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Abstract

Conventional illustrations of the rich elementary relations and physical
applications of geometric algebra are helpful, but restricted in communi-
cating full generality and time dependence. The main restrictions are one
special perspective in each graph and the static character of such illus-
trations. Several attempts have been made to overcome such restrictions.
But up till now very little animated and fully interactive, free, instant
access, online material is available.

This report presents therefore a set of over 90 newly developed (freely
online accessible[1]) JAVA applets. These applets range from the elemen-
tary concepts of vector, bivector, outer product and rotations to triangle
relationships, oscillations and polarized waves. A special group of 21 ap-
plets illustrates three geometrically different approaches to the represen-
tation of conics; and even more ways to describe ellipses. Next Clifford’s
famous circle chain theorem is illustrated. Finally geometric applications
important for crystallography and structural mechanics give a glimpse
of the vast potential for applied mathematics. The interactive geometry
software Cinderella[2] was used for creating these applets. The interac-
tive features of many of the applets invite the user to freely explore by
a few mouse clicks as many different special cases and perspectives as he
likes. This is of great help in ”visualizing” geometry encoded by geometric
algebra.

1 Introduction

1.1 Geometric Algebra

About 150 years ago, in 1844, the German high school teacher Hermann Grass-
mann published an ambitious work entitled The Linear Extension Theory, A
New Branch of Mathematics. For Grassmann this was indeed The Branch of
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mathematics, which in his own words ”far surpasses” all others. His work won
the prize of 45 gold ducats set out by the Princely Jablonowski Society for
the recreation and further establishment of the geometric calculus invented by
Leibniz. Leibnitz wrote' for example in 1679 to Huygens:

Mais apres tous les progres que j’ay faits en ces matieres, je ne suis
pas encore content de I’Algebre, en ce qu’elle ne donne ny les plus
courtes voyes, ni les plus belles constructions de Geometrie. C’est
pour quoy ... je croy qu’il nous faut encor une autre analyse pro-
prement géométrique linéaire, qui nous exprime directement situm,
comme ’Algebre exprime magnitudinem ... je croy qu’on pourroit
manier par ce moyen la mécanique presque comme la Géometrie ...
Enfin je n’espere pas qu’on puisse aller assez loin en Physique avant
que d’avoir trouvé un tel abrégé pour soulager 'imagination. [3]

Leibnitz was also writing about his new ideas to L’ Hospital and others. But in
1714 he writes? somewhat disappointed to Remond that L’Hospital and others
think he is just dreaming;:

J’ay parlé de ma Specieuse generale a Mr.le Marquis de I’Hospital,
et & d’autres; mais ils n’y ont point donné plus d’attention que si je
leur avois conté un songe. [3]

Grassmann went on to prove the usefulness of his extension theory by applying
it to the theory of tides and other phenomena in physics.

Grassmann’s influence was far reaching. Under it the English mathematician
W.K. Clifford published in 1878 his Applications of Grassmann’s extensive al-
gebra, describing ”geometric algebra”. Now this algebra is often simply referred
to as ”Clifford algebra.” And the Italian G. Peano published in 1888 his Calcolo
geometrico secondo I’Ausdehnungslehre di H. Grassmann. Four years later, in
1892 Felix Klein himself successfully began to push for a complete posthumous
republication of Grassmann’s works by the Royal Saxonian Society of Sciences.

Today, at the beginning of the 21st century, some people believe, that based
on Grassmann’s work soon more or less all of mathematics may be formulated as
a single unified universal geometric calculus[4], with concrete geometrical foun-
dations. The algebraic ”grammar” such a geometric calculus uses is geometric
algebra.

