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1. INTRODUCTION 

 
     Divergent series are widely known and appear in many context involving Physics or  

      Mathematics , for example if we integrate by parts the error function : 
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      Or if we apply a ‘Saddle point mehtod’ to evaluate n! For big ‘n’ 
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      But (1.1) and (1.2) are only convergent in the limit x →∞   

      for small values of x both serees diverge.  

 

      Another example with ODE’s is the following 
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      For (1.3) Euler gave the series solution:   2 3 4( ) (1!) (2!) (3!) ...y x x x x x= − + − −  (1.4) 

 

      Which converges only for x=0 !!! , A similar thing happens with the series: 
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      That apear in QFT and Quantum Mechanics , here g is the ‘coupling constant’   

      in general series of the form (1.5) although divergent are used to calculate the    

      ‘mass’   or ‘charge’ , for a given physical theory. 

 

      Also as a last example let be the next Taylor series around x=0 : 
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      Convergent for |x| <1  However taking the limit 1x −→−  (-1 by the left) we find  

       the amazing results  -1/2 and  -1/4 . 

        

       Of course this sections pretends to be only a kind of introduction to the subject for  

       further references I strongly recommend ‘Divergent series’ by G.H Hardy or ‘Zeta  

       regularization methods’ by E.Elizalde and others for historical examples involving  

       divergent series and integrals. 

       

      

2. BOREL RESUMMATION FOR SERIES AND INTEGRALS 
 
               Let be the divergent (Numerical) series: 

 

                   0 1 2 3 .........S a a a a= + + + +             (2.1) 

 

                  Borel gave a very ingenious method to calculate it, first we multiply and  

                  divide each term by n!  
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                  Then we use (2.1) and (2.2) and supposing that ( ) ( )btf t O e=  for a real  

                   positive number b then we can writte the ‘sum’ of the series in (2.1)  
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                As a ‘toy model’ of our Borel resummation method we have: 

 

                   1 1 1 1 1 1 1 1 ....... 1/ 2− + − + − + − + →   ( ) exp( )f t t= −       (2.4) 

 

                   Unfortunately we can’t always know an exact expression for f(t),  

                   To give an approximate evaluation of our Borel transform, we can use the    

                    ‘Euler-Abel’ transform applied ot our divergent series 
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                  Also we need another well-known property of the ‘Laplace transform’ 
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                   The first expression in (2.5) is an approximate evaluation for f(x) ,let  x=t  

                   the B(S) ‘Borel sum’ for our divergent series (3.1) is: 
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                   With  !n na b n=  , only in case that the coefficients of our initial series (2.1)  

                   were of the form ( 1) ( )n

na P n= −  with P(n) a Polynomial  (2.7) is exact.  

 

                   The error term is given by the expression: 
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                    In case (2.1) were convergent, then its ‘ Borel sum’ is equivalent to the  

                    term-by-term Laplace transform at s=1. 

 

                    The formalism of Borel resummation for integrals is inmediatly  

                    acomplished if we define the Riemann sum multiplying and dividing each  

                    term by a Gamma function we have: 
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                     Now we take the limit , 0x∆ →  ,the sums becomes  the double-integral :               
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                      Now if we define the integral transform  
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                      If the 2 conditions inside (2.14) holds then the ‘Borel integral’ is just the  

                      Laplace transform of  ( )H t tαα  , 0α >  

 

                      But. Can a ‘Borel sum’ be the real sum of the series?, let’s take : 
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                      The alternating series has the Borel transform:         
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          Using the result for the Laplace transform of 1/(t+1) ,we find: 
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                     Setting s=1 we find that the ‘asymptotic’ expansion (2.14) can be  

                     ‘summed’ even for high values of x. 

 

                      Also, if the integral is convergent then using the property of Laplace  

                      transform with s=1  { }
1

( 1)x

s
L t x

=
= Γ +  then the definition of ‘integral’  

                      (2.12) is the same as the usual definition for the integral in terms of  

                      convergent Riemann sums. 

 

The relationship of this ‘Borel resummation’ for integrals can be written 

as this, using the next property for Laplace transforms: 
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                     Then we can write  (2.14) in terms of Laplace transforms: 
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                  For   Zα ∉  ,we must apply the analytic prolongation of the Gamma   

                     function ( )zΓ and use the definition of the differintegral   xD fα .  

