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Abstract: We demonstrate how the application of Higgs field theory to spin ½ fermions in a 
manner analogous to its application to spin 0 scalars enables fermion masses to be constructed 
entirely from a self-energy arising from gauge fields and “revealed” in the Dirac Lagrangian in 
a fully renormalizable manner with no “bare” aspect.  When the observed fermions are taken to 
be Higgs fields based on expansion about the vacuum, it is found that the Dirac Lagrangian 
naturally produces an “anomalous” aspect for their magnetic moments.  This enables us to 
deduce the gauge fields which underlie the self-energies for the three charged leptons on an 
entirely empirical basis, and then use this data to predict the impact of a time-dependent 
magnetic field on the lepton g-factors.  We predict that a time-dependent magnetic field impacts 
the g-factor of the heaver mu and especially tau leptons much more substantially than it does the 
g-factor of the electron, and quantify how this should be detectable well within experimental 
ranges.  We also show how this construction of fermion masses out of gauge fields permits these 
masses to remain invariant at all renormalization scales, wherein the variability of a fermion 
mass under renormalization is entirely equivalent to, and may be fully absorbed by, a gauge 
transformation of the vector potentials from which the fermion self-energies arise.  As a result, 
the infinite constants ordinarily used for renormalization become finite and equal to unity.  
Finally, the time and space dependencies of the electric and magnetic fields in Maxwell’s 
equations are revealed to be embedded into Dirac’s equation as a result of Heisenberg 
commutations.  This develops multiple venues for further confirming Higgs Field Theory in the 
fermion sector, all of which appear to be new. 
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1. Introduction, Novelty and Overview 
 

The July 4, 2012 announcement from the Large Hadron Collider of experimental results 
consistent with the “long sought Higgs particle” [1] garnered an unusual degree of attention not 
only from the international physics community, but from the mainstream press and the general 
public as well.  Yet, the full import of a validation of “Higgs mechanism” is, if anything, under-
reported and underappreciated, even by knowledgeable physicists.  This is signaled by the fact 
that the original work by Anderson [2], Englert and Brout [3], Higgs [4], Guralnik, Hagen and 
Kibble [5] is still often referred to as a “mechanism” or as a “Higgs particle” rather than as a 
fundamental breakthrough in understanding the nature of the particles and fields that we actually 
observe in our laboratories and in our daily experience. 
 

Of course, it is critically important that the Higgs “mechanism” provides a way to 
introduce non-zero masses for the vector bosons of a gauge theory without having to do so by 
hand, thus preserving renormalizability.  And it was a major step forward when those features of 
the Higgs mechanism enabled Weinberg [6], Salam [7] and Glashow to develop an electroweak 
theory which correctly predicted the observed masses of the W and Z bosons which mediate 
weak interactions and to place them into a quadruplet set with the massless photon following 
spontaneous symmetry breaking all while keeping a renormalizable theory.  And it is always 
cause for excitement when a new particle appears to have been confirmed experimentally.  But 
more than anything, all of this theoretical work which bears the name of “Higgs mechanism” 
involves expanding elementary fields about a non-zero vacuum, and teaches that these vacuum-
expanded fields, and not the original fields in our Lagrangian or Hamiltonian, are the particles 
and fields we actually observe.  Let us be specific and concrete: 

 
Postulate a scalar field ( )xφ .  Write down a Klein Gordon Lagrangian density for that 

scalar field given by ( )( ) 2 2mσ
σφ φ φ= ∂ ∂ −L .  Or, postulate a fermion field ( )xψ  and write 

down its ( )i mψ ψ= ∂/ −L .  We do not observe, cannot observe, and never will observe these 
postulated fields φ  and ψ .  But a) when we require that these Lagrangians remain invariant 
under the local gauge transformation ( )i xe θφ φ φ′→ =  (or non-Abelian Yang-Mills extensions 
with i iλ θΘ =  where iλ , 21, 2,3... 1i N= −  are the generator matrices of a gauge group SU(N)) 
and thus naturally introduce gauge fields Aμ  (or their non-Abelian extensions i iG Gμ μλ= ), and 
b) after we introduce a vacuum vev v, find the vacuum minimum, and expand about this 
minimum via ( ) ( )x v h xφ = +  for scalar fields where ( )h x  is a scalar Higgs field, and as we 

shall show here, ( ) ( )x v h xψ ψψ = +  for fermions where vψ  is a suitable vacuum for fermion 

expansion and where ( )h xψ  is a fermion Higgs field, then c) the Lagrangian with which we 
started does and will describe the physics of the particles and fields we observe in nature.  But 
the observed fields are not the ( )xφ  and ( )xψ  with which we started, but rather, the ( )h x  and 

( )h xψ  with which we ended after the expansion about the vacuum. 
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So the lesson of Higgs et al., is that (at least) the scalar particles we observe in nature are 
not ( ) ( )x v h xφ = + , but rather are ( ) ( )h x x vφ= − .  They are the fields over and above a non-
trivial, non-zero vacuum.  Metaphorically, they are the visible portion of a boat above the 
waterline, with the portion underwater remaining invisible.  Along the way of course, and very 
significantly, we uncover masses for gauge bosons and also uncover a mass (albeit with an 
unknown coupling λ ) for the Higgs field, all in a renormalizable manner.  Insofar as all of this is 
achieved, the Higgs approach provides a very important “mechanism.”  But the upshot of Higgs 
theory is that a “seed” field φ  which is not observed is expanded about the vacuum to yield a 
Higgs field h which is observed.  Therefore, this work by Higgs et al. is not only a mechanism 
for generating masses and keeping renormalizability or a theory predicting a new particle which 
is later found, but is a field theory about the fundamental character of the particles and fields 
that we observe in nature.  The import of the 2012 work at CERN was its direct validation of this 
broader viewpoint, because what appears to have been detected at CERN was the Higgs field h 
and not the seed scalar φ . 
 
 To date, these teachings of Higgs et al. have been well-developed for the scalar fields of a 
Klein-Gordon ( )( ) 2 2mσ

σφ φ φ= ∂ ∂ −L .  But they have not yet been satisfactorily extended to the 
elementary fermions we observe in nature, namely leptons and quarks which have been 
thoroughly observed with hordes of detailed attendant data in contrast to the comparatively 
paltry experimental data we have about the elementary Higgs scalars, the latter of which was the 
subject of the July 2012 announcement from CERN.  The purpose of this paper is to show in 
detail how these teachings may be extended to apply just as fully to fermions as they apply  to 
scalar fields, i.e., that the fermions we observe in nature are not the ( ) ( )x v h xψ ψψ = +  in 

( )i mψ ψ= ∂/ −L , but are ( ) ( )h x x vψ ψψ= −  expanded about a suitable vψ  vacuum, just as in 
scalar Higgs theory. 
 

The development of “Higgs fermions” in this manner enables us to reveal fermion masses 
in renormalizable fashion, yields additional insights into the magnetic moments of the fermions, 
and to the degree that these results can be experimentally validated as will be reviewed in section 
13, strengthens the view that what Higgs and his colleagues invented is not merely a 
“mechanism” for generating mass and keeping renormalizability, and is not just a finding about 
spinless scalar fields, but rather, is a fundamental new insight into the very nature of the particles 
and fields that we observe in the physical world.  And, as we shall show, this also deepens our 
knowledge of Dirac’s equation which Dirac himself often said was “was more intelligent than its 
author,” and intriguingly enough, of the Dirac equation’s relationship to Maxwell’s equations 
and Heisenberg’s canonical matrix mechanics.  In these and other ways, we develop a number of 
new venues for further confirming Higgs theory via the thoroughly catalogued data for the 
elementary fermions. 

 
What renders this work novel is: 1) the ability to reveal fermion rest masses in the same 

manner that the Higgs masses are revealed in scalar Higgs theory without putting those masses 
into the theory by hand (see (6.16), (6.17)), 2) the revelation of fermion rest masses which are 
entirely self-energies (no “bare” mass) constructed entirely out of the gauge potentials of the 
fermion (also see (6.17)), 3) uncovering a deep connection whereby the time and space 
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dependencies of the electric and magnetic fields E and B as they appear in Maxwell’s equations 
are revealed to be embedded into Dirac’s equation as a result of commutations of these fields and 
the gauge fields with canonical momentum and with the Hamiltonian (see after (7.6) and (9.12)), 
4) showing how the “anomalous” portion of the fermion magnetic moments is already built into 
Dirac’s equation, when the observable fields are taken to be fermion Higgs fields ( )h xψ  rather 

than the ordinary seed fields ( )xψ  (see (12.5), (12.10) and (12.11)),  5) three numeric 
predictions quantifying how the g-factors of the three charged leptons are changed when the 
magnetic field in the magnetic moment term ⋅Bσ  is a time-dependent magnetic field appearing 
as  / t⋅∂ ∂Bσ  (see (13.10)), 6) a related qualitative prediction that the time-dependent magnetic 
field / t∂ ∂B  impacts the heavy lepton (especially the tau lepton) magnetic moments much more 
substantially than it impacts those for the lighter leptons (especially the electron) (also see 
(13.10)), and 7) showing via “Invariant Mass, Variable Gauge Renormalization” how the 
fermion rest masses may be maintained as invariant masses over all renormalization scales, by 
absorbing any mass variation that might otherwise occur into an ordinary gauge transformation 
of the gauge fields from which the fermion self-energies are constructed.  And, in the process, 
the infinite constants ordinarily used for renormalization become finite and in fact equal to unity 
(see sections 14 and 15). 

 
We now provide a brief overview of this paper:  In section 2, as a prelude to studying 

fermions using Higgs field theory, we shall carefully review, step by step, the manner in which 
Higgs field theory is used for scalar fields.  That is, section 2 is a review of known Higgs field 
theory for the Klein-Gordon equation and scalar fields, intended to establish a “prior art” 
template for considering fermions.  Thereafter, the balance of the paper studies Higgs field 
theory for the Dirac equation and fermion fields. 

 
In the general context of a Dirac Lagrangian density T V= −L  with both kinetic terms T 

and potential terms V, PART I of this paper focuses on the potential terms V.  Section 3 
postulates a fermion mass parameter μ  fully analogous to the mass parameter of the same 
symbol in scalar Higgs theory, and develops the vacuum associated with the potential V so as to 
identify a stable minimum for expansion about this vacuum.  Section 4 focuses on Dirac spinors 
and how they are expanded about this vacuum, in both four- and two-component representations.  
The former is mainly illustrative; the latter forms the basis for many subsequent calculations.  
We see how Dirac’s equation requires a positive energy vacuum for fermions and a negative 
energy vacuum for antifermions, and we begin to review as a foundation for later development 
how time and space dependencies arise only via commutations with canonical momentum and 
not through the spacetime derivatives that first appear in a Lagrangian.  In sum, and as developed 
throughout, spacetime dependencies are “revealed” just as are masses and observable fields.  
Section 5 implements the Higgs vacuum expansion for the terms in the Lagrangian potential V.  
In section 6, in a very central result, equations (6.16) and (6.17) demonstrate how the rest mass 
of the fermion is revealed strictly as a consequence of this Higgs expansion of the potential, in 
exactly the same way that a scalar Higgs field mass (the one apparently found at CERN) is 
revealed in scalar Higgs theory through the scalar Lagrangian potential.  This is central to 
renormalizability, as is further developed in section 14.  Section 7 completes our exploration of 
the Dirac potential V, by showing how a second-order magnetic moment term arises out of an 
anticommutator term uncovered in section 6.  More important than this particular term, is that 
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this presages two important aspects of the development to follow: first, how certain 
anticommutator terms end up producing magnetic moments, and secondly, how canonical 
commutators produce certain time and space dependencies in the gauge potentials such that 
Maxwell’s equations end up becoming embedded in rather striking way right into the heart of 
Dirac’s equation.  The first appearance of this intriguing development appears in (7.6), and it 
permeates the later development as is seen most clearly in (12.5) and (12.11). 

 
In PART II we move over to the kinetic T terms in T V= −L .  Section 8 reviews and 

carefully develops the Gordon decomposition of the current density for the “seed” fermion ψ .  
Sections 9, 10 and 11 develop the magnetic moments, respectively, of the seed fermions 
themselves, of the self-interactions of the vacuum, and of the interaction between the vacuum 
and the seed fermions.  From these three pieces of the puzzle, we are able in section 12 to 
identify magnetic moment g-factors (and two additional g-type factors) for the Higgs fermions 
hψ .  Because Higgs theory tells us that the observed fermions are the Higgs fields following 
expansion about a non-trivial, non-zero vacuum, we identify this with the g-factor of the 
observed fermions, and we find that the magnetic moment in Dirac’s equation with no 
modification, naturally has an “anomalous” portion (one which differs upwardly from the simple 
Dirac form / 2 1g = ) when it is taken in relation to the Higgs field hψ  rather than the seed field 
ψ .  In section 13, we use the experimental data for the charged lepton (electron, mu and tau) 
masses and g-factors together with the low-energy running coupling 137.035999 01/ 074α =  and 
the Fermi vev 246.219650794137 GeVv = to uniquely determine the low probe energy gauge 
potentials for each of these charged leptons, and related numerical data.  We show in (13.9) how 
the fermion masses naturally arise as the self-energy owing to a difference between two related 
gauge potentials and in (13.10) we use these gauge potentials to predict how the g-factor for each 
charged lepton is modified in the presence of a time-dependent magnetic field (which has earlier 
been introduced because of the embedding of the Maxwell / Ampere equation / t∇× = −∂ ∂E B  
in the Dirac equation following one of several applications of canonical commutation to reveal a 
time dependency which was not apparent ab initio).  We find that a time-dependent magnetic 
field impacts the g-factor of the heaver mu and especially tau lepton  much more substantially 
and detectably than it does the g-factor of the electron, precisely because of the larger masses of 
heavier leptons.  The same facilities which study and establish g-factors for ⋅Bσ , should be able 
to discern these effects for / t⋅∂ ∂Bσ , as they are well within experimentally-detectable ranges. 

 
In section 14 we directly demonstrate the renormalization benefits of being able to reveal 

fermion masses via a Higgs-type expansion about the vacuum rather than introducing the masses 
by hand as “bare” masses.  In particular, we show how it is possible to keep the rest masses 
invariant at all renormalization scales, by instead renormalizing the gauge fields from which the 
fermion masses / self-energies arise in a manner that is nothing more or less than an ordinary 
gauge transformation.  In other words, we show how the variability of a fermion mass under 
renormalization is entirely formally equivalent to, and may be fully absorbed by, a gauge 
transformation of the vector potentials from which the fermion self-energies arise.  In the 
process, the usually-infinite renormalization constants become finite and equal to unity.  We 
refer to this as “Invariant Mass, Variable Gauge Renormalization.”  Section 15 lays out how the 
orbital angular momentum of these Higgs fermions may be developed as part and parcel of 
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identifying the complete vertex needed for variable gauge renormalization, and section 16 offers 
some concluding observations. 
 
2. A Step-by-Step Review of how Scalar and Vector Boson Masses are 
Revealed in a U(1) Gauge Theory for a Complex Scalar Field 
 
 To start our development, we shall first carefully review the manner in which a local U(1) 
gauge symmetry is broken in the standard model for the Klein-Gordon Lagrangian of a complex 
scalar field ( )xφ , in order to reveal masses for both a gauge boson field ( )A xμ  and a scalar 

Higgs field ( )h x .  All of the development in this section is well-known.  In this review, we 
follow closely on sections 14.6 through 14.9 of Halzen and Martin’s [8], but with the purpose of 
establishing a template for a similar development that will reveal self-energy masses and 
magnetic moments for a Dirac fermion field ( )xψ  and specifically for its related Higgs field 

( )h xψ , in a fashion that is not yet known. 
 

We begin our review with the relativistic energy relation 2 0p p mσ
σ − =  where pσ  is a 

canonical momentum and m is a rest mass.  We postulate a scalar field ( )xφ  such that 

i pμ μφ φ∂ = , and use this to rewrite the energy relation as ( )2 0mσ
σ φ∂ ∂ + = .  This is of course 

the Klein-Gordon (relativistic Schrödinger) equation for the scalar field φ .  As is well-known 
and easily-derived, its Lagrangian density is ( )( ) 2 21 1

2 2 mσ
σφ φ φ= ∂ ∂ −L .  The mass m, of course, 

is classically interpreted as the mass of the scalar field φ .  But this mass is introduced by hand, 
and we know that theories with hand-added masses are notoriously not renormalizable.  
Therefore, it is customary to rewrite the Klein-Gordon Lagrangian density as 

2 21 1
2 2

σ
σφ φ μ φ= ∂ ∂ −L , where μ  is a mass parameter which sits in the position of a mass in the 

Lagrangian density.  That way, we are not introducing any masses at all.  We are simply using μ  
as a “placeholder” for the mass term in the Klein-Gordon equation, and we leave it to the 
development of the theory to tell us how to understand this mass parameter, and specifically, 
how this mass parameter might be related to a physically-observed mass. 
 
 Next, we further postulate that φ  is a complex scalar field ( )1

1 22
iφ φ φ≡ + .   By this 

definition the conjugate field ( )1
1 22

* iφ φ φ≡ − , and so ( )2 21
1 22*φ φ φ φ= + .  The 1

2  coefficient in 

the Klein-Gordon ( )( ) 2 21 1
2 2 mσ

σφ φ φ= ∂ ∂ −L  is then absorbed into this definition, and the 
Lagrangian density is rewritten as: 
 
( )( ) 2* *σ
σφ φ μ φ φ= ∂ ∂ −L . (2.1) 

 
At this juncture we are ready to begin.  The first thing we do is introduce gauge theory, 

by requiring that (2.1) be invariant under the local gauge transformation ( )i xe θφ φ φ′→ =  where 
( )xθ  is a local gauge (really, phase) parameter.  The prescription for doing this, which was first 
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pioneered by Hermann Weyl [9], [10], [11] who modeled gauge theory on Einstein’s use [12] of 
a spacetime-covariant derivative ;A A A Aσ

μ ν μ ν μ ν μν σ∂ → ∂ = ∂ −Γ  to account for the curvature of 

Riemannian spacetime geometry, is to similarly replace σ∂  with a gauge-covariant derivative 
D ieAσ σ σ σ∂ → ≡ ∂ −  to account for the “curvature” in a complex gauge /phase space.  

Consequently, using Weyl’s gauge prescription and the help of ( )2 21
1 22*φ φ φ φ= + , (2.1) 

becomes: 
 
( ) ( ) ( ) ( )
( )( )
( )( ) ( )

2 2

2 2

2 2 2 21
1 22

* * * *

* * *

* *

D D ieA ieA

e A A

e A A

σ σ σ
σ σ σ

σ σ
σ σ

σ σ
σ σ

φ φ μ φ φ φ φ μ φ φ

φ φ φ φ μ φ φ

φ φ φ φ μ φ φ

= − = ∂ + ∂ − −

= ∂ ∂ − −

= ∂ ∂ − + −

L

. (2.2) 

  
We next note that ( )( ) 2 21 1

KG 2 2 mσ
σφ φ φ= ∂ ∂ −L  (KG denotes Klein-Gordon) generalizes 

to the field equation for a gauge field Aμ  by replacing Aμφ →  and properly adding spacetime 
indexes.  Indeed, this yields the source-free Maxwell (M) Lagrangian density: 
 

( )( ) ( )( )2 2 [ ] 2 21 1 1 1 1 1
KG M2 2 2 2 4 2m A A m A A F F m A Aσ σ τ σ στ σ

σ σ τ σ στ σφ φ φ= ∂ ∂ − ⇒ = ∂ ∂ − = −L L , (2.3) 
 
where [ ]F A A Aστ σ τ σ τ τ σ≡ ∂ ≡ ∂ − ∂  is the electromagnetic field strength tensor, and m is the 
Proca mass of the gauge boson Aσ .  Contrasting 21

2 m A Aσσ−  above with ( )2 2 21
1 22 e A Aσσφ φ− +  

in (2.2), for the first time we see a correspondence ( )2 2 2 2
1 2m eφ φ⇔ +  which tells us that the 

simple application of gauge theory itself has revealed a boson mass ( )2 2 2 2
1 2m eφ φ≡ +  (which we 

take to be >0), if we can now find some way to make sense of the term ( )2 2
1 2φ φ+ . 

