Two Measured Fermion Masses
Determine All Fermion Masses and Charges

© 2013 Claude Michael Cassano

Yes, | will show, herein, that all the fermion masses may be determined from
merely two well chosen constants, and all the fermion charges thereafter.

My book, "Reality is a Mathematical Model" (reference [1]), lays out the
foundations of the algebraic construction of the vector-geometry of space-time and
how the smooth functions represent the fundamental objects therein.

From there, my book, "A Mathematical Preon Foundation for the Standard Model"
(reference [2]), gives an introductory look at how fundamental object mass originates
from charge; an architecture of these fundamental objects; and the interactions of

these fundamental objects.
Here, the picture of the mass of the fundamental objects is extended.

the field equations of the electromagnetic-nuclear field, which can be expressed in
the form:
m m
Vs xE+DgB =0 and Vs -B=0
m m
VgﬂXB—DoE=J3 and V3g 'E=pEJO;

m .
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that is, the mass-generalized Maxwell’'s or Maxwell-Cassano equations, are a
representation of the equations also obtained from the Helmholtzian matrix product

form noted at the begining of my video, [3]:

Di

Now, from [2], the fermion architecture is as follows:



e =e(l) = (ELELE®),

u =e@2) = (ELELEY),

= e3) = (ELEL B9,

ve = v(1) = (B,B%,B%),

vu = v(2) = (B}, B%B%),

v. = v(3) = (B},B%,B?),

Ur = Ul(l) = (Bl,Ez,Eg)l

Cr = U1(2) = (Bl,EZ,Es)2

R = U1(3) = (Bl,EZ,Es)3

uec = u2(1) = (EY,B%,E3),

Ce = U2(2) = (E*,B%,E3),

tc = U2(3) = (E*, B3 E®),

ug = Us(1) = (E% E2,B%),

Ce = U3(2) = (El,EZ,B3)2

ts = u3(3) = (E*,E2,B3),

dr = di(1) = (E*,B%,B?),

SR = d1(2) = (El,Bz,B3)2

br = d1(3) = (E',B?,B?),

ds = d2(1) = (B, E?,B?),

se = d2(2) = (BL,EZ BY),

be = d2(3) = (BY,E?,B?),

ds = da(1) = (B, B2 E3),

s = d3(2) = (B*, B2 E3),

bs = d3(3) = (B!, B?%,E?),

If the fermion masses may be described by the mass-generalized Maxwell’s

equations, then denote them as follows:

m3,1) =me : e =¢e(l)

m3,2) =m, : u~ = €e2)

m3,3) =m; : 7= = e(3)

m(0,1) =m,, : ve = v(1)

m(0,2) =m,, : v, = v(2)

m(0,3) =m,, : v, = v(3)

m(2,1) = my : ux = ux(l)

m(2,2) = m¢ : Cx = Ux(2)

m(2,3) = m; : tx = Ux(3)

m(1,1) = my : dx = dx(1)

m(1,2) = ms : sx = dx(2)

m(1,3) = mp : bx = dx(3)

Where for an object’s mass:

m(h,i) :

h indicates the number of E's In the object’s Sg architecture.
i indicates the generation of the object’'s Sg architecture.

After much analysis, the following relationships arise.

Define:

f(h) = [To® — 1

1+ (2T
h2(h—-i)%2+1

g(h,i) E[

i(h+1)

:|To(h)To(i—l)

([Zh + (-1)"2z[1D"] ]k) (i-1)

i i . i) (=) To(h)
Ay = ~(25)’ [(th)h(h 2l JTo(i)
To() = 4[j-1+61,, ]

(hieN;0<h<3,1<i<3)
From which the masses may be written:
m(h,1) B
m<|: h N 5(__11)T0(h+1) :|6(__11)T0(h+1) ’ 1) - f(h)
el +Ahi) = g(hii)

m(h+ (1) (@ - 61),1)




which may be written out explicitly as:

