett the QED configuration space

operator g*0,0? —0%0" has no inverse. So the massless propagator bedofirgte! This is what leads to the
need for gauge fixing techniques such as FaddepawRavhereby we end up with the massless propagator
kK,
— + 1_ H
9, +(1=¢), 5

D,, (k)= kT cay (3.16)

which has been also reproduced above for the reactEmvenience. We cannot just saf = 0 in (3.14) and keep a
finite expression.

But in (3.12) or (3.15) derived here via the deaisYang-Mills inverse, we can seh” =0 with impunity.
That is, we can make the gauge bo&h massm =0 without causing the inverse to become infinite.fdct, if we
do setm® =0, (3.12) simply becomes a Yang-Mills massless garpiropagator:

Lo Kok 3k,
_ gm/ ukaka_'_i ka!'Ga n
” "k, +ilk,G, |"

—_

(3.17)

This a perfectly finite expression! We do not séb(”,GaJ:O”Ga because in (3.11), setting
(k,,k,, +%i|_k{U,GV}D(k“k” +%ilk“‘,G”}D=0 in (3.11) to obtain the inverse (3.12) implicittjd all the required
gauge fixing. But, most importantlywe have revealed a vector boson “mass” without hgvever engaged in




spontaneous symmetry breaking. This is a new meshaor generating a vector boson mass, even mibksless
m=0 gauge bosons’G

Specifically, comparing the bottom “denominatoff’the usual massive propagator (3.14) with thednott
“denominator” of the Yang-Mills inverse (3.17), whidenominators are where we expect to find thesrofa vector
boson, we find the correspondence:

1 1
Kk, —m? +ie "k, +ik?,G,|"

= kK, +i[k*,G, ] ™" (3.18)

Most precisely — and this is very important tolyfulnderstand — if the interaction under consideratsay
QCD, contains massless gauge bosons because wadtaveken any symmetry to give rise to gauge bosasses

as we do, for example, in electrowe&(2),, XU (1), , one will be “expecting” a massless propagataweise of

the usual form that is used for the massless photoQED, namely (3.16). But in fact, as seen irl83, when
observing vector particles, one will be “observimgdsses which originate from the massless propadatmminator /

inverse (k"’ko,+i[k"’,G0,])_1 for a massless gauge boson in Yang-Mills theoriNot knowing about this

(k"ka + i[k”’,Gl,,])_l denominator / inverse, one will be expecting astess propagator (3.16), but upon observing a
mass, one will compare one’s observations to trm)memtork”ka —-m? +ie which is known for a massive vector

boson, and will conclude that the (invertedjk, + ilk",GaJ is actually the (invertedk“k, —m’ +ig term that is

expected from the known massive boson propagatbd)3 And so, the observer will conclude that ¢hare massive
vector bosons, despite the fact that all the gdnag®ns are massless, and will wonder how this canorand maybe
even call this a “mass gap” and offer a rewarditpiring out how this can happen.

This is how it happens: The non-linear interactioh Yang-Mills theory give rise to a “pseudo maéaiid
also a finite lifetime because a complex mass valngply indicates a massive particle with a defihedf-life while
an imaginary mass indicates a massless partiaefofed half-life, see [13] at 150) which arisesnfrthe observables
of mass dimension -2 on the right hand side of thein (3.18) being mistaken for observables of massdsion -2
on the left hand side. A person who is “confusedthis way will wonder why there appear to be 1zeno rest
masses and finite lifetimes when in fact the gduggons have zero mass and the symmetry of the Miligtheory
has never been broken. Thus, there will appebe toarticles with masses and defined half-livedh aascthe spin I
mesonseven if the gauge bosons are mass{edsch they are because we have et O to get to (3.17) / (3.18)).
We have therefore “revealed” a “mass” even whilee thifang-Mills gauge bosons have remained massléhss is
similar to how after ordinary spontaneous symmbtgaking such as that used in electroweak theory fiods terms

of the form%(%vg)2 B?B, in the Lagrangian where one expects to58€B’ B, , and so associaté® = $vg with

the mass of the bosoB? , that is2m?B°B, « 1(2vg)’B’B,. But in the present situation, no scalar degafes
freedom have been transferred into the observednbe® this is just a pseudo mass in which theant®mn energy
generated byd“G, = ilk”,GaJ (which we do not set to zero because here we haslé#ferent gauge condition)

appearsto give rise to a mass but in fact does not, bee#usits in a propagator “denominator” in thecplavhere one
ordinarily expects to find a mass. This is therapph that one uses to fill the so-called “mass!gap

Note that when it comes to actually calculating seas the correspondence (3.18) will yield some meiss
spectra, particularly because any calculation reidjuire taking SU(N) matrix inverses first. Thatthe NxN matrix

k7, + ilk",GaJ for SU(N) must first be invertedand then and only thewill the reciprocals of the numeric results

that emerge correspond to an observed boson niassgine calculating(k"ka + i[k”’,Gl,,])_l in SU(3) for example,

and all of the complicated real and imaginary andthglex terms that will emerge, and then using asitan
amplitude to pick off masses from the denominatdrhe resultant expressions. That, in effechaw these masses
are generated to fill the mass gap, and how ircjple, a detailed calculation of meson mass speabidd occur.



Keep in mind also, that this is all basedotassicalhigh-action field equatiod” = GND“‘G"] of (3.1), so in

fact (3.18) will be modified once quantum field® accounted for. In fact, the limitations of usihgs particular
expressiond“G, = i[k",GaJ to generate a pseudo mass here can be seen fzyngedthat 0°G, is not invariant

under a Yang-Mills gauge transformatié — G, +0,6 +i[5, GV]. Because any mass — pseudo or not — ought not
depend on the chosen gauge, in a complete theorsequgre a term that is gauge invariant. The termch is
properly gauge invariant is in fact a “perturbationV = (OUGJ +G,07 )+ G?G, rather than merelp“G, , but the

development of this termV from a quantum Yang-Mills field theory is an ealyr separate matter from showing
that Yang-Mills magnetic monopoles are baryonssmis beyond the scope of this paper. But thechdsa imparted
by (3.18) will remain intact despite the fact tliae expression emerging from the fully-quantum iegr<of the

foregoing will be different from that shown abovedawill contain =V = (6"GU +Gga")+ G°G, in place of
0°G, .

Having looked atm=0, let us move on to consider the special caseenbethm=0 andG° — 0. Here there
is no longer the need to take any matrix inversesye remove the inversion quotes, and (3.17) besom

K
—0y kZ::”

=9 3.19

o kK (3.19)

a

This is just the massless vector boson propag&d6) sans+i&, forced into the gauge = 2, and bypassing
entirely Faddeev-Popov and the usual approachgasuige fixing.

