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Abstract

Recent developments in experimental molecular techniques, such as microarray, next

generation sequencing technologies, have led molecular biology into a high-throughput

era with emergent omics research areas, including metagenomics and transcriptomics.

Massive-size omics datasets generated and being generated from the experimental lab-

oratories put new challenges to computational biologists to develop fast and accurate

quantitative analysis tools. We have developed two statistical and algorithmic methods,

GRAMMy and eLSA, for metagenomics and microbial community time series analy-

sis. GRAMMy provides a unified probabilistic framework for shotgun metagenomics, in

which maximum likelihood method is employed to accurately compute Genome Relative

Abundance of microbial communities using the Mixture Model theory (GRAMMy). We

extended the Local Similarity Analysis technique (eLSA) to time series data with repli-

cates, capturing statistically significant local and potentially time-delayed associations.

Both methods are validated through simulation studies and their capability to reveal

new biology is also demonstrated through applications to real datasets. We implemented

GRAMMy and eLSA as C++ extensions to Python, with both superior computational

efficiency and easy-to-integrate programming interfaces. GRAMMy and eLSA methods

will be increasingly useful tools as new omics researches accelerating their pace.

xiii



Chapter 1

Introduction

1.1 High-throughput molecular biology

1.1.1 Molecular biology

On the frontier of modern sciences, molecular biology studies the sciences about bio-

logical molecules and their systems, not only individual molecules such as DNA, RNA

and proteins, but also interactions between them, including the molecular mechanisms of

replication, transcription, translation processes and their regulations [3]. One ultimate

goal of molecular biology is to understand how biological systems operate from the per-

spective of bio-molecules. At the heart of molecular biology is the ‘central dogma’ [25],

which describes the general principle regarding the flow of information between DNA,

RNA and protein molecules. Since the mid twentieth century, we have witnessed many

important discoveries along the line of studying the ‘central dogma’.

In 1953, James D. Watson and Francis Crick first discovered the double helix structure

of the DNA molecule [114]. It was closely followed by a series of novel discoveries of other

biological molecules, including the first X-ray structure of protein – hemoglobin, the first

1



tRNA molecule and many others [44, 48, 75]. Bio-molecules like these are the building

bricks of the life machinery. Almost concurrently, essential enzymes of replication, tran-

scription, translation processes were also discovered, to name a few, DNA polymerases,

RNA polymerases and ribosomes [45, 46, 73]. Bio-molecules like these are the building

tools of the life machinery. Bricks and tools are yet not all that needed to make real life,

and we were still missing the code of execution, which is encoded in the genome of living

organisms. Our curiosity has finally led to the sequencing of the first prokaryote genome

Haemophilus influenzae in 1997 and the first two human genomes in 2001 [35, 52, 107].

Genomes were expected to be the architecture drafts of most organisms and to contain

all the information needed to rebuild the same organism. Equipped with the bricks, tools

and architecture drafts, it seems we were ready to understand and manipulate the life

machinery.

However, the truth is that we are still far away from the truth. It turns out, there

are various types of molecular regulations going on, coordinating DNA, RNA and pro-

teins. Though the regulation mechanisms involved in prokaryotes may be straight-forward

coded in their genomes, those of eukaryotes, particularly our human being, are extremely

complicated. As the quest for the holy grail goes on, we gradually come to know that

molecular regulations occur at different levels and stages, such as transcriptional, post-

transcriptional and translational regulations, and operate through different mechanisms,

including transcription factor control, alternative splicing, RNA silencing, RNA editing

and many types of protein modifications [9, 33, 66, 90]. The possibilities of control ex-

plode in combinatorial number, which render the genome as deliberately encrypted as a

2



massive jigsaw puzzle. And even today, the jigsaw is not yet solved, making molecular

biology still a fascinating field to work on, with occasional ground-breaking discoveries.

Moreover, molecular biology is not only a science but also a technology. The lat-

ter aspect may even be more related to this dissertation. In fact, numerous molecular

technologies have been developed and they have permeated into every corner of mod-

ern biological laboratories. In the DNA sequencing technology direction alone, we have

moved from Frederick Sanger’s chain termination method [87] to the state-of-art high-

throughput next generation sequencing (NGS) technologies [77], easily producing billions

of base pairs of reads every day with one sequencing machine. Meanwhile, promising

third generation technologies have already been proposed, and are making their way to

daily labs. Certainly, there are other high-throughput molecular experimental technolo-

gies available for different purposes, such as PCR, Microarray, ChIP-chip, ChIP-seq and

RNA-seq, some of which have already been widely adopted [4, 10, 69, 79, 112]. All these

technologies, new or mature, are collectively bolstering the whole world of biological

sciences into a new high-throughput data era.

1.1.2 Molecular microbial ecology

Molecular microbial ecology is a crossbred of ecology and molecular biology, which studies

environmental microbial organisms using molecular approaches. Consequently, molecular

microbial ecology is one among many fields that have been pushed forward greatly by

the recent developments in high-throughput experimental molecular technologies. The

biggest paradigm shift in the last 25 years is the transformation of main study subjects

3



from cultured microbial organisms to naturally occurring uncultured microbial organisms

[14].

In 1977, Carl Woese showed the possibility that 16S rRNA could be used to derive

evolutionary relationships [115]. In 1985, Norman Pace led the first direct analysis of

rRNA sequences in the environment to describe the diversity of microorganisms without

culturing [72]. Later, with the further development of PCR technology, Jo Handelsman

and colleagues pioneered the idea that total DNA or RNA can be extracted from envi-

ronmental samples, cloned into a suitable vectors and followed by the analysis using high

throughput DNA sequencing of cloned DNA, or using direct sequencing of the original

DNA or RNA (see Figure 1.1). Later, they further coined the name for this technique –

‘metagenomics’ [41].

Nowadays, metagenomics and other molecular experimental approaches are routinely

applied to microbial communities, with habitats varying from open environmental bodies

to sites within extreme surrounding, from human exterior to human interior, and with

subjects including viruses, bacteria achaea to eukaryotes [15]. These studies help in

discovering new proteins and enzymes, like the bacterial rhdopsin [8] and the Sep-tRNA

synthetase [88]; in elucidating the mechanism of human diseases, such as obesity and

Crohn’s disease [78, 101, 103]; and in evaluating the biogeochemical cycles of the earth,

with direct application to biodiversity conservation and battling global climate changes.

1.1.3 High-throughput era

Meanwhile, at the beginning of this new century, with the aid of high-throughput experi-

mental technologies, like microarray, ChIP-chip, NGS and many others, researchers open
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the door of high-throughput studies for molecular biology. We can now not only look at

one molecule at a time, but also thousands of molecules all together at a time, whether

they are DNAs, RNAs or proteins. The high-throughput trend gives rise to waves of

‘omics’ datasets and jump-starts many new areas of research, such as transcriptomics,

proteomics and metagenomics. There are many high-throughput molecular techniques

present for molecular microbial ecology as well, such as terminal restriction fragment

length polymorphism (TRFLP), automated rRNA intergenic spacer analysis (ARISA),

16/18S rRNA tag sequencing and shotgun metagenomics [5, 34, 91]. Thanks to these

technologies, we can not only look at one organism at a time, but also thousands of

organisms all together at one time, capturing their overall dynamics in one snapshot.

In this dissertation, we will focus on studying the high-throughput data from molec-

ular microbial ecology, which are sequencing reads from the shotgun metagenomics and

the operational taxonomic units (OTUs) time series obtained using different molecular

technologies, including ARISA and TRFLP technologies. We will also study some tran-

scriptomics data from mircoarray gene expression experiments of C. elegans [111]. Our

major aims are developing new mathematical and computational analysis approaches for

such kinds of data. Our new approaches show improved results upon previous studies

and yield interesting biological findings. Our approaches are also applicable to similar

forms of data from other experimental technologies.
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1.2 Challenges of high-throughput data

Mathematical and computational techniques have been playing an important role in facil-

itating biological researches, giving birth to many useful tools such as BLAST, GENES-

CAN, etc [1, 16]. However, the specific aims of biological studies and the quantity and

quality of molecular experimental data has been changing over the years. Taking the NGS

technology (see Table 1.1) based metagenomics for example, we are now facing with not

one single genome but a mixture of genomes, and we are handling millions of sequences

all at once. The number of reads are three orders larger than the number of reads used

to assemble first prokaryote genome back in 1997. Therefore, the new high-throughput

data demand new computational approaches and softwares to be developed, which should

be faster while remain accurate. In our cases, we would like to develop such methods

specifically for shotgun metagenomics and molecular time series data.

1.2.1 Shotgun metagenomics

In metagenomics studies, two experimental approaches are widely used: first, the 16S/18S

rRNA or its variable region sequencing; second, the whole genome shotgun sequencing

(WGS), or briefly shotgun metagenomics. Shotgun metagenomics sample uncultured

microorganisms, randomly shear DNA, and sequence many short reads.

Shotgun metagenomic reads are suitable for both functional analysis and taxonomical

analysis, however, the scale of study was previously restricted by hefty sequencing costs.

The recent adoption of NGS technologies in shotgun metagenomics studies, helped to
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reduce the cost and increase the coverage. As a result, the most recent shotgun metage-

nomic data have a sharp increase in the number of samples and the average read number

per sample, although they also suffer from a reduction in read length, due to the limita-

tions of NGS technologies (see Table 1.2).

1.2.2 Molecular time series data

Molecular time series data from natural environmental samples is another important

resource for studying temporal dynamics within microbial communities. The mature

molecular technologies that characterizing the spacer length and restriction pattern of

the variable regions of 16/18S rRNA, such as TRFLP and ARISA, have been existed for

about a decade. There are time series from ARISA and TRFLP technologies describing

hundreds of OTUs in several years of time [24, 92]. They already provide a good basis

for studying temporal associations.

Riding the recent NGS trend, microbial molecular ecologists are also shifting into new

sequencing technologies like Roche/454, which has the capability to generate millions of

sequences each sample representing thousands of OTUs simultaneously. This new type

of time series data have just started to appear since Gilbert et al. [37], yet are gaining

more and more popularity [38]. For the new data from Gilbert et al. [38], we have more

than 70 time spots and tens of thousands of OTUs which is two orders larger in number

compared to ARISA and TRFLP technology. Though the data have the potential to

reveal finer details of the intricate dynamics of microbial communities, currently, there

are still a lack of computational approaches to smoothly handle and accurately analyze

such time series, where computational biologists can come into play.
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There are other time series data as well, from different sources, such as the microarray

data from gene expression studies and RNA-seq data from transcriptomics [99, 111].

As compared to microbial ecology data, they are mostly shorter time series yet with

an even larger number of factors (genes, mRNAs or transcripts, counterpart to OTUs)

Though they are potentially useful for studying temporal associations in transcriptional

regulations, there is also a similar lack of methods for analyzing these datasets, especially

for discovering complicate time-dependent associations.

1.2.3 Computational approaches

Many computational approaches have been developed in the past to facilitate the analysis

of new types of biological data. For instances, BLAST simplified the tedious manual

homolog search and GENESCAN eased the manual prediction and curation of genes. In

face of current high-throughput data, we also need new computational approaches for

analyzing them. Fortunately, many computational tools have already been developed for

shotgun metagenomics and molecular time series analysis.

Specifically for shotgun metagenomics, there are already several tools, which are sum-

marized in Table 1.3. However, as we shall see, they have not yet fully met the challenges.

We also notice the recent acceleration of microbial reference genomes sequencing projects

(see Table 1.4) and the increase of read assignment ambiguities partially due to NGS

technologies in the experimental part. Therefore, we are motivated to explicitly model

the ambiguities and to utilize the increasingly available reference genomes. Thus we de-

veloped the GRAMMy method for the genome relative abundance estimation based on

these improvements.
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For the analysis aimed at finding time-dependent associations in relatively long time

series in molecular biology and microbial ecology, there have been a few methods devel-

oped, including the previous local similarity analysis (LSA) approach from our lab [83].

Yet the recent increase of OTU number and the introduction of replicates in the molec-

ular time series data have put new challenges as well as opened new opportunities for

developing novel methods for finding more complicated time-dependent association pat-

terns as well as the subsequent dynamics network analysis. Therefore, we are motivated

to take advantage of these new features and extended the original LSA into a new eLSA

pipeline with improved efficiency and wider applicability.

1.3 Our approaches

1.3.1 GRAMMy for shotgun metagenomics

In Chapter 2, we present the GRAMMy framework and tool we developed for the accurate

genome relative abundance estimation, based on shotgun metagenomic reads [121]. Ac-

curate estimation of microbial community composition based on metagenomic sequencing

data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods

are mainly based on directly summarizing alignment results or its variants; often result in

biased and/or unstable estimates. We have developed a unified probabilistic framework

(named GRAMMy) by explicitly modeling read assignment ambiguities, genome size bi-

ases and read distributions along the genomes. Maximum likelihood method is employed

to compute Genome Relative Abundance of microbial communities using the Mixture

Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that
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are accurate and robust across both simulated and real read benchmark datasets. We

applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics

projects and identified 99 frequent species (minimally 0.5% abundant in at least 50%

of the datasets) in the human gut samples. Our results show substantial improvements

over previous studies, such as adjusting the over-estimated abundance for Bacteroides

species for human gut samples, by providing a new reference-based strategy for metage-

nomic sample comparisons. GRAMMy can be used flexibly with many read assignment

tools (mapping, alignment or composition-based) even with low-sensitivity mapping re-

sults from huge short-read datasets. It will be increasingly useful as an accurate and

robust tool for abundance estimation with the growing size of read sets and the expand-

ing database of reference genomes. The GRAMMy software is freely available from the

GRAMMy homepage, which can be accessed at http://meta.usc.edu/softs/grammy.

1.3.2 eLSA for molecular time series

In Chapter 3, we present the extended local similarity analysis (eLSA) technique for

microbial community and other time series data with replicates [122]. The increasing

availability of time series microbial community data from metagenomics and other molec-

ular biological studies has enabled the analysis of large-scale microbial co-occurrence and

association networks. Among the many analytical techniques available, the Local Sim-

ilarity Analysis (LSA) method is unique in that it captures local and potentially time-

delayed co-occurrence and association patterns in time series data that cannot otherwise

be identified by ordinary correlation analysis. However LSA, as originally developed,

does not consider time series data with replicates, which hinders the full exploitation
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of available information. With replicates, it is possible to understand the variability of

local similarity (LS) score and to obtain its confidence interval. We extended our LSA

technique to time series data with replicates and termed it extended LSA, or eLSA.

Simulations showed the capability of eLSA to capture subinterval and time-delayed as-

sociations. We implemented the eLSA technique into an easy-to-use analytic software

package. The software pipeline integrates data normalization, statistical correlation cal-

culation, statistical significance evaluation, and association network construction steps.

We applied the eLSA technique to microbial community and gene expression datasets,

where unique time-dependent associations were identified. The extended LSA analy-

sis technique was demonstrated to reveal statistically significant local and potentially

time-delayed association patterns in replicated time series data beyond that of ordinary

correlation analysis. These statistically significant associations can provide insights to

the real dynamics of biological systems. The newly designed eLSA software efficiently

streamlines the analysis and is freely available from the eLSA homepage, which can be

accessed at http://meta.usc.edu/softs/lsa.