2583 = 1(0) ;2‘(‘8'1’) +A(0,i) = 9(0,i)
283 =) %M(l’i) =gLi), (i#1)
%3 =@ %JFA(ZD =g@2i), (i+1)
m3,1) _ m(3,i) N
m0,1) f(3) —m(s’ 1) + A(3,1) = g(3,1)

or:

m(0,1) = m(0,1)f(0) | m(0,i) = m(0,1)[g(0,i) — A(,i)]
m(1,1) = m(2,1)f(1) | m(L,i) = m2,1)[g(L,i) - ALD] , (i 1)
[ ]
[ ]

m2,1) = m3,1)f(2) | m2,i) = mL,1)[g2,i) - AR,1)] , (i 1)
m(3,1) = m(0,1)f(3) | m(3,i) = m(3,1)[g(3,i) - A(3,i)

As an example:
f(3) = [37® ~11*° + (3)*(y2*T )’
-3 -1°+ ©2(V2)° - [21°+ ©2(V2)°
— 64+ 36(2)° = 64 + 288 = 352
Continuing, the following table may be built:
f0)=1 | m,. = m(0,1) = m(0,1)f(0) = m(0,1)
f(1) =2 |mg=m1,1) =m2 1)f(1) = 2m(2,1)
f2) =5 |my=m2,1) = m@3 1)f(2) = 5m3,1)
f(3) = 352 | me = M(3,1) = m(0,1)f(3) = 352m(0,1)

The fermion measured to the greatest accuracy is the electron. So, instead of
assigning a mass to the electron neutrino, the mass of the electron will be taken as the
basis, and the mass of the electron neutrino determined from that and the above
equation.

And, so, assigning:

m(3,1) = me =.510998928MeV/c?

= m3,1) = m([o +oDT s 1) [[STO@ ~12% s @)V’
= m(6G 6 )13t - 17+ ©)2(V27) ]



-m(e5 s )12+ ©2(427) ]
= m(8%, - 61;,1)[ 64+ 36(2)%] = m(0 - 0,1)[64 + 288] = m(0,1)[352
m(3,1)

= mO,1) = =252 = -510395?28928 —.0014517015MeV/c? = m,,

Continuing, the first generation fermion masses may be calculated into the
following table.

me = M(3,1) ~.510998928MeV/c?

m,. = m(0,1) ~.0014517015MeV/c?
my = m(2,1) ~ 2.55499464MeV/c?
mg = m(1,1) ~ 5.10998928MeV/c?

The g(h,i) simplify to:

o = | hZ(?(E 1)12; : _TO(h)TO(l_l)([zm D2 = 1
and:
a(h.2) = i hz(g(; er)12)+ 1 TeOTo2-D) ([2h+ (-2 i) 21
~ (2h+ (-1)P2HEn" i
and:

hz(h 3) i1 To(h)To(3-1)
oh3) = [ 3h+1) J

[ 3*4JR®Qm+GDWﬂHmW}Y

([2h+ pr2zlev k)™

3(h+1)

And the A(h,i) to:

-1 s h_1\h (h.1)™DTe® 7
A(h’l):_(hérl) (h11> ( )h! To1) =0
and: i i
h-2[ s h_1\h (h.2)™2T® 7
a2 --(152)"7 (h52) - [n@)
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and:




Yielding:
m(h,1) = m(h,1)

— _(M
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m(h, 2)

m(h+ (1), 1)

m(h, 3)

m(h +(-1) h+15(_—11)T0(h+1) 1 1)

which may be written out explicitly as:

ignored.

The

+AN,2) = g(h,2)

+ A(h,3) = g(h,3)

)h—3|:( h5 1 )h (Sh)(:ﬂg)TO(h) :|

m(0,1) = m(0,1)

m(0, 2)
m(0, 1)

+A(0,2) = g(0,2)

m(0, 3)
m(0, 1)

m(1,1) = m(1,1)

m(1,2)
m(2,1)

+AL,2) = g(1,2)

m(1,3)
m2,1)

m(2,1) = m(2,1)

m(2,2)
m(1,1)

+A(2,2) = g(2,2)

m(2,3)
m(1,1)

m(3,1) = m(3,1)

m(3,2)
m(3,1)

+A(3,2) = g(3,2)

m(3, 3)
m(3,1)

Since the first column is a set of identities, the case: i = 1 may be

g(h,i) may be calculated into the following table ( i = 1 ignored).

