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Abstract:  We demonstrate how fermion rest masses may be understood on a strictly geometric 
footing, by showing how the Dirac equation is just a special case of the Einstein equation for 
gravitation in curved spacetime, in view of Weyl’s theory of gauge (phase) invariance.    
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1. Introduction 
 

It is well-understood that the Dirac equation ( ) 0i m ψ∂/ − =  may be thought of as the non-

trivial square root of the relativistic energy relationship 2 0p p mσ
σ − = .  For, if one writes this in 

flat spacetime as 2p p mστ
σ τη =  and then applies ( ) { }1 1

2 2 ,στ σ τ τ σ σ τη γ γ γ γ γ γ= + =  where στη  is 

the contravariant Minkowski metric tensor, one first obtains  ( ) 21
2 0p p mσ τ τ σ

σ τγ γ γ γ+ − = .  

Then using the Dirac-dagger notation  p pσ
σγ≡/  this becomes 2pp m=/ / .  Separating the two 

parts of this square root and using the resulting expression to operate from the left on a Dirac 
spinor u, yields ( ) 0p m u− =/  in which the mass m represents eigenvalues of the daggered 

momentum matrix p/ .  Upon promoting the spinor to a wavefunction u ψ→  simultaneously 

with substituting p i→ ∂// , the new wavefunction equation becomes ( ) 0i m ψ∂/ − = , which is 

Dirac’s equation.  In essence, this is the path Dirac followed to derive his equation in [1], [2]. 
 
 This in turn is based on the equation 2d g dx dxσ τ

σττ =  for the spacetime metric / proper 

time.  Specifically, if one simply converts this to ( )( )1 / /g dx d dx d g uσ τ σ τ
στ σττ τ µ= =  where 

/u dx dσ σ τ≡  defines the velocity vector, and then multiplies through by a square mass m2, then 
upon further defining the momentum vector p muσ σ≡ , one obtains 2 0p p mσ

σ − =  which is the 

starting point for obtaining the Dirac equation.  However, as one can readily see from this well-
known derivation, the mass m is introduced entirely by hand.  It would be desirable to find a way 
to obtain Dirac’s equation without the hand-introduction of a mass, but rather, to have the mass 
arise spontaneously, based strictly on a deeper understanding of the spacetime geometry. 
 
 It turns out that an exercise similar to the above using the Einstein equation 

1
2R g Rµν µν µνκ− Τ = −  enables us to do exactly that, namely, to obtain a strictly geometric 

interpretation of fermion rest mass in ( ) 0i m ψ∂/ − = .  Concurrently, we come to view Dirac’s 

equation as just a specialized variant of Einstein’s equation.  This all appears to be new.  We now 
show how this is done. 
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2. Connecting the Dirac Equation to the Einstein Equation via Weyl’s Gauge Theory 
and Vierbein Fields 
 
 The geometric foundation of Einstein’s equation springs from the Bianchi identity 

; ; ; 0R R Rαβ αβ αβ
σ µν µ νσ ν σµ∂ + ∂ + ∂ =  of Riemannian geometry, where ;ν∂  is the gravitationally-

covariant derivative which makes well-known use of the Christoffel connections µαβΓ .  If one 

does a first index contraction of this identity while noting that Rαβ
µν  is antisymmetric in ,µ ν , 

one obtains ; ; ; 0R R Rβ β αβ
σ µ µ σ α σµ∂ − ∂ + ∂ =  whereby two of the three terms are contracted to the 

Ricci tensor via R Rαβ β
µα µ= .  A second contraction yields ; ; ; 0R R Rβ α

σ β σ α σ∂ − ∂ − ∂ =  with the 

Ricci scalar R Rβ
β= .  With simple index gymnastics this converts over to the very well-known 

( )1
; 2 0R Rα α
α σ σδ∂ − = .  Because we also know that the local conservation of energy is 

represented via the mixed energy tensor α
σΤ  by the equation ; 0α

α σ∂ Τ = , one connects this to 

the contracted Bianchi identity in the form ( )1
; ; 2 0R Rα α α
α σ α σ σκ δ− ∂ Τ = ∂ − =  which upon 

integration sans cosmological constant yields 1
2R g Rµν µν µνκ− Τ = − . [3] 