Finally, let us return to (3.12), and consideraatiple that is “on mass shell,” with eithkf'k,, — m? =0 for a

massive particle ok“k, =0 for a massless particle. For an on-shell partitie usual propagators (3.14) and (3.16)
become ((3.14) becomes (3.16) in Landau gafige0):

k kK,
Ot 0 -85
D, :+—i£" (massive 3.14) an® ,, (k) = Tiz Z (massless 3.16) (3.20)

But from (3.12), with eithek“k, —m?* = 0 for a massive particle de”k, = 0 for one that is massless, we obtain:

_g +kakv j'-_%il.k{a’Gv}J . .
ke, g Kkt ik, G,
S "2 CR XN EN XN PR

(3.21)

This is a “naturally-occurring” form ofrie based on Yang-Mills interactions, with the term'[k”’,GaJ =0°G,

(again, which we do _not set to zero here becausarev@ising different gauge fixing conditions hgukgying a role
identical to+i& to avoid poles for on shell particles. The “ca®d” observer, who is “expecting”’#i¢e term and

instead observes ail_k”,GaJ term, will simply calculate the lifetime paramefdre based on what is produced by

ke.c.]".

So, the Yang-Mills inverse (3.12) steers arourdha usual problems with propagators and inverdest
only does it explain how vector “pseudo massesl @dme into existence even if the gauge bosonkefihderlying
theory remain massless, but it has no problem betoming undefined (infinite) for a massless bosml, it does not
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require using thet i& prescription to avoid infinite poles, becausertiduces fully finite results under all the usual
scenarios.

Now, one may ask, how did we get to a masslesmwrparticle inverse (3.19) forced into tife= 2 gauge of

(3.16) without any apparent gauge fixing? Keegmgnind that gauge-fixing methods such as Faddepet are
about understanding the conditions required toiohtafined inverses, the answer is that we didait fix a gauge
back in (3.11). Equation (3.11) is to be regardedhe gauge condition which, in Yang-Mills theasyrequired to be

able to form a matrix inverse for the (classicaighh action, S(¢) >>7) configuration space operator
g”0,D? —0#D" in the Yang-Mills-Maxwell field equation (3.1)And, in the process of this, we have been forced

to fix the Faddeev-Popov gauge fo= 2, see (3.19), and to forego the usual covarianggaonditiond“G, =0.

That (3.11) is in the nature of a covariant gaugredd@ion which becomes most striking if we alsoem (3.11) back
into configuration space, as we did with the inears(3.13). Doing so yields the rather fascimqperator equation:

(aaav _%a{UGV} )(aﬂaﬂ _%a{ﬂGg}) (3 22)
=9,0,0"0° -19,0,0"G" -19,,G,0%3° +19,,G,,0"G? =0 '

{0} {0}
This is the spacetime equivalent of the gauge dixdondition that is required to form an inverse thoe Yang-Mills
configuration space operat@’0,D° —d“D" in (3.1), derived from obtaining the inverse of thassicalequation
J' = GﬂF”" for a non-commuting Yang-Mills field. This is &t®en component mixed equationin indexes, and
when raised or lowered into contravariant or cavarform it is not symmetric undgr — v transposition unless one
takes additional steps to symmetrize this relatigms While most physics usually stops at two deixes from the
fields (or three if one counts the conservatiosmjrcesﬁ”Jﬂ =0 and O”TW =0), this relationship contains fourth

derivativesd 0,007, as well as third derivatives includingd®'G? , and finally the termd, .G 0'“G? which is

{o1}
second order in symmetric field derivatives (costtrahe antisymmetric temﬂ[JGT]O“G"] that appears in
Lagrangians). The above (3.22) replaces any draf #ie usual gauge conditions that are used iDQ#hd all those
other gauge conditions, most notalyG, = 0, must_not be used here. And as noted, it forlces-adeev-Popov

gauge to bef = 2.

Now that we know the Yang-Mills inverse of the sdecal field equation (3.1) and the gauge condition
required to produce that inverse, let us returwviere we started, and make use of this inversgjr=1,,J7 to

specify G, as a function of] . Using (3.12) inG, =1,,J? we first obtain:

g+, Kl Ol
m”—-k“k, —ik",G,
||kaka_m2+i|.kﬂ,GaJu

G, =1,J°=

Je. (3.23)

However, in momentum space, the current conservmimationau\]“(x) =0 becomeskﬂ\]“(k) =0 (see [12] after
1.5(4)). This modifies (3.23) in two respects.rskithe termk k,J“ =0. Secondly, and of special interest because
it breaks a symmetry, the teréwi[k{a,GV} ]J” :%i[kV,GJ]J”. That is, one of the two terms in the anticomrtarta

zeros out, but the second term does not. Given ltha was designed to be symmetric under transpositfahen
O ~ V indexes, that symmetry is broken in (3.23). Siwhose reductions, (3.23) becomes:
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g+ Z;i[kv,c_sg] .
"m” -k, -ik?,G,]|"
"kk, —m? +i[k*,G, |"

G, =1,3°= Je. (3.24)

One can follow the same path outlined above, toveéehis inverse for the various special casesadlyeexplored: low-
perturbation wherei[kV,GU]Iang - 0 (3.15); massless bosan=0 (3.17); bothG? - 0 and m=0 (3.19);

and on shelk“k, —m? =0 for a massive ok“k, =0 for a massless particle (3.21). Note that (3i24)“recursive”
expression, i.e., thdb, is defined partly in terms of itself, reflectirget non-linear nature of Yang-Mills theory. This
is helpful to keep in mind when thinking about pattegration, because normally one uges (6/6.J)J [¢@ to turn
the field of integrationg into an operatoid/AJ that is independent of the variable of integratipnto facilitate
applying the Gaussian integrﬁdxexp(% AX? + Jx) = (— 2/ A)'5 exp(— J? /2A). Equation (3.24) enables this also,
but in a different way: one may, recursively, repld5, with 1_,J° to as many orders of recursive “nesting” as

desired, thereby bypassing the field of integratioa different way, with an exact path integrarésby emerging from
the limit of infinite recursive nesting.

This inverse expression (3.24) is what we settouterive at the start of this section, and it \piky a very

central role in helping us to establish that thex¢Mills magnetic chargd??"” is in fact a baryon. With all of the
preliminary groundwork now laid, and with the urgtanding discussed in section 2 that by using fejdations such

as J' =0, ,F" in (2.8) andP? =07F* +9“F" +0"F% we are exploring the high-action realm in which
S(¢) :.[d4x£(¢) >> 7, it is time to discover the underlying theoretibakis for the baryons that constitute the very
nuclear heart of the material universe.

4. The Baryon and Meson Structure of Yang Mills Mgnetic Monopoles, and “Revealed” Fermion Masses

In section 2 we observed that the Maxwell equat®ft” =0’F*" +0“F" +03"F% for a magnetic
monopole carries over intact to Yang-Mills theooy high-action arenas where the actiﬁﬁb) >> . Therefore, we
can now carry forward on the basis of our earlguadion (2.5), which was derived by the simple stign the

vang Mills field density F** = 3G’ -8"G* ~i|G*,G"| of (2.3) into theP™ =a°F +3#F" +3"F% of
(2.1), which is the “classical” magnetic chargeatén for Yang-Mills theory as well as Abelian gautpeory.