 
 Now we turn to the term 2 *μ φ φ−  in (2.2).  This is a placeholder for the Klein-Gordon 
mass term.  It is now customary to interpret this not as the mass of the scalar field φ , but as the 
leading term in a potential energy ( )V φ− .  Specifically, working from the middle line of (2.2) 
we now write: 
 
( )( ) ( ) ( ) ( )22 2* * * *e A A T Vσ σ
σ σφ φ φ φ μ φ φ λ φ φ φ φ= ∂ ∂ − − − = −L . (2.4) 

 
where we define the kinetic (T) and potential (V) terms as: 
 
( ) ( )( ) 2* *T e A Aσ σ

σ σφ φ φ φ φ≡ ∂ ∂ − , (2.5) 

( ) ( )22 * *V φ μ φ φ λ φ φ≡ + , (2.6) 
 



9 
 

and where λ  is a postulated but unknown coefficient for the next-order term ( )2*φ φ .  Given 
that L  and therefore T and V all have a mass-dimensionality of 4D = +   in mass-length-time 
units of 1c= =h , and that φ  and Aσ  each have 1D = +  , we see that  λ  is a dimensionless, 

0D =  coefficient. 
 
 Now that we are interpreting 2 *μ φ φ  as the leading term in ( )V φ and not as the mass of 
the scalar field, we may use (2.6) to find out a few more important things.  First, we may take 

/V φ∂ ∂  and set this to zero to find the min/max points in the potential, that is, we now deduce: 
 

( )2 * 2 * * 0V μ φ λ φ φ φ
φ
∂ = + =
∂

. (2.7) 

 
This means that: 
 

( )
2

min/max
*

2
μφ φ
λ

= − . (2.8) 

 
But we do not yet know if (2.8) is a minimum or a maximum until we take another derivative 

/ *φ∂ ∂  from (2.7) and then evaluate ( ( )min/max
| *φ φ ) that derivative at the min/max point (2.8).  

This yields: 
 

( ) ( )
2

2 2 2 2
min/max min/max

| * 4 * 2
*
V φ φ μ λ φ φ μ μ μ
φ φ
∂ = + = − = −
∂ ∂

. (2.9) 

  
 So, if we want ( )V φ  in (2.6) to be a real potential with a stable minimum, then the 
second derivative (2.9) evaluated at the min/max point (2.8) must be positive. Therefore, it is 
(2.9) which tells us that we must set 2 0μ < .  We now do so.  Then (2.8) will define a non-zero, 
local minimum of a real potential so long as we also have 0λ > .  We then return to (2.8) to 
define the vacuum expectation value (vev) v according to: 
 

( ) ( )
2

2 2 2
1 2min min

1 1* 0
2 2 2

vμφ φ φ φ
λ

= + = − ≡ > . (2.10) 

 
With 2 0μ <  and 0λ > , the vev establishes a real, positive number that defines a local minimum 
in the vacuum.  Thus, the scalar fields may be expanded around this ground state.  The vacuum 
itself is the square root of the above, and so with the mathematically permissible ±  values, is: 
 

( ) ( )2 2
1 2 minmin

2 *v i μφ φ φ φ
λ

± = + = = . (2.11) 
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 The next step is to define a scalar Higgs field ( )h x  and its imaginary counterpart ( )i xξ , 
and expand the scalar field about the vev.  Normally, one chooses to expand around v+ .  But it 
will be important for illustration to make this choice, not right now, but at the very end.  Thus, 
for the moment, preserve both options (2.11) by setting: 
 
( ) ( ) ( )( )1

2
x v h x i xφ ξ≡ ± + + . (2.12) 

  
From this, the conjugate ( ) ( ) ( )( )1

2
* x v h x i xφ ξ= ± + −  and so: 

 
( )2 2 21

2* 2v vh hφ φ ξ= ± + + . (2.13) 

( ) ( )2 4 3 2 2 3 4 2 2 2 2 2 41
4* 4 6 4 2 4 2v v h v h vh h v v h hφ φ ξ ξ ξ ξ= ± + ± + + ± + + . (2.14) 

 
We then substitute (2.12) and its conjugate and (2.13), (2.14) into the Lagrangian density (2.4) 
via its kinetic and potential terms (2.5) and (2.6).  For what is now ( ),T h ξ , we find that: 
 
( ) ( )( ) ( )( ) ( ) ( )2 2 2 2 21 1 1 1

2 2 2 2, 2T h h h e vh h A A e v A Aσ σ σ σ
σ σ σ σξ ξ ξ ξ= ∂ ∂ + ∂ ∂ − ± + + − . (2.15) 

 
and for ( ),V h ξ : 
 
( ) ( ) ( )2 2 2 2 4 3 2 2 3 4 2 2 2 2 2 41 1

2 4, 2 4 6 4 2 4 2V h v vh h v v h v h vh h v v h hξ μ ξ λ ξ ξ ξ ξ= ± + + + ± + ± + + ± + + .(2.16) 
 
With the help of 2 2vμ λ≡ −  from (2.10) we may consolidate the two main terms in (2.16) into: 
 
( ) 4 2 2 3 4 2 2 2 41 1 1 1

4 4 2 4,V h v v h vh h v h hξ λ λ λ λ λ ξ λξ λξ= − + ± + ± + + . (2.17) 
 
Finally placing (2.15) and (2.17) into (2.4) we obtain: 
 

( ) ( )
( )( ) ( )( ) ( ) ( )

( )
2 2 2 2 21 1 1 1

2 2 2 2

4 3 4 2 2 2 4 2 21 1 1 1 1
4 4 2 4 2

, ,

2

2

T h V h

h h e vh h A A e v A A

v vh h v h h v h

σ σ σ σ
σ σ σ σ

ξ ξ

ξ ξ ξ

λ λ λ λ ξ λξ λξ λ

= −

= ∂ ∂ + ∂ ∂ − ± + + −

+ − − − −m m

L

. (2.18) 

 
At the end of the middle line, we have a term ( )2 21

2 e v A Aσσ− .  Comparing that to the 

term 21
2 m A Aσσ−  in the Maxwell Lagrangian density (2.3) and also using (2.10), we see that: 

 
/Am ev ieμ λ= = . (2.19) 
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This is the revealed mass of the gauge boson, and is the mass which we expect to observe for the 
physically-observable gauge field.  Our willingness to simply use μ  as a place holder for the 
Klein-Gordon mass term and not regard this as the actual physical mass of the scalar particle 
pays off by comparing ( )2 21

2 2 v hλ−  at the very end of (2.18) with the original Klein-Gordon 

( )( ) 2 21 1
2 2 mσ

σφ φ φ= ∂ ∂ −L . Here, we see that: 
 

2 22 2 2hm v iλ μ μ= = − = . (2.20) 
 
 So the original scalar field φ  has disappeared from the Lagrangian entirely, and been 
replaced by the Higgs scalar h.  The mass of this new scalar – which we take to be what is 
physically observed – is related to the original mass parameterμ  via 2hm i μ= .  But because 

we found along the way that 2 0μ < , this is still a real mass value. 
 
 The final step we take is to actually break the symmetry of the new Lagrangian (2.18), 
which we have not done yet.  While often conflated together with an early choice of v v± → + , 
this breaking of symmetry really entails two steps.  First, we go back to the original definition 
before (2.1) of the scalar field as a complex field ( )1

1 22
iφ φ φ≡ +  and relate this to the later 

redefinition (2.12) of this field as an expansion about the vev, thus finding that: 
 

( ) ( )1 1
1 22 2

i v h iφ φ φ ξ≡ + ≡ ± + + . (2.21) 
 
We know of course that ( )2 21

1 22*φ φ φ φ= + .  So now we break symmetry by choosing to make 

this field entirely real, so that 2 0φ =  and 0ξ = , thus 21
12*φ φ φ= .  So in the new Lagrangian 

(2.18), we set 0ξ =  throughout, and also use (2.19) and (2.20) to write: 
 

( )( )
( )

2 2 21 1 1
2 2 2

2 2 3 4 41 1 1
2 4 42

h Ah h m h m A A

e vh h A A vh h v

σ σ
σ σ

σ
σ λ λ λ

= ∂ ∂ − −

− ± + − +m

L
. (2.22) 

 
We then restructure this slightly and use (2.19) and (2.20) to show the masses Am , hm  
throughout.  We now arrive at:  
 

( )( ) 2 2 21 1 1
2 2 2

2 2
2 2 2

2

1 11 1
2 2 4 8

h A

A h
A h

h h m h m A A

m mh h h hm A A m h
v e

σ σ
σ σ

σ
σν ν ν

= ∂ ∂ − −

⎛ ⎞ ⎛ ⎞− ± + − ± + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

L
. (2.23) 

 
We also note that 24 /e cπα = h  where in electromagnetic theory 1/137.035999074α =  is the 
electromagnetic coupling at low impact / probe / renormalization, so that the final term may be 
put into the alternative form 2 2 / 32h Am m πα .   
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 Now with (2.23) we have broken symmetry so as to be in the real plane with 2 0φ =  and 
and 0ξ = , defined by 1φ  along the horizontal axis and potential ( )1V φ  along the vertical axis.  

The second symmetry breaking choice is to set the minimum of ( )1V φ  at either 1min vφ = +  or 

1min vφ = − , see (2.10).  This yields two differently-appearing Lagrangians based on the choice we 
make.  For the choice 1min vφ = +  with some further term consolidation which will be a helpful 
benchmark when we turn to fermions, the above becomes: 
 

( ) ( )( )
2 22 2

2 2 2
2 2 2

1 1 1 2
2 4 4

A h
h A

m mh h h hv h h m h m A A
v v e

σ σ
σ σν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ = ∂ ∂ − + + − + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
L . (2.24) 

 
For the other choice 1min vφ = − , (2.23) becomes: 
 

( ) ( )( )
2 22 2

2 2 2
2 2 2

1 1 1 2
2 4 4

A h
h A

m mh h h hv h h m h m A A
v e

σ σ
σ σν ν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞
− = ∂ ∂ − − + − − + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
L . (2.25) 

 
While waiting until the very end to make the final choice as between 1min vφ = ±  may 

seem to be a minor point, it reappears much more starkly when it comes to understanding the 
vacuum for fermion interactions, and actually appears to involve the breaking of a particle and 
antiparticle symmetry. 

 
Comparing (2.23) to the original Lagrangian densities (2.1) and (2.2), we see each top 

line is identical in form to ( )( ) ( )2 2 2 21
1 22* * e A Aσ σ

σ σφ φ μ φ φ φ φ∂ ∂ − − +  from the bottom line of 
(2.2).  But through the entire process of introducing gauge symmetry to get from (2.1) to (2.2), 
then using 2 *μ φ φ−  as the leading term of ( )V φ− , then establishing a stable ground state for the 
vacuum, then expanding about this vacuum, then breaking symmetry such that the scalar field 
becomes real,  and finally choosing between 1min vφ = ± , the original complex scalar field φ   is 
replaced by the real Higgs scalar field h, this new scalar field h has ended up with a revealed 
mass hm which is not introduced by hand but emerges naturally, and a gauge field Aσ  which did 
not exist at all in (2.1) not only exists, but also has its own revealed mass Am .  And because 
none of these masses were introduced by hand, the theory based on (2.22) is fully 
renormalizable. 
 
 The main point to be made from this review is that all the way back in (2.1), before we 
even applied gauge theory much less did anything else, we started out by using a mass parameter 

2μ  in mass position in the Klein Gordon Lagrangian, but made no pre-supposition whatsoever 
about the this mass parameter.  We left it to the development of the theory to inform us as to the 
nature of μ .  We later found out in (2.8) that to give rise to a stable minimum in the vacuum, 

2 0μ < , which means that μ  itself is imaginary and that as written, (2.1) therefore contains the 
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wrong sign were we to regard μ  as an actual particle mass.  But in the end, we ended up in 
(2.19) uncovering a revealed mass /Am ev ieμ λ= =  for the gauge boson as well as in (2.20) 
uncovering 2hm i μ=  for the Higgs scalar.  So μ  itself did not turn out to be the mass of 
anything observable.   It turned out to be an imaginary number which is related by (2.19) and 
(2.20) to the real, observable masses of a gauge boson and a Higgs scalar. 
 
 At the same time, we started out by positing a scalar field φ  which we may think of as a 
“seed” field.  This field is a mathematical device but not a physical observable.  Through the 
course of development after expanding about the minimum of vacuum, this seed field φ  turned 
into a Higgs scalar field h which is regarded as an observable, complete with its own revealed 
mass.  The heart of this Higgs process, therefore, is to start with a seed field (above, φ ) and a 
mass parameter (above, μ ) which are both not observables, and to have these get turned into an 
observable field (above, h) with an observable mass (above, hm ).  In the process, as a bonus, we 
also revealed a gauge field Aσ  and its observable mass Am , which is to say, we also revealed a 
second observable field and also its mass. 
 
 One final point to be made is this:  As can be seen most directly in (2.18) through (2.20), 
the mass hm  of the Higgs field h, which is the field descended from the seed scalar field φ , arose 
from the potential term ( ),V h ξ−  of the Lagrangian density.  On the other hand, the “bonus 
field” Aσ , as well as its mass Am  , arose from the process of introducing gauge symmetry, and 
emanated from the kinetic portion ( ),T h ξ .  
 
 All of this will be very critical to keep in mind as we now embark on a parallel approach 
for spin ½ fermions.  For fermions, the fermion mass will arise in a fashion analogous to how the 
Higgs scalar mass was revealed in (2.20) above, see (6.17) infra.  For gauge bosons, we will also 
obtain a “bonus” result.  Above, for scalar theory, the bonus was the mass of the gauge boson 
revealed in (2.19).  But for fermion fields, as we shall establish throughout the course of the 
subsequent development, the “bonus” is not the mass of the gauge field Aμ , but the magnetic 
moment of the fermion which is observed when that fermion is placed into a magnetic field 

1
2

i ijk jkB Fε= = −B  which is related to the gauge field in the usual manner according to the field 
strength relation F A Aμν μ ν ν μ= ∂ − ∂ , including “anomalous”  portions of the fermion g-factor.  
In other words, the bonus which in scalar Higgs field theory is the revelation of a gauge field 
mass, in Higgs field theory for fermions becomes the revelation of a complete magnetic moment 
for the fermion / magnetic field interaction, including anomalous portions.  What is further 
revealed in (13.10) infra, is the effect which a time-dependent magnetic field / t∂ ∂B  has on the 
g-factors of the three charged leptons, and this apparently-new result may well provide a basis 
for experimental validation. 
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PART I: REVEALING FERMION MASSES – LAGRANGIAN 
POTENTIAL 
 
3. The Fermion Mass Parameter and the Minimum of Its Related 
Lagrangian Potential 
  
 In order to reveal a fermion mass out of gauge symmetry and spontaneous symmetry 
breaking in a similar manner to what was just reviewed, we once again start with the relativistic 
energy relation 2 0p p mσ

σ − = .  If we write this in flat spacetime as 2p p mστ
σ τη =  and then 

apply ( ) { }1 1
2 2 ,στ σ τ τ σ σ τη γ γ γ γ γ γ= + =  where στη  is the contravariant Minkowski metric tensor 

with ( ) ( )diag 1, 1, 1, 1στη = − − − , one obtains  ( ) 21
2 0p p mσ τ τ σ

σ τγ γ γ γ+ − = .  Then using the 

Feynman slash notation  p pσ σγ≡/  this becomes 2pp m=/ / .  Separating the two square roots and 
using the resulting expression to operate from the left on a Dirac spinor u yields ( ) 0p m u− =/  in 
which the mass m represents eigenvalues of the slashed momentum matrix p/ .  Upon promoting 
the spinor to a wavefunction u ψ→  simultaneously with substituting p i→ ∂// , the new 
wavefunction equation becomes ( ) 0i m ψ∂/ − = , which is Dirac’s equation.  In essence, this is the 
path Dirac followed to derive his equation in [13], [14], which included uncovering a specific 
(Dirac) representation for the σγ  matrices.  Just as we posited a scalar “seed” field φ  in section 
2 with an unobservable mass parameter μ  and turned it into an observable Higgs field h with a 
revealed mass hm  and obtained a gauge boson Aμ  and its mass Am  as a bonus, here we shall 
posit a “seed” fermion field ψ  with an unobservable mass parameter also denoted μ  and try to 
turn it into an observable fermion Higgs field fh  with its own observable fermion mass m, and in 
the process see what other “bonuses” also emerge. 
 
 As already noted following (2.1), when moving from a “flat” gauge space (no particle 
interaction with gauge fields) to a “curved” gauge space (where the particles to interact via gauge 
fields), one makes the substitution D ieAσ σ σ σ∂ → ≡ ∂ − , or multiplying through by i, 
i iD i eAσ σ σ σ∂ → ≡ ∂ + .  When we work with gauge theory in momentum space where 
i pσ σϕ ϕ∂ →  for whatever generalized field ,ϕ φ ψ= , etc. one is considering at a given moment, 
then the canonical momentum pσ  goes over into a kinetic momentum p p eAσ σ σ σπ→ ≡ + .  At 
the same time, the energy relation becomes. 
 

( )( )2 2m p p m p eA p eAσ σ σ σ
σ σ σ σπ π= → = = + + . (3.1) 

 
In component form ( ) ( ), , , ,x y zp E p p p Eμ ≡ = p  and ( ) ( ), , , ,x y zA A A Aμ φ φ= = A , so the kinetic 

momentum ( ) ( ), , , ,x x y y z zp eA E e p eA p eA p eA E e eμ μ μπ φ φ= + = + + + + = + +p A .  (Important 

Note: from here on, we use 0Aφ ≡  to denote the time component of the vector potential Aμ  
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which physically is a voltage, and not the scalar field φ  of the Klein-Gordon equation which was 
reviewed in section 2.  Occasional references back to the scalar field φ  should be easily 
distinguishable by context.)  If we separate the space from the time components and raise 
indexes with μνη , then (3.1) becomes: 
 

( )( ) ( ) ( )2 22 , ,m E e e E e e E e eσ
σπ π φ φ φ= = + + + − − = + − +p A p A p A . (3.2) 

 
Because μπ  is proportional to the four-velocity of the mass m, in the rest frame of the mass, we 
have 0+ =p A  and ( )22m E eφ= + . 
 
 Now let us turn to Dirac’s equation ( ) 0i m ψ∂/ − =  and its associated ( )i mψ ψ= ∂/ −L .  
Although normally written with a mass m, let us instead write this with a mass parameter μ  in 
the form: 
 

( )iψ μ ψ= ∂/ −L . (3.3) 
 
This is just like what was done in (2.1).  As with the breaking of symmetry reviewed in section 2, 
we make no presuppositions about how this parameter μ  relates to the actual observed mass m 
of a fermion such as an electron.  We shall let the development of the theory advise us about that.    
However, to set the stage, we shall define by postulate the mass parameterμ  by forming a four-
vector defined as ( ) ( ),0,0,0 , , ,x y ze A A Aμρ μ φ≡ − , such that in flat spacetime with 

( ) ( )diag 1, 1, 1, 1μνη = − − −  we have: 
 

( )( ) ( )22 2 2 2 2 2 2, , 2e e e e e e e e eμ
μμ ρ ρ μ φ μ φ μ φ μ μ φ φ≡ = − − − + = − − = − + −A A A A . (3.4) 

 
Contrasting this to the relativistic energy relationship 2 2 2m p p Eσ

σ= = −p , we see the parallel 
structural correspondences m μ⇔ , ( ) ( )E m W eμ φ= + ⇔ −  and e⇔ −p A .   
 

