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Abstract

Local association analysis, such as local similarity analysis and local shape analysis, of

biological time series data helps elucidate the varying dynamics of biological systems.

However, their applications to large scale high-throughput data are limited by slow per-

mutation procedures for statistical significance evaluation. We developed a theoretical

approach to approximate the statistical significance of local similarity and local shape

analysis based on the approximate tail distribution of the maximum partial sum of in-

dependent identically distributed (i.i.d) and Markovian random variables. Simulations

show that the derived formula approximates the tail distribution reasonably well (starting

at time points > 10 with no delay and > 20 with delay) and provides p-values compa-

rable to those from permutations. The new approach enables efficient calculation of

statistical significance for pairwise local association analysis, making possible all-to-all

association studies otherwise prohibitive. As a demonstration, local association analy-

sis of human microbiome time series shows that core OTUs are highly synergetic and

some of the associations are body-site specific across samples. The new approach is im-

plemented in our eLSA package, which now provides pipelines for faster local similarity

and shape analysis of time series data. The tool is freely available from eLSA’s website:

http://meta.usc.edu/softs/lsa.

ix



Chapter 1

Introduction

1.1 Local association analysis approaches

Understanding how genes regulate each other and when the regulations are active is an

important problem in molecular biological research. Similarly, in ecological studies, it

is important to understand how different organisms and environmental factors, such as

food resources, temperature, etc. regulate each other to affect the whole community.

For generality, we will refer to either genes in gene regulation studies or organisms or

environmental factors in ecological studies as factors. Time series data can give significant

insights about the regulatory relationships among different factors. Many computational

or statistical approaches have been developed to cluster the genes into different groups

so that the expression profiles of genes in each cluster are highly correlated, see reviews

[1, 3]. Most of these methods consider the correlation of expression patterns across the

entire time interval of interest. For many gene regulation relationships, the regulation

may be active in certain subintervals. Methods based on the global relationships of the

gene expression profiles may fail to detect these relationships.
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Several methods have been developed to address this problem. Borrowing the idea

from local alignment for molecular sequences, [18] proposed to identify local and potential

time-delayed (-lagged) associations between gene expression profiles. Here, local indicates

the two factors are only associated within some time subinterval, and time-delayed in-

dicates there is time shift in the associated profiles. The strength of local association

is measured by local similarity (LS) score and the statistical significance of LS score is

evaluated by a large number of permutations. The authors showed that such analysis

can identify associated pairs that are not detectable through global analysis. [20] used a

similar approach to study local associations of microbial organisms in the ocean over a

four year period and this approach has been used in several other recent ecological studies

[4, 6, 10, 21, 23]. [25] recently extended the approach to deal with replicated time series

where not only statistical significance of LS score can be evaluated, but also a bootstrap

confidence interval can be obtained.

Several investigators have extended the basic local similarity approach for the gene

expression profiles to local shape analysis [2, 12, 14], where in [14], the time delay is

fixed and in [12], the time delay is not pre-defined but is estimated from the data. In

local shape analysis, expression profiles of n consecutive time points are changed to a

n− 1 time point series corresponding to decrease, no change, and increase in expression

levels. The Smith-Waterman algorithm is then used to locate subintervals I and J in the

pair of obtained series, respectively, so that the product is maximized. The statistical

significance is evaluated by permutation procedures similar to that of local similarity

analysis. However, this approach is problematic since the shape data are not independent

even under the assumption that the real observed data are independent.

2



1.2 Current limitations and our developments

One of the major limitations of the local similarity/shape analysis is the time consuming

permutation procedure used to evaluate the statistical significance (p-value) of the LS

score. When a large number of G genes are considered, G(G − 1)/2 gene pairs need to

be evaluated. For a type I error α, in order to adjust for multiple testing, the Bonferroni

corrected threshold is 2α/(G(G − 1)). For G = 5000, the threshold is 4 × 10−9 when

α = 0.05, which will need over 2.5×108 permutations that is prohibitive. While in practice

false discovery rate (q-value) is used to mitigate the multiple comparison problem, still,

fast and efficient theoretical approximation for the statistical significance of the LS score

is urgently needed to accurately estimate the p-values.

In this thesis work, we provide a theoretical approximation for the distribution of

local similarity analysis LS scores as well as that based on local shape analysis. In

the “Methods” chapter, we provide the theoretical bases for deriving the approximate

tail probability that the LS score is above a threshold. In the “Results” chapter, we use

simulations to study the number of data points n needed for the theoretical approximation

to be valid. We also use the theoretical formula to study three real datasets arising from

different high-throughput experiments: microarray, molecular finger printing, and NGS

tag-sequencing. The thesis concludes with some discussion on further applications and

future research directions.

3



Chapter 2

Methods

2.1 Previous works

Consider time series data for two factors with levels X1, X2, · · · , Xn and Y1, Y2, · · · , Yn,

respectively. The first step is to normalize the expression levels of each time series so

that they can be regarded as normally distributed. Without loss of generality, we assume

that they are already normally distributed. Second, dynamic programming algorithm is

used to find intervals I = [i, i + l − 1] and J = [j, j + l − 1] of the same length l such

that the absolute value of S =
∑l−1

k=0Xi+kYj+k is maximized, which is referred to as local

similarity (LS) score [18, 20, 25]. Here the starting positions of the subintervals i and j,

and the length of the intervals l are not pre-specified and are all derived from the data. In

most practical problems, investigators may only be interested in local associations with

short delays, for example, the starting positions of the intervals in the two time series i

and j are at most D apart, i.e. |i− j| ≤ D. We denote the LS score with time delay at

most D by LS(D).

4



In the third step, statistical significance for the LS score corresponding to the null

hypothesis that the two factors are not associated is approximated by permuting one of

the time series data many times and calculating the fraction of times that the LS score for

the permuted data is higher than that for the real data [18, 20]. With such a permutation

approach for p-value, the authors implicitly assumed that the observations for the samples

at the different time points are independent under the null model. However, in many

practical problems, in particular, time series data, the observations for each factor may

depend on each other and the permutation based approach may not work well. Another

drawback of the permutation based approach is computational time scales linearly with

the inverse of the p-value precision and is computationally expensive for large dataset of

long series. Here, we provide theoretical formulas to approximate the p-value overcoming

both problems.

The local shape analysis [2, 12, 14] is similar to local similarity analysis given above.

The only difference is to change the vectors of expression levels to a vector of {-1, 0, 1}

corresponding to decrease, no significant change, or increase of the expression levels at

consecutive time points. Under this situation, the permutation approach for the obtained

vectors is even more problematic because the adjacent terms are highly correlated and

the permutation approach destroys such dependency resulting in incorrect estimation

of p-values. We will also provide new theoretical approaches to calculate the p-value

corresponding to local shape analysis.

5



2.2 Maximum absolute partial sums of i.i.d and Markovian

random variables

In order to derive theoretical formulas to calculate the p-value related to the local sim-

ilarity score, we resort to classical theoretical studies on the range of partial sums for

independent identically distributed (i.i.d) random variables with zero mean [9] and the

extensions to Markovian random variables [7]. The results from such studies when the

expectation of the random variables is negative played key roles in the derivation of sta-

tistical significance for local sequence alignment (e.g. BLAST) which forms a milestone in

the field of computational biology [15]. On the other hand, the theoretical results on the

approximate distributions when the mean is zero is not widely used in the computational

biology community.

Based on these previous theoretical studies, we present some theoretical results re-

garding the range of partial sums for either i.i.d. or Markovian random variables. [9]

studied the approximate distribution of the range of the sum of n random variables with

mean 0. Let Zi be i.i.d. random variables such that E(Zi) = 0 and V ar(Zi) = σ2. Let

Sn = Z1+Z2+· · ·+Zn, Mn = max {0, S1, S2, · · · , Sn}, and mn = min {0, S1, S2, · · · , Sn}.

The range is defined as Rn = Mn − mn. It is shown in [9]: E(Rn/σ) = 2
√

2n/π,

Var(Rn/σ) = 4n(log(2)− 2/π).