 

                     For the case of Fourier sums 
0

( ) cos( )n

n

g x a nx
∞

=

=∑  the Borel resummation  

                     method can be applied, if we use the Real part of the identity   

                      
0

1

1

n inx

reg ix
n

t e
te

∞

=

=
−∑  and use the Borel resummation formula 

 

  
2

0 0

( ) ( ) cos( )
cos( ) .

1 2 cos( )
n

n

g t g t x
a nx p v dt

t x t

∞∞

=

−
=

− +∑ ∫      
0

( ) n

na dtg t t

∞

= ∫     (2.18) 

 

                     This last integral in (2.18) will only exist in Cauchy’s principal value sense   

                     due to the singularities of the integrand when   21 2 cos( ) 0t x t− + =  

 

 

3. BOREL RESUMMATION AND INTEGRAL EQUATIONS 
 

We could write a generalization to (2.3) as the integral expressions 
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We will study the applications of this Borel resummtion to solve integral 

equations and to study the Riesz criterion for Riemann Hypothesis 

 

In order to apply the Borel generalized resummation to integral 

equations, let be the Fredholm equation of first kind : 
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Here K(st) is the Kernel of the integral equation , and g(s) has the form 
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Since the Mellin transform for Kernel K(u) exists, we will apply Borel 

resummation to solve the integral equation given in (3.2) 
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  Here ‘γ ’ is a certain closed path on the complex plane 
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                        As an example of our method let be the integral equation for the Prime  

                        counting function    [1] 
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Another important example is the Laplace transform with the Kernel 

( ) stK st e−=  in this case we have the power series solution 
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of the expression (3.6) but not only for the Laplace transform 

 

                         This method of the Borel transform can be extended to include integral  

                         equation with non-constant limit of integration or Volterra equations   
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                        In these cases , to solve integral equations of the form   
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                       In order to avoid strange things like in (3.8) we could impose the extra    
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                        We can extend our method to include also negative powers of ‘t’ if the  
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                        The number  α  is chosen so the Mellin transform ˆ ( 1 )K n α+ +  has no  

                        zeros nor poles for integer ‘n’ . 
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if we apply the Borel transform and use expression (3.10) we can give a 

meaning to the solution of the integral equation in a form of a power 

series. 
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                        For the special case 0α = , there would be only normal derivatives and  
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  Although we have only applied our method to integral equation of first  

                        kind , we can also apply this method of power series to the integral  

                        equation of second kind 
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Where  1
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            4. RIESZ CRITERION AND THE BOREL TRANSFORM: 
 

 

                        The Riesz function, introduced by Marcel Riesz , ref [6] has the 2  

                        equivalent formulations   
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1

( )
( )

( 1)! (2 )

n

n

x
Riesz x

k nζ

∞

=

−
= −

−∑   
2 2

1

( ) ( )
exp

n

Riesz x n x

x n n

µ∞

=

 = − 
 

∑
                                                                                                             (4.1) 

 

                        Here  
0  if n is not square-free.    

( )
( 1) if n is square-free with k- distinct prime factor k

nµ


= 
−

 and  

                        (1) 1µ =  is the Möbius function 

                         

  We will use the Borel transform method to give an integral equation for  

                        the Riesz(x) function using the Borel resummation method  

 

1 10

1 ( 1) ( )
1 ( 1)

! (2 ) ( 1)!

n n n
x n

n n

x dt xt
e

n t n nt ζ

∞∞ ∞
−

= =

 − 
− = − − =   −  

∑ ∑∫   (4.2) 

 

The last expression inside the integral in (4.2) is precisely the Riesz 

function, so for the Riesz function using the Borel resummation method 

we have obtained the integral equation for the Riesz function  

 

0

1 ( )x dt x
e Riesz t

t t

∞
−   
− =  

  
∫    { }

1

1 1 sin(2 )
[ ]

2 k

kt
t t t

k

π
π

∞

=

= − = − ∑  (4.3) 

 

Inside (4.2) and (4.3) we have used the definition of the Riemann Zeta 

function as the Mellin transform of the fractional part 

0

(2 ) 1 ss dt
t

s t t

ζ ∞   
− =  

  
∫   , before applying Borel resummation 

 

Truncation of the Fourier series inside (4.3) may be needed if we want to 

use numerical method to solve this integral equation). 

