
 1

                   
                                    
The generalizations of the First Noether theorem. 
 
                      Vyacheslav  Telnin 
 
                                    Abstract. 
 
This paper deals with the generalizations of the First Noether theorem.  It takes into 
account not only the first derivatives of the fields  by the coordinates  in Lagrangian, but 
also the second. And this theorem is generalized on the curved spaces. And also it's 
generalized on asymmetric metric tensors. 
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1) Action function.         

 
It is said in [1] that if g is the determinant of the metric tensor and S – the scalar function 

constructed from a system of fields, then magnitude  
                                            )1.1(4

∫ ⋅−⋅= xdgSA  
is invariant relative to coordinate transformations. And so it is possible to take A as the action 
function for this system of fields. That can be generalized and on N – dimensional spaces. 
                     )2.1(gSL −⋅=               L - Lagrangian 
 
 
2) Field equations.                   
 

Let   );;( ,, klikii uuuLL =  

iu here is the symbol for any field. Let us vary A by the iu : 
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If  at any iuδ  variation  Aδ = 0, then we get the equations for iu  : 
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3). The First Noether theorem.                                                                                         
 
We will follow [2], and in some places will add new formule. 
:  
Let us consider an infinitesimal transformation of coordinates and field functions: 
                                   )1.3(kkk xxx δ+=′  

                                )2.3()()()( xuxuxu iii δ+=′′  

 
The variations     and     can be expressed in terms of the infinitesimal linearly independent 
transformation parameters     as follows: 

       ∑
≤≤

δω⋅Χ=δ
sn

nn
kkx

1
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1
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δω⋅Ψ=δ

sn
nnii xu  

 
  The indices i and n of the field functions and the transformation parameters may (or may not) 
have a simple tensorial significance. We shall not specify it, and will agree to interpret repeated 
indices as indicating summation. 
    We note that the transformation law for the field functions 
 
                                   )()()( ,,, xuxuxu kikiki δ+=′′  

contains the variations    ,  that are nonderivatives  of    . In other words, the operations δ and  
∂ ⁄∂x do not commute. The point is that     is the variation of the field function due to both the 
change in its form and the change in its argument. The variation due to the change in the form of 
the function is defined by 
 

                                    )()()( xuxuxu iii −′=δ  

   which to within second-order terms can be written in the form 
 

        )4.3()()()( )(;)(; nnk
kini

k
kiii uxuxuxu δω⋅Χ⋅−Ψ=δ⋅−δ=δ  

Covariant derivative in (3.4) takes into account the space curvature: 
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   By definition, the operation   commutes with ∂ ⁄∂x. 
         We now define the variation of the action by 

           dxxLxdxLdxxLA ⋅∫−′⋅′′∫=⋅∫δ=δ )()()(  
where 
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Covariant derivative here takes into account the space curvature. 
 
In these expressions,  L is the variation of L due to variations in the form of :,, ,, lkikii uuu  
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and the second term describes the total variation due to variations in the coordinates. 
 
Thus: 

          dxxLxdxLdxxxLxLA k
k ⋅∫−′⋅∫+⋅δ⋅+δ∫=δ )()())()(( ;  

We shell now consider the difference between the last two terms, which describes the variation 
in the volume of integration. 
    We have 
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Covariant derivative here takes into account the space curvature. 
And therefore  
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k ⋅δ⋅∫=⋅∫−′⋅∫ ;)()()(  

and 
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3.1). The asymmetric metric tensors. 
 
The definitions for asymmetric metric tensor are in [3]. 

Let us find kg ;νµ for asymmetric νµg . 

kkkk eegeegee µ
σ
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)1.1.3(0; =λ ksg  

From  0; =µν kg  it follows  0; =− kg  

Taking into account 
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[The Christoffel symbols for the for the asymmetric metric tensor must be taken from [3] -  
(2.35)] 
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we obtain : 
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Using the equation of motion  (2.2) : 
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we obtain : 
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Taking into account (3.3) и (3.4)  we have : 
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     Since the first variation of action must vanish, and if we equate to zero the coefficients of the 
independent transformation parameters     , we obtain 
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Since the region of integration is arbitrary, we obtain the continuity equation : 
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3.2). The conservation laws for the symmetric metric tensor in curved space 
and second derivatives in Lagrangian. 
    If 0)( =nj , then : 
  
       Transforming the right-hand side of (3.1.4) by Gauss’ theorem, we obtain the conservation 
laws for the corresponding surface integrals. If we further suppose that the integral in (3.1.4) is 
valuated over a volume that expands without limit in space-like directions, but is bounded in 
time-like directions by space-like three-dimensional surfaces    and    , we find that if the field 
is practically zero on the boundaries of the spatial volume, 
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      In this expression,     is the projection of the surface area element σ onto the three-plane 
perpendicular to the    axis. The above equation shows that the surface integrals 
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are in fact independent of the surface σ. In the special case where the surfaces are the three-
planes    = t =  const, the integral is evaluated over the three-dimensional configuration space, 
and the integrals 

                                )1.2.3()( )(131
)( constxdxC nn =θ⋅∫=  

are independent of time. 
      We have thus shown that to each continuous s – parameter transformation of coordinates 
(3.1) and field functions (3.2), there correspond s time-independent invariants  (3.2.1) nC   (n = 

1, …, s ). That is the first Noether theorem (at 0)( =nj ). 
The quantities  ( )  are not unique. Expressions of the form 

                                            )(nkm
m f

x∂
∂

 

can be added to them if 

                                 )()( nmknkm ff −=  
This ambiguity does not, however, affect the value of the conserved integrals (3.2.1). 
 
3.3). The conservation laws for the asymmetric metric tensor in curved space 
and second derivatives in Lagrangian. 
 

If 0)( ≠nj  then we can get from (3.1.4) 
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From here we see that the values 
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are independent of time. That is the first Noether theorem for the asymmetric metric tensors in 
curved spaces with taking into account the second derivatives in Lagrangian.  
 
4). Applications of the generalized First Noether theorem. 
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