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Abstract 
 

   In this paper, it is shown that for the hard gluon emitted in 3-jet event, the existence of the 
Hamiltonian H on a particular gauge orbit is only for the infinitesimal time–period φ. During this infinitesimal time–
period φ, the uncertainty principle implies that there must be certain minimum amount of uncertainty, or quantum 
fluctuation in the eigenvalue of the Hamiltonian H of the hard gluon emitted in 3-jet event. One can think of these 
quantum fluctuations as Gribov copies that appear at some time, move along with the real hard gluon and then get 
annihilated. Like virtual particles, Gribov copies cannot be observed directly with particle detectors, but their 
indirect effects like anomalous scaling can be observed and measured.  
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1. INTRODUCTION: 
 
   At present, what is considered as the most important in non-perturbative aspects 

of QCD is finding co-ordinates on the gauge orbit which entails the elimination (not the 

inclusion) of the gribov copies. On the other hand, we consider the ordinary Faddeev-Popov 

methods as fine for the perturbation theory. Against this backdrop, it is shown in this paper that 

for the hard gluon emitted in 3-jet event, the existence of the Hamiltonian H on a particular 

gauge orbit is only for the infinitesimal time–period φ. During this infinitesimal time–period φ, 

the uncertainty principle implies that there must be certain minimum amount of uncertainty, or 

quantum fluctuation in the eigenvalue of the Hamiltonian H of the Hard gluon emitted in 3-jet 

event. One can think of these quantum fluctuations as Gribov copies that appear at some time, 

move along with the real hard gluon and then get annihilated. Like virtual particles, Gribov 

copies cannot be observed directly with particle detectors, but their indirect effects like 

anomalous scaling can be observed and measured.   



2.  GRIBOV COPIES, 3-JET EVENTS & DELTA PLUS PLUS       

   In 3-jet event, gluon jets are identified by the particles in the hemisphere opposite 

to the hemisphere that is containing tagged quark & antiquark jets and is defined by a plane 

perpendicular to the principal event axis in the 3-jet event [1]. This definition of gluon jet is 

equivalent to the production of gluon jet from color-singlet point source (i.e., quark-antiquark 

pair) in perturbative sector. Now, the hard gluon, emitted in the 3-jet event, evidently carries 

color charge [2, 3] and this color charge of the hard gluon is not in concurrence with the 

aforesaid production of gluon jet from color-singlet point source in perturbative sector. This non-

concurrence has been resolved in published literature [1] by considering the production of gluon 

jet as creation of gluon-gluon pair for the theoretical description of its internal properties. This 

creation of gluon-gluon pair is hitherto unobserved [1] and as such, hypothetical in nature. Now, 

we show why there is no need to look upon this gluon jet emitted from color-singlet point source 

in perturbative sector as “hypothetical creation of gluon-gluon pair” for the theoretical 

description of its internal properties [1].  

   Arthur Jaffe and Edward Witten in their paper [4A] has mentioned that 

classically, by substituting the abelian group U(1) with a more general compact gauge group G = 

SU(3), the curvature is changed from F = dA  to F = dA+A∧A, and Maxwell’s equations,0 = dF = 

d*F, are transformed to the Yang-Mills equations, 0 = dAF = dA*F, where* is the Hodge duality 

operator, A is pure Yang-Mills gauge potential, F is pure Yang-Mills gauge field and dA denotes 

the gauge-covariant extension of the exterior derivative. Further, these Yang-Mills equations can 

be validated by deriving them from the following pure Yang-Mills action L’ that is more 

conveniently expressed as an integral of a pure Yang-Mills Lagrangian L in an appropriate time 

interval (t0, t1) i.e.,   



                                                            t1 

  L’ = (-1/4) ∫ d4x (Fμ,ν , Fμ,ν)    = ∫dt L ____________________ (1)  
                         t0 
 

where Fμ,ν = ∂μAν(x) – ∂νAμ(x) – ig[Aμ(x), Aν(x)] and μ,ν are denoting space-time   indices that 

take value in the range (0, 1, 2, 3) and  

L = (–1/2) ∫V d3x (∇k(Ak) A0 –  Ák, ∇k(Ak) A0 – Ák) – (1/4) ∫V d3x(Fkl (Ak), Fkl(Ak))_________(2)  

where Fkl = ∂kAl(x) – ∂lAk(x) – ig[Ak(x), Al(x)]; k,l are denoting space indices ranging  from 1 to 

3; g is arbitrary non-vanishing real parameter; A0 denotes the time-component of the pure Yang-

Mills gauge potential Aμ & the quantity V is closed domain in R3. 