The first thing we do is substitu@¥ G* = i[k”,G“] from (3.3) into (2.5) to yield:
(Sl el Y <IN Stely Y (SN e Xelg R (G (SNel) 8 (el Kell KN STy | RERN

If we expand the commutators in the above, termthefform G*k°G" —G*k°G" appear throughout, so that all
terms withk“ sandwiched between the tv@" drop out. Then, re-consolidating the commutat@r4,) reduces to:

P =—(|lc*,c" |k’ |+|e",67 | k*|+[a?,c#|k]). (4.2)
This will be our starting point for exploring tharyonic properties oP%" .

First, we insert the hard-won Yang-Mills inverse2@® for G, into (4.2). Keep in mind that we have done

nothing to break the symmetry of the Yang-Millsaheand so the gauge bosons must be presumed nabsess.

Nonetheless, we will carry the Proca mass ternh@sé equations, so whatever we derive is perfgetheral. If we

want to explore the special case far=0 we can always do so by zeroing out the mass dirties but at the outset,
we ought not limit ourselves in this way.
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Also, to maintain full generality at the outsetchese there are six different appearances pfn (4.2), there

will be six independent substitutions of (3.24)oirfth.2). To track this, we will use the first detters of the Greek
alphabeta ,(3,y,0,&,{ to carry out the internal index summations witbacth of the six substitutions of the inverse

(3.24). While it ordinarily does not matter whattérs one chooses to do summations, the summatiex will in
this case double as a label so we can quickly &goerhere any term originated from as we progre&ad more

importantly, whilekk, = kﬂkﬂ where the momenta are equkf. =k?, in the event thak” # k” — for example if

these are momentum vectors for two different plaie- thenk“k, # kﬁkﬂ. So we are using this index convention
to simultaneously label the momenta and to avoidlimgaanya priori assumptions about the actual physical values
and meanings of thk” in each of the six inverse substitutions we arkinga Similarly, substituting (3.24) into each
of the G, in (4.2) introduces six Proca mass numiversHere too, we wish to avoid assuming anythargriori. So,

we similarly label each mass with one of #es,y,0,£,{ , and so regard these at least at the outsetx aiffgirent,
independent mass numbers. Thus, the expressiow bel (4.3) will contain six moment&”,k? k” k° k¢, k¢
which may or may not be different form one anotlaer well as six labeled masse®,,, My, M,y My, My, My,

which also may or may not be different from eadieotand may also be zero or non-zero. This prevabemplete
generality and maximum flexibility to explore.

Finally, prior to substituting this inverse (3.2d)o (4.2), for the thre&s* ,G",G? in the left hand side of the
commutators in (4.2) we have arranged for the iindexes 4,V,0 to be in the right hand position of metric tensor

g™ =g"" of (3.24). Conversely, for the thr&@,G",G“ from the right hand side of the commutators, weeha
arranged for the free indexgs,V,0 to be in the left hand position ig” = g*? (3.24). We may do this because

g™ =g" is a symmetric tensor and the indexes can thudigm@osed in either order, and the order makes no

mathematical difference. While not needed for théper, this choice of index placement will be hélpvhen
drawing Feynman diagrams.

With all of the foregoing, finally substituting thieverse equation (3.24) fds, into (4.2) yields:

" Ma) —k"kq—i[k",_GaJ" "My _kﬁkﬁ_ilkﬂzeﬁj"‘] ke
"kaka_m(a)zJ“ilka’GaJ" - "k"”kﬁ—mﬁ)2+ilk",GﬁJ" gl
___gw+ > éi[kV’G_J:] . -g”+ > éi[kU’G_(f] .
PH = | + "My _kykk_'lky’.GVJ" "My _kaké_'lka’-GJJ”J k¢ | |- (4.3)
" kyky—m(y)z+i[kV,GyJ" S kéké_m(é)zﬂlké’eajn |
e sl o les]
+ "My _kgkg_ilkngeJ" "My _k(k{_ilkzszJ" K
" kfkg—m(g)z+i[k£,G€J" i "kzkz_”laerilkZ’GzJ" o

To start, we review lowest order terms for whighG* = ilk”,G“J — 0. This allows us to remove all the “quoted”
inverses and many other terms, and (4.3) simpliGies
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au vB
"k”k e Jﬁ]’kU]
o ~ Mgy g~ M)

ao

[ w
R 2J5],k” : (4.4)
k’k, —m, k°ks; —m

I

1

i £ 7
+ £ : 2‘]£’ 7 e zJZ]’kV
i k°k, —m,, k*k, —m,,

While both (4.3) and (4.4) are classical insofatreey depend upon an actic8(¢) >>1, (4.4) lays out the
basic structure oP?", while (4.3) shows what happens then &€ dynamics come into play and start to exert a

dominant role. The terms in (4.3) invoIvirle,GT] will generate higher-order interactions via (418)t because
they emerged from the classical equations (2.By #ictually need to be modified once we considemtum field

theory (and as noted following (3.18) will becomgaaige-invariant “perturbation*V = (6”60 + G,,a”)+ G’G,).

Not so for (4.4). This is the “skeleton” &% which reveals the underlying structural charast&s of P7" in the
lowest order, and it will survive intact to establithe Yang-Mills path integral in lowest orderSo we will now
explore this structural equation (4.4) in earnessee what it tells us about what is going ondesif the magnetic

chargesP?", at the lowest, classical order.

We shall at times refer to (4.4) as a “chameleguadion,” because depending on how one maniputhies
equation, one may highlight the currents / fermjaee may highlight the gauge bosons, and one mplpre both

currents and gauge bosons in a mixed view. Irgthege boson view, one leaves &’ showing explicitly in the
above, which thereby displays complete boson prpag, In the current view, thg”” are absorbed into the
currents viaJd” = g"ﬂJﬂ. In “mixed” view, we have little of each. We dtavith the current / fermion view, by

applying J¥ = g“J, to (4.4) thus:

J# JV .
k. -m 2 kPk,-m, > K
a ~ Mgy s~ M

paw = _| 4 3 J° ],k“ _ (4.5)

y _ 2! ) _ 2
kky m,, KK M

e G ] ,
£ _ 2! I'e _ 2|
| KK —my,y " KTk, —my, |

The reader should pause at this point to compaseckbsely, term by term, with (4.2). While thexee other benefits
that emerges from having the inverse (3.12) deweldp section 3, it was to get from (4.2) to (4Bat we went

through all the work in section 3 to develop theeirse | ,, of (3.12) and inverse relatiod, =1,,J° of (3.24).