 
 Hermann Weyl teaches [4], [5], [6] that whenever we have a field equation or a 
Lagrangian density for a scalar φ  or fermion ψ  field which includes a term ;µφ∂  or ;µψ∂ , we 

should subject the field to the local gauge (phase) transformation ( )i xe θφ φ→  or ( )i xe θψ ψ→  
and insist the field equation or Lagrangian density remain invariant under this transformation.  
How does one ensure such invariance?  Replace ; ; ;D iGµ µ µ µ∂ → = ∂ − .  So now, one promotes 

; ;Dµ µφ φ∂ →  and ; ;Dµ µψ ψ∂ →  with the consequence that φ  or ψ  acquires an interaction with a 

gauge field Gµ .  If we apply Weyl’s gauge recipe to ( )1
; ; 2 0R Rα α α
α σ α σ σκ δ− ∂ Τ = ∂ − = , then we 

should promote ; ;Dα α∂ →  and we may write this with minor index adjustments as: 

 

( )1
; ; 2 0g D g D R g Rστ στ
σ τν σ τν τνκ− Τ = − = . (1) 

 
Now, using the gστ  expressly displayed in the above, we follow the exact same recipe that Dirac 

used [1], [2] to convert 2g p p mστ
σ τ =  into ( ) 0i m ψ∂/ − =  and see what happens. 

 
 Working in curved spacetime, we must make use of a local vierbein field ( )ae xσ , [6] 

where Greek indexes label general spacetime coordinates and Latin indexes label local Lorentz / 
Minkowski coordinates.  The metric tensor is then related to this in the customary manner by: 
 

( ) ( ) { }1 1 1
2 2 2 ,ab a b b a

a b a bg e e e eστ σ τ σ τ σ τ τ σ σ τη γ γ γ γ= = + = Γ Γ + Γ Γ = Γ Γ , (2) 

 
where we define ( ) a

ax eσ σγΓ ≡ .  This is simply a generalization of { }1
2 ,στ σ τη γ γ=  into curved 

spacetime.  We shall continue to employ the usual Dirac-dagger notation, but now define this in 
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curved spacetime such that for any arbitrary vector Bσ ,  we have a
aB B e Bσ σ

σ σγ/ ≡ Γ = .  In the 

special case where ;Bσ σ= ∂ , i.e., where ; ;
a

aB eσ σ
σ σγ/ = ∂/ = Γ ∂ = ∂  is a covariant derivative, 

beyond the Christoffel connection µαβΓ  this derivative takes on  additional terms involving a 

vierbein connection ab
µω  with one spacetime and two Lorentz indexes, in known fashion.   

 
 Let us now make use of (2) in the ; 0g Dστ

σ τνΤ =  portion of (1).  This enables us to write 

the anticommutator equation: 
 

( ) ( ) { }1 1 1
; ;2 2 2 , 0g D D D D Dστ σ τ τ σ
σ τν σ τν ν ν νΤ = Γ Γ + Γ Γ Τ = / Τ + Τ / = / Τ =/ / /  , (3) 

 
where τ

ν τνΤ = Γ Τ/  is a “half-daggered” energy tensor daggered in one index while retaining one 

free index.  We then use this to operate from the left on a Dirac wavefunction as such: 
 

( ) { }1 1
2 2 , 0D D Dν ν νψ ψΤ / + / Τ = Τ / =/ / /  . (4) 

 
This is the Einstein equation used as an operator equation for fermions, no more and no less.  
The bears exactly the same relationship to the energy conservation relation ; 0g Dστ

σ τνκ− Τ =  

linked to geometry via ( )1
; 2 0g D R g Rστ
σ τν τν− =  in (1), as Dirac’s equation ( ) 0i m ψ∂/ − =  bears 

to the metric equation 2d g dx dxσ τ
σττ = .  Note that the operation D ν/ Τ/  will contain both 

Christoffel and vierbein connections. 
 