 

We can check that (4.3) is correct , if we apply the Mellin transform to 

both sites and use the Mellin convolution theorem 

 

( ) 1 1 1

0 0 0 0

ˆ* ( ) ( ) ( ) ( ) ( )s s sdt
f g x x dx dt dxf xt g t x F s dtg t t

t

∞ ∞ ∞ ∞
− − − −= =∫ ∫ ∫ ∫   (4.4) 

 

Together with the change of variable  z xt=  , if we apply this to (4.3) 

 

1

0

( 2 )
( ) ( ) ss
s dtRiesz t t

s

ζ ∞
−−

−Γ = − ∫    1

0

( 1)
( )

( 2 )

s s
dtRiesz t t

sζ

∞
− Γ +
=

−∫    (4.5) 

 

Inside (4.5) is the Mellin transform of the Riesz function, so our integral 

equation (4.3) is correct. 

 

Also if we take the derivative with respect to ‘x’ on both sides of (4.3) 

and use the fact that  
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{ } [ ]
1 1 ( )

m

d xd
x x m

dx dx
δ

∞

=−∞

= − = − −∑    (4.6) 

 

And the identity relating a sum and an integral   

 

1 0

( ) [ ] '( )        lim[ ] ( ) 0
x

n

f n dx x f x x f x

∞∞

→∞
=

= − =∑ ∫    (4.7) 

 

Where f(x) is a suitable function with continous first derivative, then, we 

recover the well known functional equation for the Riesz function  

2
1

x

n

x
xe Riesz

n

∞
−

=

 =  
 

∑  . To prove this equation we have used a change of 

variable of the form 2x
u

t
=  inside (4.3) , also we have used formulae 

(4.6) and (4.7) and the differential identity (assuming both derivatives 

with respect to ‘u’ and ‘x’ exist ) 

 

2
2        

f f x
u x f f

u x u

∂ ∂  − = =  ∂ ∂  
    (4.8) 

 

An alternative to equation (4.3) is to use the representation of the 

Riemann zeta function 
0

( ) 1 ss dt
t

s t t

ζ ∞  
=  

 
∫  , in this case we have on the 

left side of (4.3) the expression 1 xe−− , here [ ]x  is the floor function, the 

kernel of the integral eqution would be now 
x

t

 
 
 

. 

In any case both Kernel can give two equivalent kernel and two 

equivalent integral equations, if we replace the function 
x

t
 by 

1

2x

t

ε+
 
 
 

 

for any positive epsilon , then we find the regularized integral 

 

30
0 2

lim ( ) 0
dx

R x

x
ε ε

∞

→ +
=∫     since  ( ) 1

1 2 ( )
2

Oζ ε γ ε
ε

+ = + +     0ε →    (4.9) 

 

                        This regularization is admissible since the Mellin transform of the Riesz  

                        function is equal to   
( 1)

( 2 )

s

sζ
Γ +

−
 for every  ‘s’ so 

1
Re( )

2
s < − . 

 

                        The integral equation (4.3) can be written also in the form 
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1

0

1
1 ( )x

dt
e x Riesz t

xt xt

∞
−   

− =  
  

∫     
1

1

( 1)
1

!

n

x
n

n

e
n x

∞−

=

−
− =∑      (4.10) 

 

If we insert this series inside (3.9) for the function 
1

1xe
−

− , and use the 

fact that  
0

(2 ) 1 ss dt
t

s t t

ζ ∞   
− =  

  
∫ , with 0α =  then we get the solution to 

(4.10) in terms of the series  
1

( )

( 1)! (2 )

n

n

x

k nζ

∞

=

−
−

−∑  . 