Platform RL Days/Run Gb/Run Machine($) HG Reseq($)

Sanger 800 24runs/d∗ 2Mb/day∗ 95,000∗ 70,000,000
454 330 .35 .45 500,000 1,000,000

Solexa 75 4 18 540,000 250,000
Solid 50 7 30 595,000 60,000

Helicos 32 8 37 999,000 48,000

Table 1.1: Next generation sequencing technologies. Data from Metzker et al. [65]. Data
with ∗ are from the web.
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Dataset Technology RLxRN Ref

Sargasso Sea Sanger 818x25k [108]
Acid Mine Drainage∗ Sanger 737x103,462 [104]

Minnesota Soil Sanger 700x150,000 [100]
3 samples Whale Falls Sanger 700x100k ea. [100]

2 samples Human Distal Gut∗ Sanger 800x70,000 ea. [39]
Lean and Obs Mice Gut 454 GS20 93x700k ea. [103]

Termite Symbiosis Sanger 750x106,000 [113]
44 samples Global Ocean (GOS) Sanger 750x70k ea. [85]

45 samples Nine biomes 454 GS20 100x200k ea. [29]
31 Lean and Obs Twin Family ∗ 454 GS20 200x1m ea. [101]

124 samples Human Gut Solexa 75x60m ea. [78]

Table 1.2: Published shotgun metagenomics datasets. Datasets with ∗ are datasets used
in this study.

Sequence Assignment

Name Input Blast Map k-mer Classify Abundance Ref

Tetra Contigs no no yes yes no [98]
PhyloPythia Contigs no no yes yes no [64]

MEGAN∗ Reads yes no no some indirect [47]
CompostBin Reads no no yes yes no [20]

GAAS∗ Reads yes no no no yes [2]
Phymm Reads yes no yes yes no [13]

GRAMMy∗ Reads yes yes yes soft yes [121]

Table 1.3: Published shotgun metagenomics tools. Softwares with ∗ are compared in this
study.

Name Since # of G Support

10,000 Microbial Genome 2009 10,000 CAS-BGI
Human Microbiome Project (HMP) 2007 hundreds NIH-NHGRI

Genomic Encyclopedia of 2007 100 DOE-JGI
Bacteria and Archeae (GEBA)

Marine Microbiome Init. (MMI) 2004 155 Moore, JCVI

Table 1.4: Ongoing and past microbial genome sequencing projects. Data from GOLD
[58].
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Figure 1.1: Microbial community DNA sequencing. Figure from Delong et al. [26].
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Chapter 2

GRAMMy based on shotgun metagenomic reads

2.1 Background

Microbial organisms are ubiquitous dwellers of the earth’s biosphere whose activities

shape the earth’s biogeochemistry. Through pathogenesis and symbiosis, they also play

important roles in the health and metabolism of macro-organisms. For example, the

human body is inhabited by trillions of microbes, affecting our digestive system, immune

system, and physiology [102]. Thus, the knowledge of their presence and abundance in

nature is of great relevance to ecology as well as to human well-being. To study microbes

in natural environments, researchers frequently apply whole genome shotgun sequencing

to uncultured samples to generate genomic sequence reads reflecting the structure of

microbial communities [104, 108]. Using the sequencing data, investigators try to address

basic community questions such as: who they are, how many they are, and what they

do. As a consequence of the random sampling and sequencing scheme of the shotgun

metagenomics approach, the presence and abundance information of metagenomes is

preserved in raw reads although some studies have shown that biases in sampling can
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occur, as is true for virtually all approaches [68]. However, the subsequent analysis of

metagenomic data remains a challenging computational problem because of the mixed

nature of metagenomes and the fact that we only sequence a small fraction of them.

Several computational methods have been developed to extract taxonomic infor-

mation from metagenomic sequence reads. These existing methods can be separated

into two classes: composition-based and alignment-based. In the composition-based ap-

proaches, similarity measures based on oligonucleotide composition, also known as k-mer

frequencies, are used to classify metagenomic reads. For instances, TETRA, Compost-

Bin, TACOA, and AbundanceBin are all reference-free methods and they cluster se-

quences with different binning strategies [20, 28, 98, 117]. PhyloPythia uses pre-trained

composition-based classifiers to group sequences [64] and Phymm trains interpolated

Markov model-based classifiers [13, 50]. However, none of these binning or classifica-

tion approaches is designed to estimate the relative abundance of genomes for microbial

communities (or the genome relative abundance (GRA)).

In the alignment-based approaches, alignment and mapping tools, such as BLAST,

are commonly used to find similarity hits of the query reads to the references [1]. Some of

them, such as Sort-ITEMS, use BLASTX for amino acid sequence similarity search [67].

However, we will only focus on similarity search based on nucleic acid sequence. The

MEGAN software parses BLAST results and traces back the lowest common ancestor

of ambiguously assigned reads to generate a phylogenetic distribution of the reads [47].

An intuitive way of estimating GRA based on MEGAN is using the normalized read

distribution along the leaves of the phylogenetic tree, leaving out the reads assigned

to multiple references. However, estimation of abundance levels by this method, which
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discards reads with multiple origins, can be biased by many factors, including the variation

of genome size [2, 11]. The latest Genome Abundance and Average Size (GAAS) tool

weighs hits by their E-values and gives a direct estimation of genome relative abundance

[2]. However, its accuracy and reliability are still hindered by the prevailing existence of

read assignment ambiguities and the oversimplified estimation scheme.

In parallel with computational developments, significant improvements in sequencing

technology have also been underway. Traditional metagenomic read sets are based on

Sanger sequencing, which has an average read length at about 800 bp or above. At these

lengths, taxonomic origin identification for the reads is relatively easy when the reference

genomes are known. However, there was only limited availability of reference genomes

as well as limited sequencing depth. Therefore, the relative abundance levels could not

be accurately estimated, especially for complex communities in the past. Recent wide

spread adoption of next generation sequencing (NGS) technologies in the metagenomics

research community has led to the emergence of several massive, but short, read sets from

Roche/454 (millions of 100 - 400 bp reads), Illumina/Solexa and ABI/SOLiD platforms

(tens of millions of 50 - 100 bp reads) [78, 103].

The paradigm shift in sequencing technologies has impacted downstream analyses.

Specifically, the identification of the origin of a read becomes more difficult for several

reasons. First, a large number of short reads cannot be uniquely mapped to a specific

location of one genome. Instead, they map to multiple locations of one or multiple

genomes. These ambiguities are directly associated with the read length reduction in

NGS technologies. Second, communities usually consist of many microbes with similar
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genomes, different only in some parts, making it indeed impossible to determine the origin

of a particular short read based solely on its sequence.

Despite these difficulties, NGS read sets have brought us richer abundance information

of microbial communities than traditional datasets because of the significant increase in

the number of reads. Along with the increase of read set size, efforts to assemble more

reference genomes are ongoing [70, 76]. In addition, new experimental techniques, such

as single-cell sequencing approaches are being developed to sequence reference genomes

directly from environmental samples [94, 116]. Thus, in view of the constraints of current

computational tools and the fast expanding sequencing capacities, we are motivated to

develop a new method for accurate and reliable GRA estimation, one that can meet the

challenges of short reads and the growing number of reference genomes.

In this chapter, we introduce GRAMMy, a unified Genome Relative Abundance

(GRA) estimation framework using Mixture Model theory (MMy)-based modeling of

shotgun metagenomic reads. Our GRAMMy framework is a reference-based method and

utilizes the nucleic acid sequence similarity or composition. We first tested GRAMMy

using our simulated reads as well as some synthetic communities with real reads from

other studies (the FAMeS datasets) [63]. Compared to other reference-based methods,

including GAAS and the abundance estimates from MEGAN, GRAMMy shows greatly

improved accuracy in abundance estimations. Furthermore, with a reasonable sequencing

depth, GRAMMy’s estimates converge to the true abundance levels and remain stable.

We then analyzed 34 real metagenomic read sets with GRAMMy, the results of which

yielded interesting and new insights in biology. Finally, we packaged the GRAMMy
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tools as a C++ extension to Python, which can be downloaded freely from GRAMMy’s

homepage (http://meta.usc.edu/softs/grammy).

2.2 The GRAMMy framework and algorithm

2.2.1 The GRAMMy framework

The GRAMMy framework is based on a mixture model for the short metagenomic reads

and an Expectation Maximization (EM) algorithm, as outlined in the model schema and

the analysis flowchart in Figures 2.1 and 2.2. GRAMMy accepts a set of shotgun reads,

as well as some references (e.g. genomes, scaffolds or contigs) as inputs and subsequently

performs the Maximum Likelihood Estimation (MLE) of the relative abundance levels. In

the typical GRAMMy workflow, which is shown in Figure 2.2, the end user starts with the

metagenomic read set and reference genome set and then chooses between mapping-based

(‘map’) and k-mer composition-based (‘k-mer’) assignment options. In either option, af-

ter the assignment procedure, an intermediate matrix describing the probability that each

read is assigned to one of the reference genomes is produced. This matrix, along with the

read set and reference genome set, is fed forward to the EM algorithm module for estima-

tion of the genome relative abundance levels. After the calculation, GRAMMy outputs

the GRA estimates as a numerical vector, as well as the log-likelihood and standard errors

for the estimates. If the taxonomy information for the input reference genomes is avail-

able, strain (genome) level GRA estimates can be combined to calculate high taxonomic

level abundance, such as species and genus level estimates.
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We implemented the computation-intensive core of GRAMMy in C++ with Standard

Template Library (STL) for best performance and compatibility, and we integrated the

typical workflow tools into a Python extension. Compared to other methods included in

our study, we showed the superior accuracy and robustness of GRAMMy’s estimates, as

detailed in the following sections. Other choices of read assignment schema, such as NGS

mapping tools and Markov Model-based read assignment [82], can also be incorporated

into GRAMMy, since they produce a reasonable read assignment probability matrix.

The GRAMMy package is open source, and users are able to implement other workflow

variants.

2.2.2 A finite mixture model

We developed a finite mixture model for the GRAMMy framework. Following Angly et al.

we used genome relative abundance (GRA) as the relative abundance measure of mostly

unicellular microbial organisms [2]. We describe the sampling and sequencing procedure

as follows: First, randomly choose a genome gj with probability πj proportional to ajlj ,

where aj is the abundance and lj is the genome length. Second, randomly generate a

read ri from it. Without loss of generality, we further assume that for the given genome

gj we can reasonably approximate the generation of shotgun reads by some component

distribution fgj such that the probability of generating a read ri from gj is fgj (ri). With

a reasonable assumption of independence between the two sampling steps, the whole

procedure is probabilistically equivalent to sampling from a mixture distribution M :

M =
m∑
j=1

πjfgj , with the mixing parameters denoted by π = (π1, π2, ..., πm),
∑m

j=1 πj = 1

and the component distributions denoted by f = (fg1 , fg2 , ..., fgm), where m is the number

19



of genomes. Subsequently, each read set, denoted by R = (r1, r2, ..., rn) can be regarded

as a realized independent, identically distributed (iid) sample of size n from the mixture

M . The relative abundance of known genomes is exactly a transformation of the mixing

parameters π , which can be estimated based on the read set R. A schematic view of the

finite mixture model is shown in Figure 2.1. With the component distributions properly

set up, we can find the maximum likelihood estimate (MLE) of the mixing parameters.

In many studies, our knowledge of the genomes present in the community is limited.

Under these circumstances, we can define the mixture with the first m − 1 components

for known genomes and the last m-th component for the collective of unknown genomes.

Note that for the m−1 known components, we suppose that their genome sequences G =

(g1, g2, ..., gm−1) and genome sizes L = (l1, l2, ..., lm−1) are known. Therefore, the GRA

for known genomes a = (a1, a2, ..., am−1) is the normalized abundance, where the relative

abundance for the j-th known genome is aj = # of j-th genome
# known genomes , where

∑m−1
j=1 aj = 1. In the

biological setting, we want to estimate vector a, which is a measure of organism relative

abundance. In the transformed mixture problem, a is related to the mixing parameters

π by:

aj =
πj

lj
m−1∑
k=1

πk
lk

, (2.1)

or the inverse:

πj = (1− πm) · ajlj
m−1∑
k=1

aklk

, (2.2)

for j ∈ {1, 2, ...,m−1}. The number of sampled reads is both proportional to the genome

relative abundance and the length. Because the two factors are confounded, the missing
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knowledge of the genome length lj prohibits the estimation of aj from the data. Since the

effective genome length lm for the unknown genomes is not available, we cannot estimate

the relative abundance of the unknown component. However, the relative abundance of

known genomes can still be estimated using our procedures.

2.2.3 Estimation of GRA using Expectation Maximization (EM)

To estimate the mixing parameters, we adopted the EM algorithm to calculate the max-

imum likelihood estimate (MLE). In the EM framework, we assume a ‘missing’ data

matrix Z, in which each entry zij is a random variable indicating whether ri is from gj

or not. Then we can solve for the parameters by iteratively estimating π and Z using

Algorithm 2 (see derivations in Appendix A.1). Note that a variable with superscript (t)

stands for its value at the t-th iteration, e.g., p(t) is the estimate of at the t-th step. The

EM at the t-th iteration is:

• E-step

Assuming π(t) known, Z(t) can be updated by the corresponding posterior proba-

bilities:

z
(t)
ij =

p(ri|zij = 1;G)π
(t)
j

m∑
k=1

p(ri|zik = 1;G)π
(t)
k

, (2.3)

• M-step

Assuming Z(t) known, the new mixing parameters π(t+1) are updated by:

π
(t+1)
j =

n∑
i=1

z
(t)
ij

n
. (2.4)
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When the MLE of π is found, using Equation 2.1, the MLE of a can be calculated, thereby

solving the original problem.

The space complexity of the EM algorithm is O(c1n) and the time complexity of the

EM algorithm is O(c1c2n), where c1 the average number of associated genomes for one

read and c2 is the time cost related to the convergence criteria for EM. Since c1 and c2 are

both constants not related to n, the algorithm is linear in space and time complexity with

the read number n. Further, the concavity of the log-likelihood function can be shown

and the EM algorithm is guaranteed to converge to global maximum, see Appendix A.3.

2.2.4 Read probability approximations

The probability p(ri|zij = 1;G) is assessed based on fgj . Ideally, it is the probability

that ri is generated when read being uniformly sampled from genome gj . Let sij be the

number of copies of read ri in gj . Then the probability is approximated by:

p(ri|zij = 1;G) ≈ sij
lj

(2.5)

However, due to sequencing errors and natural genetic variations, the sij ’s are not readily

observable. When the mapping or alignment results from BLAST, BLAT, or other map-

ping tools are available, the number of high quality hits of ri on gj can effectively be used

as sij ’s. To keep only these reliable and statistically significant hits, raw hits are filtered

by E-value, alignment length and identity rate. We refer to the finite mixture model with

the read probability from mapping and alignment results as ‘map’ in the remainder of

the paper.
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An alternative way to assess the read probabilities is by using k-mer composition.

For the j-th genome, we calculate the fraction of a k-word w by pwj =
# of w in gj

lj
, the

normalized frequency of the word w in genome gj . For a read ri, we define pseudo-

likelihood for ri by:

p(ri|zij = 1;G) =
∏
w∈Wi

pwj . (2.6)

where Wi is the set of words formed by sliding windows of size k along. This probabilistic

assignment captures the overall similarity between reads and genomes, an idea adopted

in other composition-based studies such as in Sandberg et al. [86]. It is especially useful

when a large number of reads do not have reliable hits with reference genomes. We will

refer to the finite mixture model with the read probability from the multinomial k-mer

composition as ‘k-mer’ in the remainder of the paper.