Using the theory of Bachelier-Wiener processes, [9] approximated the density function

of Rn/σ by (equations 3.7 and 3.8 in that paper) δ(n; r),

δ(n; r) =

√
2

π
r−1L′(r/(2

√
n)), (2.1)

6



where,

L(z) =
√

2πz−1
∞∑
k=0

exp
(
−(2k + 1)2π2/8z2

)
.

Thus,

P (Rn/(σ
√
n) ≥ x)

=

∫ ∞
√
nx

√
2

π
r−1L′

(
r

2
√
n

)
dr

= 1− 8

∞∑
k=0

(
1

x2
+

1

(2k + 1)2π2

)
exp

(
−(2k + 1)2π2

2x2

)
(2.2)

Next we give an upper bound for the tail in equation 2. This upper bound can be

used to determine when we stop the summation in equation 2 for practical calculations.

Note exp
(
− (2k+1)2π2

2x2

)
< exp

(
− (2k+1)π2

2x2

)
, for k > 0. Thus, for any K > 0 such that

(2K + 1)π > x, we have,

∞∑
k=K

(
1

x2
+

1

(2k + 1)2π2

)
exp

(
−(2k + 1)2π2

2x2

)

<
2

x2

∞∑
k=K

exp

(
−(2k + 1)π2

2x2

)

=
2 exp

(
− (2K+1)π2

2x2

)
x2(1− exp

(
−2π2

2x2

)
)

Thus, for an approximation error threshold β, we can choose K so that

16 exp
(
− (2K+1)π2

2x2

)
x2
(

1− exp
(
−2π2

2x2

)) ≤ β.
7



Then we just approximate P (Rn/(σ
√
n) ≥ x) by

1− 8
K−1∑
k=0

(
1

x2
+

1

(2k + 1)2π2

)
exp

(
−(2k + 1)2π2

2x2

)
. (2.3)

[7] studied the distribution of the maximum partial sum of an aperiodic Markov chain

taken values on a finite subset of the real line, i.e Hn = max0≤i<j≤n (Sj − Si). Let v be

the stationary distribution of the Markov chain Zn, n = 0, 1, 2, · · · with Ev(Z1) = 0 and

σ2 = Ev(Z
2
1 ) + 2

∑∞
k=2Ev(Z1Zk). It was shown in [7] that

lim
n→∞

P

(
Hn

σ
√
n
≤ x

)
=

4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2π2

8x2

)
. (2.4)

[8] provided an upper bound of C
√

log(n)/n for the approximation in equation 2.4.

Similarly, we can define Ln = −min0≤i<j≤n (Sj − Si). Since E(Zi) = 0, Ln has the

same limiting distribution as Hn. It can also be seen easily that Rn = max(Hn, Ln).

When x is large, the probability of {Hn > x}
⋂
{Ln > x} will be small and

P (Rn/(σ
√
n) ≥ x)

= P (max(Hn, Ln)/(σ
√
n) ≥ x)

= P ({Hn/(σ
√
n) ≥ x}

⋃
{Ln/(σ

√
n) ≥ x})

≈ P (Hn/(σ
√
n) ≥ x) + P (Ln/(σ

√
n) ≥ x)

≈ 2P (Hn/(σ
√
n) ≥ x)

≈ 2

(
1− 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2π2

8x2

))
, x ≥ 0. (2.5)

8



The approximation works very well when x ≥ 2. However, when x is small, the approxi-

mation does not work well and actually the above quantity can be larger than 1.

2.3 Statistical significance for local similarity scores

We next use the theory outlined in section 2.2 to approximate the statistical signifi-

cance in local similarity and local shape analyses. For time series data of two factors

X1, X2, · · · , Xn and Y1, Y2, · · · , Yn, we use the dynamic programming algorithm to cal-

culate the LS score with maximum delay D denoted as sD. Corresponding to the null

hypothesis that the two time series data are not related, the statistical significance is given

by p-value = P (LS(D) ≥ sD), where LS(D) = maxi,j,l;|i−j|≤D |
∑l−1

k=0Xi+kYj+k|. First

consider the case that D = 0. Let Zi = XiYi, i = 1, 2, · · · , n. Assuming that both Xi and

Yi are independent standard normally distributed, we have E(Zi) = 0 and E(Z2
i ) = 1.

Therefore, we can directly use the theory developed above in equations 2.3 to calculate

the p-value.

Next let us assume D > 0. Let S
(d)
n be the LS score with no time delay for the pair

of series (d = 0,±1,±2, · · · ,±D)

x1 x2 x3 · · · · · · · · · xn−2 xn−1 xn

y1+d y2+d y3+d · · · · · · · · · xn−2+d xn−1+d xn+d

where we consider the data as missing when the subscript is outside the range [1, n] and

the pair is not considered when the LS score is calculated. When n is sufficiently large,

S
(d)
n for d = 0,±1,±2, · · · ,±D can be considered as approximately identically distributed

because S
(d)
n is the LS score for n − d pairs of i.i.d. normal random variables. The tail

distribution function of S
(d)
n /(σ

√
n) can be approximated by equation 2.3. Note LS(D) =

9



maxDd=−D S
(d)
n . In order to derive an approximate cumulative distribution function of

LS(D), we pretend that S
(d)
n , d = 0,±1,±2, · · · ,±D are independent although they are

not. Then

P (LS(D)/(σ
√
n) ≤ x)

=
D∏

d=−D
P (S(d)

n /(σ
√
n) ≤ x) (use independence assumption)

= 82D+1

( ∞∑
k=1

(
1

x2
+

1

(2k − 1)2π2

)
exp

(
−(2k − 1)2π2

2x2

))2D+1

Thus, the tail probability of LS(D) can be approximated by

L(x) = P (LS(D)/(σ
√
n) ≥ x) ≈ 1− 8

2D+1

 ∞∑
k=1

(
1

x2
+

1

(2k − 1)2π2

)
exp

(
−

(2k − 1)2π2

2x2

)2D+1

.

From Equation 2.6, we can obtain the approximate density function of R
(D)
n /(σ

√
n)

by

fD(x) =
(2D + 1)

x3
8
2D+1

 ∞∑
k=1

(
1

x2
+

1

(2k − 1)2π2

)
exp

(
−

(2k − 1)2π2

2x2

)2D

×
∞∑

k=1

(
(2k − 1)2π2

x2
− 1

)
exp

(
−

(2k − 1)2π2

2x2

)
. (2.6)

Finally, we can model time series data with replicate data as well as with large fraction

of zero values based on equation 2.6, using additional scaling in σ, and the detail of the

method is given in the Supplementary Methods.
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2.4 Statistical significance for local shape analysis

Next, we use the theory developed in section 2.2 to approximate the p-value corresponding

to local shape (also LS) score. Note that in local shape analysis, we change the n-

dimensional vector X to a n− 1 dimensional vector (dXi , i = 1, 2, · · · , n− 1), where dXi =

sign(Xi+1−Xi), sign(x) = 1 when x > 0 and sign(x) = −1 when x < 0 . Note that even if

the components of X are independent, the random variables dXi , i = 1, 2, · · · , n−1 are not

independent because both dXi and dXi+1 depend on Xi+1. Assuming that X1, X2, · · · , Xn

are i.i.d continuous random variables such that the probability of taking a fixed value to

be 0, we have P [(dXi , d
X
i+1) = (1, 1)] = P [(dXi , d

X
i+1) = (−1,−1)] = 1/6 and P [(dXi , d

X
i+1) =

(1,−1)] = P [(dXi , d
X
i+1) = (−1, 1)] = 1/3.

Note that P (dXi = 1) = P (dXi = −1) = 1/2 if the X’s are exchangible. Therefore

dXi , i = 1, 2, · · · , n−1 are not independent. Actually dX1 , d
X
2 , · · · , dXn−1 do not even form a

Markov chain. However, let us pretend that they form a Markov chain d
X
i with transition

matrix

T =

1 -1

1 1/3 2/3

-1 2/3 1/3

.

Then it can be shown by spectral expansion that

T k =
1

2

 1 + (−1)k/3k 1− (−1)k/3k

1− (−1)k/3k 1 + (−1)k/3k

 .