   The pure Yang-Mills action L’ in equation (1) above remains invariant if A is 

replaced by gauge transformed field AU,  

     A → AU ≡ U-1AU+ U-1∂U 

The fields A and AU lead to same value for the pure Yang-Mills action L’ in equation (1) and as 

such, are called gauge-equivalent fields. As illustrated in Fig. 1 below, the gauge orbit for some 

gauge field A is nothing but the set of all gauge-equivalent configurations AU such that the pure 

Yang-Mills action L’ in equation (1) is gauge invariant and  all gauge-equivalent configurations 

AU on the gauge orbit have got same action L’.  

   Thus, “by trading a redundant set of coordinates AU for locality, the original 

description of pure Yang-Mills gauge theory is made possible by using only local interactions. 

However, this local description involving gauge-transformed field AU comes at a price that there 

exists a continuous gauge orbit of gauge-equivalent fields to represent each physical situation in 

continuum Yang-Mills gauge theories. By using gauge-fixing, only gauge inequivalent 

configurations should be considered in the Feynman path-integral for properly quantizing the 

pure Yang-Mills theory. In the field configuration space, one essentially describes the gauge 



fixing by a choice of coordinates and thus, one chooses a suitable coordinate system for 

calculations by gauge fixing. Beyond perturbation theory, the specification of the gauge 

conditions becomes complicated by gauge algebras of Yang-Mills theory i.e., simple Lie 

algebras [4] and this complication creates problem in gauge fixing [5].  

   Consequent upon the same, the whole field configuration space cannot be covered 

by a single coordinate system. Hence, the criteria for selecting the representatives of the gauge 

orbits cannot be characterized by giving a local (and thus single coordinate system) 

prescription. This problem is called the Gribov-Singer ambiguity with reference to arbitrary 

covariant gauges but it is present in some form in all gauges for a continuum formulation” [6]. 

In other words, the Gribov-Singer ambiguity refers to the multiple intersections, of the gauge-

fixing surface with the gauge orbit, called as the Gribov copies. This unambiguous quantization 

of nonabelian gauge theories remains unsolved problem in the non-perturbative regime. The 

covariant differential gauges are local but plagued by Gribov copies, whereas known Ghost-free 

axial gauges explicitly violate Lorentz invariance and are non-local. Moreover, beyond 

perturbation theory the axial gauge always involve a non-local element or reintroduces Gribov 

copies at the boundary so as not to destroy the Polyakov loop [7]. 

   “Since, two Gribov copies are not infinitesimally close to each other, as otherwise 

a local distinction would be possible and are therefore separated by non-infinitesimal gauge 

transformations, so, single representative of any gauge orbit can be specified only by non-local 

gauge condition in nonperturbative regime and consequently” [6], Gribov-copy-free gauge 

fixing cannot be expressed as a local function of the pure Yang-Mills potential and a finite 

number of its derivatives for all spatial points [7]. In other words, the pure Yang-Mills action, 

with Gribov-copy-free gauge fixing becomes non-local and give rise to non-local quantum field 



theory [7]. It is, further, stated in [7] that since, the proof of renormalizability of QCD, the proof 

of asymptotic freedom, local BRS symmetry and the Schwinger-Dyson equations is based on the 

pure Yang-Mills action, so, we cannot prove these features of QCD in nonperturbative context 

with an unreliable basis that is left behind by the nonlocality of the pure Yang-Mills action.  

   The main conclusion of [7] is that the assumption of having non-perturbative 

QCD without Gribov copies destroys locality and BRS invariance of the theory; an equally valid 

point of view is to preserve locality and BRS symmetry as central to the definition of QCD in the 

non-perturbative regime [8 – 11] and accordingly, this view point implies that Gribov copies are 

necessarily physically present & gauge orbits are multiply represented in the non-perturbative 

regime. To understand this implication of the aforesaid view point, we refer to the wave-particle 

duality concept – the wave-nature and particle-nature of gluon are complementary to each other 

and both of these natures are never exhibited simultaneously. While in perturbative regime, the 

particle nature of the gluon is exhibited exclusively in the statement that its Gribov copies, only 

as free point particles due to the asymptotic freedom, fit in their infinitesimal close separations in 

perturbative regime, on the other hand, the wave nature of the gluon is exhibited exclusively in 

the statement that its Gribov copies, as a wave, become physically distinguishable from each 

other with their increased separations in nonperturbative regime. Let us see how the problem [12 

– 18], that the Gribov copies prevent a non-perturbative definition of QCD color charge, can be 

taken care of by interpreting physically distinguishable wave-nature of Gribov copies as special 

realization of the hard gluon emitted in 3-jet event.  