There are many reasons for defining μ  as in (3.4) which will become apparent as we 
proceed through the development.  But one of the many reasons for making the definition in 
(3.4) is that after subtracting 2μ  from each side, (3.4) embeds a quadratic 
 

2 2 2 20 2e e eφ μ φ≡ − − A . (3.5) 
 
It is (3.5) which is really the definition of μ .  Equation (3.4) shows the definition (3.5) in a form 
that allows ready comparison to equation (3.2) for the observed mass m, and that allows μ  to 
enter into the Dirac Lagrangian (3.3) as a Lorentz-invariant scalar.  In (3.2), m is understood to 
be entirely independent of φ , A, e.  But in (3.5), the mass parameter μ  is defined entirely in 
terms of φ , A, e, and nothing else.  So, if we can convert μ  into a revealed fermion mass in the 
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same way that its cousin μ  is converted into a revealed scalar mass in (2.20) for scalar Higgs 
theory, this reveled mass (which we find in (6.17) infra) will have been constructed solely out of 
the gauge field ( ) ( ), , , ,x y zA A A Aμ φ φ= = A  and the charge strength e and nothing else, and so 
can be interpreted simply as a fermion self-energy arising from the gauge fields and the charge 
strength of the fermion, with no “bare” aspect to the mass.  This has substantial benefits in many 
ways, including renormalization as will be reviewed in section 14. 
 
 Working from the definition (3.5), we may solve the quadratic for eφ  to obtain: 
 

2 2 2 2 2
2 2 2

2

2 4 4
1 / 1 1

2
e ee e

μ μφ μ μ μ μ
μ

⎛ ⎞± +
= = ± + = ± +⎜ ⎟⎜ ⎟

⎝ ⎠

A AA  (3.6) 

We may also solve (3.5) directly for μ , to obtain:  
 

2 2 21 1
2 2

ee e
e

μ φ φ
φ φ

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

A A
 (3.7) 

 
We shall for the moment remain agnostic as to which is the appropriate quadratic choice in (3.6).  
Later, at equation (13.6) infra, we shall finally be in a position to choose the correct sign in (3.6), 
but this will be based on empirical data rather than human predisposition.  Finally, at the end of 
section 14, we will have developed enough new knowledge based on (3.5) that it will become 
possible to appreciate the many reasons underlying the definition (3.5), and how this connects 
together a whole range of issues including renormalization and the fact that even in a fermion’s 
own rest frame, there is a kinetic aspect that is never removed from a fermion because the 
circulating energy flow of the fermion’s spin never ceases [15].   
 

Moving on, we now introduce a gauge field into (3.3) via Weyl’s gauge prescription, also 
using (3.7) and so write: 
 

( ) ( )
2 21

2
ei i eA i eA e

e
ψ μ ψ ψ μ ψ ψ φ ψ

φ
⎛ ⎞⎛ ⎞

/ /∂/ − ⇒ ∂/ + − = ∂/ + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

A
L = L = . (3.8) 

 
Separating mass terms in a more familiar form flagged by ψψ , the above becomes: 
 

( ) ( ) ( ) ( )
2 21

2 fi eA e T Vψ ψ φ ψψ λ ψψ ψ ψ
φ

⎛ ⎞
/∂/ + − − − = −⎜ ⎟

⎝ ⎠

A
L =  (3.9) 

 
where just as in (2.4) to (2.6), we now define kinetic (T) and potential (V) Lagrangian portions 

which include a newly-introduced first higher-order term ( )2fλ ψψ  and associated fermion 

coupling fλ  analogous to the λ  first postulated in (2.6) for scalar Higgs theory, thus: 
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( ) ( )T i eAψ ψ ψ/≡ ∂/ +  (3.10) 

( ) ( ) ( )
22 21

2f fV eψ μψψ λ ψψ φ ψψ λ ψψ
φ

⎛ ⎞
= + = − +⎜ ⎟

⎝ ⎠

A . (3.11) 

 
Lo and behold, contrasting with the usual Dirac Lagrangian density i mψ ψ ψψ= ∂/ −L , we now 
have a term which takes the appearance of a fermion mass.   Because the mass dimensionality 

6D = +  for ( )2ψψ , this means that 2D = −  for this new fλ , so it is analogous to, but not the 

same as, the dimensionless λ  from (2.6) of the scalar theory.   
 
Now, we must develop the vacuum based on the potential (3.11).  First, let us find the 

min/max point of this potential, which is calculated to be: 
 

( )
21 2 0

2 f
V e φ ψ λ ψψ ψ
ψ φ

⎛ ⎞∂ = − + =⎜ ⎟∂ ⎝ ⎠

A  (3.12) 

 
Analogously to (2.8), this tells us, also using (3.7), that: 
 

( )
2

min/max

1
4 2f f

e μψψ φ
λ φ λ

⎛ ⎞
= − − = −⎜ ⎟

⎝ ⎠

A  (3.13) 

 
Comparing, we see exactly the same expression as in (2.8), but with μ  rather than 2μ . 
 
 To distinguish minimum from maximum, we take the next derivative / ψ∂ ∂  of (3.12) 
and evaluate ( ( )min/max

| *φ φ ) at (3.13).  Now we find, contrast (2.9), that: 
 

( ) ( )
2 2 2 2

min/max

2

1 1| 4
2 2

1
2

f
V e e e

e

ψψ φ λ ψψ φ φ
φ φ φψ ψ

φ μ
φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ = − + = − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

= − − = −⎜ ⎟
⎝ ⎠

A A A

A
 (3.14) 

 
This too is just like (2.9), but with μ  rather than 2μ . 
 
 For this to be a local minimum (not maximum) of the vacuum and therefore energetically 
stable, the above expression must be positive, which now imposes the requirements: 
 

( )
2 2

min/max

1| 0
2

V eψψ φ μ
φψ ψ

⎛ ⎞∂ = − − = − >⎜ ⎟∂ ∂ ⎝ ⎠

A , (3.15) 

 
or more directly: 
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210; 0

2
eμ φ
φ

⎛ ⎞
< − >⎜ ⎟

⎝ ⎠

A
 (3.16) 

 
So if we also define 0fλ > , then from (3.13) we may define the vacuum vev v via: 
 

( )
2

3

min

1 0
4 2f f

e vμψψ φ
λ φ λ

⎛ ⎞
= − = − ≡ >⎜ ⎟

⎝ ⎠

A  (3.17) 

 
This is analogous to (2.10) with which we uncovered the vev for a scalar field φ .  Based on 
(3.16) and 0fλ >  this 3 0v >  which means that 
 

2

3
1 0

4 f

v e φ
λ φ

⎛ ⎞
= − >⎜ ⎟

⎝ ⎠

A  (3.18) 

 
But because (2.10) contained the scalar construct ( )min

*φ φ  with mass-dimension 2D = +  the 

vev uncovered there was 2v∝ , while in (3.17), because the fermion construct ( )
min

ψψ  has mass 

dimension 3D = + , the vev number here must be 3v∝ .  This is solely a function of the fact that 
now we are dealing with fermion sources ψ  which have a mass dimension 1.5D = +  whereas 
earlier we were dealing with scalar sources with a mass dimension 1D = + .  This is a first 
important point of departure from scalar Higgs theory. 
 
 But the next step, which is to expand the fermion around the vacuum using a Higgs field, 
reveals an even more pronounced difference.  Specifically, in (2.11), we took the square root v±  
of the ( ) 21

2min
* vφ φ =  found in (2.10) and expanded about this vacuum in the form 

( ) ( ) ( )( )1
2

x v h x i xφ ξ≡ ± + + .  Here, the different finding of a cubed 3v  in (3.17) raises the 
question of how we expand the fermion about this vacuum.  This question actually has three 
parts:  First, do we expand around 3 1.5v v=  or around 3 3v v= ?  Second, if we expand around 

3 1.5v v=  (which does appear to be the right answer for a fermion with 1.5D = + ), then what is 
the nature of the 1.5v ?  Is it too a scalar number like 3v ?  Or, does this vacuum, like a fermion, 
have a four-component Dirac structure?  Third, because 3 0v >  from (3.17) versus 2 0v >  in 
(2.10), this means that 0v >  per (3.18) because this is now a cubed root not a square root of a 
positive number as in section 2.  So the v±  freedom that we found in (2.11) and finally broke in 
(2.24) and (2.25) does not appear for fermions, at least on the surface, and we appear to be forced 
into choosing a positive energy vacuum.  So this raises the third question:  does this v±  freedom 
reappear for fermions in some other guise?  The answer to this third question will emerge in the 
next section as we develop the answers to the first and second questions, and it reveals a 
breaking of symmetry between particles and antiparticles. 
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 As to the first and second questions, it appears that structurally, the only sensible answer 
is that we expand around 1.5v , and that although 3v  is itself the scalar number ( )2 / / 4 fe φ φ λ−A  

per (3.17), it needs to be constructed out of a 1.5v  defined according to: 
 

2
3 1.5 1.5 1.5† 0 1.5 1 0

4 f

v v v v v eγ φ
λ φ

⎛ ⎞
≡ = ≡ − >⎜ ⎟

⎝ ⎠

A  (3.19) 

 
That is, we need to find a 1.5v  which, like a Dirac spinor, is a four-component object which 
includes complex components, which has an adjoint vacuum 1.5 1.5† 0v v γ≡ , and which reproduces 
(3.19).  To be clear:  (3.19) is the definition of this 1.5v  spinor which we shall seek to explicitly 
find in the next section.  Then, given 1.5v , we will define a Higgs field ( )fh x  which is a Higgs 
fermion field which itself has a four-component Dirac structure, and which itself is complex and 
has an adjoint Higgs field 1.5† 0

f fh h γ≡ , which is itself defined by an expansion about the 1.5v  
vacuum spinor according to: 
 
( ) ( )1.5

fx v h xψ ≡ + , (3.20) 

( ) ( )1.5
fx v h xψ ≡ + . (3.21) 

 
Analogously to scalar Higgs theory, we shall regard the Higgs fermion field ( )fh x  to be the 
physically-observed fermion field, which acquires a revealed observable mass equal to that of the 
observed fermions.  In section 2 hφ →  where φ  is the seed scalar and h is the observed scalar.  
Here, fhψ →  where ψ  is the seed fermion and fh  is the observed fermion. 
 
 So now the next question becomes simply mathematical question:  How do we deduce a 

1.5v  which has the structure of a fermion and satisfies the definition (3.19)?  Then, we can make 
use of this 1.5v  to carry out the expansions (3.20) and (3.21) and ascertain the masses of the 
fermions via the terms of the form f fmh h−  in whatever Lagrangian density emerges to 
correspond to (2.24). 
 
4. Dirac Spinors and their Expansion Vacuum 
 
 The customary way to derive a Dirac spinor (e.g., section (5.3) of [8]) is to start with 
Dirac’s equation in the form ( ) 0i mμ

μγ ψ∂ − = , posit a free fermion ( ) ip xu p e
σ

σμψ −=  thus 

i pμ μψ ψ∂ = , and then cast Dirac’s equation into the spinor form ( ) 0ip m uμ − = .  With 

( )0 0 1 0 2 0 3, , ,μγ γ γ α γ α γ α=  this is then recast into ( )0i iHu p u Euα μγ≡ + = , where 0E p=  
represents the eigenvalues of Hamiltonian H.  The spinors are then derived as four independent 
solutions to this Dirac equation in Hamiltonian form.  These spinors are well known, see, e.g., 
[16].  Importantly, each component of the spinor is now time and space independent, that is, the 
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spinors are ( )u pμ , not ( ),u p xμ μ .  Any space dependence is segregated into the plane 

wavefunction ip xe
σ

σ−  in ( ) ip xu p e
σ

σμψ −= , which is simply a “canonical Fourier kernel” 

containing the canonical momentum pσ . 
 

One simple way to deduce 1.5v  (the “vacua1.5”) is to contrast the relativistic energy 
relationship 2 2 2m p p Eσ

σ= = −p  with the Lorentz-scalar definition ( )22 2e eμ μ φ≡ − − A  of the 

μ  parameter in (3.4).  From the correspondence m μ⇔ , ( ) ( )E m W eμ φ= + ⇔ −  and 
⇔ −p A , we simply start with the usual canonical Dirac spinors derived from 

( )0i ip u Euα μγ+ =  in the Dirac representation (again, e.g., [16]), and make the corresponding 
substitutions to find the four distinct Dirac spinors which can be made to yield (3.19).  These 
correspond to particle and antiparticle, each with spin up and spin down.  In this way we find two 
particle vacua1.5: 
 

( )

( )3 1 2
1.5 1.5

1 2

1 2 3

2 2

2 2

2 2

1 0
0 1

1 1;
2 2f f

A A iAv ve e

A iA A

φ φ
λ

φ φ

φ λ φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A A
A A

A A

. (4.1) 

 
and two antiparticle vacua1.5: 
 

( )

( )3 1 2

2

1 2 3
1.

2

5 1.5
3

2

24

2

2

1

0

1
2 2

0
1

;

1
f f

A A iA

A iA Av ve e

φ φ

λ φ
φ

λ φ
φ

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A A
A A

A A
 (4.2) 

 
which are both designed such that they reproduce (3.19) by definition, as we now show:   
 
 Starting with the particle vacua, using 1.5

1v  as an example, we form 1.5 1.5† 0v v γ≡  with 

( ) ( )0diag 1,1, 1, 1γ = − −  in the Dirac representation to find that: 
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( )

( )

1 23 3
3 1.5 1.5 1.5† 0 1.

2

2 2 2

2

2 2 2 2 2 2

2 2 2

5
1 1 1 1 1

2

1 2

2 2 2 2 2

1
0

1
4

1 1 1 1

1

4

0

4 4 4
1 0

f

f f f f

A iAA Av v v e

e e e

v v

A

e

A i
λ

φφ φγ

φ

φ φ φ

φ

λ φ λ φ λ φ λ φ
φ

⎡ ⎤
⎢ ⎥
⎢ ⎥

− ⎢ ⎥
= = = − ⎢ ⎥

⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎣ ⎦

− −= − = =

⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
>⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= −

A
A A A

A A
A

A A A A A A
A A A A

 (4.3) 

 
As we can see, this faithfully reproduces (3.19) with 3

1 0v >  as in (3.17), and therefore, 1 0v >  as 
in (3.18).  A like-calculation using the spin-down 1.5

2v in (4.1) will do the same. 
   

Now let’s look at the antiparticle spinors, for which we use 1.5
3v  of (4.2) as an example 

with 1.5
4v  yielding a like result.  The some calculation now leads us to: 

( ) ( )
2

2

2 2 2

2 2 2 2 2 2

3

1 2 1 23
3 1.5 1.5 1.5† 0 1.5

3 1 3 3 3

2 2 2

2

2 2

2 2 2

1
4

1 1 1 11
4 4 4 4

1 0

1
0

0

f

f f f f

A

A iA A iAAv v v e

e e e e

v v

φ

φ φφγ

φ φ φ

λ φ

λ φ λ φ λ φ λ φ
φ

⎡ ⎤
⎢ ⎥
⎢ ⎥

− ⎢ ⎥+
= = = ⎢ ⎥

⎢ ⎥

⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− <⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎢ ⎥
⎢ ⎥

⎝ ⎠

⎣ ⎦

− −= − = = = −
⎝ ⎠

A
A

A A A

A A AA A A
A A

A A
A A

 (4.4) 

 
Contrasting with (3.17), we see that here 3

3 0v < , which implies that the antiparticle vacuum 

3 0v < .  This now answers the third question as to whether the v±  freedom which we reviewed 
in section 2 for scalars, appears for fermions in some other guise.  The answer: this twofold v±  
does reappear for fermions, but it is not a freedom that we can freely choose.  We are not free to 
choose to expand about v±  for fermions.  Rather, positive energy fermions are forced to expand 
about the v+  vacuum and negative energy fermions (antiparticles when Feynman- Stückelberg is 
applied) are forced to expand about the v−  vacuum.  In both (4.3) and (4.4) we maintain the 
requirement ( )21

2 / 0e φ φ− >A  of (3.15), (3.16) so we are always expanding – whether for 
particles or antiparticles – about a minimum of the potential and thus have a stable vacuum for 
expansion.  But the choice of a v±  expansion that we have for scalars is no longer a choice for 
fermions.  Particle fermions always expand about v+  and antiparticle fermions always expand 
about v− .   
 

This is also retrospectively suggestive as will be expanded upon momentarily that (2.24) 
is the symmetry breaking choice that leads to a Higgs scalar particle, while (2.25) is the one that 
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leads to a Higgs scalar antiparticle.  This is why we took some pains to show the impact of the 
1min vφ = ±  choices in the two differently appearing Lagrangian densities (2.24) and (2.25): what 

we see in (4.3) and (4.4) is the first sign of a fermion analogue to the 1min vφ = ±  choice in the 
scalar Higgs theory reviewed in section 2. 
 
 Specifically, and fundamentally, in (4.3) and (4.4) we see that this sign flips of the 
negative energy vacuum entirely originate in ( ) ( )0diag 1,1, 1, 1γ = − −  which is at the core of 
particle and antiparticle eigenstates in Dirac theory.  So here we see Dirac theory at work once 
again creating a symmetry between particles and antiparticles – this time, between the particle 
and antiparticle vacua!  This means that we must go back to (3.18) and amend this as follows: 
 

2 2

3 3
1 10 for fermions; 0 for antifermions

4 4f f

v e v eφ φ
λ φ λ φ

⎛ ⎞ ⎛ ⎞
= − > = − − <⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

A A  (4.5) 

 
To highlight how the Dirac 0γ  is at the root of this, which is seen by contrasting (4.3) and (4.4), 
if we write ( ) ( )0diag 1, 1γ = −  in two-component form, the sign difference in (4.5) is directly 

traceable to ( ) ( )0diag 1, 1γ = − .  This is the fermion counterpart to the v±  vacua that we 
reviewed in section 2 for the scalar fields.  So this correspondence between the scalar and the 
fermion Higgs theories as regards the vacuum may be summarized by 

( ) ( )2 0diag 1, 1v v γ= ± ⇔ = − , and is laid right at the doorstep of Dirac’s 0γ .  
 
 Mathematically, we can attribute this in part to the fact that the scalars φ  reviewed in 
section 2 have a mass dimension 1D = +  and so yielded a 2v  in (2.10), while the fermions 
presently under review have a mass dimension 1.5D = +  and so yielded a 3v  in (3.16).  Taking a 
square root of a positive number 2v v+ = ±  always presents a choice of sign and this carried 
over to the very final Lagrangians (2.24), (2.25).  But for fermions with 1.5D = +  we are 
endemically forced to the cubic level, not the square level.  Here, taking the cubed root of a 
positive number 3v v+ = +  always yields a positive number and while taking 3v v− = −  
always yields a negative number.  So the choice of v±  that we earlier had in (2.11) is absent 
when dealing with fermions, and instead it reemerges in different guise via (4.3) and (4.3).  Now, 
we find that 1 2, 0v v >  and 3 4, 0v v < , which replaces the v±  choice in (2.11).  Dirac fields 
remove this choice and assign a 0v >  to fermions and a 0v <  to antifermions without giving a 
choice.  This all originates in (3.14) and (3.16) where we ensured that the vacuum has an 
energetically-stable minimum point for expansion.  If we require a stable minimum for both 
fermions and antifermions, then fermions and antifermions must have oppositely-signed vacua, 
with a positive minimum for fermions and a negative minimum for antifermions.  
 