 Equation (4) raises the prospect of introducing a fermion rest mass without having to do 
so by hand, and in the process, of obtaining a geometric understanding of this mass linking 
Einstein’s equation to Dirac’s.  This is in contrast to when we multiply 1 g uσ τ

στ µ=  by a hand-

added 2m  without ever explaining anything about the mass per se.  Specifically, we take Dirac’s 
equation ( ) 0i m ψ∂/ − = , regard this in curved spacetime such that ; ;

a
aeσ σ

σ σγ∂/ = Γ ∂ = ∂ , and use 

Weyl’s gauge prescription to introduce a gauge interaction by promoting D∂/ → / , thus writing: 
 
( ) 0D im ψ/ + = . (5) 

 
We have also multiplied through by –i, which allows us to contrast (5) directly with (4), as one 
should now do. 
 
 Contrasting, we see that both (4) and (5) contain two additive terms.  The left hand terms 
have the respective forms 1

2 Dν ψΤ //  and Dψ/ .  The right hand terms are 1
2 D νψ/ Τ/ and imψ .  This 

suggests that perhaps the fermion mass can be interpreted via a commutator [ ], DνΤ // .  

Specifically:  If we take both (4) and (5) to be true equations, with (4) being the Einstein 
equation represented in Dirac form with a Weyl supplement D∂/ → / , and with (5) being Dirac’s 
equation with a gauge field in curved spacetime, then we see that Dirac’s equation (5) may be 
embedded as a special case of Einstein’s equation (4) if we set: 
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[ ] ( ), 2D D D i mν ν ν νψ ψ ψ/ Τ = / Τ − Τ / = Τ/ / / / . (6) 

 
Specifically, if we now substitute (6) into (4), we obtain:  

 
( ) ( ) ( )1 1

2 2 2 0D D D D i m D imν ν ν ν ν νψ ψ ψΤ / + / Τ = Τ / + Τ / + Τ = Τ / + =/ / / / / /  . (7) 

 
In the special case where ( ) 0D im ψ/ + =  separately from the further left-multiplication with the 

matrix a
aeσ σ

ν σν σνγΤ = Γ Τ = Τ/ , this becomes identically equivalent to Dirac’s equation 

represented in the form of (5).  So, consolidating (6), we see that: 
 

[ ]1
2 ,m iDν νψ ψΤ = Τ // / ; or alternatively, [ ]( )1

2 , 0iD mν ν ψΤ / − Τ =/ / . (8) 

 
 If (8) is true, then Dirac’s equation ( ) 0D im ψ/ + =  with a gauge field coupling D∂/ → /  as 

in (5) is just a special case of the Einstein equation (1) with Weyl’s gauge supplement D∂/ → /  as 
represented in the Dirac form (4).  In general, Dirac’s equation is that of Einstein, in the form 

{ }1
2 , 0Dν ψΤ / =/  of (4), or with mass revealed, ( ) 0D imν ψΤ / + =/  of (7).  These interrelationships 

do not appear to have previously been found. 
 
3. Conclusion 
 

From the foregoing, fermion rest mass is given a strictly geometric interpretation in terms 
of eigenvalues of the commutation [ ], iDνΤ //  of a half-daggered energy tensor νΤ/  with the 

daggered gauge-covariant derivative D/  of Weyl using vierbein fields in accordance with (2).  
The fermion mass no longer needs to be regarded as something added “by hand,” and this should 
help us understand how to “reveal” a fermion rest mass via spontaneous symmetry breaking.  
The correspondence p i↔ ∂//  which is such a familiar part of the quantum mechanical landscape 
is now shown to have an analogous correspondence m iD↔ /  with fermion rest mass when used 
in the form of (8).  Finally, with the fermion rest mass now understood as in (8), Dirac’s equation 
written in the form of (4) as { }1

2 , 0Dν ψΤ / =/ , is simply a variant of Einstein’s equation 
1
2R g Rµν µν µνκ− Τ = −  of which ( ) 0D im ψ/ + =  is a special case.  This is all analogous to how the 

usual Dirac equation ( ) 0i m ψ∂/ − =  is just a variant of the metric relationship 2d g dx dxσ τ
σττ = . 
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