2.2.5 Standard errors for GRA estimates

We also derived the asymptotic covariance matrix for the mixing parameters π using the

asymptotic theory for MLE estimates. Because there are m− 1 independent parameters

in π, we can choose them as (π1, π2, ..., πm−1) and denote by π̂. Further, let π̂∗ and a∗ be

the MLE estimates for π̂ and its corresponding GRA, respectively. Then, the asymptotic

standard error for a∗ is approximately:

SE(a∗j ) = (Cov(a∗))jj ≈ ((I−1o (a|R,G))jj)
1
2

∣∣
π̂=π̂∗ , (2.7)

for j ∈ {1, 2, ...,m− 1}, where Io is the observed information matrix. See Appendix A.2

for details of derivation.
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If only a small number (as compared to number of parameters) of reads are mapped,

the conditions for the asymptotic to hold cannot be satisfied. We can alternatively use

the bootstrap covariance estimator for the standard error of MLE:

SE(a∗j ) = (Cov(a∗))jj ≈

(
1

B − 1

B∑
b=1

(a∗(b) − ā∗)(a∗(b) − ā∗)T

)
jj

, (2.8)

for j ∈ {1, 2, ...,m− 1}, where ā∗ = 1
B

∑B
b=1 a

∗
(b) is the bootstrap mean estimator.

2.2.6 Higher level taxonomic statistics

Many downstream analyses can be carried out based on GRAMMy’s estimates. For

example, the average genome length l̄ is readily obtainable:

l̄ =
1

m− 1

m−1∑
j=1

ajlj (2.9)

Subsequently, we can test the statistical significance of the median average genome length

difference between two sample groups by Wilcoxon test (wilcox.test in R).

Since genome size bias has already been corrected, we can use GRAMMy estimates

to calculate the relative abundance of a higher-level taxon by simple addition. For this

purpose, we used the NCBI Taxonomy, which has the taxonomic assignments for all

reference genomes we used here. To illustrate, for a specific taxonomic level h, the

relative abundance of a i-th specific taxon T
(h)
i is:

a
T

(h)
i

=
∑

j∈{j:gj∈T
(h)
i }

aj (2.10)
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and

SE(a
T

(h)
i

) =

∑j∈{j:gj∈T
(h)
i }

SE(aj)
2

#{j : gj ∈ T (h)
i }

 1
2

, (2.11)

where h can be any one of the seven hierarchical levels in the taxonomy, from species to

kingdom.

2.3 Materials and methods

2.3.1 Real read sets and reference genome sets

In preparing the real read sets, we downloaded the FAMeS data from JGI (http://FAMeS.

jgi-psf.org), the ‘hg’ data from TraceDB (ftp://ftp.ncbi.nih.gov/pub/TraceDB/,

NCBI project id: 16729), the ‘uhg’ data from Sequence Read Archive (http://www.

ncbi.nlm.nih.gov/Traces/sra/, NCBI project id: 32089), the ‘jhg’ data from BGI

(http://gutmeta.genomics.org.cn/) [51] and the ‘amd’ data from TraceDB (NCBI

project id: 13696).

In preparing the reference genome sets, we downloaded currently available complete

and draft bacteria genomes from the NCBI Refseq (http://ftp.ncbi.nih.gov/refseq),

MetaHit (http://www.metahit.eu/), HMCJ (http://metagenome.jp), WUSTL Gor-

don Lab (http://genome.wustl.edu/) and JGI (http://genome.jgi-psf.org/). We

manually curated genomes to remove redundancy and organized them into a NCBI Tax-

onomy (http://www.ncbi.nlm.nih.gov/Taxonomy) database. We used the genome in-

formation available from IMG/M (http://img.jgi.doe.gov), IMG/HMP (http://www.

hmpdacc-resources.org/cgi-bin/img_hmp) and GOLD (http://www.genomesonline.
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org) to group them by habitats [58, 61]. Finally, we obtained 388 human gastrointestinal

tract genomes for a human gut reference genome set (‘HGS’).

2.3.2 Read filtering and assignment procedures

In the ‘map’ read probability backend, we used BLAT to map reads to reference genomes.

We prefer BLAT to BLAST, as BLAT is tens of times faster in handling low-sensitivity

similarity search for massive number of sequences than BLAST. Since we only kept align-

ment results with identity rate greater than 90%, the BLAT result should not differ much

from what if BLAST was used. For the human gut and simulated data, we used similar

filtering methods as by Turnbaugh et al. [101, 103] (E-value ≤0.0001, aligned length

more than 75% of its RL and identity ≥90%). In the ‘k-mer’ read-probability backend,

we used k-mer length k = 6. For GAAS and MEGAN, we used the same mapping results

from BLAT, as a common starting point. We used GAAS’s default filtering options (E-

value ≤0.0001, aligned length more than 80% of its RL, and identity ≥80%), as well as

MEGAN’s default options (min-score=35 for RL equal to 100 bp and min-score=50 for

RL equal to 400 bp; top percent=5%, min support=2), for comparisons.

In evaluating the ribotype and protein marker based method, we used the E.coli 16S

rRNA rrsE and ribosome protein rpoB genes to retrieve homolog sequences from the

simulated reads, which were then filtered by options (E-value ≤0.0001, aligned length

more than 75% of its RL and identity ≥90%), according to Biers et al. [12]. Our

validations have shown that variations of these parameters within a reasonable range had

little effect on the results.
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2.3.3 Numerical error measures

We use the following measures to evaluate the accuracy of the GRA estimate. Let the

true GRA be t and its estimate a. The first measure RRMSE =

√
1

m−1

m−1∑
j=1

(
|aj−tj |
tj

)2
is

the commonly used root mean square version of relative error [32]. We also included three

other error measures: AVGRE = 1
m−1

m−1∑
j=1

|aj−tj |
tj

(the average relative error), MAXRE

= maxj

(
|aj−tj |
tj

)
(the maximum relative error), and DTV = 1

2

∑m−1
j=1 |aj − tj | (the Total

Variation Distance [60]), which are all commonly used to evaluate the accuracy of an

estimate.

2.3.4 Hierarchical biclustering

It is possible to use GRAMMy estimates for clustering analysis and statistical hypothesis

testing. We clustered the samples based on the pairwise similarities (correlations) of their

relative abundance distribution. Because of the long-tailed shape of the distribution,

the signal-to-noise ratio is low for these less abundant genomes. Therefore, using the

thresholds .05% for the minimum abundance and 50% for the minimum occurrence [78],

we selected the estimates for these more abundant genomes (which are more reliable for

clustering). We used rank transformation, which normalizes GRAs by taking their ranks

and applying score transformation and R function heatmap for hierarchical clustering.
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2.4 Simulation studies

2.4.1 Simulated read benchmarks

We first tested GRAMMy by using a series of simulated read sets. By using read sets

generated from a collection of genomes included in the FAMeS study [63], we were able

to assign the true relative abundance levels and confirm the estimation accuracies by

analyzing the errors between the estimates and true values. The numerical error measure

RRMSE (Relative Root Mean Square Error), which computes the root mean square

average of relative errors, was used to assess the accuracy and robustness of estimates.

The detailed discussion of the simulation studies is provided in the Appendix B and the

results are presented in Figures B.1-B.4.

Figure B.1 shows that all the error measures decrease to zero as the number of reads

increases. Figure B.2A shows that effect of sequencing errors on the GRA estimation

accuracy and it shows that sequence errors have a significant effect on short reads (

≤100bp) while the effect is minimal for long reads. Figure B.2B shows that missing

reference genomes in the reference genome set does not significantly affect the estimation

accuracy for the genomes in the reference data set even if 50% of the genomes in the

community are unknown. Figure B.2C shows the effect of different abundance distribution

on the estimation accuracy and it shows that such an effect is not significant although we

do see a slight increase in the measurement errors for communities with uneven abundance

distributions compared to that for the even abundance distributions. In summary, our

simulations show that the GRAMMy estimates are accurate and stable across a range of

anticipated scenarios.
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Interestingly, a relatively small number of short reads is sufficient to obtain an accurate

estimate of relative abundance of the genomes, thus eliminating the need for an excessively

‘deep sequencing’ scheme in certain richness assessing scenarios. As shown by all panels

in Figure B.1, RRMSEs start to stabilize when the number of reads (RN) surpassed 105,

indicating the existence of a threshold for the number of reads needed to recover the

community abundance structure. The trend also shows that a relatively small number of

read sets could still provide substantial information for the abundance estimation, when

the read assignment ambiguity is properly handled. However, the number of required

reads depends on the number of organisms in the community and the distribution of

relative abundances of the different organisms.

We also compared GRAMMy to other methods. With the objective of estimating

the GRA of communities, we first benchmarked GRAMMy with GAAS. In addition, we

included MEGAN, which produces a read profile that summarizes the number of reads

assigned to their lowest common ancestors (LCA). We estimated the GRA based on

MEGAN using the normalized percentages from the reads distributed on leaf taxon. In

the benchmark, we used a series of simulated read sets generated from genomes randomly

selected from the FAMeS study (see details in Appendix B). The same genomes used in

read generation were also used as our reference genomes.

We then used BLAT to align the reads to the reference genomes and fed the output

into GRAMMy, GAAS and MEGAN. The default options of GAAS and MEGAN were

used in our study. Figure B.3A shows the results from the simulation read sets with

read lengths (RLs) equal to 100 or 400 bp generated from MetaSim [80] using the ‘with

sequencing errors’ option. We see that GRAMMy (‘map’) significantly outperformed
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GAAS, MEGAN and GRAMMy (‘k-mer’) in all settings. Among all the methods tested,

GRAMMy (‘map’) is the only method with RRMSEs decreasing to zero as the number

of reads increases.

To account for the poor performance of other methods, we can point to several possible

reasons. For GAAS, assigning ambiguous hits based on their E-value weights is ad hoc

and may reduce its accuracy because the E-value is only a statistical measure for the

quality of the alignment. For MEGAN, its arbitrary cutoff at the top five percent hits

and its non-probabilistic handling of ambiguous hits may reduce the accuracy of GRA

estimates. In addition, for both MEGAN and GAAS, there is also the possibility of losing

accuracy when changing from BLAST hits to BLAT hits. While it has been argued

that BLAST alignment is the best way to assign reads [13], it is too computationally

intensive for BLAST-aligning every read to references [78]. Instead, fast mapping tools

like BLAT only keep a small number of high-similarity hits, while, at the same time,

possibly reducing the accuracy of both GAAS and MEGAN. In contrast, the superior

performance of GRAMMy (‘map’) shows that the probabilistic way of handling ambiguous

hits could help to improve the estimation, which also gives GRAMMy an advantage over

other methods when encountering incoming short read sets of very large sizes.

In conclusion, when the reference set is available, the GRAMMy framework based

on mapping or alignment gave the best result for GRA estimation. Thus, the ‘map’

approach is generally the method of choice in most application settings. Only when

assembled reference genomes are absent, GRAMMy (‘k-mer’) is needed as a still viable

solution for GRA estimation, since at RL equal to 400 bp its performance is comparable

to the estimates from GAAS and MEGAN. However, the k-mer composition approach
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has limited power to distinguish the different genomes, as the compositions of k-mers

are usually heterogeneous across the genomes. In addition, there is no genome size bias

correction if ‘k-mer’ method is used without prior knowledge of genome lengths.

In addition to the above methods, relative abundance estimation based on ribotype

(retrieving rRNA sequences and classifying into taxonomic bins, e.g. 16S rRNA), protein

marker (similar to ribotype method except replacing rRNA by protein marker, e.g. rpoB)

and hit counting (counting the total number of all hits in each taxonomic bin) has been

used to estimate relative abundance [12, 18, 85]. We compared the 16S-based (adapted

from Biers et al. [12]), rpoB-based and BLAT hit counting estimates to GRAMMy es-

timates using our simulated read set. Figure B.3B shows that GRAMMy outperformed

all other methods in this controlled setting. All other methods show three obvious draw-

backs: a persisting bias, significant variation and a strong dependence on the number of

reads.

In fact, 16S rRNA and rpoB genes are only very small parts of genomes; therefore, even

if the total number of reads is large, the reads covering these genes are barely about 1/1000

of all reads. If the total number of reads is small and there are not enough reads covering

16S rRNA genes, then the method is not viable as a result of its substantial instability.

Even if the total number of reads increases, due to gene copy number and genome size

variations, the estimates still do not converge to the true abundance values. Similar

trends were also observed when BLAT mapping hit counts were directly normalized and

used for abundance estimation. On the contrary, GRAMMy always produced much more

accurate and reliable estimates.
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For the estimates at different taxonomic levels, the estimation errors gradually de-

crease from the strain level to the kingdom level and are mostly small given a relatively

large number of reads (see Figure B.4).

2.4.2 Artificial metagenomes with real reads

We further compared the estimates of GRAMMy with those of GAAS and MEGAN,

using the third party FAMeS dataset [63]. The FAMeS data are comprised of three syn-

thetic metagenomic read sets constructed by random sampling from real whole genome

shotgun sequencing reads. These constructed read sets are labeled ‘simLC’, ‘simMC’ and

‘simHC’, according to different complexities of the communities. Each set is composed

of approximately ten thousand Sanger reads from 113 microbial genomes. These artifi-

cially created metagenomes have considerably different abundance distributions, ranging

from uniform-like in the ‘simLC’ set to steep power-law-like in the ‘simHC’ set, with the

‘simMC’ set in between. We ran GRAMMy (‘map’), MEGAN and GAAS on all three

data sets.

The results, which are summarized in Table 2.1, show that the measured Relative

Root Mean Square Error (RRMSE) and Average Relative Error (AVGRE) for GRAMMy

(‘map’) are approximately 10-20%, while those for MEGAN-based estimates are approxi-

mately 40-50%, and those for GAAS are even larger. The benchmark further substantiates

that GRAMMy (‘map’) yields the most accurate estimates for all these sets. Although

the errors are not close to zero, the results are still respectable, considering that the

overall sequencing depth is low in all these sets, which is, on average, less than a hundred

reads per genome. The highest accuracies reachable are certainly affected by the limited
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number of reads and the presence of sequencing errors in these read sets. Nonetheless,

recent real read sets are frequently two to three orders of magnitude larger than the

FAMeS data, making accurate GRA estimation more feasible.

simLC simMC simHC

RRMSE AVGRE RRMSE AVGRE RRMSE AVGRE

GRAMMy 20.0% 14.0% 25.6% 19.7% 21.6% 14.7%
MEGAN 48.6% 39.3% 50.0% 40.6% 50.2% 40.8%
GAAS 433.8% 152.5% 171.4% 111.6% 507.9% 165.8%

Table 2.1: Comparison of estimation accuracy. A summary of Relative Root Mean Square
Error (RRMSE) and Average Relative Error (AVGRE) measured from MEGAN-based,
GAAS and GRAMMy (‘map’) estimates of simLC, simMC and simHC subsets of the
FAMeS data. GRAMMy (‘map’) has the lowest error rate for both error measures across
all the subsets.