Physically, this also suggests that one way to view the choice of (2.24), (2.25) is to view 
(2.24) as the Lagrangian for an observable Higgs scalar particle, and (2.25) as that for an 
observable Higgs scalar antiparticle.  The hidden, broken symmetry as between (2.24), (2.25) is 
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then seen as a broken symmetry between particles and antiparticles.  As we shall soon see in 
(5.9) and (5.10) infra, (4.3) and (4.3) similarly break the particle and antiparticle symmetry for 
fermions.  Further, if we keep in mind Feynman-Stückelberg [17] whereby a past-oriented 
negative energy particle is reinterpreted as a future-oriented positive energy antiparticle, then 
(4.3) forces a positive energy vacuum for positive energy fermions travelling forward in time, 
and (4.4) forces a negative energy vacuum for negative energy fermions travelling backwards in 
time.  In this light, (4.4) and (4.3) are yet another example of the matter / antimatter symmetries 
which are endemic to Dirac’s equation. 

 
Although less visible on the surface than these particle / antiparticle results, the other 

point which needs to be made about the vacuum spinors (4.1) and (4.2) is that these spinors – just 
like the usual spinors derived from ( )0i ip u Euα μγ+ =  – must be functions ( )1.5v pμ  only of the 

energy-momentum, and not ( )1.5 ,v p xμ μ  of spacetime.  Because (4.1) and (4.2) also contain the 

gauge fields Aμ , an interesting paradox appears to emerge.  Gauge fields of course are functions 
( ),A p xμ μ μ  of space and time.  But as they appear in (4.1) and (4.2) they are not.  So the 

question now arises: how do these gauge fields ( )1 2 3, , ,A A A Aμ φ=  acquire their spacetime 
dependency if they are not spacetime-dependent in (4.1) and (4.2)?   

 
The answer, which we shall develop gradually in the subsequent discussion at the suitable 

junctures, is that once the gauge fields make their way into a spinor as in (4.1) and (4.2), they 
must be regarded as Hermitian linear operator observables in the “Heisenberg picture” sense, but 
with no explicit, inherent space or time dependency. Using X and P to represent the Heisenberg 
space and momentum matrices which are Hermitian and which follow the canonical 
commutation [ ],P X i i= − = −h , these gauge fields continue to be regarded as ( ),A P Xμ  in the 

sense of matrix mechanics, but not ( ),A p xμ μ μ  with pμ  as a classical momentum and xμ  as 
classical spacetime coordinates.   Then, in order to regain a classical spatial dependency, these 
( ),A P Xμ  operators must undergo a commutation ,i iP A i Aμ μ⎡ ⎤ = − ∂⎣ ⎦  with a three-momentum.  

And in order to regain a time-dependency, they must acquire a time evolution via a commutation 
0,H A i Aμ μ⎡ ⎤ = − ∂⎣ ⎦  with the Hamiltonian via the Heisenberg equation of motion.  This is a subtle 

but very important point that will play a role throughout the subsequent development and which 
will end up revealing a very profound connection among Dirac’s equation, the Heisenberg 
commutation relationships (both canonical with momentum and for motion with the 
Hamiltonian), and Maxwell’s equations for which the time and space dependencies ∇⋅E , ∇×E , 
∇⋅B , ∇×B , / t∂ ∂E  and / t∂ ∂B  are essential defining features.  Again, we seek at the moment 
simply to draw attention to this.  But its import and sweep is best developed not abstractly, but 
incrementally along the way in specific circumstances as we uncover various commutators which 
will be converted over into spacetime dependencies. 
  
 Now we turn to explicitly represent the Dirac spinor wavefunctions for each of the four 
Higgs fermion states ( )fh x  in the expansion (3.20).  But before we can do so we will need to 

also specify ψ , because according to (3.20) the general form for ( )fh x  is the difference: 
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1.5

fh vψ= − . (4.6) 
 
These ψ  should be the usual spinors of Dirac theory, but with two differences:  First, because 
the Lagrangian (3.8) which we are developing is ( ) ( )iD i eAψ μ ψ ψ μ ψ// − − ∂/ + −L =  with the 

mass parameter μ  and not the usual ( )i eA mψ ψ/∂/ + −L =  with a hand-added fermion mass m (a 
fundamental goal of this paper is to reveal such a mass rather than add it by hand), we may use 
the usual Dirac spinors but with m replaced throughout by μ .  Second, because ( )iDψ μ ψ/ −L =  

these spinors will contain the kinetic momentum p p eAσ σ σ σπ→ ≡ +  rather than the canonical 
momentum alone.  Thus, in the Dirac representation (again, see e.g., [16]) and employing the 
kinetic momentum p p eAσ σ σ σπ→ ≡ +  to properly place the gauge fields into the spinors, for 
fermions with plane wavefunctions we may write: 
 

3 3 1

1 3

1 2 2

1 2

1 2 2 3

1 0
0 1

;i x i xeA eA

eA e

p p ip ieAE e e E e e
E e E e
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E e E e
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+ +
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Likewise, for antifermions: 
 

3 1 2 2

1 2 2

3 1

1 3

3 4

3

1 0
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1

i x i x

eA eA

eA eA

p p ip ieA
E e E e

p ip ieA pE e e E e e
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σ σ
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+ −

⎣ ⎣

.(4.8) 

 
Two other things should be noted above.  First, we are employing the normalization 

E eμ μ φ+ +  rather than the usual E m eφ+ + .  Aside from the m μ→  replacement just 
discussed, this is because we wish to ensure that the 1.5D = +  dimensionality of these 
wavefunctions is explicitly represented, because we will be using these in a Lagrangian density 
L which must have an overall mass dimension 4D =  in four-dimensional spacetime.   

 
Second, rather than use the canonical Fourier kernel ip xe

σ
σ− , we employ a kinetic kernel 

i xe
σ

σπ−  containing p p eAσ σ σ σπ→ ≡ + .  We do this mindful of the geometric view of gauge 
theory discussed following (2.1) wherein the gauge-covariant derivative D ieAσ σ σ σ∂ → ≡ ∂ −  
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represents curvature in gauge space just as ;A A A Aσ
μ ν μ ν μ ν μν σ∂ → ∂ = ∂ −Γ  in represents 

curvature in spacetime.  Free fermions are those which follow geodesic paths in the gauge space, 
so when the Dirac’s equation is ( ) 0i μ ψ∂/ − =  the geodesically-free fermion spinors are 

solutions based on ( ) ( ) ip xx u p e
σ

σψ −=  but when Dirac’s equation is ( ) 0iD μ ψ/ − =  the free 

fermion spinors are solutions based on ( ) ( ) i xx u e
σ

σπψ π −= .  However, because we are using a 
kinetic rather than canonical kernel, we have i μ μψ π ψ∂ =  not i pμ μψ ψ∂ = , and for these 
derivatives to work properly, the gauge field Aσ  in p eAσ σ σπ ≡ + , must not have an explicit time 
or space dependence, i.e., it must be a function of ( ),A P Xμ  where P and X are the Heisenberg 
matrix operators and not ordinary momenta or ordinary space coordinates.  Just Higgs theory 
teaches that as the observed particles and fields in the physical universe are not those that appear 
as seed particles in a Lagrangian or Hamiltonian but rather are those Higgs fields which arise via 
expansion about the vacuum, so too we shall soon see that the space and time dependencies 
which we observe in the physical universe are not those which appear in a Lagrangian such as 

( )i eAψ μ ψ/∂/ + −L =  but rather are those space and time dependencies that arise out of 
quantum mechanical Heisenberg commutations.  That is, just like observed particle masses, 
observed space and time dependencies are also hidden, revealed phenomena, not ab initio 
phenomena.  We will start to see specific examples of this in section 7 and through the later 
development here. 
 
 Now, via (4.1), (4.2), (4.7) and (4.8) we can explicitly represent each of the four Higgs 
fermions, by subtracting the vacuum spinor from the seed spinor with the kinetic kernel i xe

σ
σπ−  

used as the overall coefficient, as such: 
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Note one other change in (4.9) through (4.12) which is motivated by needing to properly subtract 
the spinors in (4.1) and (4.2) from those in (4.7) and (4.8) to yield the spinors in (4.9) to (4.12):  
We have now modified the Higgs expansions for fermions from the presumed form (3.20) and 
(3.21), into a form which is motivated by the explicit spinors, namely: 
 
( ) ( ) ( )1.5 1.5i x i x

f h
i xx u v h xe e v u e

σ σ σ
σ σ σπ π πψ = ≡ + = + , (4.13) 

( ) ( ) ( )1.5 1.5i x i x
f

x
h

ix u v h x ve eue
σ σ σ

σ σ σπ π πψ − − −= ≡ + = + , (4.14) 

 
with ( ) ( )f h

i xh x u e
σ

σππ≡ , ( ) ( )f h
i xeh x u

σ
σππ −≡  defining Higgs Dirac spinors ( )hu π ,  ( )hu π  

such that: 
 
( ) ( )1.5

hu v uπ π≡ + , (4.15) 

( ) ( )1.5
hu v uπ π≡ + . (4.16) 

 
This is the fully-developed fermion counterpart to the scalar expansion about the vacuum 

of (2.12), namely, ( ) ( ) ( )( )1
2

x v h x i xφ ξ≡ ± + + .  We shall, however, prefer to work with the 

full wavefunctions ( )xψ  and ( )fh x  and not only the spinors as much as possible throughout the 
development.  Noting that Fourier kernels generally cancel out from terms in a Lagrangian, e.g., 

uuψψ = , as a notational convenience we define ( )1.5 1.5 i xev x v
σ

σπ′ ≡  and ( )1.5 1.5 i xev x v
σ

σπ−′ ≡  to be 

“vacua-prime” which absorb Fourier kernels into their definition.  Then, 1.5 1.5 1.5 1.5 3v v v v v′ ′ = =  
give another example of how the kernels cancel in the Lagrangian.  The only place these vacua-
prime will appear in the Lagrangian will be in terms of the form 1.5

fv h′  and 1.5
fh v′ , to maintain a 
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proper balance and thus cancellation of the kernels in both 1.5v′  and fh .  This notation allows us 
to rewrite (4.13) and (4.14) as: 
 
( ) ( ) ( )1.5

fx v x h xψ ′= + , (4.17) 

( ) ( ) ( )1.5
fx v x h xψ ′= + . (4.18) 

 
This will be our preferred form to represent fermion Higgs field expansion about the vacuum. 
 
 At this point, we turn back to the development of the fermion Lagrangian density (3.9) 
and its ( )T ψ  and ( )V ψ  of (3.10) and (3.11) using the expansions (4.17), (4.18).  Although 

these four-component 1.5v  of (4.1), (4.2), ψ  of (4.7), (4.8) and observable Higgs fermions fh of 
(4.9) through (4.12) are good for explicitly illustrating the development here, they are unwieldy 
for doing reasonably-tractable calculation.  For this purpose, it will be preferable to consolidate 
(4.1), (4.2) and (4.7), (4.8) from four-component down to two-component Dirac form.  We now 
denote by 1.5 1.5 1.5

1 2 0v v v+ ≡ = >  the positive energy vacuum used for expansion of positive 
energy (particle) fermions and by 1.5 1.5 1.5

3 3 0v v v− ≡ = <  the negative energy vacuum with pairs up 
with negative energy (antiparticle) fermions.  Therefore, (4.1) and (4.2) respectively consolidate 
in two-component form to: 
 

2 2
( )

( )
1.5 1.5 2

( )
( )2

;1 1
2 2f f

s i i
s

i i
s

s

e A
v A

ev
χ φσ χ

φσ χ χλ φ λ φ+ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

A A
A

A

 (4.19) 

 
where, in the usual way, “up” and “down” spin states are respectively represented by: 
 

(1) (2)1 0
;

0 1
χ χ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.20) 

 
 For the positive and negative energy “seed fermions” themselves, and also consolidating 
via the kinetic momentum p eAσ σ σπ ≡ + , (4.7) and (4.8) consolidate to:  
 

( )
( )

0 0 0
( )

( )0

;i x

s i i
s

i i
s

i x i x i x

s

ue e e ev
σ σ σ σ

σ σ σ σπ π π π
χ σ π χ

ψ μ π μ ϕ μ π μ π μσ π χ χπ μ

− − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = + = = + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

.(4.21) 

 
For notational distinction, we now use ϕ  to denote the wavefunction for a seed antifermion and 
v for its associated spinor.  The above are the two-component spinors solutions which emerge 
from Dirac’s equation with gauge fields and a kinetic kernel i xe

σ
σπ− .  Upon application of 

Feynman-Stückelberg one further substitutes  σ σπ π→−  and E E− →  as applicable.  We shall 
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not do this here, however, because the calculation is simpler if we retain this original form of 
negative energy fermions.  One continues to keep in mind that the gauge fields Aμ  such as they 
appear in the vacuum spinors (4.19) and via p eAμ μ μπ = +  in (4.21) are to be regarded as 
neither time-dependent nor space-dependent, but to the degree to which they are later found (as 
they will be) to commute with a Hamiltonian H to yield a time dependency, or with a three-
momentum kp  to yield a space dependency.  That is, these Dirac spinors are spinors in the sense 
of the Heisenberg picture, wherein the fields are not time or space-dependent ab initio, but only 
become so because of their commutation with the Hamiltonian and /or with a three- momentum.  

 
Therefore, the observable Higgs fermions spinors corresponding to (4.9), (4.10) which 

we denote by 1,2fh hψ→ consolidate in two-component form to: 
 

( ) ( )

0
2

( )
2

.5
( )

1

0

1
2

i x

s s

i i i i
s s

f

eh v A e
σ

σπ
ψ

χ χ
μ π μ σ π φσχ χπ

ψ
λ φ

μ

−
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ ⎢ ⎥ ⎢

⎛ ⎞
⎜ ⎟′= − = −⎜ ⎟
⎜

⎥
⎢ ⎥ ⎢ ⎥+ ⎟

⎝ ⎦⎦ ⎠⎣⎣

A

A

 (4.22) 

 
while the Higgs antifermions corresponding to (4.11), (4.12) which we denote by 3,4fh hϕ→
consolidate to: 
 

( ) ( )
0

2
0 2

( )(

1 5

)

. 1
2

i x

i i i

f

i
s s

ss

eh e
A

v
σ

σπ
ϕ

σ π φσχ χμ π μ π
χχ

ϕ
λ φ

μ −
+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟′= − = −⎜ ⎟
⎜ ⎟
⎝ ⎠⎣ ⎦

A
A . (4.23) 

 
 Before concluding this section, it is instructive to show the calculation (4.3) for the 
fermion vacuum using the two-component spinor 1.5v+  of (4.19).  Making use of the Hermitian 
conjugacy relation †i iσ σ=  as well as ( ) ( ) 1Ts sχ χ = , and 2i i j jA Aσ σ = A , the two-component 
form of the calculation (4.3) is: 
 

( )

3 1.5 1.5 1.5† 0 1.5 ( ) ( )
2 ( )

2

2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2

2 2

22

2

2

2 2

1
4

1 1
4 4

1 1
4

s
i i

s s j j
s

i i j j
s s s s s

T T

f

T T T Ts

f

s s

f

f

e

e

Av v v v v A

A A e

e

χ
φσγ χ χ φσ χ

φσ φσ φχ χ

λ

χ χ χ χ

φ

λ
χ χ

φ

φ λ φ

λ φ

+ + + + +
⎡ ⎤
⎢ ⎥
⎣ ⎦

⎛ ⎞ ⎛ ⎞

⎡ ⎤
⎢ ⎥= = = − ⎢ ⎥
⎢ ⎥⎣ ⎦

= =

=

− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
−⎜

⎝ ⎠

A
A

A
A

A

A A

A

A A A

A
A A

2 2 21 1
4 4

0
f f

e e
λ φ λ

φ
φ
φ−=

⎛ ⎞ ⎛ ⎞
>⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝
−

⎠
=A A

 (4.24) 

 
Later, we shall find it necessary to do a number of more complicated calculations built out of this 
basic form, which is why we show this now. 
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5. Fermion Field Expansion of the Lagrangian Potential 
 
 With all of this, we are now ready to use the expansions (4.17) and (4.18) about the vacua 
(4.1), (4.2) in the fermion Lagrangian density (3.9) via its kinetic (T) and potential (V) terms in 
(3.10) and (3.11).  From (3.10), the kinetic portion ( )T ψ  of the Lagrangian density with i p∂/ → /  
and p eAπ /= +/ /  is: 
 
( ) ( ) ( )

1.5 1.5 1.5 1.5
f f f f

T i eA p eA

h h v h h v v v

ψ ψ ψ ψ ψ ψπψ

π π π π

/ /= ∂/ + = + = //

′ ′= + + +/ / / /
. (5.1) 

 
For the potential portion ( )V ψ  we must account for the findings in (4.3) and (4.4) as 

summarized in (4.5) that 0v >  for fermions and 0v <  for antifermions.  For fermions with 
3 3 3

1 2v v v+ = = , starting with (3.11), and using ( )3 1
2

22 /f evλ φ φ+ −− = A  from (4.24), we have: 
 

( ) ( ) ( ) ( )( )2 23232
2 21

2 f f f fv vV eψ φ ψψ λ ψψ λ ψψ λ ψψ λ ψψ ψψ
φ + +

⎛ ⎞
= − + = + = +⎜ ⎟

⎝ ⎠
− −A . (5.2) 

 
For antifermions with 3 3 3

3 4v v v− = =  we also start with (3.11), but use ( )3 1
2

22 /f evλ φ φ− −= A  

from (4.4) ((4.24) with reversed sign 3 32 2v v+ −− → +  for antiparticles) to find a slightly different: 
 

( ) ( ) ( ) ( )( )2 23232
2 21

2 f f f fv vV eψ φ ψψ λ ψψ λ ψψ λ ψψ λ ψψ ψψ
φ − −

⎛ ⎞
= − + = + + = +⎜ ⎟

⎝ ⎠
+A . (5.3) 

 
Now we expand about the vacuum.  First, via (4.17) and (4.18), it helps to form (again, 

( )1.5 1.5 i xev x v
σ

σπ′ ≡  and ( )1.5 1.5 i xev x v
σ

σπ−′ ≡  to balance kernels): 
 

1.5 1.5 1.5 1.5
f f f fh h v h h v v vψψ ′ ′= + + + , (5.4) 

 
and then use (5.4) above to form: 
 

1.5 1.5 1.5 1.5

1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

1.5 1.5 1.5 1.5 1.5 1.

f f f f f f f f f f f f

f f f f f f f f

f f f f f f f f

f f f

h h h h h h v h h h h v h h v v

v h h h v h v h v h h v v h v v

h v h h h v v h h v h v h v v v

v v h h v v v h v

ψψψψ

′ ′+ + + +

′ ′ ′ ′ ′ ′+ + + +
=

′ ′ ′ ′ ′ ′+ + + +

′+ + + 5 1.5 1.5 1.5 1.5 1.5 1.5
fv h v v v v v

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟′ +⎝ ⎠

. (5.5) 
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 This contains sixteen (16) products of a scalar number f fh h , 1.5
fv h′ , 1.5

fh v′  or 
1.5 1.5 3v v v=  with another like scalar number.  Any one of these scalars may be commuted with 

any other, so we can immediately consolidate some of the terms in (5.5) as such: 
 

1.5 1.5 1.5 1.5 6

1.5 1.5 3 1.5 1.5 3 1.5 3 1.52 2 2 2 2 2

f f f f f f f f

f f f f f f f f f f f f

h h h h v h v h h v h v v

v h h h h v h h v h h h v v h v v h v h v
ψψψψ

⎛ ⎞′ ′ ′ ′+ + + +
⎜ ⎟=
⎜ ⎟′ ′ ′ ′ ′ ′ ′+ + + + + +⎝ ⎠

. (5.6) 

 
Then we use (5.4) and (5.6) in (5.2) for fermions with fh hψ→ , 1.5 1.5v v+→  to obtain:  
 

( ) ( )
3 3 1.5 3 1.5 6

1.5 1.5 1.5 1.5 6

1.5 1.5 3 1.5 1.5 3 1.5 3 1

1.5 1.5

.5

2

2 2 2 2

2 2 2 2 2 2

f

f

V

v h h v v h v h v v

h h h h v h v h h v h v v

v h h h h v h h v h h h v

v v

v h v v h v h v

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ λ ψψ ψψψψ

λ
+ + + + + +

+ + + + +

+ + + + + + + + +

= − +

⎛ ⎞′ ′− − − −
⎜
⎜ ′ ′ ′ ′= + + + +
⎜
⎜ ′ ′ ′ ′ ′+ + + + + +⎝ ⎠

⎟
⎟
⎟
⎟

(5.7) 

 
and in (5.3) for antifermions with fh hϕ→ , 1.5 1.5v v−→   to obtain: 
 

( ) ( )
1.5 1.5

1.5 1.5 1.5 1.5 6

1.5 1.5 3 1.5 1.5 3 1.