+A(0,3) = g(0,3)
+A(1,3) = g(1,3)
+A@2,3) = g(2,3)

+AG3,3) = g(3,3)




9(0,2) = (2-0+ (-1)°2z DDk = o+ 211" =
9(1,2) = (2-1+ (-1)*23 =D D)k = k
92.2) = (2-2+ (-1)*23 =D D)k = k
93,2) = (2-3+ (-1)*2z D)k = K6 - 2°1" =

[ 1" =2k
[2-2°1' =k
[4+ 21" = 6k
[ " =5k
[ 02(0-3)2+1 "

9(0,3) = 0.0 ([2-0+(—1)02%[1+<—1>°]]k)2 = 1.([0+2'k)? = (2k)?
R :TO(l)([2-1+(—1>12%E1+<1> 1102 = 1+ (2- 29)0° = K
02.3) - _22(32,(;?12)”_W)([Z-%Hf?ﬂ”‘“]]k)z [%J(M 297 = S

Likewise, the A(h,i) may be calculated into the following table ( i = 1
ignored).

w02 -~(232) [ (251) 0257 ]
a2 -(132) | () 2 ] o
en (252 (32 257 ] 4
02 -(332) [ (34) 027 ] 3
09 (252 (3595 ] 5
- () () S
oo (5 (51925

From these tables the constant k may be determined, as well as a host of
relationships between the fermion masses.



The upper generation fermion masses thus, fill out the following table.

m(0, 2) B m0,3) 8§ .2
m(0,1) 1=2k m(0,1) 27 (2K)
R RAE S
m22) 1 _ m(2,3) 1 _5
m1,1) 8 6k m(1,1) 270 5(6k)2
m3,2) 5 m33) 4 _ 1
m3,1) 2 Sk m3,1) 81 12 (8K)°

From which follow:

K= ;[ m(0, 2) _q _ m1,2) _ ;[ m22 17._ ;[ m(3,2) _5}
2| m(0,1) m21) 6| m11) 8] 5| m31 2

N

:l‘/m(O,S) 8 :Jm(l,S) :l‘/g[m(Z,S) 1 J =l‘/1 |:m(3,3) ‘AJ
2y mO0,1) 27 m21) 645 m11 270 5 m(3,1) 81

Now, the muon mass is well measured, which is why k was determined in terms
of the muon mass.

(The table above shows that it could have been determined in terms of any other
non-first generation mass - though to less accuracy.)

Assigning:

m(3,2) = m, = 105.6583715MeV/c?
and using the already above assigned value:
m(3,1) = me =.510998928MeV/c?

kel MB2) 5 :;[ﬂ_i}:;[105.6583715_Q}:
5l mB1 2 5LMe 2] 5L 510998928 2

As an example:
1 m(3,3) 4 v 1 m(3,2) 5
3‘/12[ m(3,1) _ﬁ} = k= 5[ m3,1) 2 }
_ (a[mB32 57", 4 _
= m, = m3,3) = (§[ G 7} + ﬁ)m(s,l) = 1776.80640

The current measured value for the tauon is: 1776.82 +.16 .

So, this is nearly in the center of the margin of error, and in complete
agreement to 5 significant figures.

All the above mass ratio relationships may be verified using this value.

And all the fermion masses may be calculated into the following table.
(in Mev/c?)



mg = m(1,1) ~ 5.10998928 | m, = m(1,2) = 104.38087418 | my, = m(1,3) = 4264.34041
My = M(2,1) ~ 2.55499464 = m. = m(2,2) = 1253.20923882 | m; = m(2,3) = 170573.635
Me = M(3,1) ~.510998928 | m, = m(3,2) = 105.6583715 | m, = m(3,3) = 1776.80640
m,. = m(0,1) ~.0014517015 | m,,. = m(0,2) = 0.12006633125 | m,, = m(0,3) = 9.69211289

All the calculated masses above are accurate well within their margin of error.

The first generation Oth order estimates are in range accurate.

The higher generations first order estimates are in range accurate.