2.5 Application to real datasets

2.5.1 Meta-analysis of human gut metagenomes

The human gastrointestinal tract harbors the largest group of human symbiotic microbes.

Several shotgun metagenomics studies on these communities have been published. With

more than six hundred human-related bacteria reference genomes publicly available, we

are well positioned to use these datasets to illustrate the practical uses of GRAMMy.

We collected ‘gut’ data from three major human gut metagenome projects including two

U.S. human distal guts (800 bp Sanger reads, about reads per sample, labeled ‘hg’), 18

U.S. adult samples from twin families (250 bp 454 reads, reads per sample, obese and

lean, labeled ‘uhg’), and 13 Japanese gut samples (800 bp Sanger reads, reads per sample,

weaned or unweaned infants and adults, labeled ‘jhg’) [39, 51, 101].
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For the reference set for the 33 human gut samples, we used a comprehensive collec-

tion of human gut microbes (labeled ‘HGS’), containing 388 currently available human

gastrointestinal microbial genomes from multiple sources (see Table S1A in Xia et al.

[121]). BLAT was used to assign metagenomic reads to the ‘HGS’ set according to their

alignment similarities, and the overall study was labeled using the combination of the

read set name, the reference genome set name, and the cut-off identity rate, such as

‘hg HGS 90’, ‘uhg HGS 90’, ‘jhg HGS 90’. The results with cut-off at ‘90 percent’ iden-

tity rate are summarized in Table 2.2 and that from both ‘75’ and ‘90’ are provided in

Tables S2-3.

Table 2.2 gives the mapped rates and ambiguity rates for each data set. The mapped

rate is the proportion of reads mapped at least once to the reference genomes. It can

be seen from the table that 45-60%, in median, of human gut metagenomic reads were

mapped to the references for all these studies. This value suggests that the reference

genome set provides a good homolog resource for the human gut metagenomic reads,

even though there are still several sets only showing less than 40% mapped rate.

Another quantity, ambiguity rate, is the proportion of reads that are mapped at least

twice to the references. As we can see, about 21-65% of the reads were ambiguously

mapped to the reference genome set across the human gut samples. While ‘uhg HGS’ is

a collection of 454 short reads, we also noticed that it has a comparable median ambiguity

rate to the other two Sanger read sets. This indicates that at 250 bp, a 454 read is already

as specific as a Sanger read. However, because of the ambiguities arising from the intrinsic

composition of the communities, we still encountered a significant portion of reads having

multiple hits regardless of their read lengths.
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We estimated the relative abundances of reference genomes for these datasets and the

results are summarized within Table S4 in Xia et al. [121]. Based on these estimates, we

calculated the average genome lengths for these metagenomes. The medians of genome

lengths range from 2.8 Mbp to 3.7 Mbp, as shown in Table 2.2 and Table S3 in Xia et

al. [121]. These statistics show that the average genome lengths for the three human

gut datasets are comparable. Indeed, there is no statistically significant difference in

the medians of average genome length between ‘jhg’ and ‘ugh’ samples (Wilcoxon’s test,

two-sided, P=0.3539). The test involving ‘hg’ set is not suitable since it only contains

two samples.

Mapped Rate(%) Ambiguity Rate(%) Average Genome Length(bp)

Data Set(#Sets) Med. Min. Max. Med. Min. Max. Med. Min. Max.

hg HGS(2) 46.65 43.15 50.15 31.65 30.32 32.98 2890092 2660792 3119393
jhg HGS(13) 59.61 35.99 76.92 45.11 22.53 65.71 3745629 2268438 5657331
uhg HGS(18) 52.35 37.49 72.51 35.90 21.56 59.81 3619072 3047940 4752910
amd AMD(1) 45.64 45.64 45.64 1.48 1.48 1.48 2163584 2163584 2163584

Table 2.2: Summary statistics for the metagenomic datasets. Median (Med.), minimum
(Min.) and maximum (Max.) of mapped rate, ambiguity rate and estimated average
genome length for the samples: two from U.S. adult human gut (‘hg’), 13 from Japanese
human gut (‘jhg’), 18 from U.S. twin families human gut (‘uhg’) and 1 from acid mind
drainage (‘amd’) are shown. Two reference genome sets, ‘HGS’, ‘AMD’, were used for
human gut samples (‘hg’, ‘jhg’, ‘uhg’) and the acid mine drainage sample (‘amd’), re-
spectively.

Next, we identified the most frequent species across all the metagenomes. In Figure

2.3, we show the 99 species with at least 0.05% of relative abundance in at least 50% of

the metagenome samples in the order of their median relative abundance. Among the top

ten most common species, there are eight from the Firmicutes phylum including mem-

bers of Faecalibacterium, Eubacterium and Ruminococcus genera, and two from the

Bacteroides genus of Bacteroidetes phylum. It shows the predominance of Firmicutes
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and Bacteroidetes in the human gastrointestinal tract. In general, these frequent species

display a long-tail distribution in relative abundance levels, meaning that most species

are detected across many samples, though they are not highly abundant.

We also found that the abundance levels of some species are highly variable, while

most others are relatively constant (see the quantile boxes and outliers in Figure 2.3). In

choosing the minimum occurrence rate and minimum abundance threshold for a typical

human gut read set (105 reads, 800 bp), the 0.05% of relative abundance roughly cor-

responded to a sequencing size of 40 Kbp from the genome. This size was 25-fold more

than the size coverage per genome using 16S rRNA sequencing according to Qin et al.

[78]. We used a different identity rate cut-off (75%) for parsing BLAT hits and similar

frequent species results were obtained. They are shown in Figure 2.7.

We compared our results to the 75 non-redundant, frequent species identified in a

recent study [78]. Although we used different datasets and methodologies, our study

shows comparable results. For example, between the two identified sets, five of the top

ten common species are shared and so are eleven of the top twenty. The criteria they

used ( ≥1% genome coverage and ≥50% presence), if converted, roughly correspond to

0.05% in minimum relative abundance levels in our study.

However, we had some improvements over their results. They used a smaller (195)

reference genome set and did not consider the genome size bias and the ambiguous hits.

Consequently, their result might have missed some of the top frequent species and mis-

placed some species into the top rankings. In fact, the Bacteroides species, with genome

lengths ranging from 5 Mbp to 8 Mbp, well above the median average genome lengths

of human gut samples, are constantly ranked higher in their ranking. In our results,
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however, this bias is corrected, and the rankings are accordingly lowered, with some of

their top 20 ranked Bacteroides species dropping out of the top 40.

Next, we used the GRA estimates for frequent species as the basis for hierarchically

clustering all the human gut samples, as shown in Figure 2.4. It can be seen that most of

the frequent species belong to Firmicutes, Bacteroides and Actinobacteria (see column

color-coding). We also see that the unweaned infants (≤6 months) are all grouped closely

together (see row color-coding), possibly indicating their distinct gut microbial commu-

nities in comparison to that for the weaned infant and adult samples. This phenomenon

was noticed in the original paper [51], and our results further strengthened their claim by

incorporating data from more human gut metagenomics studies. A close look at the top

20 most abundant strains revealed that the unweaned infants’ community profiles were

dominated by only a few strains from Actinobacteria. The lack of diversity of infant gas-

trointestinal tract has also been reported in other studies, for example, see Vaishampayan

et al. [105]. The pattern might be related to the microbial colonization process of infant

gastrointestinal tract; however, no clear explanation for this interesting phenomenon is

available to date.

On the other hand, there is no clear-cut evidence showing that samples from the same

dataset or Body Mass Index (BMI) category are grouped together, even though there

is such a trend. Note that the clustering results depend on the criterion of identifying

frequent species. These species were chosen as a trade-off between the number of frequent

species required for resolution power and the number that would risk including too many

unreliable estimates from less abundant species. The parameters we had chosen were

based on Qin et al. [78].We did the same analysis with a different identity rate cut-off
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(75%) for BLAT hits and two different minimum relative abundance thresholds (0.01%

and 0.1%) for frequent species selection. Similar results were obtained. They are shown

in Figure 2.8.

2.5.2 The acid mine drainage data set

In samples from other environments where reference genomes are not well characterized,

such as soil, ocean and some extreme environments, assemblages like contigs and draft

genomes from the sample itself can be used in addition to available known genomes.

Acid mine drainage sites are extreme environments where only a few species of specially

adapted microbes can survive. We downloaded the raw read set (labeled ‘amd’), which

contains 103,462 Sanger shotgun reads (∼750 bp) from one environmental sample of a

biofilm [3]. The genome sequences of coexisting species were partially assembled using

the metagenomic reads, among which are two dominant ones: Ferroplasma sp. Type II

and Leptospirillum sp. Group II 5-way CG. The genome assemblages are in the draft

state, but we roughly know their genome sizes [104]. To study the community structure,

we constructed an acid mine drainage reference genome set (‘AMD’) using the two draft

genomes and other currently available bacterial genomes of acid mine habitats (Table

S1B in Xia et al. [121]). We mapped the read set ‘amd’ to this reference genome set and

subsequently labeled the result ‘amd AMD’.

Out of the reads mapped to the references, only a slight portion of them (∼2%)

had multiple hits (Table 2.2). We then estimated the GRA for the acid mine drainage

community using GRAMMy. Figure 2.5 shows the relative abundance of the six strains

we included in the ‘AMD’ reference. It confirms that the community is dominated by
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the two draft genomes (98% in total relative abundance) with only marginal fraction

of the other acid mine strains. The dominance of the two strains is consistent with the

results from the genomic study in the original work, even though their fluorescence in-situ

hybridization (FISH) result only reveals the dominance of Leptospirillum sp. Group II

species [104].

2.6 Discussion

We have developed the GRAMMy framework for estimating genome relative abundance

with shotgun metagenomic reads. It has three unique features. First, it is unique in

providing a rigorous probabilistic framework for estimating Genome Relative Abundance

(GRA). The estimation can be easily extended to higher taxonomic levels by simply

adding up the relative abundance of genomes affiliated with the specific higher-level taxon

while maintaining the accuracy, since the estimated GRA is already properly normalized

and corrected for genome size bias.

Second, GRAMMy provides users with a wide choice of mapping and alignment tools.

Its ability to use the results from linear time NGS mapping tools helps to reduce the com-

putation burden for analyzing current massive metagenomic read sets. The GRAMMy

program currently supports tabular BLAST formats, however, the mapping results from

other popular mapping tools, such as MAQ, Bowtie and PerM [22, 53, 55], can be eas-

ily adapted to the GRAMMy framework. The algorithm is also linear in time and space

with the input data size and the current implementation is much faster than MEGAN and

GAAS in handling large read sets, processing one million of reads in seconds (see Figure
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2.6, the BLAT mapping time is excluded for all compared tools). In addition, GRAMMy

is memory efficient and we have not encountered problems in processing read number in

the order of 106 with hundreds of microbial genomes with our 12GB nodes. However, if

memory bottleneck is reached, we can always divides the reads into sub-samples and use

GRAMMy in a bootstrap fashion, because a certain number of reads can already provide

substantial amount of abundance information as indicated by our simulations.

Third, the method is especially suitable for short read datasets due to its better

handling of read assignment ambiguities. In typical cases of a short read set, there are 10%

to 40% of reads having assignment ambiguities [47]. The source of assignment ambiguity

can be sequencing errors, genetic variations, horizontal gene transfers or closely related

genomes. By taking into account the information from the ambiguously assigned part of

the read set, our study showed that we can improve the genome abundance estimation

for metagenomic data.

In applying the GRAMMy framework to the real metagenomic datasets, we used two

different identity rate cut-offs: 75% and 90%. While the results from 90% were shown,

we also kept the 75% results in the supplementary files. Lowering the thresholds will

certainly increase the mapped rate as well as the ambiguity rate, as shown in Table S2.

However, in our analysis of human gut metagenomes, the average genome size estimates

and abundance estimates were not significantly changed by using different cut-offs, as

shown in Tables S3 and S4 in Xia et al. [121]. Still, in other applications, researchers

have to trade off between ambiguity rate and mapped rate to obtain reasonable GRA

estimates for their data.

40



There is also the practical question of how many genomes to be included as reference.

This, however, is always the choice of users. As long as the read-to-genome associations

found by mapping tools are reliable and the coverage rate is high (as in our simulations),

GRAMMy can reliably estimate low abundance levels and the concern of over-fitting can

be alleviated. In real data, the estimation accuracy of the GRA of the low-abundance

genomes depend on the number of reads mapped to each genome and the reliability of the

mappings. The estimated variance of the GRAs can give some ideas about the accuracy

of the estimates.

In summary, with the experimental side of shotgun metagenomics accelerating its

pace, the GRAMMy method we proposed has the potential to produce more accurate

taxonomic abundance estimations for downstream computational analyses.
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Figure 2.1: The GRAMMy model. A schematic diagram of the finite mixture model
underlies the GRAMMy framework for shotgun metagenomics. In the figure, ‘iid’ stands
for “independent identically distributed”.
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Figure 2.2: The GRAMMy flowchart. A typical flowchart of GRAMMy analysis pipeline
employs ‘map’ and ‘k-mer’ assignment.
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Figure 2.4: Heatmap biclustering of human gut metagenomes. ‘gut HGS 90’ indicates
that the human gut (‘gut’) read sets were mapped to the reference genome set (‘HGS’)
with a identity rate cut-off at 90% (‘90’). The bottom labels indicate human gut samples.
The top right legend shows the color coding for columns indicating the sample age cate-
gory and dataset origin. The bottom right legend shows color coding for rows indicating
the top 4 most abundant phyla in human gut. The relative abundance for each sample
is normalized by a rank transformation.
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Figure 2.5: GRAMMy estimates of GRAs for the acid mine drainage data. Estimated
relative abundance for each strain is shown as a percentage. The first two strains dominate
the sample.
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Figure 2.6: Running time comparison. GRAMMy is the fastest in all cases as compared
to MEGAN and GAAS in processing time. The BLAT mapping time is excluded for all
compared tools.
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Chapter 3

eLSA of molecular time series data

3.1 Background

In recent years, advances in microbial molecular technologies, such as next generation

sequencing and molecular profiling, have enabled researchers to spatially and temporally

characterize natural microbial communities without laboratory cultivation [36]. How-

ever, to reveal existing symbiotic relationships and microbe-environment interactions, it

is necessary to mine and analyze temporal and spatial co-occurrence association patterns

of organisms within these new datasets [19, 92]. Time series data, in particular, are

receiving increased attention, since not only ordinary associations, but also other local

and potentially time-delayed associations can be inferred from these datasets. Here local

association indicates that the association only occurs in a subinterval of the time of in-

terest, and time-delayed association indicates that there is a time lag for the response of

one organism to the change in another organism. The rapid accrual of time series data

is not limited to the microbial ecology field. Progress in high-throughput low-cost exper-

imental technologies has also brought such changes to gene transcription and translation
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studies. Thus, while the subjects may vary, the association network we build from local

and potentially time-delayed association patterns will likely pave the way to a better

understanding of these systems.