1.5 1

5

.5

3 3 3 6

3 1.5

2

2 2 2 2

2 2 2 2 2 2

f

f

V

h h v h h v

h h h h v h v h h v h v v

v h h h h v h h v h h h v v h v

v v

v h

v v v v

v h v

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ϕ λ ψψ ψψψψ

λ
− − − − − −

− − − −

− − − − − − − − −

= + +

⎛ ⎞′ ′+ + + +
⎜
⎜ ′ ′ ′ ′= + + + +
⎜
⎜ ′ ′ ′ ′ ′ ′+ + + + + +⎝ ⎠

⎟
⎟
⎟
⎟

(5.8) 

 
We have shown this expansion explicitly to highlight the impact of the negative and positive 
vacua for fermions and antifermions.  Now consolidating, (5.7) and (5.8) respectively become: 
 

( ) ( )
1.5 1.5 1.5 1.5 1

1.5

.5 1.5 1.5 1.

1

5

6

.52

2 2 2

f

f

V

v h v h h v h v h v v h v h h h h v h h h h h

v

h

v

v

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ λ ψψ ψψψψ

λ + + + + + + + +

+

= − +

⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′+ + + + + +
⎜ ⎟=
⎜ ⎟−⎝ ⎠

,(5.9) 

 

( ) ( )
1.5 1.5 1.5 1.5 1.5 1.5 1.5

1.5

1.5

3 1.5 3 1.5

1

6 3

.52

2 2 2

3 4 4 4

f

f

V

v h v h h v h v h v v h v h h h h v h h h h h h

v v h v

v v

v h hv h v

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ λ ψψ ψψψψ

λ − − − − − − − −

− − − − −

= + +

⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′+ + + + + +
⎜ ⎟=
⎜ ⎟′ ′+ + + +⎝ ⎠

.(5.10) 
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In the above we clearly see an inherent broken symmetry between fermions and antifermions.  
All of the terms in top line of the final expression in (5.9) and (5.10) are the same, but in the 
bottom lines, they are not.  This should be contrasted to the analogous result (2.24) and (2.25) for 
scalars.  This is where the Dirac version of the v±  symmetry breaking based on 
( ) ( )0diag 1, 1γ = + −  manifests most directly, because as we see, this breaks (or, hides) the 

symmetry between the particle and antiparticle potentials which is not hidden in the original 

“seed” potential ( ) ( ) ( )221
2 / fV eψ φ φ ψψ λ ψψ= − +A  of (5.2). 

 
 Before proceeding to develop these further, it is useful to do one final consolidation of 
some terms in (5.9) and (5.10) above, including more scalar commutation, into the form: 
 

 

( ) ( )
( )( ) ( )1.5 1.5 1.5 1.

1

5 1.5 1.5

.5

6

.5 12

2

f

f

V

v h h v v h h v v h h v h h h h

v

h

v

v

hψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ λ ψψ ψψψψ

λ + + + + + +

+

= − +

⎛ ⎞′ ′ ′ ′ ′ ′+ + + + + +⎜ ⎟=
⎜ ⎟−⎝ ⎠

, (5.11) 

 

( ) ( )
( )( ) ( )

( )
1.5 1.5 1.5 1.5 1.5 1.5

3 1.5 1

1.5 1

.5

.5

6 3

2

2

3 4 4

f

f

V

v h h v v h h v v h h v h h h h h h

v v h h v h

v v

vv h

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ λ ψψ ψψψψ

λ
− − − − − −

− − − − −

= + +

⎛ ⎞′ ′ ′ ′ ′ ′+ + + + + +⎜ ⎟= ⎜ ⎟
′ ′+ + + +⎜ ⎟

⎝ ⎠

. (5.12) 

 
 Finally we return to the Lagrangian density (3.9) which we now recognize will have two 
separate appearances for fermions versus antifermions.  We use (5.1) and (5.11) to write the 
fermion (particle) Lagrangian density as: 
 

( ) ( ) ( ) ( ) ( )

( )( ) ( )

2 2

1.5 1.5 1.5 1.5

1.5 1.5 1.5 1.5 1.5 1.5

6

1 1
2 2

2

f

f

i eA e e T V

h h v h h v v v

v h h v v h h v v h h v h h h h h h

v

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ φψψ ψψ λ ψψ ψ ψ
φ

π π π π

λ

+ + + +

+ + + + + +

+

/= ∂/ + − + − = −

′ ′= + + +/ / / /

⎛ ⎞′ ′ ′ ′ ′ ′+ + + + + +⎜ ⎟−
⎜ ⎟−⎝ ⎠

A
L

 (5.13) 

 
and (5.1) and (5.12) to write for antiparticles: 
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( ) ( ) ( ) ( ) ( )

( )( ) ( )
( )

2 2

1.5 1.5 1.5 1.5

1.5 1.5 1.5 1.5 1.5 1.5

3 1.5 1.5 36

1 1
2 2

2

3 4 4

f

f

i eA e e T V

h h v h h v v v

v h h v v h h v v h h v h h h h h h

v v h h v v h hv

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ψ ψ φψψ ψψ λ ψψ ψ ψ
φ

π π π π

λ

− − − −

− − − − − −

− − − − −

/= ∂/ + − + − = −

′ ′= + + +/ / / /

⎛ ⎞′ ′ ′ ′ ′ ′+ + + + + +⎜ ⎟− ⎜ ⎟
′ ′+ + + +⎜ ⎟

⎝ ⎠

A
L

 (5.14) 

 
 Now we have enough information to reveal a fermion rest mass.  Comparing to the 
canonical Dirac Lagrangian i m p mψ ψ ψψ ψ ψ ψψ∂/ − = −/L = L = , we seek to identify the 
coefficients of (5.13) and (5.14) against the template f f f f fh h m h hπ −/L =  for the Higgs fields  
fermions fh hψ=  in (5.13) and antifermions fh hϕ=  in (5.14).  That is, we specifically look for 

coefficients of terms f fh h  which are second order in the Higgs field.   
 
6. Revealing Fermion Rest Mass 
 

From here we focus on the positive energy Higgs fermion particles.  The fermion mass 
term we are seeking must have the form f f fm h h− .  One of the terms in (5.13) is 

( )21.5 1.5
f v h h vψ ψλ + +′ ′− +  which is of the desired second order in the Higgs field but with 1.5v+′  

interspersed in a way that is not trivially commuted.  Another term is ( )1.5 1.52 f v h h v h hψ ψ ψ ψλ + +′ ′− +  

which does have the desired f fh h  but is of third order in the Higgs fields.  To convert these into 

the form of f f fm h h−  we will need to do some explicit calculations along the lines of (4.24), 

using the 1.5v+  spinor in (4.19) and the hψ  spinors in (4.22). 
 
 First we calculate 1.5 1.5v h h vψ ψ+ +′ ′+ and use ( )1 23

4 / / 0fev φ λφ+ = − >A  from (4.24).  

Using a photon momentum ( )q p p μμ ′≡ −  and keeping in mind that p eAμ μ μπ = + , we shall 

regard pμ  as the four-momentum of ( )( )h p hψ ψ π=  and p p qμ μ μ′ = +  as the four-momentum 

of ( ) ( ) ( )h p h p q hψ ψ ψ π′ ′= + =  where p eA p q eAμ μ μ μ μ μπ ′ ′= + = + + .  Thus, we associate  qμ  

with the gauge field (e.g., photon) momentum vector of a transition current ( ) ( )J p pμ μψ ψ′= Γ , 
see for example, [18] pages 343-345. 
 

In a more complicated variant of the calculation (4.24), with ( )hψ π  we may obtain: 
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2 2
( ) ( )

( ) ( ) 0
2 ( ) ( )
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h
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⎟
⎠
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 (6.1) 

 
Similarly with ( )hψ π ′  we may obtain: 
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Adding (6.2) and (6.4) we obtain (pay close attention to the π  versus π ′ ): 
 

( )

( )( ) ( )( )

0
2

0 3

( )

1.5 1.5

( ) ( ) ( )
2 0 0

1
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1 1 1
2

2

s i i j j s s i i j
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s

f

T T j

v
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ev h h v

e

ψ ψ μ π μ π μ

μ χ σ π φσ χ χ φσ σ π χ
π μ π

λ φ

μλ φ

+ + +′ +′ ′+ =

+

+ + −

⎛ ⎞
′⎜ ⎟−

⎜ ⎟′ + +⎝ ⎠A

A

. (6.3) 

 
In the 0qμ → , thus μ μπ π′ →  limit, with { } ( )( ) ( )( ),i j j i j j i i ji jiA A Aσ φσ σ φπ π σ φσ σ π≡ + , 
this reduces to: 
 

{ }
2

1.5 1.5 0 ( ) ( ) 3

0 2 21
2

,s i j j sT i

f f

e ev h h v A vψ ψ
μμ π μ χ σ φσ χ
π

π
λ φ λμ φ+ + +′ ′+ = − −+

+
A

A
, (6.4) 

 
We see that the dominant distinction between (6.1) and (6.2) when 0qμ →  boils down to the 
reversed order of terms in the anticommutator { },i j ji Aσ φσπ .  This anticommutator and similar 
expressions will become very important in the later development, because it contains the fermion 
magnetic moment.  But for the moment, we are focused on the fermion mass. 
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 Given that we have employed 0qμ →  to arrive at (6.4) from (6.3), we should note that 
with FS  designating the fermion propagator which at the lowest order is 1

FS p m− = −/  for a “bare 
mass” m, the Ward identity for 1 1

F FS S− −′→  at any order is given by ( )1 / ,0,FS p p pμ
μ

−′∂ ∂ = Γ  

where with ( ) ( ), , , ,p q p q p q p qμ μ μγΓ + = +Λ +  is the total vertex of the transition current 

( ) ( )J p pμ μψ ψ′= Γ .  We also note that ( ) ( ) ( ), , F Fq p q p q S p q S pμ
μ ′ ′Γ + = + −  which is the 

Ward-Takahashi identity, reduces to the Ward identity in the 0qμ →  limit.  In this context, 
going back to ( )ψL  in (5.13), by taking 0qμ →  hence μ μπ π′ →  in (6.4), we are really first in 

(6.3) calculating a term 1.5 1.5v h h vψ ψ+ +′ ′+  in ( ) ( )( ) ( ), , , ,p q p q p q p qψ ψ + ≡ +L L , then in (6.4) 

taking ( ) ( ), , ,0,p q p q p p+ →L L .  Viewed in this light, and by adopting the notation 

( ) ( ), , ,0,p q p q p p+ →L L  we align our parameterization of the vacuum-expanded Lagrangian 
(5.13) (and (5.14) for antiparticles) with how one comes to parameterize the Ward and Ward-
Takahashi identities which are at the heart of renormalization theory.  We also note that the 
Ward identity at all orders is ( ),0, /p p pμ

μΛ = −∂Σ ∂  with ( )pΣ  denoting the fermion self-

energy, for which 0qμ →  is an “essential condition” (see [18], final full paragraph on page 
267).  Thus we see that by going from ( ) ( ), , ,0,p q p q p p+ →L L  between (6.3) and (6.4), we 

are examining the behavior of the Lagrangian density under the essential condition 0qμ →  
through which that Ward identity works at all orders during renormalization.  In the subsequent 
development, rather than calculate analogs to (6.3) for ( ), ,p q p q+L  and then take the 0qμ →  

limit to arrive at ( ),0,p pL  analogs to (6.4), we shall go straight to (6.4) analogs by calculating 

the ( ),0,p pL  Lagrangian density, thus aligning the Lagrangian density with the operative 
essential condition of the Ward identity as used for high order renormalization.  This will pay off 
in section 14, when we show how to renormalize while maintaining an invariant rest mass by 
absorbing any variation in mass at different renormalization scales into a gauge transformation. 
For further background, the reader is referred especially to sections 7.4 and 9.6 of [18]. 
 
 Next, with this in mind, let us calculate ( ),0,h h p pψ ψ , i.e., ( )0h h qμψ ψ = . Here we use 

(4.22) and † 0h hψ ψ γ=   (and 2 i i j jσ π σ π=π ) in the 0qμ →  limit to obtain:  
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.(6.5) 

 
 Before proceeding further, let’s simplify the form of both (6.4) and (6.5) by defining the 
anticommutator term A with mass dimension 3D = +   in 1c= =h  units as: 
 

( ) { }2
( ) ( )

0

1 ,
2

,0, s i i j jT

f

sepA p Aμ χ
λ

σ π φσ χ
π μ φ

≡
+ A

. (6.6) 

 
Then (6.4) and (6.5) simplify for ( ),0,p p  to: 
 

2
1.5 1 3.5 0 2

f

ev h h Av vψ ψ μ
λ φ

π μ+ ++ + −′ ′+ = −A , (6.7) 

( )20 2
2 3

2
0

0
f

eh h A vψ ψ

π μ
μ μ π μ

π μ λ φ += − +
+

+ +
+

A− π
. (6.8) 

 
From the combination of (6.7) and (6.8) we then see that for ( ),0,p p : 
 

( )2
1.5 1.5

20 2
3 0 3 2

02
f

v ev h h v hA hvψ ψ ψ ψλ
π μ

μ π
μφ

μ μ
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or more directly: 
 

( ) ( )20 2
2 31.5 1.5

0, 0,h h p p v h h v vψ ψ ψ ψ

π μ
μ

π μ ++ +′ ′= − −
+

+ −
+ − π
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 This gives us what we need to go back to the fermion Lagrangian (5.13) and recast the 

terms ( )21.5 1.5v h h vψ ψ+ +′ ′+  and ( )1.5 1.52 f v h h v h hψ ψ ψ ψλ + +′ ′− +  into an h hψ ψ  term.  First, all in the 

( ),0,p p parameterization, squaring (6.7): 
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3 6
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0 2 0 0 32 4 44
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. (6.11) 

 
On the other hand, multiplying (6.8) by the scalar number 34v+ , we find that: 
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 Combining (6.11) and (6.12) now yields with ( ),0,p p : 
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More directly, from the second and third lines: 
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Moreover, from (6.9) multiplied through by 2h hψ ψ , still with ( ),0,p p : 
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 Then, using (6.14) and (6.15) in the fermion Lagrangian (5.13) and reducing yields: 
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 This has been our goal.  Now we have found a term 32f v h hψ ψλ +−  which has the form of 

a “revealed” fermion mass.  But there is a term ( )( ) ( )22 0 2 0/2 f h hψ ψμ π μ π μλ− + +− π  in the 

above that also contains h hψ ψ .  So how do we pinpoint the mass?  Contrasting with (2.18) from 

scalar field theory, this latter term is analogous to the term ( )2 2 21
2 2e vh h A Aσσξ− ± + +  which 

has both 2h  and A Aσσ , yet is not used to determine the mass.  Rather, in (2.18) through (2.20), 

we identify the boson mass from ( )22
Am ev=  and the Higgs mass from 2 22hm vλ= .  In both 

cases, we identify the mass from only a vacuum vev v and a coupling which is e for Am  and λ  
for hm .  To repeat: the mass is constructed only from a vacuum and a coupling, and nothing else.  

The same applies here, so comparing 32 f v h hψ ψλ +−  to the expected form mhh−  for a fermion 

mass term, that is, contrasting 32 f vmhh h hψ ψλ +− ⇔ − , and also combining with (4.3) and (3.7), 
we see that the coupling is fλ and the vacuum is 3v+ .  So the mass (rest energy) of the fermion 
with c=1 restored is revealed to be: 
 

2 2 2
2 23 1 12 0

2 2fmc e e cv φλ μ
φ φ
φ+

⎛ ⎞ ⎛ ⎞−= = = = − >⎜ ⎟− ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A A
 (6.17) 

 
This fundamental result has been the goal of the entire development thus far.  It is the 

direct analog of (2.20) in which the mass of the scalar Higgs field – which is what is believed to 
have been detected at CERN in 2012 – is revealed in scalar Higgs theory.  But this is now a 
fermion mass and may be taken to correspond to the observed masses of the observed fermions.  
And, as we see, this mass is constructed entirely from the energy of the gauge potentials Aμ  and 
so is in the nature of a self-energy 2mcΣ =  which should be very helpful for renormalization.  
But, because this mass is specified in terms of the gauge potentials, the question now arises: How 
do we interpret this result?  Keep in mind that a gauge potential by itself has no physical 
meaning.  All that is measurable is a “voltage drop,” i.e. a difference between two potential 
energies at two different points in space.   
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While neither φ  nor 2A  has a physical meaning by itself, the electron does possess an 
“intrinsic” spin which Ohanian explains [15] as an entirely classical circular energy flow in the 
electron (fermion) wave field.  Further, we are reminded by the Gordon decomposition 

( )( ) ( )2 2mJ m iμ μ μ μ μν
νψγ ψ ψ ψ ψ ψ ψσ ψ= = ∂ − ∂ + ∂  for a free electron that this spin results in a 

circulating flow of charge even for an electron at rest.  We see this from the space components 

( )( ) ( )2 k k km i ν
νψ ψ ψ ψ ψσ ψ= ∂ − ∂ + ∂J , which show that the spin current density 

( ) / 2k mν
ν ψσ ψ∂  is non-zero even in the electron rest frame, and even if the convection / orbital 

angular momentum current density ( ) 0k kψ ψ ψ ψ∂ − ∂ = .  So because of its spin, an electron “at 

rest” is not really, fully “at rest.”  There is always an inherent, kinetic, circulating flow of energy 
and charge.   

 
Therefore, if consider that 2A  in (6.17) fundamentally captures the kinetic aspects of the 

energies brought about by the electron spin, then equation (6.17) is fundamentally a mirror of the 
Gordon decomposition at the fermion mass level.  It tells us that the fermion mass is no more and 
no less than the difference between the two intrinsic potentials φ  and 2A  of the electron which 
always has a spin and thus kinetic activity even at rest, and that the specific measure of this 
difference in potential is given by a “voltage drop” 21 1

2 2/e eφ φ−A  between a potential 21
2 /e φA  

which reflects self-energies arising from the kinetic properties of a circulating (spinning) charge, 
and a non-kinetic scalar voltage 1

2 eφ  attributable solely to the charge without any spin-related 
motion.  So the electron mass arises from its own electromagnetic self-energies as the difference 
between a potential 21

2 /e φA  arising from the circulating flow of its charge and a potential 1
2 eφ  

arising from the charge itself absent any kinetics.   
 