Yet why take geometry so important? We think the reason is that it is the
kind of mathematics, which all of us can most easily imagine and visualize. It is

1But after all progress T have achieved in these matters, T am not yet satisfied with the
algebra, inasmuch as it gives neither the shortest paths nor the most beautiful constructions in
Geometry. This is why ... I believe we still need another analysis rightly geometric and linear
that will allow us to express directly situm as the algebra expresses magnitudinem... I believe
that in that way one will be able to deal with mechanics almost the same as with Geometry ...
In conclusion, I do not hope one will be able to go ahead in physics, in a significant way, before
having found such an abridgement to relieve the imagination. (Translated by J. Parra[3])

2T have told Mr.le Marquis de ’Hospital and others about my “Specieuse generale”; but
they have paid no more attention as if I had told them a dream. (Translated by J. Parra[3])



what Wittgenstein believed to be the true source of understanding, the essential
definition:

What Wittgenstein believed is that our understanding comes in the
area of our imagination. When we picture something in our mind
we understand it. That, in essence, is the definition of that thing. [5]

Some of the modern engineering applications of geometric algebra are: com-
puter vision, graphics and reconstruction, robotics, signal and image processing,
structural dynamics and structural mechanics, control theory, quantum comput-
ing, bioengineering and molecular design, space dynamics, elasticity and solid
mechanics, electromagnetism and wave propagation, geometric and Grassmann
algebras, quaternions and screw theory, automated theorem proving, symbolic
algebra and numerical algorithms.

1.2 Cinderella created JAVA applets

For readers interested in an introduction to geometric algebra, we recommend [6,
7, 8]. Our main purpose in the present paper is not a systematic introduction
into the formulation of geometric algebra, but rather to illustrate geometric
algebra. For this purpose we state in the following only the formulas relevant
for the representative figures, which are included in the present work. More
formulas and further descriptions are available online[1].

E.H. originally learned about the JAVA based interactive geometry software
Cinderella[2] from the Amsterdam robotics researcher Leo Dorst[9]. Dorst also
used it to do some geometric algebra illustrations. We elaborated this into a va-
riety of interactive or animated online JAVA applets. Especially the interactive
applets invite to visually explore the full meaning of geometric relationships.
For part of the applets we have freely drawn with permission on [6]. Other
important sources are the geometric algebra MATLAB tutorial GABLE[9], Sir
R. Penrose’s afterword to a recent Clifford biography[10] and new works on
applications of geometric algebra to crystallography.[11]

Particularly in the section on conics we have compiled an instructive variety
of ways to obtain conics (which include points, pairs of intersecting lines, circles,
ellipses, parabolas and hyperbolas).

Next W.K. Clifford’s circle chain theorem in the ordinary Euclidean plane
which refers to a ”chain of theorems” of increasing complexity is visualized.[10]
Every one of this infinite sequence of theorems must be true for the whole to be
true. You will find the illustrations for n = 2 to n = 8 primary circles through
one point O.

Finally geometric applications important for crystallography and structural
mechanics give a glimpse of the vast potential for applied mathematics. It
has recently been found that geometric algebra offers a natural way to describe
both point and space groups using nothing but location vectors in the respective
physical crystal.[11]

The applets work with Netscape 6.2 and 7, and Explorers 5 and 6, but not
with Netscape 4.7. The first applet may take some time, because your browser



has to load a 412k JAVA archive file. Later on some of the more involved
applets may also take a few minutes to appear on your screen. One needs to
take into account that Cinderella is inherently two-dimensional. That is three-
dimensional projections may sometimes get disarranged. The easiest way to
resolve this is to press the refresh button of the browser.

2 Vectors and bivectors

2.1 Vectors

This first group of applets illustrates how vectors can be represented by arrows,
which are identical up to translations. The vector length and orientation (oppo-
site directions) can be changed by dilations. The addition of vectors is defined
as attaching one vector to the tip of another and drawing the result from the
tail of the first to the tip of the second. The additive inverse of a vector brings
it back to zero.

Special properties of vector addition are commutativity (Fig. 1),

at+(b+c)=(a+b)+c=a+b+c, (1)

associativity, and vector subtraction. The properly defined geometric multipli-
cation of vectors
ab=alb+aAb (2)

also has a multiplicative inverse a—! = a/(aa), that is in geometric algebra one
can naturally divide by vectors as well:

(xa)/a = (xa)/a+ (x Aa)/a =x(a/a) = x. (3)

One particular application of vector division (Fig. 2) is the calculation of pro-
jection (x_la)/a and rejection (x Aa)/a of one vector x with respect to another
a by using the scalar® (here left contraction _I) and outer product parts of the
geometric product of vectors.