   There are two facets of color in particle physics. First one pertains to the three-

valued charge degree of freedom as introduced by Oscar W. Greenberg [19] in 1964 and second 

one refers to gauge symmetry as introduced by Yoichiro Nambu [20] and by Moo Young Han 



and by Yoichiro Nambu [21] in 1965. The essential ingredients of QCD are contained in the 

union of two facets [22]. Although, the notion of color charge had to be introduced as intrinsic 

property (first facet) of the Lagrangian spin ½ quarks ψ for preserving Dirac-Fermi statistics in 

the naïve quark model [19] and these Lagrangian quarks ψ of the naive quark model are 

identified with QCD quarks with an SU(3) color index (second facet), yet, this identification is 

required to be refined as Lagrangian quarks ψ are not locally gauge invariant on the gauge orbit, 

ψ → ψU ≡ U-1ψ. But any QCD description of the constituent quarks of any hadron must be 

locally gauge invariant. “In order to construct such a QCD description, we dress the Lagrangian 

quarks ψ with dressing function h-1[A] of the gauge field in such a way that the result is locally 

gauge-invariant on the gauge orbit, i.e.” [12] 

ψ = h-1[A]ψ ______________________________________ (3) 

“In-fact, the equation (3) was the original idea of Dirac [23]. The dressed matter field ψ is locally 

gauge invariant on the gauge orbit provided that dressing function h-1[A] transforms as” [12]  

h-1[A] → h-1[AU] = h-1[A]U ________________________________ (4) 

where the gauge field transforms as A → AU ≡ U-1AU+ U-1∂U. “This specification of the dressing 

function in equation (4) is enough for ensuring gauge-invariance” [12]. “Gauge-fixing choices 

may be used to construct the dressing function h-1[A]. Suppose χ(A) = 0 be the gauge fixing 

condition. For any given field configuration A, there exists a transformation h[A] which takes the 

given field A to the point on the gauge orbit where the following gauge fixing condition is 

satisfied” [12]. 

  χ(Ah[A]) = 0 ________________________________________ (5) 

 “The same must be true for any gauge transformed field AU,  



   ______________________________ (6)” [12] 

As discussed above, any local gauge fixing condition χ(A) = 0, in general, must contain multiple 

Gribov copies at the points where any gauge orbit intersects the chosen gauge slice χ(A) = 0 and 

further, due to increased separations in non-perturbative regime, any Gribov copy as a wave is 

physically distinguishable from other Gribov copies of a hard gluon emitted in 3-jet event. This 

physical distingushability means that the gauge condition in equation (6) above is satisfied 

uniquely and separately for each Gribov copy of the hard gluon emitted in 3-jet event. Thus, 

while comparing the equations (5) and (6) above, the aforesaid uniqueness implies that 

 [12] so that 

 _________________ (7) [12] 

This equation (7) is in-fact exactly the equation (4) above that is required for the dressing 

function h-1[A]. Actually, the dressing function in the above equation (7) can be viewed as the 

transformation which takes any gauge field A to a particular Gribov copy on a particular gauge 

slice. In other words, the dressing of the Lagrangian quark ψ in equation (3) above involves 

simultaneous dressing with multiple individual dressing functions h-1[A] corresponding to 

each and every Gribov copy of the hard gluon emitted in 3-jet event in such a way that the 

combined dressing function does not remain unchanged at the place of occurrence of the Gribov 

copies on the gauge orbit and thereby, makes the dressed matter field ψ locally gauge invariant 

on the gauge orbit.      

   Let us now consider a special case of a baryon called Δ++ (delta plus plus) that 

comprises three identical Lagrangian up quarks in same quantum state neglecting the color 

degree of freedom. This same quantum state can be easily inferred from the fact that these three 



‘up’ quarks are having zero orbital angular momentum with respect to each other and are having 

their individual intrinsic spin angular momentum aligned in the same direction. Since, Δ++ is in-

fact a resonance having very short life-time of the order of 10-24 seconds and hadronization takes 

place in nonperturbative regime, so, all identical Lagrangian ‘up’ quarks of Δ++ are expected to 

remain in nonperturbative regime during the very  short life-time of Δ++. As such, for 

nonperturbative QCD description of constituent quarks of Δ++, we dress these three identical 

Lagrangian up quarks with glue in such a way that the result is gauge-invariant on the same 

gauge-orbit as constituent quarks of Δ++ are in same quantum state. Since, Lagrangian quarks are 

not gauge invariant on the gauge orbit, so, for preserving Dirac-Fermi statistics in the naïve 

quark model, these three identical Lagrangian up quarks need to orient themselves at three 

distinct points on the same gauge orbit in such a way that the result is three separate red, blue and 

green colored Lagrangian up quarks in Δ++.  

   Now, a single gluon, as a  sole representative of the gauge orbit, occupies a 

unique point on the gauge orbit and as such, cannot be used alone for the simultaneous 

nonperturbative dressing of these three identical up Lagrangian quarks positioned at three 

distinct points on the same gauge orbit in Δ++. Thus, the aforesaid simultaneous dressing, with 

multiple individual dressing functions h-1[A] corresponding to each and every Gribov copy of the 

hard gluon emitted in 3-jet event, becomes an inescapable necessity for QCD description of 

constituent quarks of Δ++ and accordingly, we use the Gribov copies as special realization of a 

gluon for simultaneous nonperturbative dressing of three identical up Lagrangian quarks in Δ++.  