Now the question emerges which we shall study at length in section 14: at what event 

point or points in spacetime is this 21 1
2 2/e eφ φ−A  difference in potential taken, and does the 

mass in (6.17) vary when these potentials are taken at different event points?  We do not at the 
moment have enough information developed to answer these questions, but will return to answer 
them in section 14.  There we shall see that this difference is taken at a single point in space, or 
in renormalization language, that this difference is taken at a single, given renormalization scale.  
And, of fundamental importance, as we shall also see in section 14, this rest mass can be made to 
remain invariant over all renormalization scales, because any variation in mass from one scale 
to the next can be gauged away by a simple gauge transformation of the gauge fields Aμ  from 
which the mass in (6.17) is constructed.  This is what we refer to as “Invariant Mass, Variable 
Gauge Renormalization,” and it will be detailed in section 14. 
 
 Given (6.17), we may go back to all the other equations developed thus far and substitute 
a rest mass m wherever any of the other expressions in (6.17) may appear.  This includes setting 

mμ → −  wherever the former appears.  First, of course, we may go back to the Lagrangian 
(6.16) and use (6.17) as well as 0 E eπ φ= +  and ( )22 e= +p Aπ  to write: 
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. (6.18) 

 
We have in the above eliminated all appearances of fλ  and μ  in favor of m and 1.5v+  except for 
the fλ still remaining in the final term involving the anticommutator term A as defined in (6.6), 

which will cancel out in the end because A is defined so as to include a 1/ fλ .   
 

As to the remaining terms, keep in mind that the above describes L  in any frame of 
motion, relativistic or not.  To get a better handle in these terms, we now reduce (6.18) to the 
fermion’s own rest frame, in which the only remaining kinetic activity arises from spin.  To do 
this we set p=0 thus E m=  via 2m p pσσ= , and we also reapply ( )2 22 /m e φ φ− = A−  of (6.17) 
in two places.  This reduces (6.18) at rest to: 
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L L

. (6.19) 

 
It is especially informative to now contrast the above term for mh hψ ψ  with the analogous term 
for 2 2

hm h  in the scalar Lagrangian density (2.24), that is, to contrast: 
 

2
2

3

3 3
2

2

1 11 2 1
2 2 4 h

h h h hmhm
v

h m h
vv

ψ ψ
ψ ψ ν+ +

⎛ ⎞ ⎛ ⎞
− − − ⇔ − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (6.20) 

 
We see that in each case, the mass terms 2 21

2 hm h−  and mh hψ ψ−  also have further non-linear 

interactions, with /h v  and ( )2/h v  in the case of scalars and with 3/h vhψ ψ +  and with its own 
mass-to-vev ratio 3 3/m v+  in the case of fermions.  The remaining term in (6.19), in the rest 

frame, is ( )2
2

fem Aλ− +A , which contains a magnetic moment term that we shall develop 

further in the next section. 
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 Put into context, in the scalar Higgs theory reviewed in section 2, we revealed both a 
scalar Higgs mass from the potential portion of the Lagrangian density and a “bonus” gauge 
boson mass from the kinetic portion.  Above, we have revealed a fermion Higgs mass from the 
potential portion ( )V hψ−  of the Lagrangian density and not yet touched upon the kinetic portion 

( )T hψ .  We should expect a similar “bonus” to emerge there.  We know from Dirac theory that 

the kinetic terms ( )T i e Aμ μ
μ μψ ψγ ψ ψγ ψ= ∂ +  already contain the four-current density 

J eμ μψγ ψ= , and that this is precisely the term that may be Gordon-decomposed into a 
convection (orbital angular momentum) and a spin current density which includes the magnetic 
moment and the gyromagnetic ratio.  So as we shall see starting in section 8, the “bonus” that we 
obtain in fermion Higgs theory is not the gauge boson and its mass.  We already have that from 
the scalar Higgs theory.  Rather, we shall obtain new information about how this gauge field 
interacts with the spinning electron via the physics of the intrinsic magnetic moment, and in 
particular, shall show how the so-called “anomalies” in the magnetic g-factor are revealed 
directly from Dirac’s equation itself when one considers the Higgs fermions hψ  rather than the 
seed fermions ψ  to be the observable fermions. 
 
 Before concluding this section, it has already been noted that (6.17) may now be used to 
place the revealed fermion mass m throughout the earlier relationships developed in this paper.  
Let us now explicitly do this for four particularly noteworthy cases.  First, we return to (3.4) in 
which we first defined mass parameter μ .   With mμ → −  may rewrite this as: 
 

( )( ) ( )22 2 2 2 2 2 2, , 2m m e e m e e m e e m me e eμ
μρ ρ φ φ φ φ φ≡ = − − − − − + = − − − = + + −A A A A .(6.21) 

 
This may now be used to write down an “apples-to-apples” relationship to the relativistic 
mass/energy relationship (3.2), namely: 
 

( ) ( )2 22 2 2 2 2 22m E e e m me e eφ φ φ= + − + = + + −p A A . (6.22) 
 
Expanding the latter two expressions then reducing with some parenthetical emphasis of 
corresponding terms leaves us with the relativistic relationship: 
 
( ) ( ) ( )2 2 22 2E Ee e m meφ φ− + − = +p p A . (6.23) 
 
In the rest frame E m= , 0=p  this reduces to the identity  2 22 2m me m meφ φ+ = + , with 

2 2 2E m− →p  and E mφ φ− →pA .  This displays how the momentum four-vector ( ),p Eμ = p  

and the potential four vector ( ),Aμ φ= A  both Lorentz transform in a proper manner. 
 
 Second, we return to (3.6) which in light of mμ → −   from (6.17) now becomes: 
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2 2

21 1ee m
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φ
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A
m  (6.24) 

 
We continue to defer making a choice of sign from the quadratic solution until we can do so with 
experimental data comparisons.  But in light of (6.24) a negative sign will necessarily yield a 

0φ <  in all cases while a positive sign will produce 0φ >  so long as A is real and not imaginary. 
 

Third, we can now rewrite (6.17) as: 
 

2 2 2 22e me eφ φ= +A , (6.25) 
 
which is the quadratic in eφ  for which (6.24) is the solution.  This is also (3.5) with mμ → − . 
 
 Finally, we return to the seed fermions (4.21) and use mμ → −  to rewrite those as: 
 

( )
( )

0 0 0
( )

( )0

;

s i i
s

i i
s

s

i x i xm m m m em
m

e
σ σ

σ σπ π
χ σ π χψ π ϕ π πσ π χ χπ

− −
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦−⎣ ⎦

, (6.26) 

 
 Now we turn to the magnetic moments. 
 
7. Development of the Magnetic Moment Term in the Potential Portion V 
of the Lagrangian Density, and the Emergence of the Maxwell Equation Field 
Terms 
 
 It was mentioned in the last section that the anticommutator term A which was defined in 
(6.6) contains a magnetic moment, which term A enters the at rest Lagrangian density (6.19) as 

part of the term ( )2
2

fme Aλ− +A .  Specifically, in (6.6) which is for ( ),0,p pL , we 

uncovered an anticommutator term: 
 
{ } ( )( ) ( )( ) ( )( ) ( )( ),i i j j i i j j j j i i i j i j i j i jA A A A Aσ π φσ σ π φσ φσ σ π σ σ π φ σ σ φ π= + = + . (7.1) 
 
We now develop this.  This discussion is of interest in its own right, but it will illustrate two 
broader aspects of fermion Higgs theory which are of even more consequence than the term in 
(7.1): first, how terms such as the magnetic moment arises out of a variety of commutation 
relationships and second, closely related, how time and space dependencies in observed physics 
are revealed not ab initio, but via Heisenberg-type commutations.  We shall also see where non-
Abelian Yang-Mills theory such as that of strong and weak interactions comes into play.  
 
 We first observe that i i i i i ip eA iD i eAπ = + ⇔ = ∂ +  contains i ip i i= ⇔ ∂ = ∇p  which is 
the gradient operator.  Thus, we must pay close attention to how this operator is commuted.  
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And, when we “multiply” something else with this operator, for example, when we take 
( )i jp Aφ , we do not just multiply as if it is an ordinary number, but rather, we apply it via a 

product rule just as we would for i∂ .  Therefore, ( )i j i j i jp A p A p Aφ φ φ= + , and not

( )i j i jp A p Aφ φ= .  The latter would only be a correct equality if ip  was an ordinary vector 

without the character of a gradient.  Similarly, from the right, ( )i j i j j iA p A p p Aφ φ φ= + , and not 

( )i j i jA p A pφ φ= .  As a result, the careful, precise and correct way to develop (7.1) via 
i i ip eAπ = +  is to write:  

 
{ } ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
( ) ( )
( )

,

2

i i j j i i j j j j i i i j i j i j i j

i j i i j i j i j j

i j i j i j i j i j i j j i i j

i j i j i j i j j i i j

A A A A A

p eA A A p eA

p A p A e A A A p p A e A A

p A A p p A p A e A A

σ π φσ σ π φσ φσ σ π σ σ π φ σ σ φ π

σ σ φ σ σ φ

σ σ φ φ φ σ σ φ φ φ

σ σ φ φ φ φ φ

= + = +

= + + +

= + + + + +

= + + + +

. (7.2) 

 
 Now we make use of the mathematical identity (see, e.g., [18] page 54): 
 

i j ij ijk kiσ σ δ ε σ= +   (7.3) 
  
where ijkε  is the totally-antisymmetric Levi-Civita tensor in a 123 1ε =  basis, to advance (7.2) to: 
 
{ } ( )( )

( )
( )2

, 2

2 2

2 2

i i j j i j i j i j j i i j

i i i i i i i i i i i j i j i j j i i j

i j i j i

ij ijk k

ijk k

ijk k j j i i j

A p A A p p A p A e A A

p A A p p A p A e A A p A A p p A p A e A A

e p A A p p A p A

i

i e A

i

A

σ π φσ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ

φ φ

δ

φ φ φ φ φ φ φ φ

ε σ

ε σ

ε σ

= + + + +

= + + + + + + + + +

= ⋅ + ⋅ + ⋅ + ⋅ + + + + + +

+

p A A p p A p A A

.(7.4) 

 
The term we now focus upon is the one with the leading factor ijk kiε σ .  This has three 

parts.  It is easily shown that ( ) 0i jijk k A Aε σ = ⋅ × =A Aσ  by identity, but only if we assume that 

the gauge fields commute according to , 0A Aμ ν⎡ ⎤ =⎣ ⎦ .  If they are non-commuting which is the 

hallmark of non-Abelian Yang-Mills theory, i.e., if , 0A Aμ ν⎡ ⎤ ≠⎣ ⎦ , then 0iijk k jA Aε σ ≠ , and this 
is where one would embark upon the Yang-Mills version of all that is being developed here.  To 
keep things relatively simple, we shall set 0iijk k jA Aε σ =  here and so remain focused on Abelian 
gauge theories such as electrodynamics.   But, it is important to be aware that non-Abelian gauge 
theory naturally emerges from this development as well, in this way. 

 
Abelian or non-Abelian, the other two parts of (7.4) are not zero, and are of great interest.  

Consolidated with ,j k j k k jp A p A A p⎡ ⎤ ≡ −⎣ ⎦  and ,i i ip p pφ φ φ⎡ ⎤ ≡ −⎣ ⎦ , it is readily shown that: 
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( )
( )
( )
( )

2 3 3 2 2 3 3 2

3 1 1 3 3 1 1 3

1 2 2 1 1 2

1

2

23 1

2

, , , ,

, , , ,

, , , ,

i j i jijk ik i j j i jp A A p p A p A e A A

p A p A p A p A

p A p A p A p A

i

p A p A A A

i

p p

i

i

φ φ φ φ φε σ

σ

σ

σ

φ φ φ φ

φ φ φ φ

φ φ φ φ

+ + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (7.5) 

 
We now have two fields ( )xφ  and ( )kA x  commuting with the canonical momentum ip .  

Thus, we may employ the commutator relationships ,i ip iφ φ⎡ ⎤ = − ∂⎣ ⎦  and ,i j i jp A i A⎡ ⎤ = − ∂⎣ ⎦ , see, 
e.g., [18] just after (2.164) to reduce (7.5) to: 
 

( )
( )( )
( )( )
( )( )

( ) ( )

1 2 33 2

1 3

2 3 3 2

2 3 1 3 1 1 3

3 1 2 1 22 1 2 1

1
2

2ijk k

ijk j ijk j

i j i j i j j i i j

i ii i i k i ijk j k i k i ijk jk

ijk iji k i

p A A p p A p A e A A

A A

A A

A A

i

A A

A A

A A

A A A F

A B

ε σ

σ φ φ

σ φ φ

σ φ φ

ε φ ε

φ φ φ φ φ

φ

φ

φ

σ φ φσ σ φσ ε σ φσ ε

ε φσ φσ

φ

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂

+ + + +

= − + −

+ −

∂

+ −

+ − + −

= −∇ × + −∇× = + ∂ = +

= − =

A A

σ ( ) ( )/ tφ φ φ⋅ −∇ × − ⋅ = ⋅ + ∂ ∂ − ⋅A B E A Bσ σ σ

. (7.6) 

 
In the above, we have made use of ( )i ijk kj Aφ ε φ−∇ × ≡ ∂A , ( )i ijk j kAε−∇× = ∂A , and
1
2

ijk jk ijk j kF Aε ε= ∂  where F A Aμν μ ν ν μ= ∂ − ∂  is the electromagnetic field strength tensor and 
1
2

i ijk jkB Fε= = −B  is the magnetic field vector, and 0 0 0 /i i i iE F A A tφ= = = ∂ −∂ = −∇ −∂ ∂E A  

where E is the electric field vector.  (Keep in mind that ( ) ( )0 1 2 3 3, , , , , ,t x yμ∂ ≡ ∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂  is 

defined in covariant (lower index) form so that ( ) ( )0 1 2 3, , , , , ,t x y zμ∂ = ∂ ∂ ∂ ∂ = ∂ −∂ −∂ −∂ , which 

accounts for the minus sign in −∇  via raising with ( ) ( )diag 1, 1, 1, 1μνη = − − − .) 
 
 Now we see a specific instance (the first of what will be several) of what we introduced 
in the discussion leading to (4.6) and again prior to (4.9) when we said that space and time 
dependencies which we observe in the physical universe are not those which appear in a 
Lagrangian such as ( )i eAψ μ ψ/∂/ + −L =  but rather are those space and time dependencies that 
arise out of quantum mechanical Heisenberg commutations.  Keep in mind the progression of 
development: in (4.7) and (4.8) we began to use a kinetic Fourier kernel i xe

σ
σπ−  containing 

p p eAσ σ σ σπ→ ≡ +  to solve Dirac’s equation and obtain the free spinor solutions along 
geodesics in the curved gauge space for ( ) 0iD μ ψ/ − =  in which D ieAσ σ σ σ∂ → ≡ ∂ − .  But to 
do so, the gauge fields Aσ  had to “check at the door” any explicit time dependency which they 
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may have had.  So as these Aσ appear in (4.19), and (4.21) to (4.23), these Aσ  have no explicit 
time or space dependency except insofar as they might acquire such dependency via a 
commutation such as ,i ip iφ φ⎡ ⎤ = − ∂⎣ ⎦  or ,i j i jp A i A⎡ ⎤ = − ∂⎣ ⎦  with a canonical momentum.   
 

Now, in (7.6), that is exactly what has happened!  The field strength tensor 
F A Aμν μ ν ν μ= ∂ − ∂  contains both the time and space dependency of the gauge field, and was 
“revealed” in (7.6) because of the commutation relationships which presented themselves in 
(7.5).  So while the gauge fields had “checked at the door” their time and space dependencies 
when they entered the spinors of section 4, they now retrieve these time and space dependencies 
on the way back out the door because of a canonical commutation.  And not only are these time 
and space dependencies retrieved at the door, but they show up in the form of a ⋅Bσ  term which 
is a magnetic moment term which contains a magnetic field = ∇×B A  which involves the curl (a 
spatial dependency) of the gauge field vector potential A.  And they further show up in the form 
of a / tφ−∇ = + ∂ ∂E A  which is the gradient of the scalar potential and which is equal to the 
electric field plus a time-dependency of the gauge field A. 
 
 So not only does the anticommutator { },i i j jAσ π φσ  found in (9.6) contain a magnetic 
moment term, which we now see is of the form φ− ⋅Bσ , but it also implicitly embeds both the 
electric and magnetic fields because of the commutation relationships that it produces.  In the 
subsequent development of the kinetic terms in the Lagrangian density, staring in section 9, we 
will uncover not only electric and magnetic fields from the time and space-dependencies of the 
gauge fields, but will further uncover the time and space dependencies of the electric and 
magnetic fields themselves in the explicit forms ∇⋅E , ∇×E  and ∇×B  as they appear in three 
of the four Maxwell equations, and in the form of the magnetic moment term ⋅Bσ  in lieu of the 
fourth Maxwell equation 0∇⋅ =B .  And this fourth equation 0∇⋅ =B  only because we chose 
not to pursue Yang-Mills theory by setting 0iijk k jA Aε σ =  at (7.3).  As is well known and as the 
author has developed in several other papers [19], [20], [21], [22], 0∇⋅ ≠B  in Yang-Mills 
theory, magnetic monopoles do exist, and these Yang-Mills monopole can be used to understand 
not only QCD, but the very existence of baryons including protons and neutrons, and to explain 
the proton and neutron masses and nuclear binding energies. 
 