All these properties are illustrated in a set of interactive applets.

2.2 Bivectors

Area elements, the non scalar parts of the geometric product of vectors are
simply called bivectors. Multiplying by a three-volume element results in a dual
vector perpendicular to the bivector. The left contraction is naturally extended
to include products of vectors and bivectors. This gives a new vector in the
bivector plane perpendicular to the projection of the vector into the bivector
plane.

3In much of the literature (e.g. [4, 6], etc.) the scalar part of the geometric product of
vectors is denoted as inner product by x - a using definitions like the one given in [4]. But this
definition has some drawbacks, as L. Dorst pointed out in [12]. We therefore use instead the
left contraction with symbol *_I’ as e.g. defined in [7]. The left contraction applies not only
to vectors, it has a general definition for the left contraction of multivectors.



Figure 1: Commutativity of vector addition: a+(b+c) = (a+b)+c = a+b+c.

x"a line

x.a plane

Figure 2: Vector division: (xa)/a = x.



Figure 3: The intersection (meet M) of two planes A, B.

The projection and rejection of a vector with respect to a bivector use the
same algebraic expressions as that of the vector vector case.

Geometric algebra easily allows to calculate the intersection line vector (meet
M in Fig. 3) of two planes without ambiguity in one step.

M= (B/J)JA (4)

Here A, B indicate the two planes by corresponding plane oriented bivectors
and J = I3 is the join of the two planes, i.e. a volume trivector I5.

3 Outer product and triangle

The outer product of two vectors (Fig. 4) is the non-scalar, antisymmetric part
of their geometric product
aAb=-bAa (5)

resulting in an oriented area element, which can be defined by one vector sweep-
ing along the other. JAVA applets make it possible to animate this motion. But
the outer product is not restricted to two dimensions. Sweeping an area element
bivector along a third vector gives an oriented volume element trivector. It does
not matter which side face of a parallelepiped is used for sweeping, we always
get the same trivector with positive or negative orientation.

The outer product is distributive (Fig. 5),

aA(b+c)=aAb+aAc. (6)

The outer products of the side vectors of a triangle immediately lead to the law
of (oriented) sines. Both facts are illustrated by applets in the triangle category.



Figure 4: Outer product a A b of two vectors.

a b+c

Figure 5: The outer product is distributive: aA(b+c)=aAb+aAc.



4 Rotations

Geometric algebra offers elegant ways to describe rotations without introducing
coordinates or matrices. E.g. the full geometric multiplication of a vector with
a (unit area) bivector Iy = ejex = e A es gives a 90 degree rotation (Fig. 6):

x = xly =x_115,
e.g. e — ey = 61]2 = e1_|12.

(7)

Capitalizing on this one can easily demonstrate how the exponential of a
bivector yields arbitrary plane rotations (Fig. 7).

X = xcos ¢ + xIrsin ¢

= x(cos ¢ + I> sin ¢)

= xexp(ly¢) (8)
= exp(—L>¢/2)x exp(l29/2)

= RxR.

Another simple way to describe rotations is through two successive reflections
at planes which comprise half of the angle of the resulting rotation (Fig. 8).
These planes of reflection can be denoted by unit vectors n, m perpendicular
to them. The geometric product nm of these two unit bivectors is the desired
rotation operator (rotor) R, to be applied in the orders R = nm from the left

and R = mn from the right.
x = x"=nmxmn=RxR, m>=n’>=1. 9)

Rotors can be written in terms of the angle and the oriented plane area element
(e.g. I) defined by the two vectors n,m. This brings us full swing back to
the exponential description of rotations already mentioned in (8), now in the
proper general form for the rotation of objects in higher dimensions. The same
coordinate free rotor R rotation can be applied to vectors and bivectors (Fig.
9).

R =exp(—L¢/2), R = exp(l2¢/2)
x -+ RxR (10)
B — RBR

The exponential rotor form of rotations gives us a coordinate and matrix
free understanding of the well known Euler angles (Fig. 10, n =line of nodes).