 

The integral (4.10) is of the form 
0

( ) ( )
x

g s dtK f t
t

∞
 =  
 ∫  , so we can 

generalize this result and the function ( )f t  of the previous integral 

equation will have the power series solution 

 

0

( )
( )

nn

n

a
f t x

M n

∞

=

=
−∑      

0

1 n

n

n

g a s
s

∞

=

  = 
 

∑     1

0

( ) ( ) nM n dtK t t

∞
−= ∫    (4.11) 

 

The asymptotic behavior of the poewr series inside (4.11) is dictated by 

the zeros of ( )M s  since   

 

0

1 ( )
( )

( ) 2 ( )

c i

nn

s
n c i

a ds G s
f t x

M n i x M sπ

+ ∞∞

= − ∞

= =
−∑ ∫        1

0

( ) ( ) sG s dtg t t

∞
−= ∫    (4.12) 

 

 

5. APPLICATION OF THE FRACTIONAL CALCULUS TO THE 
SOLUTION OF THE INTEGRAL EQUATIONS  

 

In the section 3 of this paper, we explained the ‘Kernel problem’ , now 

we devote this section to solve this problem by using the tools of the 

fractional Calculus. 

A good web-based introdcution to fractional calculus is given in [11] , 

however we will only need some basic properties of the fractional 

derivatives , here they are 

 

       
( )

( 1)

1

m m

s

m
D t t

m

α α

α
−Γ +

=
Γ − +

     1

0

( )
( ) ( )

( )

s

t

s
dtt D f t M s

s

α α
α

∞
− Γ

= −
Γ −∫  (5.1) 

 

   1

0

1
( )s u s

dtt f t M
u u

∞
−  =  

 ∫         1

0

( ) ( )sdtt f t M s

∞
− =∫                     (5.2) 

 

Now if we take the fractional derivative with respect to ‘s’ inside of our 

integral equation , we get the result 
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0 0

( ) ( ) ( ) ( )s s s

t
sD g s s dtD K st t dtD K t

s

α α αϕ ϕ
∞ ∞

 = =  
 ∫ ∫    ( ) ( )t f t tαϕ =     (5.3) 

 

The formal power series solution to equation (5.3) is given by the 

formula  

 

1

0

ˆ ( 1 )
( )

! ( 1 )

nn

n

c M n
t x

n n

αα
ϕ

α

∞
+ −

=

+ −
=

Γ + −∑        
1

1 (1 ) ( )

2 (1 )
n n

C

n g z
c

i n zπ α +

Γ −
=

Γ − − ∫   (5.4) 

 

Here ‘C’ is a curve which encloses all the poles of the function g(z), and 

the Z-transform of the function ( )ssD g sα  is  
1

0

n

n
n

c

s α

∞

+ −
=
∑  

An easier method would just to make the change of variable ut t→  and 
us s→  with u >0 , in this case we have the new integral equation 

 

( ) ( )
0 0

( ) ( )u u u u

u u

t
g s s dtK s t t dtK t

s
ϕ ϕ

∞ ∞
 = =  
 ∫ ∫   1( ) ( )u u

u t ut f tϕ −=   (5.5) 

 

The power series solution to (5.5) in terms of the coefficients of the Zeta 

transform of ( )ug s  is 

 

1

0

( ) ( )
1ˆ

u u nn
u

n

d
t ut f t u t

n
M

u

ϕ
∞

−

=

= =
+ 

 
 

∑         ( )u n

n

n

g s d s
∞

−

=−∞

= ∑    (5.6) 

 

6.ASYMPTOTIC EXPANSIONS OF INTEGRALS 

 
Given the function defined by an integral transform 

 

0
( ) ( ) ( )g s dtK st t f tλ∞

= ∫      1λ > −     (6.1) 

 

Assuming the function f has an expansion near the origin in the form of a 

Taylor expansion 

 

0

( )
!

n

n

n

x
a f t

n

∞

=

→∑      0t →         
1

(0)
!

n

n n

d
a f

dx n
=       (6.2) 

 

Making a simple change of variable st u= and back and integrating term 

by term inside the Taylor series, interchanging the sum and the integral 

 

0 00 0

1 1
( ) ( )

n n

n n n
n n

x x
a dtK t t dtK t t a

s s s s

λ λ
∞ ∞∞ ∞

= =

   =   
   

∑ ∑∫ ∫    (6.3) 
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So we have finally the asymptotic expansion  

 