Next, the J¥ above are all NxN matrices for SU(N), and therimi symmetries of these groups are hidden
inside just to keep notation compact and easyhercalculations we have done thus far. Now, howevées time to

start bringing the internal symmetry explicitly énthe picture, so we usd” =T'J”, i = 1,23.N%-1, and similar
expressions for the other five currents in (4\8)ith some renaming of summed internal symmetryxedewe obtain:
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" Ti‘]iﬂ TJ‘JJV ] ka]
a 27 2
k%, = M) kﬁkﬂ — My
T iqv i1 ]

TJ T'J, ],k,u ) (4.6)

P =— + 2,5 2
14 — —
_k ky m,, KK M

T'3,7 T!3”

+ ] v
£ _ 27,7 _ 2|
| KK, —my,y " KTk, —my, |

The group structure matricég and their associated commutator may then be fadttout of this entire expression
(the reader can check this by expanding all comtorgafactoring these out, and then reconsolidgtsm as to write:

[[ J” " } ka]
a 2 2|
k%k, —m, kﬁkﬁ ~ Mg

o v J° |
k ky -m,, KK - My

i .J J.'u
+ { - \]| - Z ] ZJ,kV
k'k, —m,)" k'k, —m, ]

The group structure constanfd in if T, = [Ti ,TjJ maintain the commutation position of each of the', that is,

lTi ,T"]Ji #3,"= lJ”, J"]. This expression is perfectly symmetrical in @ypece as between currets”, but now
we will take a simple step to break this symmetvg: will simply move both currents into the rightiganumerators,
and rewrite the above as:

a 2 2
k7K, =My, kPk, =M,

[ 1 JiVJJ'U }k,u . (4.8)

y _ 2 el _ 2
k ky m,, KKz m,

po =-fr' 71| +

1 J,73F
+ | — ; LS
kk, -m,," k*k, =m, |

It is worth noting by the way, that the six curientay be referred to and distinguished by 6=3x2kioations of the
spacetime indexeg,V,0 and internal symmetry indexes; .

For a next step, we drill down even further, by &ying Ji” 217/Tiy"4[/ and the like to introduce fermion
wavefunctions. So (4.8) now becomes:
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a _ 2 Yej _ 2
kk, M, kkﬁ m s

[( 1 Ty, y”t//} k"]

1 YTy, V”Z/IJ k”_ _ (4.9)

o
k’k, -m,, k‘ykd—m@

£ _ 2 I'q _ 2
kek, m,, ka m.,

[ 1 YTy, y“w} k”_

Now, the next steps are very important, so letgkwhrough them carefully. We first write the tWack-to-
back wavefunctiongyy using ¢ =u( p)e_iplax" andy =G( p)epzax". But because these are back to back, they
represent a single, unbroken, unmediated fermiopggator line, such thapz” = pl”, and sot//zz =uu. Keep in

mind, because we are working with SU(N) in Yangiiheory, thatuu is an NxN SU(N) matrix, in addition to

having the usual 4x4 Dirac structure. So if someant of uu finds its way into any denominators as it mometlytar
will, we have to take an SU(Npatrixinverse and not just write an ordinary denominator.

Now, in the sum over spins is often written Esspmsua = p+m (see [13], section 5.5). But there is an
implied normalization in this expression, and tcelplicit, this should really be written as:

_ \NZ\

Zspinsuu =

(p+m)=p+m, (4.10)

E+m

where one get to the final term using the covanmmmalization in which 2‘ = E +m (see [13], problem solution
5.9). What is attractive about this normalizatienthat this does yield the covariant expressErgpmsua =p+m.

But there is one problem, which has to do with ndis®ensionality. Specifically, in (4.10), each la),fa has a mass
dimension of +3/2, so thalu has mass dimension of +3. But in the final tein{4ol0), p+m only has a mass
dimension of +1. We will wish, therefore, to cheas different‘Nz‘ normalization in (4.10) a) is still covariant, but

also b) retains a mass dimension of +3. So fontbment, we leave open our choice of normalizagioth employ the
middle term of (4.10) which is more general.

In addition to (4.10) introducing + m, we also know tha(p + m)/(p/; Ps = mz) = 1/(p - m). So suddenly,

we find that terms which started as vector bos@pagators interacting with currents in (4.4) amaing, chameleon-
like in (4.9), into a fermion propagator, completith a “revealed” mass for the fermion. For exagph the top line
of (4.9), we make the following progression of sitbgons:

GTYWTyy gty ulyy N gmy(p+mT yy
kPky —my,° kPky —my,)° E+m Kk, -m,’
_ Nes)’ ZTiV”(P(p) + m(p))r,- vy _ N(ﬁ)z‘ YTy Ty Y . (4.11)
Es + My p” Py~ m(,a)z Ep tMp " P ~Mp"
N 2
)

= Gy Ty (pg -m
E,p + My j = Mp
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Specifically, first, we useyg = uu and sum over all spin states. Then weEeUﬁ = QNZ‘/(E+ m))(p+ m) asin

(4.10). Next, we take thaffirmative step(which as we will discuss shortly requires someoaating for degrees of
freedom and so will render the gauge bosons ma3siésetting the rest mass in the resultart m to be equal to

the labeled masH, 4 in the denominator, that is, we now spt= Mg » identifying M) with the fermion rest mass
in zspmuﬁ. (This m; , of course, started out in (4.4) as a gauge bosass in a gauge boson propagator

denominator, and has now turned into a fermionmess — more chameleon-like behavior! In a momeatsee how
to account for degrees of freedom to make thisvalk properly.) And we simultaneously promd(g - p'g into

the momentum four-vectopﬁ for an actual fermion, and lab8 = E(/}) andN = Nw) . Finally, we set:

Pyt My _ 1

. -=(py -my, ) (4.12)
p’ pﬁ'mmz Pisy ~Mp) o

in recognition of the fact, which was discussedsgection 3, that whenever an SU(N) matrix (includiting
Z uu = p+m) needs to go into a “denominator,” we must forsniitverse. So, these fermion rest massgg, etc.,

such as they are, will be obtained via SU(N) maitmersion. To maintain a clear visual comparisath familiar
equation forms, we will continue to use the “quatetominators” to designate inverses.

So, we now use (4.11) to rewrite all three term@1i9), yielding:

g* |N(ﬁ)2| AN Ko
KKy =My Epy + My " Ppy ~My" |
) } o g
pov :_[-I-i’-l-i] + g i ) f:"iya JVU‘/: K- (4.13)
Kk, =m,," B + My " Py ~My)
N g® Ne)| @ AN "
Kk =m," By Mgy " Py ~My" |

Here, we have also lowered the index on the lefidheertices in order to reintroduce tigg” to the left-hand terms

which once again display explicitly, the appearaoice gauge boson propagator. This “chameleonteuias now
in a fully-mixed fermion / boson view, because wawnsee three fermion propagators and three gaugenbo
propagators. And, we see how simply moving bottierus into the right hand numerators in (4.8) brthe initial
symmetry, led to both fermion and boson propagaitorsach term of (4.13), and turned three of thensasses

M 5y, Mz, Mgy into fermion masses while leaving the other thrrmsesm(a),rn(y),m(g) intact as boson masses.

What we have done here, is break a mass symmedtystarted out with all boson masses, into a magsmaetry
containing both boson and fermion masses.