1 1 1
R = exp(—§I3031/J) exp(—§I3n0) exp(—gfgegcp) (11)

And it leads on to an incredibly simple algorithm for interpolating between
arbitrary orientations (rotors R4, Rp) (Fig. 11), e.g. of plane area elements.

Ry =exp(—I3va ®4/2),

RB = exp(—I3vB CI)B/Q), (12)
Rine = exp(log(Ra/RB)/n),
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Figure 6: Right angle rotation with unit area element.
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Figure 7: Rotation with exponential of unit area element.

where R;,. is the incremental rotor and n the desired number of increments.
This is of great use for computer graphics, virtual reality, robot manipulations,
orbits and aerospace.

5 Osciallations and waves

5.1 Oscillations

All basic forms of symmetric and antisymmetric oscillations in longitudinal (Fig.
12), transverse (Fig. 13) and circular (Fig. 14) directions are easily formulated
by geometric algebra and visualized by animated applets. For the symmetric
circular case we have

a1 = g2 = aexp(lwt), (13)



Figure 8: Rotation by two reflections: x”" = nm x mn.
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Figure 10: Euler angles of rotation R(v,8, ).
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Figure 11: Rotation interpolation R;,. = exp(log(Ra/Rg)/n).

Figure 12: Symmetric longitudinal oscillations.

and for the antisymmetric circular case
a1 = aexp(lwt), q» = aexp(—lwt). (14)

Longitudinal and transverse modes are simply projections into the correspond-
ing directions as explained in section 2.1.

As one may expect by now, geometric algebra can again do it without co-
ordinates. It really brings out the full geometric nature of oscillations without
artificially resorting to a Cartesian coordinate system.

Figure 13: Antisymmetric transverse oscillations.
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Figure 14: Symmetric circular oscillations q; = q2 = aexp(lowt).
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Figure 15: Right and left circular polarized waves q = aexp(FI(wt — kx)).

5.2 Circular polarized waves

Circular polarized waves standing, rotating or traveling in arbitrary directions
of any wavelengths receive an elegant fully geometric description in geometric
algebra.

q = aexp(I(wt — kx)), (15)

where I = k_II; is the bivector of the plane rotation for fixed distance z, and
k is the wave vector with length k = |k|. T — —I produces negative helicity
(right-circularly polarized).

The applets in this category show right and left polarized circular waves
(Fig. 15) which can be turned interactively, or observed traveling by animation.
The user can continuously choose the wavelength 27 /k interactively.

6 Conic intersections

Conic intersections are a vast and immensely important topic in geometry, math-
ematics and its applications. The geometric and analytic properties of these
particular curves are most fascinating, but the incredible variety of equivalent
descriptions can be very confusing and rather elusive at first. To address this

12



Figure 16: Conic intersection.

subject a comprehensive study has been carried out to first show the ”conic”
nature of circles, ellipses, parabolas, hyperbolas, points and intersecting pairs
of lines, and to fully illustrate with interactive "hands on” the variety of equiv-
alent descriptions. Cinderella even allows to capture the infinite properties of
parabolas and hyperbolas by visualizing the spatial infinity in its spherical view.

6.1 Intersecting the cone

This is now meant to be taken literally as the procedure for obtaining all conics.
In both finite Euclidean view and in the (infinite) spherical view the position and
orientation of a plane intersecting a cone can be freely manipulated interactively
(Fig. 16). This creates before the eyes of the user all known varieties of conics.
The spherical view (Fig. 17) shows how finite ellipses become parabolas closed at
infinity and then continuously open up to become hyperbolas. By just dragging
the mouse pointer across the screen the user can freely explore, what many
pages of text books and many conventional illustrations just cannot show due
to their limitations to selective static perspectives.

6.2 Semi-latus rectum formula

A famous formula for all conics is

. l
T ilye
with | the semi-latus rectum, r the length of the radius vector pointing in
the unit vector direction ¥, and e the excentricity vector.

How formula (16) achieves to include circles, ellipses, parabolas (Fig. 18)
and hyperbolas is made visible by a variety of applets. In the interactive version,
the user can continuously create each conic by dragging the mouse along the
directrix line. Special animated versions show how all values of the formula

(16)
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Figure 17: Spherical projection.
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Figure 18: Semi-latus rectum generation of parabola: r =1/(1 + € - F).

sweep out complete conics. At the same time the infinite behavior is captured
again with the help of the spherical view (Fig. 19).