11



For k > 1, we have P (d
X
1 d

X
k+1 = 1) = (1 + (−1)k/3k)/2 and P (d

X
1 d

X
k+1 = −1) =

(1 − (−1)k/3k)/2. Thus, E(d
X
1 d

X
k+1) = (−1)k/3k. In local shape analysis, we com-

pare dX1 , d
X
2 , · · · , dXn−1 with dY1 , d

Y
2 , · · · , dYn−1. The score for the local shape analysis

is the range of
∑

i d
X
i d

Y
i when D = 0. Using the results of [7], we have σ2XY =

E((d
X
1 )2)E((d

Y
1 )2) + 2

∑∞
k=1E(d

X
1 d

X
k+1)E(d

Y
1 d

Y
k+1) = 1 + 2

∑∞
k=1 1/32k = 1 + 1/4 = 1.25.

Thus, for the local shape score,

P (LS(D) ≥ sD) = P

(
LS(D)

σXY
√
n
≥ sD
σXY
√
n

)
= L

(
sD√

1.25× n

)
,

where the function L is defined in equation 2.6.

2.5 Simulation studies and application to real datasets

In deriving the approximate p-values for local similarity and local shape analysis in sec-

tions 2.3 and 2.4, we made several simplifying assumptions, whose effects on the accuracy

of the approximations were evaluated by simulations. We first study the accuracy of the

approximation for the tail probability of Rn/(σ
√
n) in equation 2.6 using simulations for

both local similarity and shape analysis. Firstly, for given number of time points n, we

generate n pairs of i.i.d standard normal random variables (Xi, Yi), i = 1, 2, · · · , n and Xi

and Yi are independent. Secondly, the dynamic programming algorithm is then used to

calculate the local similarity score with at most time delay D, LS(D). Thirdly, we repeat

the first two steps 10,000 times and obtain the empirical distribution of LS(D)/(σ
√
n).

We compare the empirical distributions with the theoretical approximation given in equa-

tion 2.6 for local similarity scores (σ = 1). We did similar simulation studies for local

12



shape scores, using the transformed series of {−1, 0, 1} from the original standard normal

series (σ =
√

1.25).

We then apply our method to analyze three real datasets. The first one is a mi-

croarray yeast gene expression dataset, synchronized by cdc-15 gene, from [22] (referred

to as ‘CDC’). The second one is an ARISA molecular finger printing microbial ecology

dataset from San Pedro Ocean Time Series in [23] (referred to as ‘SPOT’) . The third

one is a 16S RNA tag-sequencing dataset from Moving Pictures of Human microbiota

sampling of human symbiotic microbial communities from [5] (referred to as ‘MPH’). We

applied both local similarity and shape analysis to re-analyze the first two datasets and

compared the theoretical and permutation approaches. We are the first to analyze the

third dataset for local similarity and shape analyses. For the local similarity analysis,

datasets are normalized by the procedures described in Supplementary Methods (referred

to as ‘original’). For the local shape analysis, datasets are converted to local trend series

of {−1, 0, 1} and analyzed without normalization (referred to as ‘trendBy0’).

13



Chapter 3

Results

3.1 Simulations

The approximate p-values for the local similarity and local shape analysis given in sections

2.3 and 2.4 are only applicable when the p-value is small and the number of time points

is large. Thus, it is important to know the range of applicability for the approximation.

Table 3.1 gives the theoretical tail probability based on equation 2.6 (2nd column) and

the simulated probability P (LS(0)/
√
n ≥ x) (3rd to 9th columns) for different number of

time points when D = 0. It can be seen that the theoretical tail probability is very close

to the simulated probability when x ≥ 3 corresponding to the theoretical p-value less

than 0.011. The approximation is even reasonable when the number of time points is just

10. In general, the theoretical tail probability is slightly larger than the simulated values

when D = 0. Similar results are observed for local shape analysis (Table 3.2) when n is

as small as 20. When D > 0, the theoretical approximation is close to the simulated tail

probability when n ≥ 20 and n ≥ 30 for local similarity and shape analysis, respectively

14



(see Tables SB.1-B.8 in Supplementary Results). Thus, if we use the theoretical approx-

imate distribution to calculate the p-value, we will be slightly conservative in declaring

significant associations.

For relatively small value of x, the theoretical approximation can be much larger

than the simulated tail probability. One potential explanation is that the R
(D)
n /(σ

√
n)

is stochastically increasing and that as n increases the theoretical approximation become

closer to the simulated distribution of LS(D)/(σ
√
n). We also tested if the P (LS(D)/(σ

√
n) ≥

x) = 1 − (1 − P (R
(0)
n /(σ

√
n) ≥ x))2D+1 is generally true using the simulated tail prob-

abilities and it can be clearly seen from Tables SB.1-B.8 that this relationship is indeed

reasonable indicating that S
(d)
n , d = 0,±1, · · · ±D can indeed be considered as indepen-

dent.

In equation 2.6, we derive the approximate density function of R
(D)
n /(σ

√
n). We

superimpose this approximate density function to the histograms of the simulated values

of LS(D)/(σ
√
n) at n = 200 and D = 0, 1, 2, 3 as in Figures 3.1-3.2 for local similarity

and local shape scores, respectively. Several observations can be made from the figure.

First, the values of LS(D)/(σ
√
n) increases as a function of D as expected. Second, the

approximate theoretical density function is slightly lower than the simulated frequency

when x is lower than the mode of the theoretical distribution and is slightly higher than

the simulated frequency when x is larger than the model of the theoretical distribution,

thus the tail probability based on the theoretical approximation is slightly higher than

the simulated value.

We next see how p-values (Ptheo) derived from theoretical approximation compare

to that of permutation (Pperm) given the same data, see Figures SB.1-B.2. For local

15



Number of time points n
x Theory 10 20 30 40 60 80 100
2 0.1815 0.0848 0.0987 0.1062 0.1122 0.1201 0.1235 0.1290
2.2 0.1111 0.0541 0.0621 0.0645 0.0665 0.0699 0.0771 0.0767
2.4 0.0656 0.0341 0.0367 0.0392 0.0416 0.0411 0.0435 0.0457
2.6 0.0373 0.0223 0.0221 0.0252 0.0235 0.0232 0.0249 0.0261
2.8 0.0204 0.0147 0.0128 0.0154 0.0131 0.0129 0.0138 0.0163
3.0 0.0108 0.0093 0.0082 0.0088 0.0074 0.0069 0.0071 0.0090
3.2 0.0055 0.0056 0.0051 0.0038 0.0036 0.0030 0.0035 0.0054
3.4 0.0027 0.0033 0.0031 0.0017 0.0022 0.0009 0.0016 0.0027
3.6 0.0013 0.0019 0.0020 0.0011 0.0014 0.0004 0.0006 0.0012
3.8 0.0006 0.0007 0.0008 0.0006 0.0010 0.0002 0.0004 0.0009
4.0 0.0003 0.0004 0.0005 0.0003 0.0005 0.0000 0.0003 0.0004
4.2 0.0001 0.0002 0.0004 0.0002 0.0005 0.0000 0.0001 0.0002
4.4 0.0000 0.0001 0.0003 0.0001 0.0002 0.0000 0.0000 0.0001
4.6 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000 0.0001
4.8 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
5.0 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

Table 3.1: Theoretical approximation for local similarity analysis p-values versus the
simulated probability P (LS(D)/

√
n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
n ≥ x is given in the 3rd to the 9th columns. D = 0.

similarity case, starting from D = 0 and n = 20, points in scatter plots become con-

centrated on the diagonal line (where Pperm=Ptheo) and they become more aligned as n

increases. Similar trend is observed for local shape analysis. This indicates an increasing

rate of agreement between the theoretical and permutation p-values, representing their

reasonable approximation to the null distribution despite of inherent variance associated

with the permutation procedures. The same is true with D > 0 for both analysis and

the theoretical approximation become significantly closer to the permutation one as n

increase. Though, when D > 0, the variation seems more substantial and close alignment

only starts at n = 30. In summary, we can see that if we are interested in statistical sig-

nificance given some type I error threshold, the theoretical approach shall provide results

comparable to that from permutation starting from n = 20.
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Figure 3.1: The histogram of local similarity scores LS(D)/
√
n for n = 200 and D =

0, 1, 2, 3 together with the theoretical approximate density function given in Equation 2.6.