But there is one final piece of the puzzle thaepuired to make this all work properly, whichtasaccount for
the degrees of freedom in what we just did to {4r®) into (4.13). In going from (4.9) to (4.13®r from (4.4) to
(4.13) where this is even more evident), we stangth six vector bosons with presumed Proca masses

Mays My My My Mgy, Mgy A massive vector boson has three degrees addregso the six bosons we started

with in (4.4) brought 3x6=18 degrees of freedono iR . But then between (4.9) and (4.13) we took tlufethose
boson masses and turned them into fermion maddassive fermions, however, have four degrees @fdiven, not
three. So for us to promote a massive boson méssifermion mass, we must transfer one degréeefiom over
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from the boson to the fermion. So, by associating,, m,,, M, in (4.13) with fermion masses, we are required to
steal one degree of freedom from each remainingpvgauge bosons. So, now these bosons must drap th two
degrees of freedom apiece and must become massfeist, means that all ofm,,,m,,,m,, now must be set to

zero. Now, the 18 degrees of freedom that injtigkblonged three apiece to six massive vector lsobane been
redistributed: 12 of these now belong to the 3 fens, and only 6 belong to the 3 remaining bosonkis should
seem very familiar, as this is the same way in tWvim@assless gauge bosons first become massive bipwsing a

degree of freedom from a scalar field via the Golds mechanism. So, to balance the degrees afdmne¢o account

for what we just did, we must now set all of thenagning m,,, m,,,,m,, =0. Raising the index on the currents once
again, (4.13) now becomes:

S —
1 ‘N(ﬁ) ‘ Yty Yy K@
k7K, Eggy M) " Prsy ~Mp)"

1 ‘N(J)z‘ YTY'T YW

i (4.14)
k'K, Eisy + My " Prsy =My

pow = [ T1]| +

L -
1 ‘N(Z) ‘ Yty'Tyy K
kK, Eqy +Myy " Py — M)

The above, (4.14), can now be said to be equal®) (in all respects, including a proper degreesreédom
accounting. (While we shall not explore this hdlgs seems to suggest a “cascade” to generataoiermmasses:
First, start with scalar fields in the usual wayl apply gauge symmetry. Next, break the symmetigguthe Higgs
mechanism to give mass to some of the vector bosgngansferring Goldstone scalar degrees of fseedhto the
gauge bosons. Finally, pass along those extraeds@f freedom to from the massive gauge bosotigetéermions,
rendering the fermions massive, while reverting gaeige bosons back to massless status. The siegsges of
freedom that originate in the scalar fields, fipa#side in the fermions to give them a rest mass!)

Now we see thaP?" contains three fermions, with terr‘(Yis'I'i VT, yV(//x(p—m(ﬁ) )_l that look exactly like

the expressions for the Compton scattering of mifar with a gauge boson, such ps - ye of an electron with a

photon in QED. (e.g., [13] at 141) As we now sksaidy from (4.14)P™" naturally contains three fermions, just like
a baryon, along with all the machinery for fermipropagation, right alongside of propagators for asimted, now
massless, gauge bosonAs a result, for the first time, we will stogfeering to this as a Yang-Mills magnetic charge,
and think of it as a true “baryon candidate.” Nox& need to show that this really has all the regliformal
characteristics to be a real, physical baryon.

Looking closely at (4.14), we now also see a patthbosing a normalizatio(m\lz‘ which simultaneously a) is

covariant b) retains the original mass dimensityali +3 for ua, and c) greatly simplifies (4.14). Specificallye
now choose the covariant normalizations:

£

‘N(ﬂ)z‘ :(E(ﬂ) + m(ﬂ))k“ka; ‘N(J)Z‘ =(E(5) + m((,))kyky; ‘N(Z)Z‘ :(E(Z) + mm)kfk ; (4.15)

making use of th&k“k, to supply the two mass dimensions lost in the lusorgariant normalization. This greatly
simplifies (4.14) to:

pov :_[Ti,-]—j]({fy-ﬁyﬂ_rjyv‘/{',kg:l_i_{ﬁ[rriyv-rjygl/:,ky:l_'_{ﬁ[/—riyg-rjyﬂl/ljl,kv:l\]. (4.16)
P — My Py ~ Mg Py ~ My
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In this variation of the “chameleon,” all we see gropagating fermions in Compton scattering form.

Proceeding apace, the commuta{fbir,TjJ is still sitting out front of (4.16), so let's nowork with that. The

lTi,Tj] operates to commute the verticéléy“)(ij"), and in particular, the operation it now perforors each
current / fermion term in (4.14) is:

T ey Ny v =wly v lw, (4.17)

which is the same commutati G”,G”] of free indexesu,V with which everything started back in (4.2), avére

further back, in the underlying field densify*” =0%G" —0"G* - ilG”,G"J of (2.3) which is the heart of Yang-
Mills theory. So, using the above in (4.16) nowlgs:

P”ﬂv:-[{u'?V”’V‘/’",k"}{J—Llf/_”’V’VU‘/’",kﬂ}{J—LjZVU’V#‘/’",kVD. (4.18)
Pisy ~ My Pioy Mo Py My,

Now it is time for mesons to make their first apraace. Using the first term of (4.18) for an eplamlet us
first expand the commutator:

o' v lw=wyve-wyve. (4.19)

Now let's look at the charge conjugates (antipbasic of the above. Using the Dirac conjugatioratiehships
We=Cy" Y.=-y'C* pyC= C(—y")T ,andC'y“C = (— y”)T , we obtain:

Yo' vwe =0y =y v T =-uy vy (4.20)

This means that (4.19) may be rewritten as:

o' v lw=w've-wy vie =ey've+pr v (4.21)

The commutator — which is central to Yang-Millsahge— naturally pairs a particle wavefunction wéth antiparticle
wavefunction to produce a meson! So we go bac¢k.i8), and now write:

Pa,ul/:_ Eyﬂva+l7/(:yﬂvac ka}_{‘zyvyol//“?/cyuydl//c ku}_{‘zydyﬂl//"‘lZchVﬂ‘//c kv (422)
Py Mg P My Py My

The above also tells us that the antifermions haieesame masses as the fermions, because theyl aneeraa
common propagator denominator / inverse.

All that now remains in (4.22) is the final commigiawith momentum terms such &§. Going back to
(3.3), which tells us that commuting a spacetineédfivith k is just a clever way to take its derivatives, \a@a write
that in general, for a second rank tensor fild" (x7) :

°M* =ilke, M|, (4.23)

With this, (4.22) above may finally be expressethait any commutators, as:
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paw __igo| WYV YUY VY +“_J_iay[wy“y”w+¢/cy”y"¢/c +“_J_iav[¢/y"y”w+¢/cy"y”wc +...]-(4-24)

Psy ~— Mg Py —Me) Py =My

In the above, we have now also addetl.a., because going back to (4.3), we see that thesthalowest order terms
in this candidate baryoriNo matter what other interactions may take place] aven as we start to consider quantum
fields where the classical field equations no largeply, these basic, zero-order terms will alwagsain. Different
conditions and special cases may and will changditjher order terms, but what appears in (4.28)aways remain
the fundamental backbone of a baryon. (Notablyiemgbrtantly, at lowest order (4.24) is free of appearance of

G*, which is especially helpful when it comes to Imaviterms which are quadratic-only in the fields fmth
integration.)