1
0

( 1) 1
( ) (0)

!

n

n n
n

d F n
g s f

dx n s λ

λ∞

+ +
=

+ +
∑∼       s →∞      (6.4) 

 

Where 1

0
( ) ( )sF s dtt K t

∞ −= ∫  is the Mellin transform of the Kernel of the 

integral transform defined in (6.1) , if we set ( ) tK t e−=  the equation 

(6.4) is just the 'Watson's lemma' for integrals and series 

 

 

 

APPENDIX A: RAMANUJAN’S MASTER THEOREM AND BOREL 
RESUMMATION 

 

Let be the function 
0

( ) ( 1) ( )n n

n

f x a n x
∞

=

= −∑ , which can be expanded into a Taylor 

series in a neighborhood of x=0 , Ramanujan’s master theorem states  

 

1

0

( ) ( )
sin( )

sdxf x x a s
s

π
π

∞
− = −∫    (A.1) 

 

We can prove (A.1) with the Borel generalized transform 

 

   

0

( ) ( )na n dtt g t

∞

= ∫   (A.2) 

 

The sum 
0

1
( )

1

n

n

xt
xt

∞

=

− =
+∑  can be evaluated without any problem, then we apply 

the Mellin transform to both sides of (A.2) , and use the Mellin covonlutio theorem 

for the expression  
0

( )

1

g t
dt

xt

∞

+∫    

 

( ) ( )
1 1

0
0 0 0

( )
( ) ( ) ( )

1 sin sin

s s sg t
f x x dx x dx dt dtg t t a s

xt s s

π π
π π

∞ ∞ ∞
∞− − −= = = −

+∫ ∫ ∫ ∫   (A.3) 

 

The last expression (A.3) is precisely Ramanujan’s master theorem, here we have 

used the identity 
1

0
1 sin( )

st
dt

t s

π
π

∞ −

=
+∫  , and the definiton of a(n) in terms of the 

function g(t). 

This Ramanujan master theorem can be generalized to include the general power 

series with only positive terms 
0

( ) ( ) n

n

f x a n x
∞

+
=

=∑ , the generalization using 

Cauchy’s principal value is 
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0 00

( ) ( ) . ( ) ( )n n

n n

f x a n x PV dt xt g t

∞∞ ∞

+
= =

 
= =  

 
∑ ∑∫     

0

( ) ( )na n dtt g t

∞

= ∫    (A.4) 

 

In this principal value sense the integral 
1

0

. cot( )
1

sx
PV dt s

t
π π

∞ −

= −
−∫ with 

0

1
( )

1

n

n

xt
xt

∞

=

=
−∑  is convergent for 0<Re(s)<1 so in this case the Mellin transform of 

the power series in a regularized sense  is equal to  

( )1

0

. ( ) ( ) cotsPV dx f x x a s sπ π
∞

−
+ = − −∫     

 

 

APPENDIX B: RIESZ FUNCTION AND A SUM OVER RIEMANN ZEROS 

 

From the formula (4.1)  
2 2

1

( ) ( )
exp

n

Riesz x n x

x n n

µ∞

=

 = − 
 

∑  a question is could we 

express a sum involving the Möbius function using the Riemann Zeros ??. 

 

Titchmarsh [8] used the Residue theorem and assumed that all the Riemann zeros 

were simple to obtain the following formula for the Mertens function 

 
21

1

( 1) 2
( ) ( ) 2

'( ) (2 )! (2 1)

nn

n x n

x
M x n

n n n x

ρ

ρ

π
µ

ρζ ρ ζ

−∞

≤ =

−  = = − +  +  
∑ ∑ ∑    (B.1) 

 

Valid for x >1 , if we set   ux e=  and differentiate respect to ‘x’ , since the Mertens 

function is just an step function its derivative must be a delta comb 

 

/ 2 0

10

( ) ( )
( ) (log )

u
u

n

dM e n
due g u g n

du n

µ∞ ∞
−

=

=∑∫    (B.2) 

 

Now if we write  the Riemann zeros as 1/ 2 iρ γ= + , then after some trivial 

manipulations we get from (B.2) the formula 

 
2

(2 1/ 2)