   Also, the nonperturbative QCD description, that three separate red, blue and green 

colored QCD up quarks are positioned at three distinct points on the same gauge orbit in Δ++ , 

endows each of the Gribov copies with unique non-identical color charge such that the combined 



color charge of all the Gribov copies of a gluon is color-singlet one. Consequent upon this color-

singlet nature of Gribov copies, there is no need to look upon the gluon jet in 3-jet event as 

“hypothetical creation of gluon-gluon pair” for the theoretical description of its internal 

properties [1]. 

   “This hitherto unobserved “hypothetical creation of gluon-gluon pair” for the 

theoretical description of the internal properties of the gluon jet in 3-jet event has been 

considered in [24 – 28]. Due to color octet neutralization of the gluon field by another gluon, 

this hitherto “hypothetical creation of gluon-gluon pair” has the signature of a neutral leading 

system separated from the rest of low energy particles by a large rapidity gap devoid of any 

hadrons. To the contrary, the color triplet fragmentation, that involves creation of quark-

antiquark pairs, in the string stretched between emitted quark & antiquark in 2-jet events results 

in the production of charged leading systems in excellent agreement with string Monte Carlo 

Models Like JETSET [29]. On the similar lines, in 3-jet event, JETSET (ARIANDE) model 

stretches two strings – one between gluon and quark and other between gluon and antiquark.  

   As such, JETSET (and ARIANDE) model predicts charged leading systems when 

the aforesaid two strings in 3-jet event fragments by creation of quark-antiquark pairs in the 

color triplet fragmentation. But the preliminary experimental data obtained in [30 – 33] 

revealed excess of neutral leading systems with large rapidity gap in gluon jets than the one 

predicted by JETSET (and ARIANDE) model.  This excess of neutral leading systems in gluon 

jets indicates the color octet neutralization of the gluon field by another gluon after hitherto 

unobserved “hypothetical creation of gluon-gluon pair” in gluon jet. Also, this excess of neutral 

leading system with large rapidity gap in gluon jet can also be produced by another altogether 

different mechanism called color reconnection [34].  



   But the experimentally observed data in [32, 35] clearly discards color 

reconnection mechanism as implemented in Monte Carlo simulations for reproducing the 

observed excess of neutral leading systems in gluon jet [36]. Thus, as proposed by Minkowski 

and Ochs [24, 25],  the color octet neutralization of the gluon field by another gluon after 

hitherto unobserved “hypothetical creation of gluon-gluon pair” in gluon jet is only left as 

viable option to account for the observed excess of neutral leading systems in gluon jet. In [24, 

25], it has been proposed to enhance the possible contribution of the color octet neutralization 

process in accounting the observed excess of neutral leading systems in gluon jet by selecting 

those 3-jet events that have large rapidity gap in gluon jet.  

   This enhancement with larger rapidity gap in gluon jet is due to the absence of 

multiple gluon emissions and related color neutralization processes of small rapidity range [24]. 

In [36], the experimental observation of this enhancement with larger rapidity gap in gluon jet 

has been reported. In the limit rapidity gap becomes very large, it is expected to have cent 

percent neutral leading system in gluon jet. Here we consider such a configuration: Consider a 

3-jet event in which a hard gluon after production travels without any gluon radiation for a 

while and as a result, forms a jet with a very large rapidity gap devoid of any hadrons. But the 

probability of finding such events decreases exponentially with rapidity gap in the light of 

Sukadov form factor [37]. In this case, the octet field of hard gluon, which is not distorted by 

multiple gluon emissions and related color neutralization processes of small rapidity range, 

builds up to such an extent that its neutralization with equally strong octet field of another gluon 

will become clearly visible if it exists. But such a gluon-gluon pair production is hitherto 

unobserved and as such, is hypothetical in nature [1]. This forces us to focus our attention on the 

aforesaid color-singlet nature of Gribov copies for providing physical explanation to the 



production of hard gluon in 3-jet event with very large rapidity gap and with exponentially 

decreasing probability according to the Sukadov form factor.              

  Firstly, we characterize the phase space distribution of the particles emitted in the 

form of jets during high energy collisions by using the term rapidity  that is based on the 

maximum rapidity distance between adjacent particles in a jet and is accordingly defined in [35] 

as 

   ______________________________________ (8)  

Where   is the energy of the particle and  is the component of its 3-momentum along the 

jet-axis. Due to the aforesaid color-singlet nature of Gribov copies in gluon jet, the whole energy 

 of the hard gluon emitted in 3-jet event becomes equal to  as all its Gribov copies, while 

representing the same physics to the outside world, moves parallel to the same jet-axis. This 

equality of  and  gives rise to infinite rapidity  in above equation (8) for the hard gluon 

emitted in 3-jet event.  