Figure 3.2: The histogram of local shape scores LS(D)/
√

1.25× n for n = 200 and
D = 0, 1, 2, 3 together with the theoretical approximate density function given in Equation
2.6.
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3.2 The CDC dataset

The CDC dataset consists of the expression profiles of 6177 genes at 24 time points. It

is extremely time consuming to approximate the p-values for all the gene pairs using

permutations. Thus, we only randomly selected 25 genes and estimated the p-value for

each of the 300 gene pairs by permuting the original data 1000 times. We then compared

the p-values by our theoretical approximation denoted by Ptheo with the p-values by the

permutation approach denoted as Pperm. The results are given in Figure 3.3. It can be

seen from the figure that Ptheo is highly positively associated with Pperm, but Ptheo is

slightly higher than Pperm indicating that it is conservative when we declare statistical

significance using Ptheo. For a specific example, Table SB.9 in the supplementary materials

compares the gene pairs declared as significant by either Ptheo or Pperm for the type-I error

threshold 0.05. For all the situations considered, none of Ptheo is less than 0.05 when

Pperm > 0.05. Among the gene pairs with Pperm ≤ 0.05, over half of them are declared

as significant by Ptheo. For the local similarity analysis (‘original’), using D = 0, we have

233 (78%) out of 300 found to be non-significant by both theoretical approximation and

permutations. Among the remaining, 48 (16%) are found significant by both methods,

and in total 281 (94%) are in agreement. The results are similar with D=1,2,3, with 262

(88%), 262 (88%) and 262 (88%) in agreement, respectively.

For local shape analysis (‘trendBy0’), the value of Ptheo is more closer to the value of

Pperm. With D=0 and type-I error 0.05, we have 53 (18%) out of 300 found significant

while 241 (80%) non-significant by both approaches, and in total 296 (98%) are in agree-

ment. Among the gene pairs with Pperm > 0.05, none of them are significant using Ptheo.
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Figure 3.3: Ptheo and Pperm comparison for all-to-all pairwise local similarity (‘original’)
and shape (‘trendBy0’) analysis of 25 selected factors from CDC dataset. Columns D0
to D3 are for D = 0, 1, 2, 3, respectively.

Among the gene pairs declared as significant by Pperm, about 53/59 (90%) are declared

as significant by Ptheo. Similarly, with D=1,2,3, there are 291 (97%), 281 (94%) and 278

(93%) p-value pairs in agreement by both Pperm and Ptheo, respectively. In fact, all-to-all

pairwise analysis of the whole CDC dataset with D=3 and permutation 1000 times cannot

be completed in 100 hours on a “Dell, PE1950, Xeon E5420, 2.5GHz, 12010MB RAM”

computing node, while, using the theoretical approach, the analysis finishes in 10 hours

on the same node.

3.3 The SPOT dataset

The SPOT dataset consists of ten-year monthly (114 time points) sampled operational

taxonomic unit (OTU) abundance data. A major numerical difference between the CDC

and the SPOT dataset is that the later has a large number of zeros, where the OTU’s

abundance drops below the measurement limit. We adjusted our model for this fact as

described in Supplementary Methods. As in the above section, we selected 40 abundant
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OTUs from the SPOT dataset with the criteria “the OTU occurs at least 20 times with

minimum relative abundance 1% and has less than 10 missing values”. In the selected

set of OTUs, we observe the fraction of zeros ranging from 0% to 46% with median at

12%, while there is almost none zeros in CDC. We summarize p-value comparison for

local similarity and shape analysis in Table SB.10 and Figure SB.3 in the supplementary

materials.

For local similarity analysis (‘original’), with D = 0 and type-I error 0.05, we have

488 (63%) out of 780 found non-significant and 261 (33%) significant by both methods.

In total, 685 (96%) are in agreement. All of the remaining 31 (4%) pairs are significant by

Ptheo but non-significant by Pperm. The results are similar with D=1,2,3: 733 (94%), 723

(93%) and 727 (93%) in concordance, respectively. There are about 6-7% associations

significant by Pperm but non-significant by Ptheo, showing that Ptheo is more conservative.

For local shape analysis (‘trendBy0’), the result show even better concordance. With

D = 0 and type-I error 0.05, we have 578 (74%) and 182 (23%) out of 780 found significant

and non-significant, respectively, by both methods. In total 760 (97%) are in agreement.

Among the 20 (3%) OTU pairs with discordant significance by Ptheo and Pperm, all of

them are significant by Pperm but non-significant by Ptheo. The results are similar with

D=1,2,3, with 754 (97%), 757 (97%) and 749 (96%) in concordance, respectively, and

about 3-4% incidences significant by Pperm but non-significant by Ptheo. The concordance

for the significant results between Ptheo and Pperm for the SPOT dataset is better than

that for the CDC dataset. This can be explained by the fact that the number of time

points for the SPOT data (114) is much higher than that for the CDC dataset (24) and

the approximation is better when the number of time points is large.
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3.4 The MPH dataset

The MPH dataset consists of 130, 133 and 135 daily sequenced samples from feces, palm

and tongue sites of a female (‘F4’) and 332, 357, 372 samples from a male (‘M3’) [5]. The

genus level OTU abundance is used for our analysis. There are 335, 1295, 373 unique

OTUs from feces, palm and tongue sites of ‘F4’ and ‘M3’, respectively. With D = 3,

we analyzed the MPH dataset with local similarity and shape analyses. Because of the

intra-person variability (both time and site) of the human microbiota, one important

step in analyzing human microbiota datasets is to identify the core (persisting) group of

microbes for a specific body site of a person. Based on the discussion in [5], we consider

core OTUs as those showing in at least 60% of samples from the same body site of a

specific person. Using this criteria, we identified 45, 252 and 41 core OTUs for the feces,

palm and tongue sites of ‘F4’, and 59, 269 and 56 core OTUs for the corresponding sites

of ‘M3’.

Subsequent analysis show these symbiotic core microbes are highly synergetic. We use

local shape analysis as our main approach and report significant local associations with

p-value<=0.05, Q-value<=0.05 and Aligned Length >= 80% time points [25]. We found

159 significant associated pairs within the subset formed by the 45 core OTUs of the ‘F4’

feces samples and the intra association rate (the average degree divided by number of

OTUs minus one in an association subnetwork) is 16%. The same rates are 26% and 25%

for ‘F4’ tongue and palm samples, whereas 44%, 56% and 34% for ‘M3’ feces, tongue and

palm samples. These percentages translate into a picture of high connectivity between

these OTUs, supporting their role as crucial players in the corresponding microbiota.
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However, do these site-specific significant local associations persist across individu-

als? In fact, we found some of the body-site specific dynamics are shared across human

subjects. We take the intersection (shared) of all significant association pairs between

two samples and calculate the shared percentage dividing by the union between the two.

We found ‘F4’ and ‘M3’ share 83 (9%) in their feces microbiota. These are mostly from

the Ruminococcaceae, Lachnospiraceae, Clostridiaceae, Clostridiaceae Family XI Incertae

Sedis, Prevotellaceae, Coriobacteriaceae families. In tongue and palm sites, the fractions

are 17% and 21%, respectively. In contrast, significant associations are generally not

shared between different body sites even within one person. For example, only 1 (∼ 0%)

pair shows significance in both feces and tongue sites of ‘F4’. Similar low fractions were

observed for other sites.

On the other hand, using local similarity analysis, we found some time-delayed lo-

cal associations. For example, in ‘F4’ feces sample, the global profiles Coprococcus and

Escherichia are not significantly correlated by PCC (r=-0.1708, P=0.0521) while signif-

icantly by eLSA (LS=-0.3179, P=0.0002). The association is significantly negative for

126 consecutive time points, where Coprococcus leads Escherichia 3 time points in the

co-occurrence. Hinted by this, shifting the Coprococcus profile 3 time units backward, we

see their global profile are significantly negatively correlated (r=-0.3314, P=0.0001), see

Figure SB.4. As another example in ‘F4’ feces sample, Eubacterium and Oscillospira is

not significantly correlated by PCC (r=0.1313, P=0.1364), however, significantly associ-

ated for 122 consecutive time points by eLSA (LS=0.3862, P=0.0001), where the former
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leads the later 2 time points in the co-occurrence. Hinted by this, shifting the Eubac-

terium profile 2 time units backward, we see they actually are also globally significantly

correlated (r=0.3525, P=0.0001), see Figure SB.4.