To analyze microbial community and other data under various conditions, researchers

typically use techniques such as Pearson’s Correlation Coefficient (PCC), principal com-

ponent analysis (PCA), multi-dimensional scaling (MDS), discriminant function analysis

(DFA) and canonical correlation analysis (CCA) [34, 93, 106, 123, 124]. Although these

analytic methods yield interesting patterns, they generally analyze the data throughout

the whole time interval of interest without considering potential local and time-delayed as-

sociations. We are specifically interested in discovering local and potentially time-delayed

associations. Such associations have been shown to play important roles in understand-

ing gene expression dynamics and the association of organisms in microbial communities

[57, 74, 83, 110].

To understand local and time-delayed associations, we originally designed a Local

Similarity Analysis (LSA) for time series data measured typically at successive and equal

time intervals without replicates [83]. Studies adopting the original LSA technique have

shown interesting and novel discoveries for microbial community datasets. To name

a few, Paver et al. [57] successfully applied LSA to study glycolate-utilizing bacterial

and phytoplankton associations, while Shade et al. [89] used LSA to discover bacterial

association dynamics during lake mixing.

Since biological experiments are often associated with many potential sources of noise,

repeated measurements (replicates) are usually carried out in order to better assess in-

herent uncertainties of the quantities of interest [54]. Furthermore, data emerging from
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such experiments are typically analyzed by mean effect or by the development of profiles

where variability is not properly accounted for [71]. Temporal and spatial data with repli-

cates are being generated in Dr. Cardon’s laboratory and others. The lack of support

for replicated data in the original LSA program has prevented its application to these

new datasets. With replicates, it is possible to evaluate the variation of and to give a

bootstrap confidence interval for the local similarity (LS) score as defined in Ruan et al.

[83]. Furthermore, the original LSA is restricted by the low computing efficiency of the

R language, as well as poor handling of missing values. In order to improve upon these

issues and make the technique more accessible to the scientific community, we developed

an extended LSA technique, named eLSA, and implemented it as a C++ extension to

Python.

Briefly, given time series data of two factors and a user-constrained delay limit, eLSA

finds the configuration of the data that yields the highest local similarity (LS) score,

which is a type of similarity metric. For example, within a delay limit of two units,

the first time spot of one series might be aligned to the third time spot of the other

series, thus maximizing their LS. For a dataset of many factors, eLSA is applied to each

pairwise combination of factors in the dataset. Candidate associations are then evaluated

statistically by a permutation test, which calculates the p-value which is the proportion

of scores exceeding the original LS score after shuffling the first series and re-evaluating

the LS score many times, and by the false discovery rate (FDR q-value), which is used to

correct multiple comparisons. Researchers can use eLSA to detect undirected associations,

i.e., association patterns without time delays, and directed associations, where the change

of one factor may temporally lead or follow another factor.
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The organization of this chapter is as follows. In the first two sections, we describe the

eLSA algorithm for calculating LS score with replicates, data normalization, estimation

of confidence interval for the LS score, and testing the statistical significance of a LS

score. We then describe briefly the implemented analysis pipeline of eLSA. In the next

two sections, we first show the efficacy of eLSA by simulations, and finally apply the

pipeline to analyze a microbiological dataset and a gene expression dataset. The chapter

concludes with some discussion and conclusions.

3.2 Mathematical modeling and the eLSA algorithm

3.2.1 Local similarity analysis with replicates

The original LSA method considers only data without replicates. In this paper, we extend

the Local Similarity Analysis (LSA) method [83] to samples with replicates. Suppose that

the time series data for factors X and Y with replicates are measured simultaneously.

We denote them as X = X[1:n][1:m] and Y = Y[1:n][1:m], where n is the number of samples

(time points) and m is the number of replicates. Let Xi[1:m] and Yi[1:m] , or, in more

abbreviated form, Xi and Yj , be the vectors containing the m replicates from the i-th

time spot of X and the j-th time spot of Y , respectively. To formulate the algorithm,

we suppose each sample have m replicates and let F be some summarizing function for

the repeated measurements. Thus, we extend the original LSA dynamic programming

algorithm to data with replicates as in Algorithm 1.
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Algorithm 1 Extended Local Similarity Analysis (eLSA)

Require: factor time series X and Y , delay limit D, summarizing function F ;

Variables: score matrix P , scoring function SXY .

for i,j in {1, 2, ..., n}2 do

P0,i = 0, Pj,0 = 0 and N0,i = 0, Nj,0 = 0

end for

for i,j in {1, 2, ..., n}2 with |a− b| ≤ D do

Pi+1,j+1 = max{0, Pi,j + SXY [F (Xi[1:m]), F (Yj[1:m])]} and

Ni+1,j+1 = max{0, Ni,j + SXY [F (Xi[1:m]), F (Yj[1:m])]}

end for

Pmax(X,Y ) = max1≤i,j≤nPi,j and Nmax(X,Y ) = max1≤i,j≤nNi,j

Smax(X,Y ) = max[Pmax(X,Y ),Nmax(X,Y )]
n and

Ssgn(X,Y ) = sgn[Pmax(X,Y )−Nmax(X,Y )]

return Smax(X,Y ) and Ssgn(X,Y )

The Smax(X,Y ) obtained is the maximum local similarity score possible for all con-

figurations of m-replicated time series X and Y within time-delay D. In this extended

algorithm, the scalars xi’s and yi’s from the non-replicated series in Ruan et al. [83] are

replaced by vector functions F (Xi)’s and F (Xj)’s to handle data with replicates. Alterna-

tively, we can also consider F (Xi)’s and F (Xj)’s as the same input data for the original

algorithm in Ruan et al. [83], except that they are F -transformed data. In addition,

this extended LSA framework easily accommodates the original version of LSA without

replicates (m = 1) as a special case.
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3.2.2 Different ways of summarizing the replicate data

Notice that the only additional component we introduced in the eLSA algorithm is the

function F . Many reports have suggested different possible forms for F , and several

computational methods have been proposed for summarizing the additional information

available from replicates, including the simple average method (abbreviated as ‘simple’)

and the Standard Deviation (SD)-weighted average method (abbreviated as ‘SD’), and

the multivariate correlation coefficient method [59, 125, 127]. However, the result of the

multivariate correlation coefficient method from Zhu et al. [127] can be shown to be the

same as the ‘simple’ method. Therefore, in eLSA, we used the first two methods. We also

propose the use of median in place of average and Median Absolute Deviation (MAD) in

place of SD when robust statistics are needed to handle outliers [31]. The corresponding

methods are named simple median method (abbreviated as ‘Med’) and MAD-weighted

median method (abbreviated as ‘MAD’), respectively.

The ‘simple’ method is, in spirit, to take the mean profiles to represent the repli-

cated series. In practice, we take F to be the simple average of repeated measurements:

F (Xi) = X̄i. The ‘SD’ method, on the other hand, takes the standard deviation of

the replicates into account. Here we take F to be the replicate average divided by its

standard deviation (SD): F (Xi) = X̄i
σXi

. Importantly, this method utilizes the variability

information available, and, as such, it is claimed to be better than the ‘simple’ method

in estimating the true correlation [125]. However, in order for the ‘SD’ method to be

effective, a relatively large number of replicates, m, are needed, e.g., m ≥ 5. For a small

number of replicates, the ‘SD’ method may not work well since the standard deviation
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may not be reliably estimated. Further, if we replace average with median and SD with

MAD, we obtain the ‘Med’ method: F (Xi) = Median(Xi) and the ‘MAD’ method:

F (Xi) = Median(Xi)
MAD(Xi)

, where MAD(Xi) = Median(|Xi −Median(Xi)|). The two trans-

formations have similar properties as their corresponding average and SD versions, but

they are more robust.

3.2.3 Bootstrap confidence interval for the LS score

With replicate data, researchers can study the variation of quantities of interest and to

give their confidence intervals. Due to the complexity of calculating the LS score, the

probability distribution of the LS score is hard to study theoretically. Thus, we resort to

bootstrap to give a bootstrap confidence interval (CI) for the LS score. Bootstrap is a re-

sampling method for studying the variation of an estimated quantity based on available

sample data [31]. In this study, we use bootstrap to estimate a confidence interval for the

LS score. For a given type I error α, the 1− α confidence interval is the estimated range

that covers the true value with probability 1− α. Thus, for a given number, B, of boot-

straps, we construct the bootstrap sample set {(X̃(1), Ỹ (1)), (X̃(2), Ỹ (2)), ..., (X̃(B), Ỹ (B))},

where each X̃i
(k)

and Ỹj
(k)

are samples with replacement from Xi and Yj , respectively.

The rest of the calculation is the same as that used for the original data, and we obtain

S̃
(k)
max = Smax(X̃(k), Ỹ (k)). Without the loss of generality, we suppose that these values

are sorted in ascending order: S̃
(1)
max ≤ S̃(2)

max ≤ ... ≤ S̃(B)
max. Then, a 1− α bootstrap CI of

Smax can be estimated by [S̃
(bα

2
Bc)

max , S̃
(b(1−α

2
)Bc)

max ], as suggested by Efron et al. [31].
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3.2.4 Data normalization

eLSA analyses require the series of factors X and Y to be normally distributed, but

this may not be the case in the real dataset. Therefore, through normalization, the

normality of the data can be enforced. To accommodate possible nonlinear associations

and the variation of scales within the raw data, we apply the following approach [95] to

normalize the raw dataset before any LS score calculations. We use F (Xi) to denote the

F -transformed data of the i-th time spot of a variable X. First, we take

Rk = rank of F (Xk) in {F (X1), F (X2), ..., F (Xn)}. (3.1)

Then, we take

Zk = Φ−1(
Rk
n+ 1

), (3.2)

where Φ is the cumulative distribution function of the standard normal distribution.

We will take Z = Z[1:n] obtained through the above procedure as the normalization of

{F (X1), F (X2), ..., F (Xn)}. Therefore, the normalization steps are taken after the F -

transformation.

3.2.5 Permutation test to evaluate the statistical significance

It is important to evaluate the statistical significance of the LS score measured by the

p-value, the probability of observing a LS score no smaller than the observed score when

two factors are not associated locally or globally. To achieve this objective, permutation

test is used. To perform the test, we fix Y and reshuffle all the columns of X for each
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permutation. For a fixed number of permutations L, suppose {X(1), X(2), ..., X(L)} is the

permuted set of X; then the p-value PL is obtained using

Pboot = Prob[S̃ ≥ Smax(X,Y )] ≈ 1

B

B∑
k=1

I[S̃max(X̃(k), Ỹ (k)) ≥ Smax(X,Y )], (3.3)

where I(.) is the indicator function. With large enough number of permutations, we can

evaluate the p-value to any desired accuracy.

3.2.6 Computation complexity and implementation

For a single pair of time series, the time complexity for calculating the LS score using

the dynamic programming algorithm is O(n), where n is the number of time points. The

estimation of the bootstrap confidence interval for the LS score using B bootstraps will

need O(Bn) calculations. The estimation of statistical significance for each pair of factors

using L permutations will need O(Ln) calculations. Thus, the number of calculations for

a full analysis of each pair of factors will be O(BLn). If there are a total of T factors,

there are a total of T (T−1)
2 pairs of factors that need to be compared. Thus, the number

of calculations for a full analysis of T factors will be in the order of O(T 2BLn), which

can be computationally intensive.

3.2.7 The eLSA analysis pipeline

In this subsection, we briefly describe the eLSA analysis pipeline implemented into the

eLSA software package, as shown in Figure 3.1.
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• F -transformation and data normalization:

The eLSA tool accepts a matrix file where each row is a time series for one factor.

It fills up missing data by a user-specified method. Zero to third order spline-based

methods and the nearest neighbor method as implemented in the Scipy (http:

//www.scipy.org) interpolation module are available. It then transforms the data

by the user-specified F function and normalizes the F -transformed data by the

normal score transformation following Li et al. [56].

• Local similarity scoring:

Local similarity analysis calculates the highest similarity score between any pair of

factors. Users can specify parameters, including, for example, the maximum shifts

allowed. Local Similarity score is calculated using the eLSA dynamic programming

algorithm.

• Permutation test:

The statistical significance, the p-value, of LS score is evaluated using a permutation

test. Briefly, eLSA randomly shuffles the components of the original time series and

recalculates the LS score for the pairs. The p-value is approximated by the fraction

of permutation scores that are larger (in absolute value) than the original score.

Confidence interval for a given LS score is also found by bootstrapping from the

replicated data. Finally, users can obtain significant eLSA association results by

the combined use of p-value and FDR q-value thresholds as their filtering criteria.
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• Association network construction:

Using only the significant associations, users can construct a partially directed as-

sociation network. Generally, for two factors X and Y , if the time interval [s1, t1]

in X and [s2, t2] in Y have the highest LS and s1 < s2, we can infer that X leads

Y ; in other words, X possibly activates Y . In network visualization software (e.g.,

Cytoscape [23]), one can use arrows to directionally indicate these lead patterns

(i.e., X to Y , if X leads Y ; otherwise undirected, if no direction is inferred). One

can also use lines to indicate association types (solid, if X is positively associated

with Y ; otherwise dashed). Following these rules, one can build a partially directed

association network based on eLSA result.

In summary, the internal support for replicates and the use of CI estimates are the two

major methodological enhancements to LSA. The eLSA software, however, also incorpo-

rates other new features, such as faster permutation and false discovery rate evaluations

and more options to handle missing values. Other implementation details are available

from the software documentation.

3.3 Materials and methods

3.3.1 Pearson’s correlation coefficient-based analysis

The application of Pearson’s Correlation Coefficient (PCC) requires taking the profile

means, i.e. X̄i and Ȳi. Then the PCC between X and Y is defined as:

r(X,Y ) =

∑
1≤j≤m(X̄j − X̄)(Ȳj − Ȳ )√∑

1≤j≤m(X̄j − X̄)2
∑

1≤j≤m(Ȳj − Ȳ )2
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where X̄j = 1
m

∑m
k=1Xjk, Ȳj = 1

m

∑m
k=1 Yjk, X̄ = 1

n

∑n
j=1 X̄j and Ȳ = 1

n

∑n
j=1 Ȳj are

the means of X and Y , respectively. The statistical significance of r is tested by the

fact that t = r
√

n−2
1−r follows a t-distribution (degree of freedom: v = n − 2, mean: 0

and variance v
v−2 ) when m = 1. For a pair of non-replicated series where m = 1,

PCC is a straightforward and powerful method to test and identify linear relationship

between two bivariate normally distributed random variables. It is widely adopted in the

literature but with limitations. Specifically, when the real relationships are more complex,

for example, the association between the two factors only occurs in a subinterval of the

region of interest or the change of one factor has a time-delay in response to the change of

another factor. Several methods, including the original LSA method, have been proposed

to overcome such difficulties [6, 83]. We also include PCC analysis in conjunction of our

eLSA analysis in the software pipeline.

3.3.2 False discovery rate (FDR) estimation

In most biological studies, a large number of factors need to be considered. If there are

T factors, there will be T (T−1)
2 eLSA pairwise calculations, representing its quadratic

growth in T . In order to avoid many falsely declared associated pairs of factors, we

need to correct for multiple testing. Many methods have been developed to correct for

multiple testing and here we use the method by Storey et al. [95] to address this issue.

In particular, we report the q-value, Q, for each pair of factors. The q-value for a pair of

factors is the proportion of false positives incurred when that particular pair of factors is

declared significant.
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3.4 Simulation studies

We generated simulated data to show the efficacy of eLSA in capturing time-dependent

association patterns, such as time-delayed associations and associations within a subinter-

val. We also studied the difference between the eLSA inference using the simple average

(referred to as ‘simple’) method, the SD-weighted average method (referred to as ‘SD’),

the median (referred to as ‘Med’) method, and the MAD (referred to as ‘MAD’) method.