   Also, if the Gribov copies are treated as physical entities, then the color octet 

neutralization of these Gribov copies would ultimately result into cent percent neutral leading 

particle systems at low invariant masses and with infinite rapidity gap in the gluon jet. This 

prediction of infinite rapidity and cent percent neutral leading particle systems at low invariant 

masses in gluon jet is in-fact the limiting case of the trend in the experimental observation [36, 

38] that the excess of neutral leading particle systems, with typically lower invariant masses, 

increases with increasing rapidity gap size and with gluon purity in gluon jet. It is pertinent to 

mention here that no excess in the low mass regions is exhibited by the corresponding mass 

spectra of leading systems in quark jets. Actually, due to Sudakov form factor, there is 



considerable loss of statistics with the requirement of having a rapidity gap as large as 

possible.” [36] 

3.  CANONICAL QUANTISATION: 

   In preceding section 2, the central assumption recurring throughout the text is that 

the Gribov copies should be treated as physical entities and that they can be interpreted as special 

realization of the hard gluon emitted in 3-jet event. But this central assumption appears to 

contradict the published work [39, 40] about the problem of Gribov copies in non-abelian gauge 

field theories. In order to remove this contradiction, we now turn to the derivation of canonical 

theory in perturbative sector for the hard gluon (and its Gribov copies) emitted in 3-jet event 

under the following boundary conditions.  

   The boundary conditions for the hard gluon (and its Gribov copies) emitted from 

color-singlet point source in 3-jet event can be stated as “the pure Yang-Mills gauge potential Aμ 

pertaining exclusively to the hard gluon (and its Gribov copies) would be coming into existence 

at the time t0 of its emission in 3-jet event in the region of the space somewhere inside a finite 

closed hemispherical volume V (as referred to in Equation (2) above) but would be zero at the 

surface of the hemispherical volume V”.  

  As a first step towards canonical quantization, we convert the classical 

Lagrangian L of Equation (2) into a Hamiltonian one. For this conversion, we follow the 

standard procedure by defining the canonical momenta πa
μ as under: 

   πa
μ = ∂L’’/∂Áa

μ = - Fa
μ0 _________________ (9)    

 where Áa
μ are the generalized velocities and L’’ denotes the Lagrangian density such that L = ∫V 

d3x L’’ 



It can easily observed that the canonical momenta πa
0 corresponding to the time index μ = 0 in 

the above Equation (9) vanishes due to antisymmetry of Fμν and accordingly, the Gauss law 

(∇k(A) πa
k = 0) is absent.  

  For implementing the Gauss law at classical Lagrangian level as a constraint [41], 

first of all we solve the following non-abelian Gauss law,  

∇k(A)∇k(A)A0 − ∇k(A) Ák = 0 _______________________ (10)                   

where the space indices k = 1,2,3 and ∇k(A) is ‘covariant gradient’, 

By treating the above Equation (10) as a system of linear, elliptic partial differential equations, 

the (matrix valued) potential component A0, for given value of the space components Ak & their 

time derivatives ∂0Ak, has been determined in [41] by assuming that the unique solution A0 as a 

functional of Ak & their time derivatives ∂0Ak does exist i.e.,   

A0 = A0{ Ak, ∂0Ak} __________________________ (11) 

Now, for implementing the Gauss law at classical Lagrangian level as a constraint [41] we 

substitute the above Equation (11) into the classical Lagrangian Equation (2) to get new 

Lagrangian L0, i.e., 

L0 = (–1/2) ∫V d3x (∇k(Ak) A0{Ak, ∂0Ak} –  Ák, ∇k(Ak) A0{Ak, ∂0Ak} – Ák)  

            – (1/4) ∫V d3x(Gkl (Ak), Gkl(Ak)) ___________________________________(12) 

 where Gkl = ∂kAl(x) – ∂lAk(x) – ig[Ak(x), Al(x)] and k,l are denoting space indices ranging from 1 

to 3 & the quantity V is a finite hemispherical closed volume encompassing only the hard gluon 

(and its Gribov copies) at the time t0 of its emission in 3-jet event. This new Lagrangian L0 must 

reproduce the Lagrange equations of motion for k = 1,2,3 when Hamilton’s action principle is 

invoked.  