Comparing the first term in (4.22) with the lilexm in (4.2) also yields one other very importasutt, which
will be used momentarily to formally show that mesare the only particles allowed to leave a barjfwms confining
quarks and gluons. Specifically, this comparisighog:

o | =YY by Ve, (4.25)
Pisy ~ Mg

Before concluding, there is one final point to eyotlealing generally with Yang-Mills theory, andtno
specifically with baryons or QCD. The commutatﬁ“,G”J in (4.25) above is central to Yang-Mills theory fact,

it appears in the very foundational equation of ¢-fills theory, namely, (2.3). So this often-sesuation can be
written in a totally novel form, as:

YL Y
Fﬂl/ :a/IGV _al/G,U_i[G,U’GV]:a,UGV_aVG,u _H(‘//V {/Vw"'wcy '%’V‘//c +J (426)
Py ~Mp)

This tells us at the lowest order, what the nonfoortng field term[G”,G”] brings to the field strengtr*" that

does not appear in U(1) Abelian (commuting fielduge theory: a paired fermion and anti-fermion \iavetion,
which means that this meson-like character is emd&myYang-Mills gauge theories. One may use thigo back to
all the equations of Yang-Mills theory, make usehaf field strength in the form of (4.26), and sd®t sorts of new

insights emerge. This includes the path intedratause (4.26) is quadratic (not cubic or quartit!\5" and the
associated Gaussian can be solved exactly. Keepnid also, that one can exercise this chameld@ndkpression

for lG”,GVJ into a variety of other forms as well, includingditracking through the development in this section

Those chameleon exercises are also very helpfutef wishes to draw Feynman diagrams for baryonsnaasbns,
and they lead to term combinations we have notoetded here because they were not essential tméie line of
development. Now, we turn to confinement.

5. Confinement Part 1: Integral Equation Symmetriesand Color confinement

The so-called “MIT Bag Model” [14], [15] [9] Chaptd8, which was one of the first efforts to undanst
confinement, pays close attention — very propeasly $o what does and does not flow across a clsegdéce around a

baryon. As such, analogies to Maxwell's chargeaéiqu in integral form,j”* J= J'”d *F, are very apt. Butitis
important to explain quark and gluon confinementhaut any backpressure or other ad-hoc contrivaremed also
explain why the nuclear interaction is mediatedri®sons. That will be the subject of these nextdeadions.

Let's therefore start to use the language of diffiial forms to examine issues pertaining to canrfiant,
which helps to establish our “candidate” baryond aresons as true, physical baryons and mesons.th&dreld

strength F#*" =0”G" -0"G" - ilG”,GVJ, we multiply through bydx,dx,, and use the differential forms
G =G"dx,, F =F"dx,dx,, G* = [G”,G“]dxudx,, and dG = (a”G” —OVG”)dxﬂdn, in a well-known fashion, to
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compact this to (see [12], Chapter (4.5)):
F =dG-iG?2. (5.1)

For P? we use the magnetic three-forlth= P*"dx, dx,dx,, as well as
dF =(07F# +0#F* +0"F*)dx dxdx, anddG? =(0°|G*,G" |+9#|G*,G?|+8"|G?,G*|)dx, dx,dx, to multiply
P* =07F* +0*F" +93"F % through bydx,dx,dx, and then express this in the compacted form:

P =dF =d(dG-iG?)=-idG?. (5.2)

This includes the well-known application did =0: the exterior derivative of an exterior derivatigezero. This is
what made the QED magnetic charge vanish back.in) éhd (2.2), while-idG* compacts the residual Yang-Mills

terms of (2.5).
Similarly, the chromoelectric charge equation is:

*J=d*F =d*(dG-iG?). (5.3)
Now, we apply Gauss’ law to (5.3), to write:

[[[*3=[[[a*F =[[[d*(dc-ic?)= ff* F = ff*(dc-ic?). (5.4)

and most importantly, to (5.2) to write:

JIIP=[jjo = [[fdec-ie*)=i[[[dc = ffF = fac-iffe’ =-iffc". 55)

These are the “Maxwell’s equations” in integral nforfor “classical,” i.e., high actionS>>#
chromodynamics, (and indeed, for any “classicalhdy-¥ills theory) and they mirror the usual Maxwetjuations of
electrodynamics:

JIfra=|ffa~F =g F ={f-da 56

and

[[[P=][[dF = [[[ddG={}F = f{dA=0. (5.7)

In (5.5), ”J'P describes a three dimensional volume which costtie three-fermion / antifermion object

P of (4.24) which is our candidate baryon. But whilaxwell's (5.7), particularl)ﬁF =0, tells us that nothing

flows out of a volume which contains a magneticrghaequation (5.5) for Yang-Mills theory says stmeg very
different. The crux of (5.5) is the part that read

[lIP=fF=-iffc*. (5.8)

This says that across any closed two-dimension&aa surrounding a three-dimensional volume wiughtains a
magnetic chargeP as developed in (4.24), there is a net field flanpd it is a net qux—ijr:fG2 of

G? = [G”,G"deydx, objects. But what are these objects? From (4.8) learn that thes{ﬁ“,GVJ objects
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mesons! So, we have our first glimpse of why mesare enabled to flow across a closed surface wsutnog a
baryon.

contain fermion and antifermion wavefunctio[@”,G"]=

., and so appear to be

What does not flow across this surface are thgedouosons (gluons). This confinement of gluons thed
“colorless” nature of nuclear interactions are higited by contrasting the final two terms of (5.8bm which one

may then deduce the companion equation identidhleédno-magnetic monopoles” equaticj'zﬁdA: 0 of QED:
ffdc=o. (5.9)

Therefore, in integral form, we find th# F is invariant under the local gauge-like transfdiora

ﬁF-»ﬁFEﬁ(F—dG):ﬁF. (5.10)

Expanded in terms of the field density tensor, tliasformation isF* - F*'= F# —=9"G*!. This means that the
flow of the field strengtrﬁ F= —iif:fG2 (in the form of mesons) across a two dimensionghse is invariant under

the local gauge-like transformatioR” — F*'=F* -9G* . Now, we know that the invariance of the QED
Lagrangian under the similar transformatidd’ — A“'= A +9“/\ means that the gauge parameferis not a
physical observable. Similarly, the invariancetisé gravitational Lagrangian undg”’ — g*’'=g" +d“N\"
means that the gauge vectdf is not a physical observable (and we kndwis in fact connected merely with a
coordinate transformation” — X'* = x* —=/A“(x")). In this case, the invariance ﬁfF under the transformation

FY o F*'=F* —9"G* similarly tells us that the gauge fie@* is not an observable over the surface through
which the meson fielqr:'f F= —iif:fG2 is flowing. ButG* is simply the gauge field, that is, the gluon ddatk. So,

simply put:_the gauge fieldS" (gluon candidates) are not observables acrosslasgd surface surrounding a baryon.
Whatever goes on inside a baryon, the nuclearddtien is colorless and gluons remain confineddimshe baryon!
Only mesons cross this boundary.