3.5 Discussion

In this paper, we provide theoretical formulas to approximate the statistical significance

of local similarity and local shape analyses for time series data. The theoretical approx-

imations make it possible to evaluate the statistical significance of comparisons of time

series data for a large number of factors such as genes in gene expression analysis or

OTUs in metagenomic studies, which is impossible to carry out using the original per-

mutation based approach. The theoretical approximation is more mathematically sound

with specified assumptions of data distribution verifiable before applying the analysis.

The permutation test, however, heavily depends on data-specific empirical distributions

and can be biased by the numerical properties of specific data as well as its intrinsic vari-

ability. In particular, in the local shape analysis, permuting the sequence independently

may be misleading because the trend sequence is generated with dependency.

In addition, if we are interested in the tail distribution (in most applications), the

two methods are mostly in agreement with each other in predictions given the same type-

I error threshold. We have results from setting threshold to lower values (0.01, 0.005,

0.001, etc.) showing high overall agreement rate. Therefore, from the practical point of

view, we can substitute permutations with the theoretical method in such applications.

Moreover, from the simulations and our real analysis, Ptheo is more conservative Pperm
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– a property particularly useful in biological applications prone to substantial number of

false positives, such as the microarray analysis [17].

The most important reason for us to embrace the theoretical method is computational

efficiency. As shown in [25], for a given type-I error, α, the time complexity of Pperm is

O(DMN/α), where D is the delay limit, N is the sample number and M the replicate

number. With Ptheo, we may compute and store them into a hash table, before any

pairwise comparison. Then, for each p-value calculation, it only costs constant time O(1)

to read out Ptheo and is independent of D, M , N and Q, a strongly desired feature for

large scale analysis. The superiority of efficiency is evident from Figure SB.5, in which,

the time cost of analyzing 40 factors of 113 and 114 time points are compared. The per-

pair time cost is about 40 seconds for Pperm while negligible for Ptheo and independent of

sample size, which is a big saver of computing resource, energy, and research time.
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The number of time points n
x Theory 10 20 30 40 60 80 100
2 0.1815 0.0491 0.1242 0.0921 0.0986 0.1092 0.1439 0.1308
2.2 0.1111 0.0491 0.0677 0.0613 0.0680 0.0599 0.0832 0.0801
2.4 0.0656 0.0132 0.0367 0.0353 0.0430 0.0420 0.0492 0.0487
2.6 0.0373 0.0053 0.0168 0.0211 0.0158 0.0207 0.0266 0.0207
2.8 0.0204 0.0053 0.0094 0.0057 0.0106 0.0098 0.0137 0.0125
3.0 0.0108 0.0000 0.0039 0.0027 0.0034 0.0057 0.0069 0.0080
3.2 0.0055 0.0000 0.0016 0.0013 0.0021 0.0026 0.0032 0.0044
3.4 0.0027 0.0000 0.0002 0.0007 0.0009 0.0009 0.0008 0.0020
3.6 0.0013 0.0000 0.0002 0.0000 0.0004 0.0005 0.0004 0.0009
3.8 0.0006 0.0000 0.0000 0.0000 0.0001 0.0003 0.0001 0.0004
4.0 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002
4.2 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
4.4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3.2: Theoretical approximation for local shape analysis p-values versus the sim-
ulated probability P (LS(D)/

√
1.25× n ≥ x). The theoretical approximate probability

based on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability
that LS(D)/

√
1.25n ≥ x is given in the 3rd to the 9th columns. D = 0.
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Chapter 4

Conclusions

4.1 Conclusions

The recent advent of high-throughput technologies made possible large scale time-resolved

omics studies (proteomics, transcriptomics, metagenomics), tracking hundreds, thou-

sands, or even tens of thousands molecules simultaneously. Time-series generated from

these studies provide an invaluable opportunity to investigate the varying dynamics of

biological systems. However, to make full use of huge datasets, accurate and efficient

statistical and computational methods are urgently needed in all levels of analysis, from

accurate estimation of abundance and expression levels, to pairwise association and net-

work analysis.

The theoretical statistical significance approximation we proposed in this work can

serve as an efficient alternative for calculating p-values in local similarity and shape anal-

ysis. Its time cost is always constant, which reduces the computational burden in a

large scale pairwise analysis. For example, in metagenomics, after short read assignment
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and abundance estimation [13, 24], profiles of thousands of microbial OTUs are avail-

able. Before this work, pairwise local association analysis with this number of factors are

hardly tractable using permutation procedures, if not impossible. Parallel computation

and hardware acceleration or some pre-clustering and filtering approaches are required, in-

creasing the difficulty of analysis. With the new method, researchers can quickly compute

the statistical significance for all OTU pairs on desktop computers, allowing on-the-fly

network mining and analysis.

Analyzing the MPH dataset with the new method, we found body-site specific human

microbiota core OTUs are highly coordinated. There exist robust site-specific associations

across persons. We implemented the new method in the eLSA package [25], now providing

faster pipelines for local similarity and shape analysis. The methodological part remain

true for other types of local associations that use the maximum range of partial sum of

i.i.d and markovian zero-mean and finite variance random variables as their metrics. It

may be further developed for application in more complex analysis, such as local shape

with non-zero thresholds and local liquid association analysis.
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Appendix A

Supplementary Methods

A.1 Dealing with replicates.

To reduce the effect of biological and/or technical variation on the LSA results, replicate

experiments are frequently carried out [19]. An extended LSA (eLSA) [25] approach

was developed for time series data with replicates. First, for each sample the replicate

data at each time point was summarized by a function, for example, the average over

the replicates. Second, the local similarity score is calculated using the averages for

the sample pairs. Third, statistical significance for testing the hypothesis that the two

sequences are related by randomly shuffling the data along the different time points.

Finally, the bootstrap confidence interval for the LS score is obtained by bootstrapping

the data at each time point by sampling from the observed data with replacement.

With the theory developed above, we can significantly speed up the process of evaluat-

ing the statistical significance of the LS score in the third step. LetX(m) = (X
(m)
1 , · · · , X(m)

n )

and Y (m) = (Y
(m)
1 , · · · , Y (m)

n ) be the m-th replicate for the time series data, m =

1, 2, · · · ,M . The essence of eLSA is to calculate the local similarity score of Ui =
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F (X
(1)
i , · · · , X(M)

i ) and Vi = F (Y
(1)
i , · · · , Y (M)

i ), where F (·) is the summarizing function.

Then by replacing X and Y in non-replicated case with U and V , respectively, similar

approaches can be used to obtain the p-value. In particular, if Ui = F (X
(1)
i , · · · , X(M)

i ) =

Xi =
∑M

m=1X
(m)
i /M and all the X

(m)
i are standard normal, then Var(Ui) = 1/M . Sim-

ilarly, we have Var(Vi) = 1/M assuming that each of the X
(m)
i is already normalized to

be standard normal. Thus, σ2 = Var(UiVi) = 1/M2. Let the local similarity score with

time delay at most D for the real data be sD. Then the p-value is calculated by

P (LS(D) ≥ sD) = P

(
M × LS(D)√

n
≥M × sD/

√
n

)
= L(M × sD/

√
n),

where the function L is defined in equation 2.6 in the Method section.

A.2 Data normalization

eLSA requires the input series of factors X and Y to be standard normally distributed,

which may not be satisfied by the raw data. Through normalization, the normality of

the data can be ensured for subsequent analysis. To accommodate possible nonlinear

associations and the variation of scales within the raw data, we apply the following

approach to normalize the raw data before any LS score calculations [16]. We use xi to

denote the original raw data of the i-th time spot of a factor X. First, we take

rk = rank of xk in {x1, x2, ..., xn}.
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Then, we take

sk = Φ−1
(

rk
n+ 1

)
,

where Φ is the cumulative distribution function of the standard normal distribution.