Now, it is incumbent on empiricists to narrow the margins of error to dispute these
results and possibly prompt analysis corrections or further order estimates to become
in range again.

Is it just a coincidence that all the fermion masses may be calculated from merely
two well chosen constants, under the two field strength fundamentals founded by the

constructed doublet-R—algebra?
Even if so, how does the Higgs mechanism explain the above mass ratio

relationships?
Does SUSY predict this relationship? How about S&M Theory?

Now, that it has just been shown that all the fermion masses may be determined by
two well chosen constants via the mass-generalized Maxwell’s equations field
strengths E & B ; the issue of the relationship of charge to the mass-generalized
Maxwell’s equations field strengths and possibly to mass may be re-examined in this
new context from another direction.

The relationship between the mass-generalized Maxwell’s equations field strengths
and the fermion charges may be established by constructing a function c() is defined
simply by:

c((R,R%,R?),) = c(Ry) + c(Rf) + c(RY),
c(R}) = —c(Rh),
c(Eh) = X,
c(Bh) = ¥,.
then the objects are:
c(e(i)) = =3x,c(v(i)) = 3y,c(u;j(i)) = 2x+y,c(d;(i)) = —(X+2y).
From here, two different calibrations are consistent with current empirical evidence.
Each has its advantages.




Calibrating this with: -1 = c(e(1)) = -3x,0 = ¢(v(1)) =3y = x= %,y =0
Operating this linear function on the objects, yields:

c(e(i)) = -1,c(v(i)) =0

c(ui(i)) = 5,c(di(i) = -3

These correspond to the charge characteristics of all the fermions.

If, on the other hand, the calibration is as follows:
- - - - . 1
Calibrating this with: -1 = c(e(1)) = -3x = -3Amg ), = X = +
. _ 12
and: 1 = 5Mg))

m 2 m 2
oy > My 1 My
= C(v(1)) = 3y = 3AMjn)) = ( Me((h)) ) = Y= 3( Me((h)) )

Operating this linear function on the objects, yields:

c(e(i)) = -1,c(v(i)) = ( M)

me(2(h>> ,
My h . My h
) a4 %(—mez:h;; )
From the above discussion:
My \? _ ( M(0,1) 0014517015 \? _ 6
( Me((h)) B ( m(3,1) .510998928 8.07x 10

This neutrino mass estimate is near the high end possibility, but this charge
function is still within measurement error range.

The advantage of this calibrationis that because Noether's Theorem applied to the
charge density (see [1]) insists the above charge function is a global invariant, so is
mass/energy. Noether's Theorem doesn’t have to be asserted twice, but Hamilton’s
principle (for charge density) is a consequence of the R-algebra and Noether’s
Theorem applied to that, with the above insight, establishes conservation of charge
and mass/energy, as a single consequence.

And, this illustrates that charge, being a measure of first order object (lepton)
masses, only exists where a fermion rest mass exists. That is, charges do not exist in
isolation - in a vacuum - but only where Sg field strength component matrix entries
exist. The generalized electric field strength Sk matrix entries are basically directly
proportional to the charge, and also where the preponderance of the mass of second
order objects (quarks) rests.

Nowhere here was there found in this discussion Hilbert space, annhilation
operators, spontaneous symmetry breaking, path integrals, Feynman diagrams, or
any other inveigles or obfuscations.



The coincidences mount.

The space-time we recognize is described by the constructive R-doublet-algebra

The vector dot and cross products we all learned in high school are natural
products in the constructed R-doublet-algebra.

The mass-generalized Maxwell’'s equations are satisfied for all smooth functions in
the constructed R-doublet-algebra which satisfy the four-vector-doublet Klein-Gordon
equation, yet reduce to Maxwell's equations for zero mass (something the Dirac
equation does not do).

The fermions and photons of the Standard Model are natural fundamental
constructions from the field strengths of the mass-generalized Maxwell's equations.
(and the hadrons are natural constructions therein, as well).

The charges of the fermions are a natural function of the field strengths of the
mass-generalized Maxwell's equations.

The masses of the fermions may be calculated from merely two constants based
on the field strengths of the mass-generalized Maxwell’'s equations.
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