 For the moment, however, let us continue on, using (7.6) in (7.4) to yield the complete 
anticommutator: 
 
{ } ( )( )

( )
( )

2

2

, 2

2
2

/2

ij ijk k

ijk

i i j j i j i j i j j i i j

i i i i i i i i i i i k ij i

A p A A p p A p A e A A

p A A p p A p

i

A e A A A B
e

e t

σ π φσ φ φ φ φ φ

φ φ φ φ φ σ φσ
φ φ φ φ φ φ φ

φ

δ ε σ

ε

φ φ φ φ φ

φ

= + + + +

= + + + + + −

= ⋅ + ⋅ + ⋅ + ⋅ + + ⋅ −∇ × − ⋅

= ⋅ + ⋅ + ⋅

+

∂

∂+ ⋅ + + ⋅ + − ⋅∂

p A A p p A p A A A B

p A A p p A p A A E A B

σ σ

σ σ

. (7.7) 

 
We then insert (7.7) into the anticommutator term A defined in (6.6) along with mμ → −  from 
(6.17), and apply ( ) ( ) 1Ts sχ χ =  where possible to obtain: 
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( ) ( )

( )2
)

20

( ) (

0

1 2
2

,

2

,

1

0
f

T ijk j

i i i i i i i i i i

s i k i i s

f

mA p A A p p A p A e A A
m

m A B

ep p

m
e

λ φ

ε

φ φ φ φ φ
π

χ σ φσ χ
π

φ
λ φ

= − + + +

−
∂

+
−

− −

A

A

. (7.8) 

 
Using 0 E eπ φ= +  , in the rest frame p=0 thus E m=  thus 0 m eπ φ− = , this becomes greatly 
simplified down to: 
 

( ) ( )2 ( ) ( )

2

1 1 1 1
2

,0, , 0 T ijk js i k i

f

i s

f

A p p m e m A Bχ σ φσ χ
φ

ε φ
λ λ

= − −= −∂A
A

p . (7.9) 

 
Next we use this in the rest frame Lagrangian density (6.19). Two terms cancel 

identically via 22me me− AA , and fλ  drops out via the / 1f fλ λ = .  We factor out the 
lead coefficient, an overall negative sign washes out in the square, and we then obtain: 

 
( ) ( ) ( ) ( )

( )( )

3
1.5 1.5 4

3 3

1.5 1.5 1.5 1.5

2 2
( ) ( )

2 2

,0, , 0

1 11 2 4
2 2

1
4

T is i k ijk j s

h p p T h V h

h h v h h v v v

h h
mhm v v m

v v

m A

h

B

m

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ
ψ ψ

π

χ σ φ χ
φ

π π π

ε φ

+ + + +

+ +
+ +

= = = −

= + + +/ / / /

⎛ ⎞
− − − + −⎜ ⎟⎜ ⎟

−

⎝ ⎠

∂ −
A

pL L

. (7.10) 

 

 A second order magnetic moment term ( ) ( )2 2i iBσ = ⋅Bσ  has explicitly entered through 

the potential terms ( )V hψ , as well as the electric field via /j tφ φ∂ = −∇ = + ∂ ∂E A .  Depending 
on circumstance, we can recast (7.10) using the equivalent formulations: 
 
( ) ( ) ( )/i kijk ij A B tφ φ φ φ φεσ − = ⋅ −∇ ×∂ ∂⋅ = ⋅ − ⋅∂− + AA B E Bσ σ σ σ . (7.11) 

 
 The discussion so far has been centered in the potential sector V (3.11) of the Lagrangian 
(3.9).  Now, we move over to focus on the kinetic sector T (3.10), and with it, an exploration of 
magnetic moments. 
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PART II: REVEALING FERMION MAGNETIC MOMENTS, AND THE 
RENORMALIZATION OF FERMION MASSES – LAGRANGIAN 
KINETICS 
 
8. Gordon Decomposition of the “Seed Fermion” Electric Current Density 
 

It is well-known that Dirac’s equation predicts a gyromagnetic g-factor 2g =  unless 
supplemented by the work of Schwinger [23] and others who have calculated the one-loop and 
higher anomalous corrections to this magnetic moment.  By calculating higher-order loops, one 
finds an explanation for the deviation of the observed g-factor 2.00231930436153g =  [24] from 
Dirac’s 2g = .  However, it will also be recognized in the present context that the Dirac equation 
for a seed fermion ψ  in the form of ( ) 0iD m ψ/ − =  is the equation from which one obtains the 
result 2g = .  If, however, ψ  is not an observed fermion, and if the observed fermion is in fact 
the Higgs field hψ  which expands ψ  about the vacuum (just as h but not φ  is observed in the 
Higgs theory of scalars), then one might also supplement the loop approach by also 
understanding the observed 2.00231930436153g =  to be the g-factor for the observed Higgs 
field hψ , with 2g =  being the g-factor of the unobserved seed field ψ .   

 
To begin a detailed exploration of the magnetic moment of the Higgs fermions hψ , it will 

be helpful to review the Gordon decomposition.  In the same way that the Lagrangian density 
term mψψ−  guided us in section 6 to look for terms with h hψ ψ , we will use the Gordon 
decomposition to provide guidance as to how to look for the g-factor of the Higgs fermions.  
Mathematically, the heart of the Gordon decomposition is the identity iμ ν μν μνγ γ η σ= −  which 
is easily obtained by combining the definitions 2 μν μ ν ν μη γ γ γ γ≡ +  and 2i μν μ ν ν μσ γ γ γ γ− ≡ − .  
As to the space components of this identity iμ ν μν μνγ γ η σ= − , it is easily shown in the Dirac 
representation of the iγ  that i j i jγ γ σ σ= − .  Therefore, given that the group structure 
relationship for the Pauli matrices is 1

2 ,i j ijk kiσ σ ε σ⎡ ⎤ =⎣ ⎦  with 1ijkε ≡ + , it is also easily shown 

that ij ijk ki iσ ε σ− = − .  And of course, ij ijη δ= −  with ( ) ( )diag 1, 1, 1, 1μνη = − − − .  Therefore, the 

spacetime identity iμ ν μν μνγ γ η σ= − leads directly to the (negative of) the space-only identity
i j ij ijk kiσ σ δ ε σ= + .  This of course, is (7.3) which we already used to develop the magnetic 

moment terms in the last section, so in fact we have already done a Gordon decomposition to 
reveal the magnetic moment term φ− ⋅Bσ  which first appeared in (7.6) along with other terms 
for the time-dependency of the gauge field. 

 
With this background, let us approach the Gordon decomposition using 
 

( )2fi e Aμ μ
μ μψγ ψ ψγ ψ μψψ λ ψψ= ∂ + − −L , (8.1) 
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which is our original (3.8) to which we appended the ( )2fλ ψψ−  term in (3.9).  The mass 

parameter μ  was first defined in (3.4) and later developed into ( )21
2 / 0m e φ φ μ= − = − >A  in 

(6.17).  The Dirac equation corresponding to the first three terms in (8.1) is 
0i e Aμ μ

μ μγ ψ γ ψ μψ∂ + − = , and the related adjoint equation is 0i e Aμ μ
μ μψγ ψγ μψ∂ + + = .  

We then take this pair of equations and rewrite them for a free field ( 0Aμ =  ) as: 
 

( )
( )

1 1
2 2

1 1
2 2

i

i

μ
μμ

μ
μμ

γ ψ ψ

ψγ ψ

⎧ ∂ =⎪
⎨
− ∂ =⎪⎩

. (8.2) 

 
We then use the identity iμ ν μν μνγ γ η σ= −  just discussed while multiplying the first equation 
from the left by νψγ  and the second equation from the right by νγ ψ  to obtain: 
 

( ) ( )( )
( ) ( )( )

1 1 1 1
2 2 2 2 2

1 1 1 1
2 2 2 2 2

        i

i

i i i

i i i

ν μ μν νμ ν μν ν
μ μ μμ μ μ μ

μ ν νμ μν ν μν ν
μ μ μμ μ μ μ

ψγ γ ψ ψ η σ ψ ψ ψ ψσ ψ ψγ ψ

ψγ γ ψ ψ η σ ψ ψψ ψσ ψ ψγ ψ

⎧ ∂ = − ∂ = ∂ − ∂ =⎪
⎨
− ∂ = − ∂ − = − ∂ − ∂ =⎪⎩

. (8.3) 

 
Then, combining, we arrive at the Gordon decomposition: 
 

( ) ( )1
2 2 2
i gν ν ν μν

μψγ ψ ψ ψ ψψ ψσ ψ
μ μ

= ∂ − ∂ − ∂ . (8.4) 

 
where we have also inserted / 2 1g =  in the appropriate position, knowing that with the spin 

defined as 1
2

μσ μσσ≡S ,  the coefficients of ( ) ( ) ( ) ( )1/ 2 2 1/ 2μσ μσ
σ σμ ψσ ψ μ ψ ψ∂ = ∂ S  represent 

/ 2g  and g, respectively, see [18], eq. [9.138].  We now use this to replace the current density 
J eμ μψγ ψ=  in (8.1) and so write: 
 

( ) ( ) ( )22 2 2 f
e g ei i A A T Vμ μ μσ

μ μ μ σ μψγ ψ ψ ψ ψψ ψσ ψ μψψ λ ψψ
μ μ

= ∂ + ∂ − ∂ + ∂ − − = −L , (8.5) 

 
As noted just before (8.1), ij ijk kσ ε σ= , so in three space dimensions the spin matrix is 
1 1
2 2

ij ij ijk k ijk kσ ε σ ε= = =S S .  There are now three main kinetic terms in the Lagrangian density.  

First is i μ
μψγ ψ∂  for the translational motion of the electron.  This will generally go to zero at 

rest.  Second is ( )( )/ 2i e μ μμ ψ ψ ψψ∂ −∂  which is the convection current and contains any 

orbital angular momentum associated with the electron.  Third is ( ) ( )/ 2e Aμσ
σ μμ ψσ ψ∂  which 

is for the magnetic moment.   
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The fact that / 2 1g =  in (8.5) is what leads us to state that Dirac’s equation predicts a g-
factor 2g = .  The fact that the observed g-factors are somewhat “north” of 2 by a small amount 
was first thought to be an “anomaly,” but was then explained by Schwinger [23] followed by 
others as resulting from loop diagrams at various orders.  But (8.5) is for “seed” fermions.  If the 
observed fermions are Higgs fields expanded about the vacuum as developed for the mass terms 
in Part I, then the observed g-factor should be found in the coefficient – not of a term 

( )μσ
σ ψσ ψ∂  which contains the seed fields as in (8.5) – but of a like-term that contains the 

Higgs fermions hψ .  One may also anticipate that such a term for the Higgs fields will reveal the 
“anomaly” to actually be an inherent feature of Dirac’s equation, which then maps over to the 
usual high-loop approaches in an orderly manner and may help at the same time to gain a better 
handle on renormalization issues. 
 
 The next few steps from (8.5) are relatively basic, but they need to be done carefully so 
we take them step by step.  First, focusing on the kinetic terms T while applying the result (6.17) 
to set mμ = − , we write: 
 

( ) ( )2 2 2
e g eT i i A A
m m

μ μ μσ
μ μ μ σ μψγ ψ ψ ψ ψψ ψσ ψ= ∂ − ∂ − ∂ − ∂ . (8.6) 

 
Keeping / 2 1g =  as a “placeholder,” we first separate the space and time components as such: 
 

( ) ( )
( ) ( )

0 0
0 0 0

0
0

2 2

2 2 2 2

k k
k k k

k
k

e eT i i i A i A
m m

g e g eA A
m m

μ μ
μ μ

ψγ ψ ψγ ψ ψ ψ ψψ ψ ψ ψψ

ψσ ψ ψσ ψ

= ∂ + ∂ − ∂ − ∂ − ∂ − ∂

− ∂ − ∂
. (8.7) 

 
Next we convert (8.7) into momentum space with ( )pψ  and ( )pψ ′  where as earlier at the start 

of section 6, p p qμ μ μ′ = + .  For the moment, therefore, we will consider ( ), ,T p q p q+ .   This 

means that we use apply the product rule and then use i pμ μψ ψ∂ = , i pμ μψ ψ′∂ = −  and then raise 

all indexes with ( ) ( )diag 1, 1, 1, 1μνη = − − −  to arrive at: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0 0

0 0 0 0

, ,
2 2

2 2 2 2 2 2 2 2

k k k k k

k k k k

e eT p q p q p p p p A p p A
m m

g e g e g e g eip A ip A ip A ip A
m m m m

μ μ μ μ
μ μ μ μ

ψγ ψ ψγ ψ ψ ψ ψψ ψ ψ ψψ

ψσ ψ ψσ ψ ψσ ψ ψσ ψ

′ ′+ = − − + + +

′ ′− + + −
.(8.8) 

 
Finally, we fully separate Aμν

μσ  into its time and space component and the raise the index on 
the components of Aμ .  In the process we lose two terms because of 00 0σ = .  We now obtain: 
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( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

0 0 0 0 0

0 0 0 0

0 0 0 0

, ,
2 2

2 2 2 2

2 2 2 2 2 2 2 2

k k k k k

j j j j

k k k jk j k k jk k j

e eT p q p q p p p p A p p A
m m

g e g eip A ip A
m m

g e g e g e g eip A ip A ip A ip A
m m m m

ψγ ψ ψγ ψ ψ ψ ψψ ψ ψ ψψ

ψσ ψ ψσ ψ

ψσ ψ ψσ ψ ψσ ψ ψσ ψ

′ ′+ = − − + + +

′+ −

′ ′+ − − +

. (8.9) 

 
 Now, in the bottom line of (8.8), using the Feynman slash notation A Aμ μγ/ ≡ , we have 

terms of the general form 1 1
2 2, ,A i A i Aμν μ ν ν

μ μσ γ γ γ⎡ ⎤ ⎡ ⎤/= =⎣ ⎦ ⎣ ⎦ .  The point is that μνσ is an 
“anchor” which holds the commutation position of Aμ .  At the same time we have terms of the 

form p ν μνσ′  whereby p′  enters to the left of μνσ  and thus to the left of Aμ , and of pμν νσ
whereby p  enters to the right of μνσ  and thus to the right of Aμ .  Carefully maintaining this 

ordering among p , p′  and Aμ , we “pin” the Aμ  immediately to the right of μνσ  and keep the 

p , p′    in their order relative to μνσ , to restructure (8.9) into: 
 

( ) ( ) ( )

{ }

0 0 0 0 0

0 0 0 0 0 0 0 0

, ,
2 2

2 2

k k k k k

j j j j k k k k k jk j jk j k

e eT p q p q p p p p A p p A
m m

g ei p A A p p A A p p A A p
m

ψγ ψ ψγ ψ ψ ψ ψ ψ

ψ σ σ ψ ψ σ σ ψ ψ σ σ ψ

′ ′+ = − − + + +

′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.(8.10) 

 
Note in the above that we write ( )p pμ μψ ψ′ +  with p pμ μ′ +  between the fermion 

wavefunctions recognizing that p μ′  operates on (and is to the right of) ψ  and pμ  operates on 
(and is to the left of) ψ .  This is pertinent to being able to identify the orbital angular momentum 
via commutator relationship [ ] ( ),H i= − ×L pα , which we review in section 15.  Finally, we are 

ready to take the p p′=  and 0q =  limit to obtain the ( ),0,T p p  which aligns with the Ward 
identity.  We also now move the μνσ  to the left of each expression in which it appears to 
emphasize the commutator of pμ  and Aμ .  This turns (8.10) into: 
 

( ) ( )

{ }

0 0 0 0

0 0 0 0

, 0,

, , ,
2 2

k k k k

j j k k jk k j

eT p p p p p A p A
m

g ei p A p A p A
m

ψγ ψ ψγ ψ ψ ψ

ψσ ψ ψσ ψ ψσ ψ

= − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (8.11) 

 
Had we not been concerned to take special care of the ordering of pμ  and Aμ , which is to say if 
one treated the commutator ,p Aμ ν⎡ ⎤⎣ ⎦  as if it was zero, then the entire bottom line of (8.11) 
would go to zero by virtue of taking 0p p′ − = .  But with the commutators, we still have a non-
zero expression, and this is the place from which the magnetic moment arises together with the 
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time-dependencies of the electric and magnetic fields to reveal Maxwell’s equations amidst the 
Dirac equation. 
 
 Specifically, with 0A φ= , we once again apply ,i ip iφ φ⎡ ⎤ = − ∂⎣ ⎦  and ,i j i jp A i A⎡ ⎤ = − ∂⎣ ⎦  

which we used to arrive at (7.6).  Further, with 0p E=  and H Eψ ψ=  where H is the 
Hamiltonian operator, we apply the Heisenberg picture equation of motion 0 ,j jA i H A⎡ ⎤∂ = ⎣ ⎦  for 

an jA  which as noted following (4.21) has no ab initio time dependency but acquires a time 
dependency exclusively from its commutation with the Hamiltonian.  With some index renaming 
this turns (8.11) into: 
 

( ) ( )

( )

0 0 0

0

0

0 0

, 0,

2 2

k k k k

i i i ij i ji

eT p p p p p A p A
m

e g
m

A A

ψγ ψ ψγ ψ ψ ψ

ψσ ψ ψσ ψ φ ψσ ψ

= − − −

+ + ∂ + ∂∂
. (8.12) 

 
We now have a first appearance of various terms Aμ ν∂  which are of course related to the 
electromagnetic field strength F A Aμν μ ν ν μ= ∂ − ∂ , and they contain time and space 
dependencies of the gauge fields Aμ  which are revealed simply from the commutators found 
through a careful dissection of Dirac’s equation. 
 
 Now let’s work with μνσ .  From ( )1

2 iμν μ ν ν μσ γ γ γ γ= −  as well as the SU(2) group 

structure relation , 2j i jik kiσ σ ε σ⎡ ⎤ =⎣ ⎦  it is straightforward to use the Dirac μγ  in the Dirac 
representation in customary manner to deduce that: 
 

0 0 0
;

0 0

i k
i i ij ijk ijk k

i k
i i

σ σσ α σ ε ε
σ σ
⎛ ⎞ ⎛ ⎞

= ≡ = ≡ Σ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (8.13) 

 
We then may use these to write (8.12) as: 
 

( ) ( )

( )( )0

0 0 0 0, 0,

2 2

i i i i

i i iji k k i j

eT p p p p p A p A
m

g e i A
m

A

ψγ ψ ψγ ψ ψ ψ

ψα ψ φ ε ψ ψ

= − − −

+ ∂ − + Σ ∂∂
. (8.14) 

 
Now we may explicitly show the components of the electric and magnetic fields.  Specifically, 
one uses the space components of F A Aμν μ ν ν μ= ∂ − ∂  as well as 1

2
k ijk ijB Fε− =  to show that 

1
2

ijk i j ijk ij kBA Fε ε = −∂ = .  Additionally, reverting 0Aφ → , we have 0 0 0i i i iF A A E= ∂ − ∂ = .  So 
with this (8.14) becomes: 
 

( ) ( ) ( )0 0 0 0, 0,
2 2

i i i i i i i ie g eT p p p p p A p A i E
m

B
m

ψγ ψ ψγ ψ ψ ψ ψα ψ ψ ψ= − − − + − Σ . (8.15) 
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The magnetic moment term thus shows up explicitly in the form ( )( )/ 2 / 2 k kg e m Bψ ψ− Σ .  In 
2x2 Dirac component form using (8.13), this becomes:   
 

( ) ( ) ( )

( )

0 0 0 0

0 0 0 0

, 0,
2 2

2 2

i i i i i i ii

i i i
i i i i

i

i

ii i

e g eT p p p p p A p A i E
m m

i Ee g ep p p A p A
m m i BE

B

B

ψγ ψ ψγ ψ ψ ψ ψ α ψ

σ σψγ ψ ψγ ψ ψ ψ ψ ψ
σ σ

= − − − + − Σ

⎛ ⎞−
= − − − + ⎜ ⎟−⎝ ⎠

. (8.16) 

 
So ( )( ) ( )( )/ 2 / 2 1 / 2k kk kBm Bg e e mψ ψ ψ ψ− Σ = − Σ  is yet another way of saying that in Dirac 
theory for a seed field ψ , the g-factor 2g = .   
 

Now we are ready to expand this about the fermion vacuum via ( ) ( )1.5
fx v h xψ ′≡ + and 

( ) ( )1.5
fx v h xψ ′≡ +  of (4.17) and (4.18) to obtain the observed Higgs fermions fh  particularly 

the like term ( )i i i ih i E hBψ ψα −Σ  rather than ( )i i i ii E Bψ α ψ−Σ , and to see what then happens to 

the g-factor.  Via (4.17) and (4.18), we may “dissect” the desired term ( )i i i ih i E hBψ ψα −Σ  into: 
 

( ) ( )( )( )
( ) ( ) ( ) ( )

1.5 1.5

1.5 1.5 1.5 1.5

i i i i i i

i i i

i

i i i i i i

i

i i i ii i i

h i E h v i E v

i E v i

B B

B E v v i E i E vB B B

ψ ψα ψ α ψ

ψ α ψ α α ψ ψ α

+ +

+ + + +

′ ′− Σ = − −Σ −

′ ′ ′= −Σ + −Σ − −Σ − −Σ
. (8.17) 

 
There are very similar in form to the terms 1.5 1.5v h h vψ ψ+ +′ ′+  studied in section 6 and to 

1.5 1.5 1.5 1.5 3v v v v v+ + + + +′ ′ = =  developed in section 4, but for the sandwiched term ( )i i i iBi Eα −Σ .  In 

section 9 we develop ( )i i i ii E Bψ α ψ−Σ .  In section 10 we develop ( )1.5 1.5i i i iBv i E vα+ +′−Σ .  In 

section 11 we develop ( ) ( )1.5 1.5i ii i i i i iv i E i E vB Bα ψ ψ α+ +′ ′−Σ + −Σ .  In section 12 we put 
everything together to identify the g-factor (there are really three different g-factors) associated 
with ( )i i i ih i E hBψ ψα −Σ .  In section 13 we use these results for empirical predictions. 
 