In case of small n, we find that the above transformed data S = s[1:n] do not necessarily

follow a standard normal distribution closely. When the variance is not 1 and mean is

not zero, it will cause the LS scores calculated to be smaller than that expected from the

theory and can lead to unexpected high p-values. To overcome this difficulty, we further

scale and shift S = s[1:n] using the Z-score transformation, such that

zi =
si − S̄
σS

.

We will take Z = z[1:n] as the standardized normalization of X.

A.3 Dealing with multiple zeros

When normalizing the time series data, we rank the input data by their numerical value

and then take the standard normal percentile which equals to their rank divided by the

total number of data points plus one. In some real situations, we may encounter a number

of indistinguishable zeros (beyond measurement limit) from the input, which violates our

assumption that the data comes from a normal distribution.

To accommodate these indistinguishable zeros, we adjust our theoretical model using

mixture ideas similar to zero-inflated models [11]. Let the proportion of zeros in the input

sequences X and Y be 1−α and 1−β, respectively. In the normalization step, we bypass
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these zeros, while the other non-zeros are normalized as usual. The normalized series ZX

and ZY thus can be modeled as i.i.d. sampled from the following mixture distributions:

ZX ∼ (1− α){0}+ αWX ,

ZY ∼ (1− β){0}+ βWY ,

where WX and WY are independent and standard normal N(0, 1). Consequently,

ZXZY ∼ (1− αβ){0}+ αβWXWY .

Therefore, E{ZXZY } = 0 and V ar(ZXZY ) = αβ. Fortunately, the standard theory we

have developed still applies here, with a shrink in variance corresponding to the remaining

non-zero portion of the product mixture distribution. Then the p-value can be calculated

by:

P (LS(D) ≥ sD) = P

(
LS(D)√
αβn

≥ sD/
√
αβn)

)
= L

(
sD/

√
αβn

)
,

where the function L is defined in equation 2.6 in the Method section. Similar results

can be obtained for replicated series and local trend series with multiple zeros.
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Appendix B

Supplementary Results

The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.1815 0.0848 0.0987 0.1062 0.1122 0.1201 0.1235 0.1290 0.1294 0.1355 0.1375 0.1430 0.1379

2.2 0.1111 0.0541 0.0621 0.0645 0.0665 0.0699 0.0771 0.0767 0.0783 0.0798 0.0798 0.0861 0.0831

2.4 0.0656 0.0341 0.0367 0.0392 0.0416 0.0411 0.0435 0.0457 0.0451 0.0477 0.0483 0.0526 0.0498

2.6 0.0373 0.0223 0.0221 0.0252 0.0235 0.0232 0.0249 0.0261 0.0253 0.0261 0.0276 0.0301 0.0275

2.8 0.0204 0.0147 0.0128 0.0154 0.0131 0.0129 0.0138 0.0163 0.0129 0.0141 0.0159 0.0159 0.0152

3.0 0.0108 0.0093 0.0082 0.0088 0.0074 0.0069 0.0071 0.0090 0.0072 0.0066 0.0087 0.0083 0.0074

3.2 0.0055 0.0056 0.0051 0.0038 0.0036 0.0030 0.0035 0.0054 0.0040 0.0042 0.0043 0.0043 0.0038

3.4 0.0027 0.0033 0.0031 0.0017 0.0022 0.0009 0.0016 0.0027 0.0019 0.0018 0.0027 0.0028 0.0017

3.6 0.0013 0.0019 0.0020 0.0011 0.0014 0.0004 0.0006 0.0012 0.0011 0.0007 0.0012 0.0015 0.0008

3.8 0.0006 0.0007 0.0008 0.0006 0.0010 0.0002 0.0004 0.0009 0.0007 0.0002 0.0008 0.0008 0.0004

4.0 0.0003 0.0004 0.0005 0.0003 0.0005 0.0000 0.0003 0.0004 0.0004 0.0001 0.0002 0.0002 0.0001

4.2 0.0001 0.0002 0.0004 0.0002 0.0005 0.0000 0.0001 0.0002 0.0003 0.0000 0.0001 0.0001 0.0001

4.4 0.0000 0.0001 0.0003 0.0001 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

4.6 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

4.8 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.0 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.1: Theoretical approximation for local similarity analysis p-values versus the
simulated probability P (LS(D)/

√
n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
n ≥ x is given in the 3rd to the 14th columns. D = 0.
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The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.4516 0.1692 0.2289 0.2464 0.2698 0.2972 0.3084 0.3220 0.3354 0.3393 0.3410 0.3531 0.3491

2.2 0.2977 0.1139 0.1485 0.1636 0.1708 0.1871 0.1978 0.2043 0.2169 0.2150 0.2119 0.2300 0.2254

2.4 0.1841 0.0757 0.0976 0.0988 0.1050 0.1123 0.1176 0.1261 0.1352 0.1313 0.1292 0.1401 0.1393

2.6 0.1077 0.0513 0.0606 0.0608 0.0626 0.0650 0.0692 0.0748 0.0813 0.0776 0.0745 0.0768 0.0832

2.8 0.0601 0.0318 0.0385 0.0357 0.0379 0.0374 0.0398 0.0464 0.0460 0.0426 0.0447 0.0434 0.0470

3.0 0.0320 0.0186 0.0224 0.0187 0.0233 0.0208 0.0222 0.0276 0.0245 0.0220 0.0246 0.0249 0.0248

3.2 0.0164 0.0127 0.0124 0.0113 0.0133 0.0117 0.0115 0.0139 0.0122 0.0129 0.0128 0.0127 0.0133

3.4 0.0081 0.0078 0.0074 0.0062 0.0073 0.0058 0.0063 0.0078 0.0065 0.0066 0.0066 0.0060 0.0066

3.6 0.0038 0.0044 0.0039 0.0030 0.0045 0.0025 0.0032 0.0043 0.0039 0.0035 0.0035 0.0034 0.0034

3.8 0.0017 0.0032 0.0023 0.0015 0.0023 0.0012 0.0019 0.0023 0.0017 0.0015 0.0018 0.0015 0.0014

4.0 0.0008 0.0013 0.0013 0.0005 0.0011 0.0007 0.0010 0.0009 0.0004 0.0005 0.0007 0.0006 0.0005

4.2 0.0003 0.0010 0.0009 0.0003 0.0003 0.0002 0.0004 0.0004 0.0003 0.0005 0.0003 0.0003 0.0003

4.4 0.0001 0.0007 0.0003 0.0003 0.0001 0.0001 0.0004 0.0000 0.0002 0.0004 0.0002 0.0002 0.0002

4.6 0.0001 0.0004 0.0002 0.0003 0.0000 0.0001 0.0002 0.0000 0.0001 0.0002 0.0002 0.0001 0.0000

4.8 0.0000 0.0002 0.0002 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

5.0 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.2: Theoretical approximation for local similarity analysis p-values versus Simu-
lated probability P (LS(D)/

√
n ≥ x). The theoretical approximate probability based on

equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
n ≥ x is given in the 3rd to the 14th columns. D = 1.
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The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.6326 0.2199 0.2914 0.3429 0.3704 0.4167 0.4447 0.4709 0.4792 0.4855 0.4935 0.5072 0.5178

2.2 0.4452 0.1514 0.1947 0.2316 0.2437 0.2759 0.3004 0.3132 0.3245 0.3264 0.3305 0.3429 0.3456

2.4 0.2876 0.1053 0.1228 0.1478 0.1524 0.1738 0.1884 0.1964 0.2032 0.2020 0.2043 0.2145 0.2141

2.6 0.1730 0.0713 0.0765 0.0887 0.0949 0.1036 0.1119 0.1146 0.1194 0.1203 0.1211 0.1226 0.1301

2.8 0.0981 0.0447 0.0453 0.0534 0.0558 0.0602 0.0660 0.0681 0.0657 0.0704 0.0690 0.0721 0.0732

3.0 0.0528 0.0288 0.0256 0.0303 0.0316 0.0347 0.0356 0.0385 0.0352 0.0370 0.0360 0.0421 0.0412

3.2 0.0272 0.0185 0.0139 0.0172 0.0170 0.0188 0.0199 0.0187 0.0179 0.0213 0.0185 0.0227 0.0192

3.4 0.0134 0.0121 0.0084 0.0100 0.0099 0.0097 0.0099 0.0089 0.0089 0.0092 0.0103 0.0120 0.0091