Now, we proceed to the Hamiltonian construction, for which the substitution of L0 of the 

Equation (12) into the Equation (9) above leads to  

  πk = ∂ L0
’’/∂Ák = (∇k(A) A0{Ak, ∂0Ak} – Ák) ___________________ (13) 

  where L0
’’ denotes the Lagrangian density such that L0 = ∫V d3x L0

’’ 

From the above expression for canonical momentum πk, it is impossible to find generalized 

velocity Ák in terms of πk and Ak because here A0 is a functional of Ak and their time derivatives 

Ák = ∂0Ak. We impose the generalized Coulomb gauge fixing condition at Lagrangian level on 

the non-abelian Gauss law of Equation (10) for converting the aforesaid impossibility into 

possibility i.e., 

∇k(A) Ák = 0 ______________________________________ (14) 

With the substitution of Equation (14) in equation (10), we get 

  (∇k(A) πa
k) = ∇k(A)∇k(A)A0 = 0 ___________________________ (15) 

 In view of Equations (14) & (15) above, we use the transversal part of the momentum πa
k (i.e., 

πa
k┴) and transversal component Ak

a┴. Further, the equation (11) is accordingly modified as A0 = 

A0{Ak
┴} in view of Equation (15). 

   As such, one can now straightforwardly express the generalized velocity Ák┴ in 

terms of generalized co-ordinate and momenta variables by using A0 = A0{Ak
┴} in the Equation 

(13) i.e., Ák┴ = (∇k(A) A0{Ak┴} –πk┴). Therefore, the use of Ák┴ = (∇k(A) A0{Ak┴} –πk┴) and 

substitution of L = L0 from the Equation (12) & substitution of Gauss law constraint (∇k(A) πa
k) 

= 0 from Equation (15) in the mathematical construction [H = ∫V (πa
k, Ák

a) d3x – L] of the 

Hamiltonian H through Legendre transformation yields  

H = (-1/2) ∫V d3x J-1[Ak
┴]{(∇k(Ak) A0{Ak

┴}– Ák
┴}, J[Ak

┴]{∇k(Ak) A0{Ak┴} – Ák┴)} + (1/4) ∫V 

d3x(Fkl (Ak
┴), Fkl(Ak┴)) _______________________________ (16) 



Where J[Ak
┴] is the Faddeev-Popov determinant, interpreted as the Jacobian of the 

transformation.  

   However, the above derivation of the Hamiltonian H in the Equation (16) is 

plagued by a technical complication [42] i.e., when the above generalized coulomb gauge fixing 

condition of the Equation (14) is in force for straightforwardly expressing the generalized 

velocity in terms of generalized co-ordinate and momenta variables, one cannot define canonical 

momentas by Equation (9) above as these generalized velocities are no longer independent 

quantities. In order to solve this technical complication, we focus our attention, in the next few 

paragraphs, on the nature of the generalized coulomb gauge fixing condition of the Equation 

(14). 

   Let us assume that the hard gluon, at the time t0 of its emission in the 3-jet event, 

satisfies, by default, the above Hamiltonian H in the Equation (16). Since, the Gauss law 

constraint of the Equation (15) is not present naturally on its own and has been satisfied 

identically (in principle) by construction in the Equation (10) for the sole purpose of the 

derivation of Hamiltonian H of the Equation (10) from the Lagrangian L0, so, momentarily 

after t0 i.e., at t0
+ the time development of the Hamiltonian H of the Equation (16) lands the 

hard gluon on the adjacent gauge orbit along which the latter has natural instinct, with 

passage of time, to undergo time-independent gauge transformation in the absence of 

Equation (15). Because the gauge transformation is usually understood as the relationship 

between two Aμ fields defined on the same space-time point and hence, the identification of this 

time-independent gauge transformation on the adjacent gauge orbit with time development is 

further probed below.  



  In the Yang – Mills theory, gauge transformation ω is not global one. In figure 1, 

the general gauge potential Ak, valid at some time instant t0
+

 , transforms as a connection in the 

adjoint representation under local gauge transformation ω to A1k, say valid at some later time 

instant t1 ,[42] i.e., 

  Alk = ω Akω-1 – (i/g)(∂kω)ω-1 ____________________________ (17) 

 

Figure 1  Illustration of the gauge orbit [7] 
 

Differentiating above Equation (17) with respect to time t and then, applying ‘covariant gradient’ 

∇k(A) on both sides [41], we get  

 ∇k(A)∂0 Alk = ω[∇k(A) ∂0A k – ∇k(A)∇k(A) X0 )]ω-1    where X0 = (i/g)(ω-1)(∂0ω)  

Thus, when the condition of equation (14) is imposed on the final potential Alk by equating right 

hand side of the above equation to zero [42], we get 

     ∇k(A)∇k(A) X0 =  ∇k(A)∂0A k __________________________ (18)  