3.4.1 Time-delayed association

In this case, X and Y are assumed to be positively correlated with a time delay D. For

a particular example with D = 3, we assume that (Xj+3, Yj)’s follows a bivariate normal

distribution with mean µ = 0 and covariance matrix Σ =
( 1 ρ
ρ 1

)
. for j = 1, 2, ..., 20, where

ρ = 0.8. Xj ’s are assumed to be standard normal for j = 1, 2, 3. The generated (Xj , Yj)’s

are further perturbed m times by a measurement disturbance εij ∼ N(0, 0.01) to obtain

the m-replicated series. A pair of simulated series is shown in Figure 3.2a for a typical

simulation with m = 5.

We see that the two series closely follows each other if we shift the Y series three units

toward right. In this particular example, the PCC is -0.258 (P=0.272) while the LS score

using ‘simple’ averaging method is 0.507 with a p-value of 0.006. We did 1000 bootstraps

and the 95% bootstrap confidence interval for this particular example is (0.448, 0.549).

Therefore, this time-delayed association is only found significant by the eLSA analysis.
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3.4.2 Association within a subinterval

In this case, we assume X and Y are positively associated within a subinterval and not

associated in other regions. In our simulation, we generate 20 time spots of the two series

by sampling (Xj , Yj) from a bivariate-normal distribution with mean 0 and covariance

matrix Σ =
( 1 ρ
ρ 1

)
where ρ = 0.8 for 6 ≤ j ≤ 15, and ρ = 0 for j ≤ 5 or 16 ≤ j ≤ 20.

The generated (Xj , Yj)’s are further perturbed m times by a measurement disturbance

εij ∼ N(0, 0.01) to obtain the m-replicated series. One generated series are shown in

Figure 3.2b for a typical simulation with m = 5.

We can see the two series mostly closely follow each other within the intended subin-

terval 6 ≤ j ≤ 15. In this particular example, the PCC is 0.258 (P=0.272) while the

LS score using ‘simple’ averaging method is 0.428 with a p-value of 0.028. We did 1000

bootstraps and the 95% bootstrap confidence interval is (0.404,0.446). This pattern is

again uniquely captured by the eLSA analysis. In real applications, there are many other

possibilities that two factors are associated without a significant Pearson or Spearman’s

correlation coefficient. The eLSA can capture these associations as long as their LS score

can be maximized through dynamically enumerating their configurations.

3.4.3 Different summarizing function

To see the effect of replicates, we also let m = {1, 10, 15, 20} in the time-delayed simulation

and did the same analysis as above with 1000 simulations. The results are summarized

in Table 3.1. It can be seen from the table that the results using ‘simple’ and ‘Med’ are

similar with mean LS scores ranging from 0.490 to 0.498 and standard errors ranging

from 0.078 to 0.091. On the other hand, if the noise in the replicates is not normally
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distributed, the ‘Med’ method should be more robust. On the other hand, the mean

LS scores using ‘SD’ and ‘MAD’ are generally lower than that using the ‘simple’ and

‘Med’ methods. This maybe caused by the extra variation introduced when estimating

the standard deviation or maximum absolute deviation from the data.

m=1 m=5 m=10 m=15 m=20

F -function mean se. mean se. mean se. mean se. mean se.

‘simple’ .495 .078 .495 .085 .491 .088 .493 .076 .496 .091
‘SD’ na. na. .332 .127 .391 .124 .412 .119 .435 .109

‘Med’ .495 .078 .490 .090 .490 .090 .490 .083 .498 .083
‘MAD’ na. na. .494 .115 .302 .128 .325 .129 .371 .119

Table 3.1: Mean and standard error of the estimated LS score. The values are calcu-
lated based on 1000 simulations. ‘se.’ indicates standard error and ‘na.’ indicates not
applicable.

3.4.4 Running time comparison

We benchmarked the running time performance of the new eLSA implementation and

the old R script. For a dataset of 72 time series each with 35 time points, we tried

eLSA analysis with 100 bootstraps, 1000 permutations and a delay limit of 3. It took

the old script 20462 seconds to finish the computation while the new C++ program used

2054 seconds, which is about 9 times faster. Meanwhile, the new implementation also

reduces the memory consumption and increases input/output efficiency. The benchmark

is carried out on a “Dell, PE1950, Xeon E5420, 2.5GHz, 12010MB RAM” computing

node.
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3.5 Application to real data

3.5.1 Microbial community data analysis

As an immediate application, we applied the eLSA pipeline to a set of real microbial

community time series data. This San Pedro Ocean Time Series (SPOTs) dataset, orig-

inally reported in Steele et al. [92] and Countway et al. [24], was collected following a

biological feature (i.e. the chlorophyll maximum depth) off the coast of Southern Cali-

fornia. The bacterial community was analyzed using the ARISA [34] technique and the

protistan community was analyzed using the T-RFLP [109] technique. The dataset is

composed of monthly sampled data from September 2000 to March 2004, including 40

time points without replicates. We analyzed the dataset with a delay limit of 3 months

and 1000 permutations to evaluate the statistical significance of the LSA score. In this

dataset, the factor names, including the operational taxonomic units and environmental

factors, are previously defined by Steele et al. [92].

First, we compared the performance of Pearson’s correlation coefficient (PCC) and

eLSA analysis in identifying potential local and time-delayed associations. Restricting

the significance threshold for the q-value Q ≤0.01 and the p-value P ≤0.01, 1643 pairs

of significant associations with eLSA were identified, and among them only 293 (∼18%)

were discovered by PCC (see Table 3.2). Therefore, most significant associations found

by eLSA would have been missed by PCC analysis in this case. The results are similar

if we use less stringent criteria, i.e., Q ≤0.05 and P ≤0.05, where only 658 out of 2804

(∼23%) eLSA significant associations were also found by PCC. We need to point out that,

PCC also found some associations that were missed by eLSA. For example, with q-value
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Q ≤0.01 and the p-value P ≤0.01, PCC found 3237 significant associations and only 293

of them were found to be significant using eLSA. Therefore, eLSA is not a substitute

but a complimentary approach to PCC, which specializes in finding local and possibly

time-delayed associations. For a thorough analysis of a dataset, one should apply both

approaches, which is why we also integrated PCC analysis into our software pipeline.

P ≤0.01 and Q ≤0.01 P ≤0.05 and Q ≤0.05

Dataset # of factors eLSA PCC both eLSA PCC both

Microbial 515 1643 3237 293 2804 4242 658
C. elegans 446 42532 56605 39114 57991 71799 54201

Table 3.2: Significant associations found in real datasets. Numbers of significant associa-
tions found by the extended Local Similarity Analysis (eLSA) and Pearson’s Correlation
Coefficient (PCC) by controlling both the p-value (P ) and the q-value (Q ). The p-values
for eLSA were evaluated by permutations and p-values for PCC was calculated based on
the t-distribution.

If we look at the top five positive and negative absolute highest LS scores from the

unique associations (|D| ≤1) found by eLSA (Q ≤0.05 and P ≤0.05, see Table 3.3),

we can see most of them are time-dependent associations, either time-shifted or within

a subinterval. The majority of these are, in any case, beyond the capacity of PCC.

In addition, eLSA provides more information about its findings. For example, in the

table, Bac609 and Bac675 factors are associated with a shift of one and Euk97 and boxy

(oxygen) factors are best associated within a time interval of length 21 starting at time

point 15 with no delay. This kind of additional information is not easily obtainable from

the PCC analysis but very important for further functional analysis. For instance, we

construct an association network using all above unique eLSA associations, as shown

in Figure 3.3. The obtained network obviously reveals some interesting dynamics of
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the microbial community, such as the domination of positive directed associations, the

existence of environmental factors as hubs that are associated with many other factors,

(e.g. nutrients such as NO2, PO4, SiO3 and oxygen), and the existence of some highly

connected clusters formed by certain bacteria or eukaryote groups.

X Y LS Xs Ys Len D P PCC Ppcc Q Qpcc

Euk239 Euk269 .82 1 1 40 0 0 .09 .59 .02 1.
Bac609 Bac675 .77 1 2 39 -1 0 .14 .41 0. 1.
Euk381 Euk462 .77 1 1 40 0 0 .44 0. .02 .11
Euk583 Euk989 .68 2 1 39 1 0 .30 .06 .02 .73
Euk229 Euk339 .57 1 2 39 -1 0 .05 .77 .02 1.
Euk97 boxy -.62 15 15 21 0 0 -.42 .01 0. .17
Euk98 boxy -.62 15 15 21 0 0 -.42 .01 0. .17
Euk109 boxy -.62 15 15 21 0 0 -.42 .01 0. .17
Euk112 boxy -.62 15 15 21 0 0 -.42 .01 0. .17
Euk116 boxy -.62 15 15 21 0 0 -.42 .01 0. .17

Table 3.3: Top LS scores from the microbial community data. The 5 positive and 5
negative highest absolute LS Scores from associations uniquely found by eLSA in the
microbial community dataset. The columns in succession are X (first factor), Y (second
factor), LS (Local Similarity score), Xs (start of the best alignment in the first sequence),
Ys (start of the best alignment in the second sequence), Len (alignment length), D (shift
of the second sequence compared to the first sequence, -: X is ahead of Y, +: otherwise),
P (p-value for the LS score, 0. stands for P <0.005), PCC (Pearsons Correlation Coef-
ficient), Ppcc (P-value for PCC), Q (q-value calculated for P, 0. stands for Q <0.005),
Qpcc (q-value for Ppcc).

Taking a closer look at one of the topmost ranked association: Bac609 and Bac675

(see Table 3.3), we found that they are closely following each other with a time shift

of one month, where Bac609 precedes Bac675. Further inspection suggests a yearly

pattern that recurs with near regularity for this association, such that Bac609 blooms in

early springtime each year (time spots 6, 18 and 29 are February, January and March,

respectively), and Bac675 blooms one month later (see Figure 3.4a). From the binning

definition in Steele et al. [92], Bac609 is a Bacteroidetes group bacterium while Bac675 is
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an undefined bacterium. Since these microbial groups are uncultured, this association as

well as many others uniquely identified by eLSA provides new insight into their ecological

role in the ocean surface waters. Notice there is an unexpected abundance jump at time

spot 35 of the Bac675 series. The reason for this outlier however is unknown to us. While

such prominent time-delayed associations as the Bac609 and Bac675 are easily visible,

we must caution that time-dependent associations could also be too subtle to be viewed

directly. Thus, statistical significance can provide a much more reliable guideline.

3.5.2 Gene expression data analysis

Although LSA had its roots grounded in microbial community analysis, the technique can

be readily applied to other biological time series data, such as replicated gene expression

time series data from microarray and RNA-Seq experiments [7, 96, 97]. Here we show

an example of applying eLSA to the dauer exit gene expression profile time series data

of 446 genes from a C. elegans study. The result of the original study suggests that the

446 genes under investigation have similar kinetics in both the dauer exit and the L1

starvation time course [111]. Here we use the dauer exit time series data consisting of 12

hourly time spots, each with four replicates. We analyzed the dataset with a delay limit

of 3 hours and with 1000 permutations and 100 bootstraps.

The results are summarized in Table 3.2. Comparing the C. elegans results to those

of the microbial community, we see that gene-gene associations in this network are much

denser, since a smaller number of genes end up with a much larger, rather than smaller,

number of eLSA significant associations (e.g. 2804 versus 57991 for Q ≤0.05 and P ≤0.05,

see Table 3.2). Also different is that about 93% of these associations are found by PCC
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analysis as well. The high congruence between PCC and eLSA analysis may be due to

the fact that about 90% of the eLSA findings are without delays, which thus are also

amenable to PCC analysis.

Because these genes do not change expression level in both dauer exit and L1 starva-

tion conditions, they are considered as common feeding response genes [111]. However,

it is not clear whether they are correlated with each other in expression profiles under

the dauer exit condition. To study this, we combined all eLSA and PCC significant

associations with Q ≤0.05 and P ≤0.05, and found the average degree of the resulting

association network is around 169, while that of previous microbial community data is

around 12. Such high average degree for C. elegans genes shows the high similarity of

their expression profiles, which also reflects their intimate functional coordination along

the process. Therefore, our result suggests those feeding response genes are likely to be

co-expressed under the dauer exit condition.

We next analyzed the unique eLSA associations. These associations form a dense

association network themselves with a long-tailed degree distribution, as shown in Figure

3.5. While the degree distribution peaks at five, the most highly connected gene 48941

has a degree of 189. We also looked at the top 5 positive and 5 negative highest ab-

solute LS scores unique associations by eLSA. Because replicates are available for this

dataset, we are able to obtain the bootstrap confidence intervals for the LS score and

they are given in Table 3.4. Interestingly, we found most of the top LS associations in-

volve high degree nodes, such as genes 48941(189), 29494(129), 29504(128), 27993(116),

436287(106), 32607(58), and 51986(52) (degree in parenthesis). These high degree nodes

could be regulation hubs in the feeding response pathway. Here we show an example of
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time-delayed association of gene 32607 and gene 51986 in Figure 3.4b. In the figure, gene

51986 leads gene 32607 in expression profile change.

We also analyzed all the eLSA associations together, including both unique and non-

unique eLSA findings. Though most of the genes are still hypothetical protein coding

genes, we do find a group of eukaryotic initiation factors: 30080(eIF-3E), 33683(eIF-3K),

21358(eIF-3D), 33525(eIF-4E), 32503(eIF-1A) and 23975(eIF-2B) in the 446 selected

genes. This is as expected because both L1 starvation recovery and dauer exit will increase

translation activities and result in high expression level of these genes. In addition, in

the translation process, these factors work closely together to form different translation

related complexes [49], so their expression levels should be highly correlated with each

other. Actually, if we check the associations found by eLSA, we do see these factors form

a clique together with all edges being positive associations and statistically significant

(see Figure 3.6). The coherence of the eLSA finding and our biological knowledge shows

that eLSA associations do reveal true associations within the biological system. However,

as the majority of genes are still hypothetical, a thorough examination for true functional

discoveries will require biological experiments.

3.6 Discussion

The eLSA technique extends LSA to time series data with replicates. This will help in-

vestigators better utilize the available information from their sample replicates and assist

them in more effective and reliable hypothesis generation of time-dependent associations.