Taking this a step further, we see that the osigihconfinement in fact lie in the 140-year oldsteyy as to
why there are no magnetic monopoles in Abelian gahgory. In differential forms language, theestant of this is

ddG=0. But in integral form, that becom%dG=O, equation (5.9). And, it is precisely this samerd” which

rendersﬁF - ﬁF’ :ﬁF invariant underF* - F*'=F* -9”G* in (5.10). So the physical observation

that there are no magnetic monopoles in Abeliarggaheory becomes translated into a symmetry dondit non-
Abelian gauge theory that gauge boson flow is moblaservable over the surface of a magnetic chafgain: In
Abelian gauge theory there are no magnetic monspola non-Abelian theory, this Abelian absencemafgnetic
monopoles translates into there being no flow afggabosons (e.g., gluons) across any closed sustaceunding a
Yang-Mills magnetic monopole. Consequentliie absence of Abelian magnetic monopoles is fuedtaity,
organically equivalent to the absence of gluon .flognce color, across surfaces surrounding non-4abethromo-
magnetic monopolesAnd, because this is turn originatesda =0, we see that this confinement is geometrically
mandated. Had nothing else been developed irp#per, this alone, would make Yang-Mills magnetmnopoles
extremely compelling baryon candidates! The vemye “zero” which in Abelian gauge theory says thate are no
magnetic monopoles, in hon-Abelian gauge theoryg $hat there is no observable flux of Yang-Millauga fields
across a closed surface surrounding a Yang-Millgnaac monopole. We do not find a free gluon (leefree color
charge) in Yang-Mills theory any more than we fand Abelian magnetic monopole in electrodynamicsjdentical
geometric reasons. And as Close makes clear iat[926: “quark confinement arises out of colounfoement . . . a
boundary condition that confines the coloured gtubas, by Gauss, confined the coloured quarks.fe Helike in
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the MIT Bag Model, the boundary conditions are ambhoc They are naturally endemic to magnetic monopoles
Let us now examine all of this more specificallytérms of the baryon candidate we earlier deringd.24).
6. Confinement Part Il: Quark Confinement and Baryon Flux in a Form Analogous to Maxwell's Equations

We now wish to explicitly examine quark confinemeantd meson flux by applying (5.5) in the form
”J'P = —iJ.”dG2 to the results developed here. This equatiomoise explicitly written as:

”’j P”“deadxﬂdx, - —iIIJ.(aU[G/I’GV]+ a”[GV’GU] +0Y [GU,G”])dXUdXHdXV . (6.1)

Now, although we have designated the expressiah@mnight hand side of (4.24) &*" , the manner in which this
term was developed in section 4 should make cldémt this is really equal to the cyclic expression

—i(OU[G”,G”]+6”IGV,G”]+6VlG”,G”D. We now wish to find a differenP?" to use on the left hand side of
(6.1) so that (6.1) is not merely an identity restzent of Gauss’ law for integration.

To achieve this objective, we will wish to obteimen use the first rank dudlP* =% &”"R, = of the
expression forP?" in (4.24) which eliminates the derivative@¥ that appear in the right hand side of (6.1), and
which allows us to use (6.1) somewhat analogousliidw we use Maxwell's equatiod” :6NF‘“’ of (2.1) with

Gaussian integration. Starting with (4.24) we msg y*)” = g*" —io*” and£“*’g,,, =0 and some renaming of
summation indexes to specify this dual as:

(6.2)

*PT =L P -4 Saaﬂva”(zn_lzswnawwn HenTuwen +..'j,

"pn_mn

where we now use the labels “1, 2, 3" to labelttiree fermion masses and momenta, rather ah ¢ . Similarly,
we label the associated fermion wavefunctions tledwvas with “1, 2, 3,” and to save space, we incladaimmation
anlzg over the three fermions which naturally subsisFjp, .

The calculation of P is rather involved, so we do not show the derd)ratbxplicitly in this paper. But this
calculation makes use of the following ingredients: expressing the relatlonshlp:|y y 2;/31/5 among all of the
Dirac gamma matrices ag” )° = -1 " g v D) writing the wavefunctions in (6.2) more gerigrin the chiral
form ¢, = (CVn —CAnys)t/ln and Zn :En(c\,n +C,, ) and similarly for the conjugate wavefunctions;neaking
use of the Dirac spinong, = qn( p)e_ip"ax" and Zn Ean( p)eip'"”"” and similarly for conjugates; d) as a central step
making use of the Gordon decomposition in the fofn{see, e.g., [10] at 343-345)

- . ' 2 U
9,0 (p - p),g, =, (ZVO - (p+ p)”ann (6.3)
9, m,
to recomposea vector currentany"qn and also shed the derivative® from (6.2) (which derivatives become
represented ir'(p’— p)g), where g, are the gyromagnetic g-factors of each fermiorgghare equal to 2 for a
structureless, non-interacting point particle sastthe Dirac electron) anaf}, are the fermion masses; e) reducing and

solving to determine th =#c, =1 f) applying these two solutions to the overall seequations developed:;
n An 2
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and g) forming linear combinations of these twaiohs. The result of all of this is that:

0 g ey A M oV YotV Yo
*PT =3P, __(anl,z,z_ T +J

guv 64
. 3 gn " pn - mn ( )
Then, from (6.4), we form the desired alternagxpression foP?" , which is:
pow = gomwp, = Lo 50 MU Volo HWenko Yen ) ©5)
3 T gn pn - mn
We then use (6.5) in the left hand side of (6.4 &.24) in the right hand side, thus writing:
[[[P=[[]oF =[] dlac-ic?)=-i[[[dc* = ffF = fdc-iffc* =-iffc?
([ aow M, o Voo ¥ clo Y
S D
_9° Yo"y, +‘Z01JW‘/101 _,_J
p—m”
_ Y0 W, + Y c,0" Y
=1||| -9 - - 2+...| |dx,dx,dx,
[ - Pt e |
o LT T +J (6.6)
L p;—my |

This equation, which also displays (5.5) (whichuim embeds gluon confinement \ﬁdG =0, see (5.9) and (5.10)),
summarizes the entire thesis of this paper in shalit In the above, we have again ug¢d” = g** —ig*” and the
“1, 2, 3" labels for the fermions, together withetffact thatg”"dxﬂdx, =0 given the antisymmetric nature of

{dxy,dxv}:O in differential forms. The numerator of the fiterm contains the meson-like four current density

Jon tdac,, :Jn VoW, +4ZCnya Yc,- The numerators of the terms after the equal signtain meson-like
magnetization and polarization bivectors: (see,[@8])

0 -P,-P. -P,-P,_, -P,-P
o P +P, 0 -M,-M,. M, +M,_ .
- - +...= +... .
l//U w wCU wC Py+PyC MZ+MZC 0 _MX_MXc ’ ( )
P,+Pe -M,-M,. M, +M, 0

Thus, in (6.6), the magnetization three-vecMr+ M .. takes the place of the electric field vectorin Maxwell's
theory while the polarization three-vectbt+ P, takes the place of the magnetic field vecBr And in general,

Yoy "'QZCUWWC takes the place of the dual field strength terisr*” . Keep in mind that the SU(N) group
generators are embedded though not shown explicitlye foregoing, see the development in section 4

Using g** =n*¥ to raise and lower indexes, as well 38+ J°% = p+ p. to represent the meson charge
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density, and also using (6.7), ti@e componengquation in (6.6) is seen to be as follows:

jjj[znﬂ,ﬂ,@sn_n“c% jdv m[ /; /r’;nu .jdv, ©.8)

where dV =dxdx,dx. The terms inside the integral should be compacethe analogous Maxwell equation

OLE = p, which is Gauss’ law for electricity, in which tHe -~ M correspondence is apparent. In integral form,
applying Gauss’ law, (6.8) becomes:

M, +M., 4
ﬁ;[zﬁlzsﬁ t.. j [dA = §Zn=1,2,3

mll

n n

mn Qn +QCn +
g, "P,— M

(6.9)

where we have defined the total meson (quark plos-gaark) charge enclosed within the volume as
Qn+QCn:IJI(pn+an)dV. Equation (6.9) should be contrasted with Max\tvelﬁEmiA:Q. In

electrodynamics, an electric field flows across seface in proportion to the enclosed electricrgha Here, a
magnetization fieldflows across the surface in proportion to the esedi chromoelectric charge and, due to its

M, +M_, character combining a field with the conjugatédfi¢his may also be thought of as a meson fielitivis
classically responsible for nuclear interactionshie same manner that the electric field is clafigicesponsible for
electrodynamic interactions. In sum: the totalflof the meson magnetization fielll , +M . across a closed

surfacedA is proportional to the total meson-like quarkgjeaQ, + Q. contained within the volume enclosed by
that surface. However, individual fermion magretians do not flow across this surface by themseliat only in
particle / antiparticle pairs.