1 1

( ) ( ) 2(2 ) ( 1)
(log ) ( )

1 (2 )! (2 1)
'

2

n n
n u

n n

n h
g n dug u e

n nn
iγ

µ γ π
ζζ γ

∞∞ ∞
− +

= = −∞

−
= +

+ + 
 

∑ ∑ ∑ ∫    (B.3) 

 

The firstright part of (B.3) runs over all the Riemann zeros on the critical strip 

0 Re( ) 1s< <  and  
0

1
( ) ( ) cos( ) ( )g x h u ux du g x

π

∞

= = −∫  is a  Fourier transform pair  

A straight application to the Riesz function of (B.3) with 
2(3/ 2)( , )

tt xeg t x e e
−− −=  gives 

for big x>>1, after grouping the terms of the sum over the imaginary part of the 

Riemann zeros. 
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( ) 3 2
0 4

3 2

( ) 1 4
2 lim .      

' 1/ 2
2

n

in
T

i

R x
e x

x i
x

γ
γ

γ

ζ γ − →∞  < <  

 −  Γ  
  ≈ ℜ →∞

+ 
 
 

∑      (B.4) 

 

We have used the integral representation of the Gamma function 1

0

( ) t ss dte t

∞
− −Γ = ∫  

inside the equation (B.4) 

 

So if all the imaginary part of the Riemann zeros were REAL , Riemann Hypothesis 

true then  the Riesz function would obey the bound  
1

4( )R x O x
ε+ 

=  
 

 for any 

positive epsilon, at least for big values of ‘x’ . 

 

Equation (B.3) must be understood more rigorously as the limit of a sum over the 

imaginary part of the Riemann zeros 
1

2
iρ γ= +  (assuming they are simple). 

 

( )

2
(2 1/ 2)

1 0 1

( ) ( ) 2(2 ) ( 1)
(log ) 2 lim ( )

' (2 )! (2 1)
n

n n
n u

n
n T n

n h
g n e dug u e

n nn γ

µ γ π
ζ ρ ζ

∞∞ ∞
− +

→∞
= < < = −∞

  −
= ℜ + +   + 

∑ ∑ ∑ ∫  

           (B.5) 

 

 

APPENDIX C: A FUNCTIONAL DIFFERENTIAL EQUATION FOR 

INFINITE PRODUCTS 

 
Let be the infinite product 

 

 
0

( ) 1
n n

x
S x

a

∞

=

 
= + 

 
∏              (0) 1S =        (C.1) 

 

This product also can be defined (regularization) As 

 

       (0, ) (0,0) log ( )s sZ x Z S x−∂ + ∂ =     
( )0

1
( , )

s
n n

Z s x
x a

∞

=

=
+

∑   (C.2) 

 

       We may take the logarithmic derivative inside (D.1), this is equal to 

 

           
( )0

'( ) log ( ) 1

( ) n n

S x d S x

S x dx x a

∞

=

= =
+∑    (C.3) 

 
      If we take now the (s-1)  derivative inside (C.3) we get 
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( )

1

1
0

'( ) ( 1) ( )

( )

s s

ss
n n

d S x s

dx S x x a

− ∞

−
=

  − Γ
= − 

+ 
∑    (C.4) 

 
      Then, if we combine  and  , and set ( ) log ( )y x S x= , we have a functional  

       differential equation valid for every infinite product of the form (C.1) 

 

        
1 1

0 0

( ) (0) ( )
( 1) ( ) ( 1) ( )

s s

x x

s s

s s

D Dd dy d dy
x y x

ds s dx ds s dx

− −

= =

      − =      − Γ − Γ      
 (C.5) 

 

        Where ( 1)s i se π− =  and 
1

1

1

s
s

x s

d
D

dx

−
−

−=  is the (s-1) fractional derivative operator, this  

        operator can be  defined by the Grunwald-Letnikov differintegral. 

 

        1

10
0

11
( ) lim ( 1) ( )s m

x sh
m

s
D y x f x mh

mh

∞
−

−→
=

 −  
= − −  

  
∑               (C.6) 

 

         
1 ( )

( ) !

s s

m s m m

−  Γ
=  Γ − 

 are the generalized binomial coefficients. 
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