In addition, a bootstrap framework is developed to estimate the confidence interval for the
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X Y LS lowCI upCI Xs Ys Len D P PCC Ppcc Q Qpcc

48087 27993 .53 .41 .61 1 2 11 -1 0. .56 .06 0. .01
32607 51986 .52 .41 .61 2 1 10 1 .01 .51 .09 0. .01
29504 48087 .52 .40 .61 2 1 11 1 0. .41 .18 0. .03
23193 27993 .51 .41 .59 1 2 11 -1 0. .48 .11 0. .02
29494 30208 .51 .39 .61 2 1 11 1 0. .58 .05 0. .01
27993 53694 -.55 -.62 -.44 2 1 11 1 0. -.53 .08 0. .01
436287 53694 -.54 -.62 -.44 2 1 11 1 .01 -.55 .06 0. .01
48941 53694 -.52 -.61 -.42 2 1 11 1 0. -.38 .22 0. .03
29494 22857 -.52 -.61 -.41 2 1 11 1 0. -.49 .10 0. .02
29494 436727 -.52 -.61 -.40 2 1 11 1 .01 -.55 .06 0. .01

Table 3.4: Top LS scores from the C. elegans gene-expression data. The 5 positive and
5 negative highest absolute LS Scores from the C. elegans gene expression dataset The
columns in succession are X (first factor), Y (second factor), LS (Local Similarity score),
lowCI (CI is lower bound), upCI (CI is upper bound), Xs (start of the best alignment in
the first sequence), Ys (start of the best alignment in the second sequence), Len (alignment
length), D (shift of the second sequence compared to the first sequence, -: X is ahead of
Y, +: otherwise), P (p-value for the LS score, 0. stands for P <0.005), PCC (Pearsons
Correlation Coefficient), Ppcc (P-value for PCC), Q (q-value calculated for P, 0. stands
for Q <0.005), Qpcc (q-value for Ppcc).

LS score. We also provided flexible missing value options and integrated efficient multi-

ple testing control methods for the new eLSA technique. Using the microbial community

and gene expression datasets, we demonstrated that eLSA uniquely captures additional

time-dependent associations, including local and time-delayed association patterns, when

compared to ordinary correlation methods, such as PCC. In this chapter, we described

the applications of our method with the time series data. Actually, the eLSA can be

applied to any type of data with some gradients, including the response to different levels

of treatments, temperature, humidity, or spatial distributions.

Currently, we use permutation test to assess the statistical significance of LS scores

and bootstrap re-sampling to estimate the confidence interval of LS score. Both the

permutation test and bootstrap methods are time consuming if high precise determination

of statistical significance or confidence interval is desired. Theoretical developments on
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the distribution of the LS score are needed to eliminate or mitigate the computational

burden required for these processes, and would be interesting topics for future studies.

There is also a minimum sample number requirement for eLSA analysis. We suggest the

sample number to be greater than 5+D, where D is the desired delay limit, since shifting

and trimming by eLSA will further reduce the effective sample number and result in lower

statistical power.

Finally, we implemented the eLSA technique and analysis pipeline into an Open

Source C++ extension to Python with many new features. Specifically, the pipeline

streamlines data normalization, local similarity scoring, permutation testing and network

construction. As shown in Figure 3.7, we also provide a Galaxy web framework-based ver-

sion [40] of the eLSA pipeline. This eLSA service features customized workflow, history

and data sharing. In addition, we integrated Cytoscape [23] Java Web Start technology

so that the association network generated by eLSA can be immediately visualized. Based

on these efforts, we anticipate that our novel eLSA methodology, as implemented by the

newly developed pipeline software, will significantly assist researchers requiring system-

atic discovery of time-dependent associations. More information about the software and

web services is available from the eLSA homepage at http://meta.usc.edu/softs/lsa.
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Figure 3.1: The eLSA pipeline. Users start with raw data (matrices of time series) as input
and specify their requirements as parameters. The LSA tools subsequently F -transform
and normalize the raw data and calculate Local Similarity (LS) scores and Pearson’s
Correlation Coefficients. The tools then assess the statistical significance (P-values) of
these correlation statistics using the permutation test and filter out insignificant results.
Finally, the tools construct a partially directed association network from the significant
associations.
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Figure 3.2: Examples of simulated associations. (a) An example of simulated time-
delayed association series with five replicates is shown, where X (red square) leads Y
(blue circle) by three time units. The pattern is not significant by ordinary correlation
analysis (PCC=-0.258, P=0.272); however, it is captured by local similarity analysis
(LS=0.507, P=0.006). (b) An example of simulated subinterval association series with
five replicates is shown, where X (red square) and Y (blue circle) are associated in the
time interval from 6 to 15. The pattern is not significant by ordinary correlation analysis
(PCC=0.258, P=0.273); however, it is captured by local similarity analysis (LS=0.428,
P=0.028).
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Figure 3.4: Examples of real data associations. (a) Shown are microbe group Bac675
(red square) and Bac609 (blue circle) ARISA abundance time series from the marine
microbial community data analysis. Notice that there exists an almost regular yearly
pattern where Bac609 leads Bac675 by one month in blooming time. (b) Shown are gene
32607 (red square) and 51986 (blue circle) expression level time series from C. elegans
gene expression data analysis. Notice that 51986 leads 32607 in expression level change
throughout the time course.
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Figure 3.5: Node degree distribution of associations in C. elegans analysis. Shown is the
node degree distribution of eLSA unique associations in C. elegans analysis. It shows a
long-tail distribution with the maximum 189.

Figure 3.6: Translation initiation factor associations in C. elegans analysis. Shown is the
association network of translation initiation factors learned from eLSA analysis. Solid
(red) edges are positively associated. Edge labels are LS scores. The factors form a
clique as expected.
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Figure 3.7: Submission interface for the LSA web service. Upon submission, the job
will perform eLSA analysis on the ‘CommonGenesData’ dataset (12 time spots and 4
replicates) with 200 permutations and 100 bootstraps within a delay limit of 3 units. In
addition, by specification, it will use ‘simple’ averaging to summarize replicates and, by
designating ‘none’, it will disregard the missing values.

78



Chapter 4

Future work

4.1 Future work for GRAMMy

In Chapter 2, we described the GRAMMy framework and tool for shotgun metagenomics.

We have mentioned several potential directions worth exploring in the discussion there

and we will elaborate on them below.

First, there is the possibility to transfer the same methodology to the question of

abundance estimation of functional gene groups based on shotgun metagenomic reads.

Like the taxonomic relative abundance, relative abundance of functional gene groups

is currently estimated using direct counting [29] and Lowest Common Ancestor (LCA)

approaches [47]. These methods do not take into account the read assignment ambiguities,

and are susceptible to the biases caused by gene length variation of functional gene groups.

To improve upon current methods, in particular resolving the two issues raised above, we

can directly apply our GRAMMy method to model the problem as a mixing parameter

estimation problem for a mixture of functional gene groups: M : M =
m∑
j=1

πjfgj . Now,
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gj is the j-th functional group of the m groups and fgj is the probability a read can be

generated from gj .

The remainder of the method then follows the same procedures as our previous deriva-

tion, except that, lgj – the effective length of gj and fgj – the probability of a read is

from gj , have to be approximated and estimated differently. In an ad hoc manner, we

can take the lgj to be the average of all known genes belonging to that functional group.

We can also calculate fgj based on the normalized effective map counts or the k-mer

composition distance between the read and the functional group, similar to what we did

for the genome relative abundance estimation. Finally, the lower level functional group

estimates can also be summed up to give estimates for higher level functional groups. We

can first see how far this direct application can take us with simulated data and improve

upon these preliminary results with more realistic modeling.

Second, for the original taxonomic relative abundance problem, we can also borrow

ideas from functional group relative abundance estimation scheme proposed above, in the

sense that, metagenomic sampling may be better described by a two layer mixture model,

including a functional layer and a taxonomic layer. This motivation is rooted to the facts

that genes form homolog (mostly functional similar) groups, in which genes from the

same functional group are expected to be similar in sequence characteristics; and that

there is a prevalence of Horizontal Gene Transfers (HGT) in the microbial world [81],

which migrates the genes across different microbe organisms. Therefore, we can expect

the same homolog groups to appear in different microbes because of HGTs, as well as

the evolution descendence. As a result, the read ambiguity may be better resolved at the
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homolog group level so that the taxonomic abundance can be more reliably estimated

based on homolog profiles.

In detail, suppose each read set R is a sample from the mixture of reads from C

functional groups. Then the finite mixture model for the sample space of read set R is:

ΩR = β1C1 + β2C2 + · · ·+ βlCl, (4.1)

where C are functional groups which are well separated either by their k-mer composition

or sequence similarity. A reasonable assumption is that the groups follow a multivariate

gaussian distribution. With such an assumption, the mixing parameters can be inferred

from unsupervised learning for gaussian mixtures. Then, we consider a functional group

Cj is shared by multiple genomes, where the mixing model is:

Cj = γj1G1 + γj2G2 + · · ·+ γjmGm. (4.2)

Then, if the genome relative abundance is directly estimated (as in the GRAMMy), we

have:

ΩR = α1G1 + α2G2 + · · ·+ αmGm. (4.3)

From above, we can find:

αi =

l∑
j=1

βjγji (4.4)

If the missing parameters in the two-layer model can be more reliably estimated (using

the EM procedure or others), we can subsequently find more reliable genome relative
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abundance for the original problem. However, the gain by including an additional layer

has to be checked by implementation and simulations.

Third, there can be improvements from the technical perspects in computation. Cur-

rently, the GRAMMy is designed and implemented as a sequential algorithm, whose

future use may be limited by the available memory to a single core. However, we can

parallelize the EM algorithm to avoid such bottleneck of memory usage, as well as im-

prove the computation efficiency. The real technical difficulty lies in storing the missing

value matrix Z, of which each row is a read and each column is a genome. In the near

future, the number of reads can be hundreds of millions while the number of genomes

can also be tens of thousands. Thus the matrix would seize up memory size in the order

of 104 GB using full matrix storage and still tens of GB using sparse matrix storage (as

currently implemented in GRAMMy). In fact, we can follow the work of Chen et al.

[21] to partition the missing value matrix Z into stripes of rows or columns and store

them separately across different cores. Since the EM algorithm is mostly column or row

sums, it can be coordinated parallel with message passing interface. In this way, the

memory bottleneck is circumvented and if the acceleration from parallelization outweighs

the overhead of data communication, there is also a speed up in computation time.

4.2 Future work for eLSA

In Chapter 3, we described the extended LSA technique for replicated time series analysis.

Here, we will elaborate the potential improvement directions for eLSA. Like GRAMMy,
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an immediate technical difficulty that eLSA face is the ever increasing number of fac-

tors. Currently the algorithm utilizes permutation test strategy for p-value evaluation.

However the computation is time-consuming for a large number of pairwise computations.

We can parallelize the current algorithm. Using the coarse-grained parallelization, we

can allocate pairwise jobs by partitioning the pairwise matrix. For example, if there are

T factors and the time cost for one pairwise computation is one unit, for the sequential

eLSA, it would take T (T−1)
2 units of time to complete. However if we have multiple cores,

say m2 cores, we can divide the jobs into this number of chunks, where the pairwise

computations between factor sets indexed by { Tm i+ 1, Tm i+ 2, · · · , Tm(i+ 1)} and { Tmj +

1, Tmj + 2, · · · , Tm(j + 1)} are carried out on the (mi+ j)-th core. We can expect a speed

up of m2 using this simple parallelization.

4.3 Molecular microbial ecology analysis pipeline

There are several methodology developments from our group addressing different issues

in molecular microbial ecology high-throughput data analysis including dynamic binning,

OTU calling for 16S RNA sequencing, local similarity analysis, eLSA and GRAMMy

[42, 43, 83, 84, 118–122, 126]. We can bring them all together and forge an integrated

analysis pipeline, see Figure 4.2.

As shown in the figure, there are three basic types of molecular microbial ecology

experimental data, including shotgun metagenomic reads, 16S RNA sequencing reads

and data from non-sequencing molecular technologies, such as ARISA and TRFLP. Our

tools like GRAMMy, Crop and Dynamic Binning can be used to preprocess data and

83



prepare a taxonomic relative abundance profile for each sample, either in the form of

OTUs or genomes, for subsequent analysis. Then, essential ecological analysis such as

richness (alpha diversity) can be assessed from the output of above tools. Further, for data

that are time series, we can pass them to association analysis tools like eLSA, which can

in addition identify significant time-dependent associations. The resulting associations

can then be fed into cytoscape to generate an association network for subsequent network

based analysis.

We can further integrate our pipeline with other state-of-art and widely accepted

software platforms, such as Galaxy, Cytoscape, QIIME [17, 23, 40], which will help bring

our tools to more audience in molecular biology and microbial ecology community and

assist investigators in their practical studies.
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Figure 4.1: A two-layer mixture model for taxonomic relative abundance estimation.

85



Figure 4.2: A molecular microbial ecology analysis pipeline integrating tools developed
by our groups.
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Appendix A

Technical derivations for GRAMMy

A.1 Derivation of the GRAMMy EM algorithm

Many estimation methods have been developed for estimating components’ mixing pa-

rameters for finite mixture models, among which are the Expectation Maximization (EM)

algorithm based approaches [27]. The EM based solutions have been proved to be accu-

rate and robust in many cases. Many acceleration methods, like Aitken’s, Quasi-Newton

and Conjugated Gradient, exist to improve its convergence rate for large size problems.

Thus, we adopted the EM based estimation as our solution to the MLE estimation in the

transformed mixture problem. In the EM framework, we further assume a ‘missing’ data

matrix Z, in which each entry zij is a random variable indicating whether the read ri is

from the genome gj . The model then can be solved by estimating π and Z iteratively

using Algorithm 2.
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Algorithm 2 Genome Relative Abundance estimation by Finite Mixture

Model(GRAMMy)

Require: read set R, reference genomes G, genome lengths L as inputs.

Variables: missing indices Z, reads probability f , mixing parameters π.

if backend is ‘map’ then

estimate f by mapping procedures by Equation 2.5.

end if

if backend is ‘k-mer’ then

estimate f by k-mer compositions by Equation 2.6.

end if

Mixing parameters π ⇐ Initialize() by moment estimates.

repeat

π′ ⇐ π

E-step: Z⇐ Prob(Z|π,R,G) as in Equation 2.3.

M-step: π ⇐MLE(π|Z,R,G) as in Equation 2.4.

until π′, π converged

Convert (π1, π2, ..., πm−1) to relative abundance a by Equation 2.1.

return a

We will describe the details of the algorithm in following subsections. Note: a variable

with a superscript (t) stands for its value at the t-th iteration in EM, e.g. π(t) is the

estimate of π at the t-th step. The t-th iteration in EM is:
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• E-step

Assuming that mixing parameters π(t) are known, the ‘missing’ indicator entries in

Z(t) can be updated using their corresponding posterior probabilities or:

z
(t)
ij = p(zij = 1|ri;π(t),G)

=
p(zij = 1, ri|π(t),G)

p(ri|π(t),G)

=
p(ri|zij = 1;π(t),G)p(zij = 1|π(t),G)
m∑
k=1

p(ri|zik = 1;a(t),G)p(zik = 1|π(t),G)

=
p(ri|zij = 1;G)π

(t)
j

m∑
k=1

p(ri|zik = 1;G)π
(t)
k

. (A.1)

Notice that we used p(ri|zij = 1;G, π(t)) = p(ri|zij = 1;G) because of the indepen-

dence of the two sampling steps in our mixture model and that the read probability

p(ri|zij = 1;G) can be accessed from fgj (ri|G), which is to be approximated us-

ing different methods later. Obviously, the update of Z(t) depends solely on the

updating value of π(t). This is how we obtain Equation 2.3 in Chapter 2.

