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Abstract: We demonstrate how fermion rest massgsh@ understood on a strictly geometric
footing, by showing how the Dirac equation is jaspecial case of the Einstein equation for
gravitation in curved spacetime, in view of Wetitisory of gauge (phase) invariance.
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1. Introduction

It is well-understood that the Dirac equatifd —m)¢ =0 may be thought of as the non-
trivial square root of the relativistic energy tedaship p, p° - nf =0. For, if one writes this in
flat spacetime ag” p, p, = nf and then applies™ =(y*y" +y'y* ) =4{y*.y’} wheren™ is
the contravariant Minkowski metric tensor, onetfobtains %(y"y’ + y’y") p, p, — nt =0.

Then using the Dirac-dagger notatign= y° p, this becomespp= nf. Separating the two
parts of this square root and using the resultipyession to operate from the left on a Dirac
spinoru, yields ( p- m) u=0 in which the masm represents eigenvalues of the daggered

momentum matrixp . Upon promoting the spinor to a wavefunction- ¢ simultaneously
with substitutingp — i@, the new wavefunction equation beconfis-m)y =0, which is
Dirac’s equation. In essence, this is the patla®iollowed to derive his equation in [1], [2].

This in turn is based on the equatior’ = g, d¥ dx for the spacetime metric / proper
time. Specifically, if one simply converts thiste g, (dx" / dr)( dx / d) = g, Gu" where

u’ =dx / dr defines the velocity vector, and then multipliesotigh by a square mas8, then
upon further defining the momentum vectaf = mu’, one obtainsp, p° — nf =0 which is the

starting point for obtaining the Dirac equationoviever, as one can readily see from this well-
known derivation, the massis introduced entirely by hand. It would be dakie to find a way
to obtain Dirac’s equation without the hand-introtilon of a mass, but rather, to have the mass
arise spontaneously, based strictly on a deepesrstaohding of the spacetime geometry.

It turns out that an exercise similar to the abasiag the Einstein equation
-«T,, =R, —3 g, Renables us to do exactly that, namely, to obtaitrietly geometric

interpretation of fermion rest mass(i'm —m)z// =0. Concurrently, we come to view Dirac’s

equation as just a specialized variant of Einsseggjuation. This all appears to be new. We now
show how this is done.



2. Connecting the Dirac Equation to the Einstein Egation via Weyl's Gauge Theory
and Vierbein Fields

The geometric foundation of Einstein’s equationrggs from the Bianchi identity
0,R?,+0, ,R?, +0, R’ =0 of Riemannian geometry, whede, is the gravitationally-

covariant derivative which makes well-known uséhef Christoffel connectiong” . If one
does a first index contraction of this identity ehnoting thatR"”W Is antisymmetric inu,v,

one obtains). R’ 0., R, +0., R’ =0 whereby two of the three terms are contracteti¢o t
Ricci tensor viaR™” ,, = R’,,. A second contraction yields,R-0.,R°, -9, R, =0 with the
Ricci scalarR = RGB. With simple index gymnastics this converts aweethe very well-known
a, (R"J -107, R) =0. Because we also know that the local conservati@mergy is
represented via the mixed energy teristy by the equation)., T*, =0, one connects this to
the contracted Bianchi identity in the forad., T =0, (R"J -107, R) =0 which upon
integration sans cosmological constant yietdS , =R, =3 g,, R. [3]

Hermann Weyl teaches [4], [5], [6] that whenevervave a field equation or a
Lagrangian density for a scalaror fermion¢ field which includes a term. @ or 9. 4, we

should subject the field to thecal gauge (phase) transformatign- €°®g or ¢ - €y

and insist the field equation or Lagrangian dengtyain invariant under this transformation.
How does one ensure such invariance? Replace D, =0 ,-iG,. So now, one promotes

d,9 - D, pandd g - D with the consequence thator ¢/ acquires an interaction with a
gauge fieldG, . If we apply Weyl's gauge recipe texd., T, =9, (R"U -107, R) =0, then we
should promote., — D., and we may write this with minor index adjustmeats

-k9”D,T, =9"D,(R,-% g, R=0. 1)

Now, using theg” expressly displayed in the above, we follow thaat)same recipe that Dirac
used [1], [2] to convery” p, p. = nf into (id —m)¢ =0 and see what happens.

Working in curved spacetime, we must make uselota vierbeinfield e”,(x), [6]

where Greek indexes label general spacetime cateirand Latin indexes label local Lorentz /
Minkowski coordinates. The metric tensor is thelated to this in the customary manner by:

g7 =&, 6’ =1 €, éb(yayb+ybya) :%(r”rr +FTF") :%{F”,FT} : )

where we defind 7 (x) = y*¢’,. This is simply a generalization gf* :%{y",y’} into curved
spacetime. We shall continue to employ the usu@dadagger notation, but now define this in
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curved spacetime such that for any arbitrary ve&pr we haveB=r’B, = y°¢_ B.. In the
special case wherB? =9, i.e., whereB=90 =I?d., = )€’ 0., is a covariant derivative,
beyond the Christoffel connectidit’ ; this derivative takes on additional terms involya
vierbeinconnectiona)#‘”lb with one spacetime and two Lorentz indexes, infkm@ashion.