If we consider any time slice at some in-between time instant ti such that (t0
+ < ti < t1), then the 

above elliptic linear partial differential equation (18), in-general, pertains to some in-between 

value of Aki at the time instant ti along the dotted gauge transformation path on the gauge orbit in 

above Figure 1. In other words, the Lie-algebra valued quantity X0 = (i/g)(ω-1)(∂0ω) of the 

elliptic linear partial differential Equation (18) is exclusively defined at some in-between time 

instant ti such that (t0
+ < ti < t1) and remains non-zero along the dotted gauge transformation path 

on the gauge orbit in Figure.1 during the time–period φ = (t1 – t0
+) only. Accordingly, this gauge 



transform ω is uniquely determined in [42] at some fixed spatial point x by the following 

exponential time-integral. [42] 

                                             t1                                   
  ω(x, t1) = [T exp. (ig) ∫dt X0(t)] ω(x, t0

+) where T indicates time-ordering. 
                                            t0

+
 

 

Since, the gauge transformation Ak → A1k, as illustrated in Figure.1 above, is time-independent 

one on the gauge orbit and the time-independent gauge transformations, on the gauge orbit, are 

generated in infinitesimal form by the generator (∇k(A) πa
k) on the left hand side of the Gauss 

Law Equation (15), so, the time-independent gauge transformation Ak → A1k, as illustrated in 

Figure.1 above, is also infinitesimal one and is, however, shown in Figure.1 in exaggerated form 

for the sake of clarity. This infinitesimal nature the time-independent gauge transformation Ak 

→ A1k implies that the integration limits t1 and t0
+ of above time-integral correspond to 

infinitesimal time–period φ = (t1 – t0
+). It is this infinitesimal nature of the time–period φ that 

leads to transient existence of X0 in Equation (18) and hence, transient existence of ∇k(A)∂0Ak = 

0 as hypersurface in configuration space. Further, this transitory nature of ∇k(A)∂0Ak = 0 of 

Equation (8) solves the aforesaid technical complication, that plagues the derivation of 

Hamiltonian H in the Equation (16) in the following manner.  

   In the Einstein causality, the transient existence of covariant derivative null vector 

(i.e., ∇k(A)∂0Ak = 0) at any spatial point x in Minkowski space V leads to local gauge-fixing 

procedure that allows non-emergence of the Faddeev – Popov ghosts; imposition of the equal 

time canonical commutation relations [Ai
a⊥(x), πj

b⊥(y)] = δij δab δ3(x – y) & the generalized 

velocities ∂0Ak to be treated as independent quantities for all intent & purpose during the 

transient existence of ∇k(A)∂0 A1k = 0 at any spatial point x in Minkowski space V. At time t1, the 



Gauss law constraint of the Equation (15) is satisfied again identically (in principle) by 

construction to obtain the Hamiltonian Equation (16) once more and accordingly, the 

Hamiltonian system is again ready to undergo time development to land at next adjacent gauge 

orbit momentarily after t1 i.e., at t1
+. This cycle goes on repeating itself until the hard gluon 

fragmentation in non-perturbative regime. 

   Thus, we see that the existence of the Hamiltonian Equation (16) on a particular 

gauge orbit is only for the infinitesimal time–period φ = (t1 – t0
+). During this infinitesimal time–

period φ, the uncertainty principle implies that there must be certain minimum amount of 

uncertainty, or quantum fluctuation in the eigenvalue of the Hamiltonian H in Equation (16) 

above. One can think of these quantum fluctuations as Gribov copies that appear at some time, 

move along with the real hard gluon and then get annihilated. Like virtual particles, Gribov 

copies cannot be observed directly with particle detectors, but their indirect effects like 

anomalous scaling can be observed and measured. In next section 4, we have discussed about the 

anomalous scaling as indirect effect of the Gribov copies. Thus, the uncertainty principle helps in 

removing the contradiction concerning Gribov copies as mentioned above in the beginning of 

this section 3.    

4.  DISCUSSION: 

   Until now, we have focused on the canonical approach to quantizing the pure Yang – 

Mills theory in perturbative sector for the case of hard gluon emitted in 3-jet event. In-fact, there are 

many approaches for quantizing the pure Yang – Mills theory. But, the most natural approach in this 

regard is that of the functional integral. Since, the canonical approach and the functional integral 

approach are equivalent to each other, so, the various concepts developed in the derivation of 

canonical theory in perturbative sector in section 3 of this paper can be extended to functional 



integral approach in non-perturbative sector also. For instance, the important equivalence 

principle, stating that a physical configuration for the pure Yang – Mills theory is not a given field 

Aμ, but rather a class of gauge equivalent fields, is taken into account in canonical approach by 

the identification of the time-independent gauge transformation in Figure1 on the adjacent gauge 

orbit with time development of the Hamiltonian system. Likewise, this equivalence principle is 

also taken into account in the functional integral approach in non-perturbative sector by 

integrating over classes of equivalent fields as discussed below.    