• M-step:

Now, assuming ‘missing’ data Z(t) are known, we calculate new mixing parameters

π(t+1) that maximize the conditional expectation of the full data log likelihood

function Q(π|π(t)) of both the ‘missing’ and the known data, i.e., we update them

using:

π(t+1) = arg maxπ Q(π|π(t)),
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where

Q(π|π(t)) = E(log L(R,Z|π,G)|R, π(t))

= E(log
n∏
i=1

m∏
j=1

(p(zij = 1|π,G)p(ri|zij = 1;π,G))zij |R, π(t))

= E(
n∑
i=1

m∑
j=1

zij(log p(zij = 1|π,G) + log p(ri|zij = 1;G))|R, π(t))

=
n∑
i=1

m∑
j=1

p(zij = 1|π(t),G)(log p(zij = 1|π,G) + log p(ri|zij = 1;G))

=
n∑
i=1

m∑
j=1

π
(t)
j (log πj + log p(ri|zij = 1;G)).

and

log L(R,Z|π,G) =
n∑
i=1

m∑
j=1

zij(log p(zij = 1|π,G) + log p(ri|zij = 1;G))

is the model log likelihood function for the complete data (Z, R). The exact form

of the maximum likelihood estimator (MLE) for Q(π|π(t)) can be found, and it can

be expressed using a simple closed form in π(t+1):

π
(t+1)
j =

n∑
i=1

z
(t)
ij

n
. (A.2)

This is how we obtain Equation 2.4 in Chapter 2.

When the MLE of π is found, using the one-to-one relation in Equation 2.1, the MLE

of a can be also found, thus we can solve the original biological problem.
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A.2 Derivation of the standard errors

Using the asymptotic theory for MLE estimates, we can derive the asymptotic covariance

matrix for the mixing parameters π. Remember, there are m−1 independent parameters

in π we are estimating and let us choose these to be (π1, π2, ..., πm−1) and denoted by π̂.

Let π̂∗ and a∗ be the MLE estimates for π̂ and its corresponding GRA vector. We can

derive the observed information matrix Io,

Io(π̂|R,G) = −∂
2 log L(R|π̂,G)

∂π̂∂π̂T
,

where:

L(R|π̂,G) =

n∑
i=1

log(

m−1∑
j=1

πjfgj (ri|G) + (1−
m−1∑
j=1

πj)fgm(ri|G))

is the log likelihood function of the observed data R. Therefore, we write each entry of

Io as:

Io(π̂|R,G)kl =
n∑
i=1

(fgk(ri|G)− fgm(ri|G))(fgl(ri|G)− fgm(ri|G))

(
∑m−1

j=1 πjfgj (ri|G) + (1−
∑m−1

j=1 πj)fgm(ri|G))2
,

for k, l ∈ {1, 2, ...,m− 1}. Because the GRA vector a is a rank preserving transformation

of π̂, we can subsequently write the observed information matrix Io(a|R,G) with regard

to the parameterization of a as:

Io(a|R,G) = ∇a(π̂)T Io(π̂|R,G)∇a(π̂),
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and the asymptotic standard error for our MLE estimate a∗j as:

SE(a∗j ) = (Cov(a∗))jj ≈ ((I−1o (a|R,G))jj)
1
2

∣∣
π̂=π̂∗ , (A.3)

for j ∈ {1, 2, ...,m − 1}, considering π̂ as the natural parameter set and a as another

parameter set, and that the asymptotic variance matrix can be effectively calculated by

taking the inverse of the observed information matrix [30] and the standard error is the

square root of variance entries on the diagonal. This is how we arrive at Equation 2.7 as

our standard errors for our GRA estimates.

However, when the number of reads as compared to number of parameters is small

or the majority of reads fails to be mapped, the asymptotic condition is not met and

the application of previous result is not valid. However, we can still use the bootstrap

estimator for covariance to estimate the standard error of our MLE using the empirical

distribution:

SE(a∗j ) = (Cov(a∗))jj ≈

(
1

B − 1

B∑
b=1

(a∗(b) − ā∗)(a∗(b) − ā∗)T

)
jj

, (A.4)

where ā∗ = 1
B

∑B
b=1 a

∗
(b) is the bootstrap mean estimator of the samples’ MLEs, which is

exactly our Equation 2.8 in Chapter 2.

A.3 Convergence of the GRAMMy EM algorithm

Because the EM method is greedy, it may not converge to the global maximum of the

objective function. However, in this case, we shall show the observed data log likelihood
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function L(R|π̂,G) is concave with regard to π̂. Thus, any local maximum the EM

converge to is the global maximum.

Proposition 1. L(R|π̂,G) is concave.

Proof. Since the sum of concave functions is still concave, proving the concavity of the

log likelihood function of single observation suffices. Taking the second-order derivatives

of the summands of L(R|π̂,G), we have

∂2 log L(ri|π̂,G)

∂π̂∂π̂T
= − (fgk(ri|G)− fgm(ri|G))(fgl(ri|G)− fgm(ri|G))

(
∑m−1

j=1 πjfgj (ri|G) + (1−
∑m−1

j=1 πj)fgm(ri|G))2
. (A.5)

If consider the Hessian matrix H where the (k, l)-th element is Equation A.5, we can

write H as H = −dvtv, where

v = (fg1(ri|G)− fgm(ri|G), ..., fgm−1(ri|G)− fgm(ri|G))

is a vector and

d =
1

(
∑m−1

j=1 πjfgj(ri|G) + (1−
∑m−1

j=1 πj)fgm(ri|G))2

is a scalar. Notice d ≥ 0, therefore H is negative semi-definite because for any vector

u = (u1, ..., um−1), we have uHut = −d(uvt)(uvt)t = −d(uvt)2 ≤ 0. Thus, the concavity

of the log likelihood function L(R|π̂,G) is proved.
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Appendix B

GRAMMy simulated studies

B.1 Simulated read sets

To evaluate the performance of the GRAMMy, we generated a series of simulated read sets

using MetaSim [80], which is a tool specialized to simulate large shotgun metagenomic

read sets from input reference genomes and has full-fledged simulating options, such as

sequencing error models, population variations and read length distributions.

In our simulation study, we randomly chose ten microbial genomes from the collection

of genomes given by the FAMeS study [63]. We then generated an artificial GRA vector

from the power-law (Zipf’s) distribution [62]: f(k;α,N) = 1/kα∑N
n=1 1/nα

with α = 2.

Both the reference genomes and the vector of relative abundance were provided to

MetaSim, with its population sampling option on, to generate a series of read sets, with

RL (read length) in {50, 100, 200, 400, 800} bp, RN (read number) in {1000, 2000,

5000, 10000, 20000, 50000, 100000}, and SE (sequencing error mode) in either ‘with’ and

‘without sequencing errors’. For each parameter triplet (RL,RN, SE), we generated ten

replicates.
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To simulate the ‘with sequencing errors’ scenario, the sequencing errors were intro-

duced into read sets by enabling the ‘454’ or ‘Sanger’ error mode option in MetaSim to

mimic the reads generating behavior of the Roche/454 (RL = 50-400 bp) and Sanger

platforms (RL = 800bp). The read length distribution option was also on to generate

reads with normally distributed lengths for the two platforms. These options were con-

servative because MetaSim was originally published in 2008 and the technologies have

been greatly improved since then.

While generating the read replicates, we also permuted the order of all the components

in the GRA vector so that every genome had the chance to become either a major

or a minor member in the read sets. This permutation procedure reduces the artifact

introduced by manually choosing genomes and their abundance levels, as a consequence,

the robustness of estimation could be assessed by measuring the standard deviations of

all replicates’ estimates. The series of replicated simulated read sets obtained above was

then extended with additional non-replicated read sets with RN in {200000, 500000,

1000000} and RL, SE the same as above for larger scale benchmarks.

To evaluate the estimation with different community structures, we randomly gener-

ated another GRA vector from the same power law distribution with larger variations

in component abundances. We then repeated the above read generation process for all

parameter triplets (RL,RN, SE) using this new GRA vector without replicates. This

produced a new independent series of read sets with significant differences in microbial

community structure from the previous one. We labeled the new series ‘steep’ since its

GRA only had a few dominant species and the previous one ‘flat’ since its GRA was more

evenly distributed.
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B.2 Performance evaluation for simulations

We first used the same set of genomes used in read generation as our reference genomes.

The alignment program BLAT was used to align the reads to the references and the

output was fed into GRAMMy, GAAS and MEGAN. Then, we used different numerical

error measures (see “Materials and Methods” in Chapter 2) and their standard deviations

to assess the quality of the estimations.

In Figure B.1, we plotted the measured errors (with deviation bars) against the read

number (RN) to show the convergence of the GRA estimates to their true values. It can

be seen from Figure B.1A that, as RN increases, the Relative Root Mean Square Error

(RRMSE) diminishes to almost zero with decreased variation for all RLs, which indicates,

regardless of read lengths, the GRAMMy (‘map’) accurately converge to their true values

and become stable once the read number ensures a high coverage. For instance, when 105

reads are available, the RRMSE is less than 2% and its standard deviation is marginal

for all RLs.

In Figure B.1B, in addition to RRMSE, we measured the Average Relative Error (AV-

GRE), the Maximum Relative Error (MAXRE), the Distance of Total Variation (DTV)

and their standard deviations for the read sets with a RL equal to 100 bp. According

to the plot, all four measures converge to zero and stabilize. This pattern is similar us-

ing other read lengths. From Figures B.1A and B.1B, we concluded that the GRAMMy

estimation is accurate and robust for different read lengths and error measures.

To further study the performance of GRAMMy within the limitations of partially

available reference genomes and current sequencing technologies, we next added more
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perturbations to the simulation study, such as sequencing errors, unknown genomes. We

also applied a different abundance distribution to evaluate the effects from the complexity

of a community. The results from these studies were summarized in a series of RRMSE-

versus-RN plots in Figure B.2.

As we can see from Figure B.2A, sequencing errors do affect the estimation accuracy

for short reads since the estimation accuracy for read sets ‘with sequencing errors’ is lower

than that for ‘without sequencing errors’, particularly at RLs ≤200 bp. However, for a

reasonably large number of reads, a scale routinely achieved in recent metagenomic read

sets, the estimates are close to the true values, as in the worst case here, the limiting

RRMSE is about 20% for the shortest read length (RL=50 bp). We can also infer from

the plot that, developments from sequencing technologies, such as increased read length

and reduced error rates, can help to improve the estimates. For example, at RN equal

to 105 and ‘with sequencing errors’, when the RL is increased from 50 to 200 bp, it helps

to reduce the RRMSEs from 20% to 10% approximately. Moreover, when sequencing

errors are negligible, 50 bp reads are as informative as any longer ones in the purpose of

abundance estimation using our framework.

In reality, inaccuracies in the GRA estimation can also arise from the limited knowl-

edge of reference genomes. In the next simulation, we masked out 50% of the reference

genomes and repeated the estimations. As Figure B.2B indicates, a partial reference

genome set does not substantially affect the accuracy of estimates, despite that they be-

come less robust at a low sequencing depth. In fact, at a sufficient high coverage (RN
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equal to 106), the estimates for read sets ‘with unknowns’ also converge and is compara-

bly accurate to that of ‘without unknowns’. Even if 80% of the reference genomes were

masked out, the estimation still had good convergence, as our study indicates.

Another factor that may affect the estimation is the community’s natural complexity.

To study this, we prepared two communities which are different from each other in their

shape of GRA distribution. In these read sets, the GRA of the ‘flat’ sets is more spread

among all genomes while that of the ‘steep’ sets is more concentrated on a few genomes.

From the estimations, as shown in Figure B.2C, we do not observe significant effects

resulting from different complexities, though there are some decrease in accuracy for the

‘steep’ sets, which may be related to a less coverage of minority genomes.

We also compared GRAMMy to other methods. With the objective of estimating

the GRA of communities, we first benchmarked GRAMMy with GAAS. In addition, we

included MEGAN, which produces a read profile that summarizes the number of reads

assigned to their lowest common ancestors (LCA). We estimated the GRA based on

MEGAN using the normalized percentages from the reads distributed on leaf taxon. The

default options of GAAS and MEGAN were used in our study. Figure B.3A shows the

results from the simulation read sets with read length (RL) equal to 100 or 400 bp gen-

erated from MetaSim using the with sequencing errors option. We see that GRAMMy

(‘map’) significantly outperformed GAAS, MEGAN and GRAMMy (‘k-mer’) in all set-

tings. Among all the methods tested, GRAMMy (‘map’) is the only method with RRM-

SEs decreasing to zero as the number of reads increases.

In addition to the above methods, We compared the 16S-based, rpoB-based and BLAT

hit counting estimates to GRAMMy estimates using our simulated read set. Figure B.3B

108



shows that GRAMMy outperformed all other methods in this controlled setting. All

other methods show three obvious drawbacks: a persisting bias, significant variation and

a strong dependence on the number of reads.

Finally, we evaluated the computation time and the error propagation to higher taxo-

nomic levels using our simulated data set. The time and space complexity of our algorithm

are shown to be O(c1c2n) and O(c1n), respectively, where n is the size of the read set, c1

(related to associated genomes each read) and c2(related to EM convergence criteria) are

two constants.

We benchmarked GRAMMy with MEGAN and GAAS for running time with different

RLs and RNs, see Figure 6. The mapping or alignment time is excluded for all compared

tools. We see GRAMMy is consistently faster than the other two in processing the same

read set and it scales as expected. In addition, as shown in Figure B.4, the errors gradually

reduce from lower to higher taxonomic levels. And the error is consistently small when

the RN is large. All the simulations are carried out on our “Dell, PE1950, Xeon E5420,

2.5GHz, 12010MB RAM” computing nodes.

In conclusion, our simulations showed GRAMMy estimates are accurate and stable

across a range of anticipated settings. Furthermore, it is superior in speed as compared

to other available tools. An interesting observation is, when the purpose is to estimate

the abundance of a predefined set of reference genomes, an excessively ‘deep sequencing’

scheme is not necessary. As shown in the subfigures of Figure B.1 -B.3, the RRMSEs start

to stabilize when the RN passes over 104 reads, which indicates there may be a threshold

for read number that is needed to recover the community abundance structure. This

trend also represents that, when the reads ambiguity are properly handled, a read set
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of relatively smaller number can still provide substantial information for the abundance

estimation. Even though the specific threshold value may differ in real settings, it can be

predicted using pre-study simulations and is informative for a more economical design of

the actual sequencing depth.
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Figure B.1: The convergence of GRAMMy. The estimation errors, as measured by differ-
ent numerical methods: (A) Relative Root Mean Square Error (RRMSE) in percentage
versus Read Number (RN) for different read lengths (RL). (B) Relative Root Mean Square
Error (RRMSE), Average Relative Error (AVGRE), Maximum Relative Error (MAXRE),
and Distance of Total Variation (DTV) versus Read Number for read length equal 100
bp. GRAMMy (map) was used.
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Figure B.3: Performance comparison of different methods. The performance comparisons
for different estimation methods: (A) MEGAN-based (‘MEGAN’), GAAS (‘GAAS’) and
GRAMMy (‘map’ and ‘k-mer’) on simulated read sets with sequencing errors at read
length 100 bp and 400 bp. (B) 16S-based (‘16S’), BLAT hit counting (‘BLAT’), rpoB-
based (‘rpoB’) and GRAMMy (‘map’). Relative Root Mean Square Error (RRMSE) as
a percentage is plotted against Read Number (RN).
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Figure B.4: Estimation errors at different taxonomic levels. Average Relative Error (AV-
GRE) as a percentage is plotted against taxonomic level. The errors gradually decrease
from strains to kingdom taxonomic levels.
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