6.3 Ellipse in various disguises

One conic, the ellipse has a particular variety of equivalent ways to describe it:

r = acosp + bsing,
r=a; exp(lr®) + a_exp(—LP), [ =ejes, (17)
r = La (exp([; @) + exp(—1_®)),

with I, I two unit bivectors characterizing two planes. There are besides
the literal conic intersection and the semi-latus rectum formula three other

interesting descriptions. Yet another way to describe it as second order curve
will be treated in the next section.
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Figure 19: Parabola in spherical view closing at infinity.

Figure 20: Description of ellipse by polar angle: r = acos + b sine.

The three descriptions mentioned above are illustrated in both interactive
and animated ways by remarkably simple and aesthetic Cinderella applets (Figs.
20,21,22). Needless to say that the elegant descriptions of planes as bivectors
and of rotations by rotors make all this in the framework of geometric algebra
quite easy.

6.4 Second order curves

All curves of the form

ag+ai\+ a2)\2
= 18
' a+ A2 ’ (18)

with any three vectors ag, a;, as and scalars A and « describe conics. Taking r
in (18) as functions of X yields a specific conic. For a > 0 ellipses, for « = 0

15



Figure 21: Description of ellipse by two coplanar circles: r = ay exp(lb®) +
a_exp(—L®).

.\
j@‘

Figure 22: Description of ellipse by and two non-coplanar planes r =
1a (exp(I; @) + exp(—1_®)).
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Figure 23: Ellipse as second order curve: r = (ag + a; A +a2\?)/(a + A\%), a >
0.

parabolas and for @ < 0 hyperbolas. It sounds incredible, but the truth of (18)
can be immediately visualized using interactive and animated JAVA applets
created with Cinderella (Fig. 23). In the interactive version all three vectors
and the values of the scalar parameters can be freely varied to provide full
intuition on how the formula works. The spherical view captures again what
happens at infinity.

7 Clifford’s circle chain theorem

Clifford’s circle chain theorem in the ordinary Euclidean plane refers to a ”chain
of theorems” of increasing complexity.[10] Every one of this infinite sequence of
theorems must be true for the whole to be true. It begins with two circles
passing through a common point O (n = 2). The next theorem in the chain is
for the case of three circles through a common point O (n = 3) and so forth
for n = 4,5,6,... If one takes the point O to infinity the n circles become n
straight lines (circles with infinite radii.) The interactive JAVA applets show
illustrations for the cases of n = 2,...,8 circles through O (Figs. 24, 25). These
illustrations are each accompanied by a detailed description. Each illustration
shows the magnificent intersection properties that lead to a final point (even n)
or circle (odd n).

It is most interesting to note that a purely algebraic proof of the case n = 5,
based on the conformal geometric algebra model of the Euclidean plane has been
found[13]. With the help of the geometric product of vectors one can construct
an algebra of Clifford brackets, with which the proof becomes possible. This
illustrates how even Clifford’s own inventions submit over time to the descriptive
power of his geometric algebra.
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Figure 24: Clifford’s circle chain theorem (n = 4).
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Figure 25: Clifford’s circle chain theorem (n = 7).
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Figure 26: Oriented rotations of a pentagon.

8 Point groups

Point groups are essential for the study of symmetries of molecules and crystals.
Geometric algebra naturally provides for a geometric treatment in terms of
location vectors in the crystal.[11] To illustrate this the complete set of two
dimensional point groups of regular polygons with £ = 1,...,6 sides (corners)
are implemented as applets. All rotations are represented as compositions of
reflections: x — rxr. The unit vectors r mark the direction of the line of
reflection either directed to a corner, or the middle of a side of the regular
polygons.