  The dimensional transmutation analysis, as published in Section 3 of [43], can be 

directly understood as the functional integral approach for the hard gluon emitted in 3-jet event 

by considering the generating functional W(B) being dependent upon initial field configuration 

at emission time t0 and final field configuration at time t2 ( >t1) just before hard gluon 

fragmentation in non-perturbative regime. Accordingly, the equation (4) of [43] is an integral 

over a certain set of gauge-inequivalent (i.e., gauge-fixed) configurations such that for each 

gauge-inequivalent (i.e., gauge-fixed) configuration, the evaluation of the Faddeev-Popov 

determinant det((∇µ + gaµ)∇µ) in the vicinity of the gauge-fixing surface is carried out under 

infinitesimal gauge transformation along the gauge orbit, as depicted in Figure 1. This is nothing 

but extension of the concept of cycle repetition of canonical approach in perturbative sector, as 

mentioned at the end of section 3 of this paper, to the functional integral approach in non-

perturbative sector. 

   Thus, the infinitesimal gauge transformation along the gauge orbit, as depicted in 

Figure 1, establishes direct equivalence between canonical approach, as outlined in Section 3 of 

this paper and functional integral approach of Section 3 of [43]. In Equation (16) of [43], the 

Faddeev-Popov determinant det((∇µ + gaµ)∇µ) is then written in terms of the functional integral 



over grassman algebra for expressing the generating functional W(B) as a series in the powers of 

the coupling constant. The zero order in coupling constant term in Equation (16) of [43] diverge 

and the same is trivially regularized in [43]. After regularization, the numerical coefficient of the 

classical action term in Equation (21) of [43] is focused upon.  

   Since, during the infinitesimal time–period φ, the uncertainty principle implies 

about the transient existence of the Gribov copies as quantum fluctuations in the eigenvalue of 

Hamiltonian H in Equation (16), so, the aforesaid formal manipulations involving the Faddeev-

Popov determinant are multiply counted for each gauge-inequivalent configuration in the integral 

of Equation (4) of [43]. As a result of this multiple counting, the dimensionless numerical 

coefficient g of the classical action in perturbative sector (where Gribov copies cannot be aware 

of each other due to asymptotic freedom) becomes dimensionful in Equation (21) of [43] for 

non-perturbative sector (where Gribov copies are accounted for in aforesaid multiple counting). 

This dimensional transmutation can be intuitively understood in the light of the fact that the 

aforesaid multiple counting physically means spatial and temporal coherence of the waves 

associated with the hard gluon and its Gribov copies i.e., overlapping or merger in space and 

time of the wave-packets of hard gluon & its Gribov copies, that are representing the same 

quantum state i.e., the gauge orbit.  

   In other words, as one moves from perturbative regime to nonperturbative regime, 

the separation distance between the Gribov copies increases with the lowering of energy and at 

certain energy scale ΛQCD in non-perturbative regime, this separation distance between the 

Gribov copies becomes ideal for the occurrence of spatial and temporal coherence of the waves 

associated with the hard gluon & its Gribov copies. This occurrence of spatial and temporal 

coherence of the waves associated with the hard gluon & its Gribov copies at the said certain 



energy scale ΛQCD is not laser like gain because the number of the hard gluon and its Gribov 

copies in the said coherence  remains conserved with further lowering of energy. As such, a 

prerequisite for Bose-Einstein Condensation (BEC) is fulfilled to form Gribov BEC glueball at 

the said certain energy scale ΛQCD as Gribov copies are always representing the same quantum 

state i.e., the gauge orbit and gluons have been experimentally confirmed in [44, 45] to possess 

spin one. Further, the Bose–Einstein condensation of photons at room temperature has already 

been reported in [46]. 

  Thus, due to the aforesaid Bose-Einstein Condensation (BEC) of hard gluon & its 

Gribov copies, the quantity g of the classical action in perturbative sector losts its meaning as 

dimensionless coupling constant or color charge at the said certain energy scale ΛQCD and 

instead, becomes dimensionful quantity having dimension of energy for the aforesaid Gribov 

BEC glueball. In-fact, the aforesaid Bose-Einstein Condensation (BEC) is nothing but the 

stationary wave-pattern of the waves, associated with the hard gluon & its Gribov copies and 

formed in some inertial reference frame S that is uniformly moving with respect to the laboratory 

reference frame and as such, there exists a mass-gap in the pure Yang-Mills theory in the 

laboratory reference frame due to the formation of the aforesaid stationary wave-pattern in 

moving reference frame S. Accordingly, one defines the mass scale ΛQCD of QCD to be the 

energy at which the color charge or the coupling constant equals some dimensionlful value, say 

1. Then, via this phenomenon of dimensional transmutation 1) one can calculate all the 

observables of QCD in terms of dynamically generated mass scale and there remains no 

adjustable parameter in QCD and 2) one can introduce a physical scale ΛQCD at which color 

confinement occurs as the Gribov BEC glueball of hard gluon & its Gribov copies is color-

singlet one as already stated in the section 2 of this paper.   
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