Turing again to (6.6), and again using (6.7) @it =7*", we now extract thepace componenezjuation:
P,+P
[ R
p, —m,

IS e Jo a5 2 M), o

., (6.10)

where we also employ) +J. =(,Znyg[/n +Ency Y,.- The terms inside the integral should be compacethe

analogous Maxwell equatiof]xB =J+0E/dt, which is Ampere’'s law. As noted after (6.7), \wee the
magnetizationrM behaving similarly to the electric fiel@ and the polarizatiof? behaving similarly to the magnetic
field B. Now converted into integral form using Gaus®/,|1§6.10) becomes:

§(Zn:],2,3% +.. ] [dL

-m
D | ] | - , (6.11)
4 m n + c 0 + ¢
=—— T+ -+ |[A
3(Zn=1,2,3 gn " pn - mn" J at ﬁ(zn R pn - mn J

with the total current flow specified ds, +1 ., = ”.[(Jn +Jc”)dt [dA . This should be contrasted with Ampere’s

law in integral formj;B fdL =1 +%ﬁE [dA . In electrodynamics, for a time-independent eledield E , the line

integral dL of the magnetic fieldB around any closed loop is proportional to theltetactric | current flowing
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through the loop. Here, for a time-independentanasagnetization fieldM  + M, the line integral of theneson

polarizationfield P, + P, around any closed loop is proportional to theltchaomoelectrianeson current | +1 .

flowing through that loop. What we do not see angwe, is a free flow of individual quarks. Theways travel
through any surface in pairs, and so as individualts confined.

7. Conclusion

At the end of section 5, we showed on the basfsrafial symmetry considerations that the gauge gi€id’
are confined and do not flow across a closed sarfaarroundingP by virtue of the invariance of

fiF -~ fF =f(F -dc) under the gauge-like transformatidh’ — F*'=F* -0“G". In section 6 we

showed that only mesons flows are permitted to film@and out ofP, and that quark currents never appear separately
from conjugate (antiparticle) quark currents.

So in sum, all that is permitted to net flow acrassosed two-dimensional surface are the quarki/quark
objects we call mesons, and their associated miagtiens. Gluons, and individual quarks not pairgith an
antiquark, can never in isolation show a net flweroany closed surface. Interactions between loarylous occur
only via meson exchange. Because of the foregoioigonly doe$ resemble a baryon insofar as it naturally contains
three fermions, but it also exhibits all of theltrarks of a baryon in terms of quark and gluon cwrhent and meson

flow. Because of the foregoing, we now promoteRHe actual physical baryons, ti@* to actual physical mesons,
and thel to actual physical quark currents!

BecauseP is now a three-quark system, we must because rofifairac statistics make certain that no two
guarks in this system have the same quantum numtosow, for the first time, we formally may swléhe gauge

group SU(3) as our Yang-Mills gauge group, set afdermion wavefunctions tg'n = (R G B)n, and thereby

enable each of the three quarks insidé> @fuark to occupy three distinct color eigenstatas$ so enforce a Fermi-
Dirac exclusion principle. And in the process, Wwave answered the very first question we posed: hy\W
theoretically, do there exist in nature, naturalbgurring sources, namely baryons, consisting aictx three
strongly-interacting fermion constituents which wal ‘quarks’?” The answer: because the Yang-Milagnetic
monopoles — which are indeed baryons — naturaliyato three quarks. Baryons do not contain thiesele because
SU(3) is the QCD gauge group. The causal arromevsrsed: SU(3) is the QCD gauge group because taat)-
Mills magnetic monopole — now a baryon — contalmeé quarks and we need to enforce exclusion. séinthe horse
is properly before the cart. And, for reasons tsed to go from (4.13) to (4.14), we do not brealy symmetries

for this group, now formally SU(3) but maintain the eight gauge bosda$ — now gluons — as massless.

Having fully developed the baryon and quarks ams$ons according to (6.6), another point should bew
made, which brings us back to the very beginninghef paper. Equation (6.6) which is the upshothef thesis
developed in this paper is no more and no lesstti@logical result of combining the two classiktxwell equations

J"=0,F" and P* =9°F* +9“F" +0"F% of (2.1) in the context of Yang-Mills gauge theavith the field

strength F* =9*G" —0"G" - ilG”,GV] of (2.3) for non-commuting gauge fields. (To kefpctly fair, we did
also use the Gordon decomposition (6.3) which tsa®ots in Dirac’s equation, so there is realfparth fundamental
equation involved as well, namely that named forabi) Just find the inverse of Maxwell's chargeuaipn
J" =0 ,F*, plug it into P* =97F* +9“F" +9"F%, do the calculations, and arrive at (6.). short, (6.6) is
what one obtains when Maxwell's two equations enabntext of Yang-Mills theory are merged togethtr a single
equation. Think about this again: both of Maxwell's equascare embedded in (6.6), i.e., (6.6) is what aegarably
gets from joining together both of Maxwell's equoais in Yang-Mills theory. No more, no less. Thimple! For
anyone who has ever wondered what Maxwell equatiangd look like if they were all one equation raththan two,
(6.6) is the answer! Maxwell's equations, for rmmmuting fields, when combined into one, are tlasgical
equations of baryon nuclear physics!

One final, overarching point, which returns usseéxtion 3. As made clear throughout, (6.6) isestal
equation, valid for high-acti0|$(¢) >> 1. This means that (6.6) (and even the more geerqraition developed from
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(4.3) with 0°G* = ilk”,G”JiO) will become inexact in the quantum arena. Ddes tmean thatP™ will stop

being a baryon? Of course not. No more thanssitlal current density  stops being a current density in quantum
electrodynamics. It merely means that we will Iseng different (Qquantum amplitude) equations, dsfiwia path
integration, in order to describe the behaviorthete baryons in the low-action arena. It meredams that the higher
order terms will change from what we have seen.hddat the lowest-order, baryon structural termg@ré) will
always remain intact.

So to conclude: the long-sought and pursued andetusive magnetic monopole, in Yang-Mills theoig/a
baryon, and it exists everywhere and anywherethiggie is matter in the universe, hiding in plaghsi
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