For each regular polygon the applets first illustrate the oriented reflections
in the symmetry group 2Hy, and second the oriented rotations (Fig. 26 for
k = 5) in the dicyclic point symmetry group 2C%. In 2C5 we have the following
ten symmetry rotations:

x — x' = RxR, a?=b2 =1,

R =1= (ab)?, ab, (ab)?, (ab)?, (ab)*,

R = —1= (ab)® = (ba)®,ba = —ba(ab)® = —(ab)*, (ba)? = —(ab)?,
(ba)® = —(ab)?, (ba)* = —ab,

(19)

where a points to a corner of the pentagon and b to an adjacent middle of a
side. The first five rotors R describe rotations of positive sense, and the latter
five rotors describe corresponding rotations of negative sense.

9 Structural mechanics

A basic problem of structural mechanics is the description of beams, their forces
and momenta. The geometric nature of such problems lends itself naturally
to the application of geometric algebra. To exemplify this we deal with the
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Figure 27: Beam with concentrated load.

equilibrium conditions for a plane 1-dimensional beam, represented by a vector
in a plane. A plane beam has three degrees of freedom, e.g. two displacements
of the barycenter and the rotation about the barycenter. Equilibrium means to
make sure that the beam will not move or rotate. Newton’s law leads us to the
zero equilibrium conditions for the sums of all forces and of all force induced
momenta, respectively.

Let x be the position of a hinge on the left end and y the position of a
cart on the right end of the beam. The (concentrated) load force P is acting
at position a, somewhere between x and y. The reaction forces at x and y are
then simply (compare Fig. 27)

A=-Pl(y —x)/(y —x),
B=-PA(y—-x)/(y —x), (20)
C:_P/\a/(y_x)a

where it is a convention to perform the left contraction and the outer product
before dividing by y — x.

In textbook algebra, the zero momentum condition is also a vector equation,
because each momentum is a cross product of two vectors, and thus a vector
that sticks out of the plane at 90 degree, i.e. is not part of the algebra of the
plane. If we interpret the momentum condition in the framework of geometric
algebra, all momenta are expressed by the outer product of force vector, and
distance from the pivot. Thus the momentum naturally becomes a bivector in
the geometric algebra of the plane. The two momenta of P and C relative to
the hinge x are in equilibrium:

Prhna+CA(y—x)=0. (21)

Two applets show the behavior of a simply supported beam with a concen-
trated (Fig. 27) and a distributed load. The direction and magnitude of the
load, the point where it is applied, the bending moment and the equilibrium
conditions are all visualized interactively.
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10 Cinderella and Geometric Algebra

Cinderella uses complex projective coordinates.[14] The geometric algebra of a
two dimensional Euclidean space is four dimensional with basis: {1,e;,es, > =
ejex}. The even subalgebra with basis {1, >} is isomorphic to the complex
numbers, because I3 = —1. But I, anticommutes with every vector in the
ey, ex-plane:

(a1e1 + a2e2)I2 = —I2(a1e1 + a2e2). (22)
The geometric algebra of the Euclidean plane comprises the Euclidean e, es-
plane and has the complex numbers as its even subalgebra. But the geometric
algebra of the Euclidean plane differs from a complex linear space, or complex
algebra, where scalars are complex numbers, and where the imaginary unit
commutes with all vectors.[7] Geometric algebra allows to easily incorporate
projective geometry as well.[15]

Beyond that exists a double conformal model of Euclidean space in the
geometric algebra R4,1. There the Euclidean space is modelled as a three di-
mensional section of a higher dimensional null cone. This description unfies the
description of rotations and translations to monomials of multivectors alongside
with a number of other notable benefits.[16] A first attempt at an interactive
JAVA implementation of this double conformal model of three dimensional Fu-
clidean space has already been made with the program KamiWaAi.[17]

11 Conclusion

We hope that this free, colorful, interactive way of mathematical exploration
will bring fresh motivation and insight for anybody interested in geometry. For
people who want to make their own applets: Cinderella is reasonably prized
commercial software. Within three to five years a 3D version is expected. As for
geometric algebra, its applications in science and engineering currently undergo
rapid development.

E.H. thanks God for the joy of doing research in the wonders of creation:

The works of the LORD are great, sought out of all them that have
pleasure therein. [18]

He thanks his wife, Fukui University, K. Shinoda and H. Ishi. Soli deo Gloria.
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