Let us now make use of (2) in tlgg" D, T,, =0 portion of (1). This enables us to write
the anticommutator equation:

g DT

N2

i(oT,+T,0)=%{DT,}=0, (3)

142

=i(rerr+rre)p,T

whereT, =I''T,, is a “half-daggered” energy tensor daggered iniodex while retaining one
free index. We then use this to operate from ¢ifteon a Dirac wavefunction as such:

(T, D+DT, )y =4{T,, D}y =0. 4)

This is the Einstein equation used as an opergugaten for fermions, no more and no less.
The bears exactly the same relationship to theggreamservation relatiorkg® D, T,, =0
linked to geometry viay” D,, (R, -1 g, R =0 in (1), as Dirac’s equatiofid -m)¢ =0 bears
to the metric equatiodr? = g, d¥ dX. Note that the operatioBT, will contain both
Christoffel andvierbeinconnections.

Equation (4) raises the prospect of introducirfigrenion rest maswithouthaving to do
so by hand, and in the process, of obtaining a g&wcrunderstanding of this mass linking

Einstein’s equation to Dirac’s. This is in contraswhen we multiplyl = g, u’ " by a hand-

addedm’ without ever explaining anything about the mpesse Specifically, we take Dirac’s
equation(i@ —m)z// =0, regard this in curved spacetime such thatl 0., = y°e’ 0.,, and use
Weyl's gauge prescription to introduce a gaugerautigon by promotingd — D, thus writing:

(D+im)y =0. ()

We have also multiplied through by, which allows us to contrast (5) directly with (45 one
should now do.

Contrasting, we see that both (4) and (5) coritamadditive terms. The left hand terms
have the respective formsl , Dy and Dy . The right hand terms ageDT ¢ andimy . This

suggests that perhaps the fermion mass can berietied via a commutat@ﬁ'v, IZ)] :

Specifically: If we take both (4) and (5) to bedrequations, with (4) being the Einstein
equation represented in Dirac form with a Weyl dep@ntd — D, and with (5) being Dirac’s
equation with a gauge field in curved spacetimentive see that Dirac’s equation (5) may be
embedded as a special case of Einstein’s equat)ahwe set:
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[D.7,]¢ =(DT, -T,D)¢ = 2T,my. (6)
Specifically, if we now substitute (6) into (4), wbtain:
(T, D+DT, )y =1(T,D+T,D+2T,m)¢ =T,(D+im)g =0 (7)

In the special case Whe(ﬂ) + im)l// =0 separately from the further left-multiplicationtvithe

matrix T, =I°T_, = y?’,T,,, this becomes identically equivalent to Dirac’siatipn
represented in the form of (5). So, consolidaf)g we see that:

T,my =[T,,iD]y ; or alternatively ([T, .iD]-T,m)y = 0. (8)

If (8) is true, then Dirac’s equaticfid +im)¢ =0 with a gauge field coupling — D as

in (5) is just a special case of the Einstein equatl) with Weyl's gauge supplemedt- D as
represented in the Dirac form (4). In generalaDi equation is that of Einstein, in the form
HT,, D}y =0 of (4), or with mass revealed, (D +im)¢ =0 of (7). These interrelationships

do not appear to have previously been found.
3. Conclusion

From the foregoing, fermion rest mass is giverriatst geometric interpretation in terms
of eigenvalues of the commutatifh, ,id| of a half-daggered energy tenshy with the
daggered gauge-covariant derivatideof Weyl usingvierbeinfields in accordance with (2).
The fermion mass no longer needs to be regardednasthing added “by hand,” and this should
help us understand how to “reveal” a fermion reassnvia spontaneous symmetry breaking.
The correspondencp « i@ which is such a familiar part of the quantum medta landscape

is now shown to have an analogous correspondenceilD with fermion rest mass when used
in the form of (8). Finally, with the fermion restass now understood as in (8), Dirac’s equation

written in the form of (4) ag{T,, D}y =0, is simply a variant of Einstein’s equation
-«T,, =R, —3 ¢, Rof which (lZ) +im)l// =0 is a special case. This is all analogous to Hwmwv t
usual Dirac equatio(lia —m)z// =0 is just a variant of the metric relationstdp® = g, dX dX.

References

[1] P.A.M. Dirac,The Quantum Theory of the Electrétroc. Roy. Soc. Lon. A117, 610 (1928)

[2] P.A.M. Dirac,The Quantum Theory of the Electron. PartRtoc. Roy. Soc. Lon. A118, 351 (1928)

[3] A. Einstein,The Foundation of the General Theory of RelatiAtgnalen der Physitser. 4), 49, 769-822
(1916)

[4] H. Weyl, Gravitation and Electricity Sitzungsber. Preuss. Akad.Wiss., 465-480. (1918).

[5] H. Weyl, Space-Time-Mattef1918)

[6] H. Weyl, Electron und GravitationZeit. f. Physik, 56 (1929), 330