3.6 0.0063 0.0077 0.0046 0.0060 0.0051 0.0048 0.0059 0.0053 0.0044 0.0048 0.0045 0.0064 0.0053

3.8 0.0029 0.0053 0.0021 0.0037 0.0026 0.0021 0.0021 0.0031 0.0030 0.0023 0.0024 0.0035 0.0024

4.0 0.0013 0.0031 0.0011 0.0018 0.0019 0.0013 0.0007 0.0017 0.0017 0.0011 0.0014 0.0015 0.0010

4.2 0.0005 0.0020 0.0003 0.0009 0.0006 0.0006 0.0003 0.0011 0.0012 0.0003 0.0004 0.0006 0.0005

4.4 0.0002 0.0008 0.0003 0.0005 0.0005 0.0001 0.0001 0.0006 0.0006 0.0002 0.0003 0.0003 0.0001

4.6 0.0001 0.0006 0.0001 0.0004 0.0004 0.0000 0.0001 0.0003 0.0002 0.0000 0.0001 0.0001 0.0000

4.8 0.0000 0.0002 0.0000 0.0002 0.0001 0.0000 0.0001 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000

5.0 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.3: Theoretical approximation for local similarity analysis p-values versus the
simulated probability P (LS(D)/

√
n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
n ≥ x is given in the 3rd to the 14th columns. D = 2.
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The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.7539 0.2509 0.3331 0.4103 0.4544 0.5120 0.5402 0.5571 0.5804 0.5972 0.6128 0.6059 0.6259

2.2 0.5616 0.1731 0.2301 0.2772 0.3124 0.3533 0.3707 0.3917 0.4077 0.4109 0.4368 0.4256 0.4406

2.4 0.3779 0.1177 0.1486 0.1772 0.2000 0.2293 0.2344 0.2539 0.2613 0.2679 0.2819 0.2722 0.2805

2.6 0.2336 0.0785 0.0952 0.1122 0.1236 0.1366 0.1401 0.1578 0.1562 0.1573 0.1756 0.1678 0.1669

2.8 0.1346 0.0513 0.0583 0.0679 0.0736 0.0767 0.0813 0.0918 0.0875 0.0894 0.0977 0.0998 0.0947

3.0 0.0732 0.0320 0.0343 0.0379 0.0416 0.0443 0.0453 0.0534 0.0469 0.0481 0.0523 0.0517 0.0509

3.2 0.0379 0.0199 0.0205 0.0207 0.0210 0.0237 0.0264 0.0278 0.0246 0.0261 0.0259 0.0275 0.0271

3.4 0.0187 0.0123 0.0129 0.0116 0.0110 0.0124 0.0122 0.0142 0.0107 0.0133 0.0145 0.0145 0.0128

3.6 0.0089 0.0083 0.0073 0.0055 0.0059 0.0058 0.0061 0.0076 0.0052 0.0067 0.0068 0.0069 0.0058

3.8 0.0040 0.0047 0.0046 0.0030 0.0029 0.0029 0.0036 0.0048 0.0023 0.0031 0.0028 0.0034 0.0027

4.0 0.0018 0.0028 0.0032 0.0013 0.0015 0.0015 0.0013 0.0024 0.0005 0.0014 0.0011 0.0010 0.0011

4.2 0.0007 0.0019 0.0021 0.0004 0.0007 0.0010 0.0005 0.0008 0.0001 0.0005 0.0008 0.0003 0.0002

4.4 0.0003 0.0009 0.0015 0.0002 0.0004 0.0007 0.0002 0.0002 0.0000 0.0000 0.0003 0.0003 0.0001

4.6 0.0001 0.0006 0.0009 0.0002 0.0003 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001

4.8 0.0000 0.0003 0.0002 0.0000 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

5.0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.4: Theoretical approximation for local similarity analysis p-values versus the
simulated probability P (LS(D)/

√
n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
n ≥ x is given in the 3rd to the 14th columns. D = 3.
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Figure B.1: Local similarity analysis Ptheo vs Pperm for 10,000 pairs simulated
data. Columns D0 to D3 are for D = 0, 1, 2, 3. Rows n10 to n100 are for n =
10, 20, 30, 40, 60, 80, 100.

39



Figure B.2: Local shape analysis Ptheo vs Pperm for 10,000 pairs simulated data. Columns
D0 to D3 are for D = 0, 1, 2, 3. Rows n10 to n100 are for n = 10, 20, 30, 40, 60, 80, 100.
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Figure B.3: Ptheo and Pperm comparison for all-to-all pairwise local similarity (‘original’)
and shape (‘trendBy0’) analysis of 40 abundant OTUs from SPOT dataset. Columns D0
to D3 are for D = 0, 1, 2, 3, respectively.
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Figure B.4: Examples of significant local associations from ‘F4’ feces sample of MPH
dataset. Profiles are shifted to synchronize the co-occurrence according to local simi-
larity analysis. (left) Coprococcus and Escherichia (LS=-0.3179, P=0.0002; r=-0.3314,
P=0.0001); (right) Eubacterium and Oscillospira (LS=0.3862, P=0.0001; r=0.3525,
P=0.0001)

Figure B.5: Running time comparison for example real dataset computation. Note that
the constant computation time using the theoretical approach that is independent of
sample size as compared to sample-size and precision dependent computation time of
permutation approaches.
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The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.1815 0.0491 0.1242 0.0921 0.0986 0.1092 0.1439 0.1308 0.1314 0.1371 0.1325 0.1511 0.1422

2.2 0.1111 0.0491 0.0677 0.0613 0.0680 0.0599 0.0832 0.0801 0.0859 0.0735 0.0770 0.0871 0.0888

2.4 0.0656 0.0132 0.0367 0.0353 0.0430 0.0420 0.0492 0.0487 0.0442 0.0486 0.0517 0.0509 0.0508

2.6 0.0373 0.0053 0.0168 0.0211 0.0158 0.0207 0.0266 0.0207 0.0288 0.0252 0.0283 0.0275 0.0234

2.8 0.0204 0.0053 0.0094 0.0057 0.0106 0.0098 0.0137 0.0125 0.0134 0.0112 0.0141 0.0140 0.0122

3.0 0.0108 0.0000 0.0039 0.0027 0.0034 0.0057 0.0069 0.0080 0.0075 0.0067 0.0066 0.0074 0.0065

3.2 0.0055 0.0000 0.0016 0.0013 0.0021 0.0026 0.0032 0.0044 0.0030 0.0032 0.0035 0.0041 0.0033

3.4 0.0027 0.0000 0.0002 0.0007 0.0009 0.0009 0.0008 0.0020 0.0016 0.0016 0.0013 0.0013 0.0016

3.6 0.0013 0.0000 0.0002 0.0000 0.0004 0.0005 0.0004 0.0009 0.0008 0.0005 0.0008 0.0007 0.0010

3.8 0.0006 0.0000 0.0000 0.0000 0.0001 0.0003 0.0001 0.0004 0.0001 0.0001 0.0005 0.0004 0.0002

4.0 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002

4.2 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0002 0.0001

4.4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

4.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

4.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.5: Theoretical approximation for local shape analysis p-values versus the simu-
lated probability P (LS(D)/

√
1.25n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
1.25n ≥ x is given in the 3rd to the 14th columns. D = 0.

43



The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.4516 0.0833 0.2633 0.2173 0.2282 0.2753 0.3391 0.2938 0.3116 0.3099 0.3124 0.3556 0.3352

2.2 0.2977 0.0833 0.1596 0.1415 0.1557 0.1512 0.2142 0.1929 0.2122 0.1799 0.1889 0.2263 0.2154

2.4 0.1841 0.0261 0.0837 0.0874 0.1073 0.1081 0.1255 0.1211 0.1111 0.1209 0.1295 0.1361 0.1327

2.6 0.1077 0.0038 0.0463 0.0496 0.0461 0.0549 0.0688 0.0570 0.0681 0.0633 0.0690 0.0795 0.0629

2.8 0.0601 0.0038 0.0209 0.0144 0.0293 0.0252 0.0368 0.0321 0.0317 0.0285 0.0353 0.0445 0.0322

3.0 0.0320 0.0000 0.0081 0.0073 0.0106 0.0169 0.0208 0.0181 0.0180 0.0183 0.0178 0.0231 0.0173

3.2 0.0164 0.0000 0.0031 0.0034 0.0059 0.0052 0.0105 0.0095 0.0084 0.0073 0.0087 0.0108 0.0079

3.4 0.0081 0.0000 0.0004 0.0015 0.0013 0.0018 0.0027 0.0022 0.0051 0.0046 0.0036 0.0039 0.0036

3.6 0.0038 0.0000 0.0004 0.0003 0.0007 0.0007 0.0021 0.0012 0.0024 0.0017 0.0021 0.0018 0.0017

3.8 0.0017 0.0000 0.0000 0.0000 0.0003 0.0000 0.0008 0.0004 0.0013 0.0002 0.0008 0.0005 0.0007

4.0 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0006 0.0000 0.0004 0.0002 0.0001

4.2 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0001 0.0000 0.0003 0.0001 0.0000

4.4 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000

4.6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

4.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.6: Theoretical approximation for local shape analysis p-values versus the simu-
lated probability P (LS(D)/

√
1.25n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
1.25n ≥ x is given in the 3rd to the 14th columns. D = 1.
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The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.6326 0.1180 0.3762 0.3057 0.3305 0.3924 0.4665 0.4317 0.4601 0.4528 0.4621 0.5079 0.4778

2.2 0.4452 0.1180 0.2275 0.1984 0.2337 0.2262 0.3020 0.2930 0.3275 0.2747 0.2984 0.3396 0.3221

2.4 0.2876 0.0308 0.1268 0.1236 0.1575 0.1684 0.1814 0.1897 0.1850 0.1866 0.2142 0.2080 0.2038

2.6 0.1730 0.0054 0.0631 0.0765 0.0671 0.0866 0.0993 0.0819 0.1153 0.0967 0.1201 0.1232 0.1050

2.8 0.0981 0.0054 0.0301 0.0239 0.0422 0.0398 0.0530 0.0471 0.0552 0.0461 0.0628 0.0667 0.0584

3.0 0.0528 0.0000 0.0120 0.0134 0.0138 0.0262 0.0283 0.0258 0.0304 0.0281 0.0297 0.0350 0.0314

3.2 0.0272 0.0000 0.0044 0.0070 0.0074 0.0108 0.0137 0.0135 0.0123 0.0124 0.0148 0.0166 0.0171

3.4 0.0134 0.0000 0.0002 0.0031 0.0025 0.0033 0.0043 0.0049 0.0061 0.0063 0.0070 0.0060 0.0090

3.6 0.0063 0.0000 0.0002 0.0005 0.0013 0.0011 0.0026 0.0027 0.0019 0.0024 0.0040 0.0030 0.0046

3.8 0.0029 0.0000 0.0000 0.0002 0.0005 0.0005 0.0008 0.0013 0.0011 0.0008 0.0016 0.0018 0.0016

4.0 0.0013 0.0000 0.0000 0.0000 0.0002 0.0001 0.0003 0.0006 0.0004 0.0005 0.0007 0.0007 0.0007

4.2 0.0005 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0002 0.0001 0.0000 0.0003 0.0004 0.0002

4.4 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0002 0.0004 0.0002

4.6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001

4.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

5.0 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.7: Theoretical approximation for local shape analysis p-values versus the simu-
lated probability P (LS(D)/

√
1.25n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
1.25n ≥ x is given in the 3rd to the 14th columns. D = 2.
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The number of time points n

x Theory 10 20 30 40 60 80 100 120 140 160 180 200

2 0.7539 0.1128 0.4443 0.3969 0.4194 0.4821 0.5824 0.5342 0.5639 0.5610 0.5598 0.6095 0.5956

2.2 0.5616 0.1128 0.2694 0.2690 0.3001 0.2906 0.3933 0.3684 0.4121 0.3551 0.3669 0.4284 0.4173

2.4 0.3779 0.0308 0.1480 0.1650 0.2068 0.2163 0.2490 0.2423 0.2356 0.2496 0.2633 0.2737 0.2732

2.6 0.2336 0.0044 0.0739 0.0960 0.0847 0.1126 0.1441 0.1178 0.1550 0.1362 0.1525 0.1643 0.1405

2.8 0.1346 0.0044 0.0351 0.0325 0.0528 0.0557 0.0744 0.0688 0.0708 0.0664 0.0837 0.0938 0.0806

3.0 0.0732 0.0000 0.0147 0.0161 0.0184 0.0359 0.0379 0.0379 0.0413 0.0408 0.0410 0.0493 0.0438

3.2 0.0379 0.0000 0.0060 0.0073 0.0105 0.0155 0.0183 0.0193 0.0166 0.0184 0.0190 0.0250 0.0237

3.4 0.0187 0.0000 0.0006 0.0038 0.0030 0.0064 0.0049 0.0072 0.0090 0.0102 0.0082 0.0083 0.0108

3.6 0.0089 0.0000 0.0006 0.0009 0.0013 0.0020 0.0038 0.0035 0.0039 0.0043 0.0043 0.0036 0.0055

3.8 0.0040 0.0000 0.0002 0.0003 0.0006 0.0009 0.0015 0.0016 0.0018 0.0022 0.0018 0.0020 0.0022

4.0 0.0018 0.0000 0.0001 0.0002 0.0002 0.0001 0.0004 0.0002 0.0006 0.0008 0.0009 0.0009 0.0006

4.2 0.0007 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0004 0.0003 0.0002 0.0005 0.0003

4.4 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0002 0.0000 0.0001 0.0003 0.0002

4.6 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.0001

4.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table B.8: Theoretical approximation for local shape analysis p-values versus the simu-
lated probability P (LS(D)/

√
1.25n ≥ x). The theoretical approximate probability based

on equation 2.3 with σ = 1 is given in the 2nd column and the simulated probability that
LS(D)/

√
1.25n ≥ x is given in the 3rd to the 14th columns. D = 3.

(a) original, D=0 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 233 0
Pperm ≤0.05 19 48

(b) original, D=1 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 225 0
Pperm ≤0.05 37 38

(c) original, D=2 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 228 0
Pperm ≤0.05 36 36

(d) original, D=3 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 228 0
Pperm ≤0.05 36 36

(e) trendBy0, D=0 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 241 0
Pperm ≤0.05 6 53

(f) trendBy0, D=1 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 244 0
Pperm ≤0.05 9 47

(g) trendBy0, D=2 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 243 0
Pperm ≤0.05 19 38

(h) trendBy0, D=3 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 240 0
Pperm ≤0.05 22 38

Table B.9: The comparison of significant gene pairs using Ptheo and Pperm given type-I
error 0.05 for local similarity (‘original’) and shape (‘trendBy0’) analysis of 25 randomly
selected factors from the CDC dataset: (a-d), local similarity scores; (e-h), local shape
scores; (a,e) D=0, (b,f) D=1, (c,g) D=2, (d,h) D=3. The total number of comparisons
is 300.
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(a) real, D=0 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 488 0
Pperm ≤0.05 31 261

(b) real, D=1 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 492 0
Pperm ≤0.05 47 241

(c) real, D=2 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 505 0
Pperm ≤0.05 57 218

(d) real, D=3 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 516 0
Pperm ≤0.05 53 211

(e) trendBy0, D=0 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 578 0
Pperm ≤0.05 20 182

(f) trendBy0, D=1 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 606 0
Pperm ≤0.05 26 148

(g) trendBy0, D=2 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 622 0
Pperm ≤0.05 23 135

(h) trendBy0, D=3 Ptheo >0.05 Ptheo ≤0.05
Pperm >0.05 627 0
Pperm ≤0.05 31 122

Table B.10: The comparison of significant OTU pairs using Ptheo and Pperm given type-I
error 0.05 for local similarity (‘original’) and shape (‘trendBy0’) analysis of 40 selected
OTUs from SPOT dataset: (a-d), local similarity scores; (e-h), local shape scores; (a,e)
D=0, (b,f) D=1, (c,g) D=2, (d,h) D=3. The total number of OTU pairs is 780.
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