9. Magnetic Moments of Seed Fermions 
 
 To develop ( )i i i ii E Bψ α ψ−Σ  we first make use of the fermion particle (positive energy) 

wavefunction ψ  from (6.26) and its adjoint † 0ψ ψ γ=  under the ( ),0,p p  condition of the Ward 
identity.  For the magnetic moment term in (8.16), this gives us: 
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( )

( )

( )

( )

0 ( ) ( )
0 ( )

0

( ) ( ) ( ) ( )
0 0

0

2 2 2 2

2 2

2 2

j
i

j

s
ji i

T s T s k k
j s

i

j j j
i i i

j j j

j j j

j

i k k
T s j s T s j

j

j sj

T

j

B
B

B

B
m

m B
m

B

i Eg e g ei E
m m i E

i Eg em

B
m mm

i E

g em

i

σ σψ α ψ ψ ψ
σ σ

σ σ
σ

χ
σ ππ χ χ σ ππ χ

π
σ π σ πχ χ χ χ
π π

χ

σ

σ σ
π

⎡ ⎤
⎡ ⎤ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢

⎛ ⎞−
+ −Σ = + ⎜ ⎟−⎝ ⎠

⎛

⎥−⎣ ⎦

+
−

⎞−
= + ⎜ ⎟−⎝ ⎠

−
= +

+

−−
( ) ( ) ( ) ( )

0 0

k k i
j j j

i
s js T s si

m m
E Eσ π σ πχ χ χ
π π

σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
− −

, (9.1) 

 
Now let’s develop this expression. Using standard rearrangement, being careful not to alter the 
position of i i ip eAπ = +  which contains a momentum ip , and segregating the iσ  out front 
following some index renaming while carefully maintaining their indexed ordering, we obtain: 
 

( )

( )( ) ( )
2( ) 0 ( ) ( )

( ) ( )
0

2 2 2 2

2 2

j
i

j

T s s i k i j k s

T s j j i s

j j j
i i i

j j j

j

i i j

i Eg e g ei E
m m i E

g em i E E

B
B

B

m B

m

χ π

σ σψ α ψ ψ ψ

χ σ σ π π χ
χ σ π π χσ

π

σ σ

σ

⎛ ⎞−
+ −Σ = + ⎜ ⎟−⎝ ⎠

⎛ ⎞⋅ +⎜ ⎟= + +⎜ ⎟
⎜ ⎟
⎝

−
−

−
⎠

− Bσ .(9.2) 

 
 Now we turn once again to the identity i j ij ijk kiσ σ δ ε σ= +  which is a corollary of 

iμ ν μν μνγ γ η σ= −  as summarized prior to (8.1).  This means that using i i ip eAπ = + , 
( ) ( ) 1T s sχ χ =  and 0,i iAE⎡ ⎤ =⎣ ⎦  thus ( ) 0ijk jk i jiAE A Eε σ − = , the latter term in (9.2) becomes: 

 
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

, ,

i i j i i ijk k i j

i i i i ijk k i j i j

i ij

T s j j i s i i T s j i s

i i i i T s j i j i s

i k k j

i i

T s i s

T s jk i si k j

p p eA eA p p eA eA

i p p

i E E i E E E E

i E E E E E E E E

E E

E i E

χ σ π π χ π π χ π π χ

χ χ

χ χ

χ

σ ε σ

ε σ

ε σ

ε σ χ

= −

= −

⎡ ⎤ ⎡ ⎤

− − −

− + − − + −

−

−

= +⎣ ⎦ ⎣ ⎦
= ∂ − ∂

. (9.3) 

 
Above, we have now used the commutator ,i j i jp E i E⎡ ⎤ = − ∂⎣ ⎦ , which actually starts to unfold 
terms from the electric and magnetic current densities of Maxwell’s equations.  This is yet 
another example of a space-dependency – this time for the electric field E – remerging through a 
Heisenberg-type commutation relationship with canonical momentum.  Specifically, starting 
with J Fμ σμ

σ= ∂  , we have 0 0i i i i
i iJ F E Eρ ≡ = ∂ = ∂ = −∂ = ∇ ⋅E .  Additionally, with 
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i
i∇ = ∂ = −∂  hence ( )kijk i jEε ∂ = −∇×E , the ijk k i ji Eε σ ∂  term evaluates out to 

( )kijk k i j ki E iε σ σ∂ = −∇×E .  Thus, we consolidate (9.3) into: 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )/T s j j i s T si i s T s sji E E i i i tχ σ π π χ χ χ χ χσ ρ=∇⋅ + ⋅ ∇× = − ⋅− ∂ ∂E E Bσ σ , (9.4) 
 
explicitly applying two of four Maxwell equations namely Gauss’ law ρ∇ ⋅ =E  and Faraday’s 
law / t∇× = −∂ ∂E B .  So this now reveals a time-dependency / t∂ ∂B  for the magnetic field. 
 
 Next let’s turn to the term ( ) ( )T s i k i j sj kBχ σ σ π πσ χ  in (9.2).  This contains the product 

ji kσ σ σ  of three spin matrices which we now must deconstruct.  Here we use the identity 
i j ij ijk kiσ σ δ ε σ= +  in succession as well as ijl kml ij km ik jm im jkε ε ε ε δ δ δ δ= = −  to obtain (this can 

also be validated by explicit use of the iσ ): 
 

( ) ( )
( )

j ij ijl l ij ijl l ij ijl lk lkm m

ij ijl lk ijl kml m ij ijl lk ik jm im jk m

ij jk i ik j ijk

i k k k k k

k k

k

i i i i

i i

i

σ σ σ σ σ σ

σ σ

σ δ ε σ δ ε σ δ ε δ ε σ

δ ε δ ε ε σ δ ε δ δ δ δ δ σ

σδ δ σ δ σ ε

+ + + +

+

= = =

− + − −

+ − +

= =

=

. (9.5) 

 
We then use (9.5) to write: 

 
( )

( )
( ) ( ) ( ) ( )

( ) ( )

T s i k i j k s T s k i j k s

T s i j j i i j j j i j i j k

j ij jk i ik j ijk

i i i k sj

B B

B B

i

B i B

χ σ σ π π χ χ σ π πσ δ δ σ δ σ ε

σ σ

χ

χ σ π π π π π π πε π χ

= + − +

= + − +
. (9.6) 

 
We may write ( )( ) ( )( )i j j i i i j jB Bσ π π π πσ+ = ⋅ ⋅ + ⋅ ⋅B Bπ σ π σ π π  for the first two terms 
because iσ  are constants and can be commuted except with other iσ .  But e+p Aπ =  and the 
magnetic field =∇×B A , so with identity ( )×⋅ ∇A A  for any vector A, we have the reduction: 
 

( ) ( ) ( ) ( ) ( )j j j jB e p Bπ ∇× ∇×= ⋅ = + ⋅ = ⋅ ⋅ ⋅ ⋅+ =∇× = ∇× =A AB p A p A p p BA Aπ . (9.7) 
 
Similarly for j jB π .  Therefore: 
 

( )( ) ( )( )i j j i i j j j j i i i ji i jB B p B B pσ π π π π σ πσ σ π= = ⋅+ + ⋅ + ⋅⋅p B B pσ πσπ . (9.8) 
 
In the rest frame, this term thus becomes zero. 
 
 As to the term j ji iBσ π π− , we leave this exactly as is, noting that with e+p Aπ = , in 
the rest frame, 2 2j i j ji i i jB A B ee A eσ σπ π → = −− ⋅− A Bσ , and so this term is part of the fermion 
magnetic moment. 
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Now we return to (9.6) to develop j kijk ii Bπ πε , using k k kp eAπ = + .  In Abelian field 
theory the term with 0kijk i jA B Aε =  by identity.  As noted earlier after (7.4), if one wanted to 
develop this for a Yang-Mills theory such as the weak or strong interaction, then one would not 
set this term to zero.  But here we stick to Abelian theory so terms 

, 0i j k k j i j i kA B A A B A B A A⎡ ⎤− = =⎣ ⎦  drop out.  Also, we are able to commute i j k k i jp B A A p B= .  

We also use the commutator ,i j i ji p B B⎡ ⎤ = ∂⎣ ⎦  as well as i
i∇ = ∂ = −∂  and ( )i ijk j kBε−∇× = ∂B , 

and at the end apply Ampere’s law / t∇× = +∂ ∂B J E .  The result is: 
 

3 1 2 2 1 3 1 2 3 3 2 1 2 3 1 1 3 2

3 1 2 2 1 3 1 2 3 3 2 1 2 3 1 1 3 2

3 1 2 2 1 3 1 2 3 3 2

i j k i j k i j k i j k i j kijk ijk ijk ijk ijkB p B p eA B p p B eA eA B eA
p B p p B p p B p p B p p B p p B

i i i i i
i i i i i i
i i i i i

p
p B eA p B eA p B eA p B eA p B eA p B eA
eA B p eA B p eA B p eA

i
i i i i B p

ε ε ε επ επ = + + +
= − + − + −

+ − + − + −
+ − + −

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 2 2 1 2 3 3 2 3 1

1 2 3 1 1 3 2

1 2 2 1 3 2 3 3 2 1 3 1 1 3 2

1 2 2 1 3 2 3 3 2 1 3 1 1 3 2

33 1 21

/

, , , , , ,

eA B p eA B p

B B p B B p B B p

i p B p B eA i p B p B eA i p

i i

B B B B B B

B eA

t

p B

π π π

+ −

= − + − + −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − + − + −

= − = − +∇× ⋅ ∂ ∂ ⋅B J Eπ π

. (9.9) 

 
This reveals the space dependency ∇×B  for the magnetic field, and because ∇⋅B  for Abelian 
gauge theory this term is zero.  But as just noted after (9.8), we have a related term ⋅Bσ  for the 
magnetic moment. 
 
 Having developed these two terms, we now revert to (9.6) and insert (9.8) and (9.9), thus: 
 

( )
( )( ) ( )( )( ) ( )
( )( ) ( )( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) /

T s i k i j k s T s i j j i i j j j i j s i j k

T s j i j s

T s j

j i i ij

i

i

i j

k

s

iB B B B B

B

B t

σ σ σ ε

σ

χ σ σ π π χ χ σ π π π π π π χ π π

χ π π χ

χ σ π π χ

= + − +

= ⋅ + ⋅ − ∇× ⋅

= ⋅ + ⋅ − + ∂

⋅ ⋅ −

⋅ ⋅ ⋅∂−

p B B p B

Jp B B p E

π π π

π π

σ σ

σ σ π

. (9.10) 

 
We next return to (9.2) and insert (9.4) and (9.10) and use ( ) ( ) 1T s sχ χ = as appropriate to write: 
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( )

( )( ) ( )( ) ( )( ) ( )
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( )( ) ( )( ) ( )( ) ( )
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/
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T s s
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⎜ ⎟=
⎜ ⎟
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−
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−
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E
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B

E

σ σ σπ π π

π π

σ

πσ σ σ

( )( ) ( )/T s si t
m

χρ χ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+ − ⋅ ∂ ∂⎝ ⎠Bσ

.(9.11) 

 
At rest, 0 m E e m eπ φ φ− = + − =  and 0=p  thus i ieAπ =  and 2 2j i ji B eπ πσ = ⋅A Bσ .  So 

this reduces over common denominators which are factored out, in the fermion rest frame, to:  
 

( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )
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( ) 2 2 2 2 ( )
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σ σ
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φ
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⎛ ⎞−
+ −Σ = + ⎜ ⎟−⎝ ⎠

= ⋅ ⋅ ∇× ∇⋅ ∇+ × ⋅

= ⋅ ⋅ ∂ ∂

−

∂ ∂− + − + − ⋅ − ⋅

A B E E B

B E

A

A B J A A

σ σ

σ σ

. (9.12) 

 
It is intriguing to find that the magnetic moment term ( ) ( )/ 2 ii i ie m i E Bψ α ψ−Σ  in the fermion 
Lagrangian density embeds three of the four Maxwell equations in this way, and presumably 
because 0∇⋅ =B  (because we have chosen to stick to Abelian theory), has no explicit 
appearance of a ∇⋅B , but rather, shows a ⋅Bσ .  It is also worth noting that the Lagrangian 
density term J Aσ σ ρφ= − ⋅J A  has reconstructed itself the final line above.  And, as we have 
been pointing out throughout the development, while we started out with gauge fields Aμ  which 
were stripped of any space or time dependency when they entered the spinors in section 4, these 
gauge fields have now regained their space and time dependency strictly via Heisenberg 
commutation, and furthermore, the particular space and time dependencies revealed are precisely 
the spacetime field dependencies that appear for the electric and magnetic fields in Maxwell’s 
equations!  This reveals an extremely fundamental structural interrelationship among Dirac’s 
equation (note – the result (9.12) makes no use yet of Higgs fields), Heisenberg commutation, 
and Maxwell’s equations.  If one of the thrusts of Geometrodynamics is “mass without mass,” 
then here we have revealed “spacetime dependency without spacetime dependency,” with of all 
things, Heisenberg’s matrix mechanics sitting right in the middle of this fundamentally 
geometrodynamic result. 
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 The final developmental step is to note the coefficient in (9.12) of the magnetic moment 
term ( )2 2 2 2e eφ ⋅+ A Bσ .  Making use of our earlier fermion mass result (6.17) written as 

2 2 2 22e me eφ φ= +A , and separating terms somewhat differently now yields:  
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. (9.13) 

 
This the a first appearance of 1 /e mφ+  factor which will be central to revealing the “anomalous” 
magnetic moment for the Higgs fermion fields, and which at the Schwinger [23] one loop level 
will connect /e mφ  to the running coupling number / 2α π . 
 
10. Dissection of Higgs Field Contributions to the Magnetic Moment: 
Vacuum Self-Interaction 
 
 As noted in (8.17), Of course, the expression (9.13) may be “dissected” via (4.17) and 
(4.18) into: 
 

( )

( ) ( ) ( ) ( )( )1.5 1.5 1.5 1.5

2 2

2 2

i i i

i i i i i i i i i

i

i i i ii i i

g e i E
m

g e h i E h v i E

B

B h hB Bi
m

BE v v i E vψ ψ ψ ψ

ψ α ψ

α α α α+ + + +

+ −Σ

′ ′= −Σ + −Σ + −Σ + −Σ
.(10.1) 

 
In this section we shall obtain ( )1.5 1.5i i i iBv i E vα+ +−Σ .  In the next section we shall obtain 

( ) ( )1.5 1.5i i i i i ii iv i E h hB i E vBψ ψα α+ +′ ′−Σ + −Σ .  Then taking a difference from (9.13) via (10.1), 

we will arrive at our target expression for ( )i i i ih i E hBψ ψα −Σ . 
 
 Analogously to (9.1) we start out by using the positive energy vacuum of (4.19) to form: 
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Then corresponding to (9.2)  
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As in (9.3) we now use the identity i j ij ijk kiσ σ δ ε σ= +  for i jj iAE A E−  term.  Here, 

, 0i iAE⎡ ⎤ =⎣ ⎦  because these do commute, and ( ) 0ijk jk i jiAE A Eε σ − =  as noted for (9.3).  
Consequently this entire term becomes zero, that is: 
 

( ) ( ) ( )( ) ( ) ( ) ( ) 0T s j j i s i i T s ji i j i i ijk k i i sjA A A Ai E E i E E AE EAχ φ σ χσ εφ χ φ χσ− −= − − = , (10.4) 
 
and (10.3) simplifies to an expression with only magnetic and no electric fields: 
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 Now, as in (9.6) we apply the identity (9.5) and the allowable commutation , 0i jA B⎡ ⎤ =⎣ ⎦ .  
We also recall from before (9.9) that for Abelian gauge theory which is what we choose to 
develop here, 0kijk i jA B Aε = .  And, as in (9.7), we recognize ( ) 0⋅ = ∇× ⋅ =B A A A .  Therefore: 
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This should be contrasted to its counterpart (9.10).   
 
 We finally insert (10.6) into (10.5) to obtain: 
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This should be contrasted to (9.12) and particularly ( )2 2 2 2e eφ− + ⋅A Bσ .  As we did for (9.13) 

we use our earlier fermion mass result (6.17) written as 2 2 2 22e me eφ φ= +A  to rewrite (10.7) as: 
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where we have also included the vacuum result from (6.17) written as 3/ 4 21 /f v mλ +=  to 
eliminate the coupling fλ .  This, finally, should be contrasted to (9.13), and also to (4.24) which 

shows the calculation for 3 1.5 1.5v v v+ + +=  as opposed to ( )1.5 1.5i i i iBv i E vα+ +−Σ  above where the 

two vacua are sandwiching i i i iBi Eα −Σ .  In fact, making this contrast explicit, we see that: 
 

( ) 3 ( ) ( ) (1.5 1.5 1.5 1.5 ) ( )1 1i T s s Ti i i s se ev i E v v v
m m

B v φ φα χ χ χ χ+ + ++ +
⎛ ⎞ ⎛ ⎞+ −Σ = − + ⋅ = − + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B Bσ σ . (10.9) 

 
That is, the term ( ) ( ) ( )1 /i T si si ii E eB mα φ χ χ−Σ − + ⋅→ Bσ  as a result of being sandwiched 

between 1.5v+  and 1.5v+ , i.e., as a result of its interactions with the pure vacuum.  Put differently, 

if we wish to take the 1.5v+  at the right of ( )1.5 1.5i i i iBv i E vα+ ++ −Σ  and commute it all the way 

over to the left to get it right next to 1.5v+ in the form 1.5 1.5 3v v v+ + += , then as a result of this 
commutation, one will automatically generate a magnetic moment term of the form 
( ) ( ) ( )1 / T s se mφ χ χ− + ⋅Bσ .  This will eventually turn into the lead term of the Higgs fermion 
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magnetic moment, and will thus be directly related to the leading one loop terms in the magnetic 
moment “anomaly.” 
 
11. Dissection of Higgs Field Contributions to the Magnetic Moment: 
Fermion-Vacuum Interaction 
 
 In this section we similarly develop ( ) ( )1.5 1.5i i i i i ii iv i E h hB i E vBψ ψα α+ +′ ′−Σ + −Σ  in the 
(10.1) Higgs field dissection.  It is important to work with these two terms in tandem, because 
the symmetric left-right positioning of 1.5v hψ+′ ↔  relative to one another is responsible for 
unveiling some critical commutation relationships involving various fields to reveal further time 
and space dependencies.  This is analogous to the calculation of 1.5 1.5v h h vψ ψ+ +′ ′+  in section 6, but 
with i i i iBi Eα −Σ  sandwiched between the spinors.  
 
 Noting that from (4.17) and (4.18) that 1.5h vψ ψ +′= −  and 1.5

fh vψ ′= − , the specific 
calculation we wish to develop here is 
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We just found ( )1.5 1.5i i i iBv i E vα+ +−Σ  in (10.8) so that calculation need not be repeated.  We thus 

develop ( ) ( )1.5 1.5i ii i i i i iv i E i E vB Bα ψ ψ α+ +′ ′−Σ + −Σ .  Using (4.19) for 1.5v+  with 1.5 1.5 i xev v
σ

σπ′ ≡  
and using (6.26) for ψ , as well as suitable adjoint wavefunctions, and in parallel to (9.1) and 
(10.2) this calculation sets up as follows: 
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Corresponding to (9.1) and (10.2), this first becomes: 
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This may then be consolidated in the manner of (9.2) and (10.3) to: 
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In (10.4) (and (9.3) prior) we found that ( )( ) ( ) 0T s j j i si i jAE Ai Eχ φ σ χσ =− .  This means that the 

final term above drops out entirely.  The term ( )( ) ( )i is j j sjT ii E Eσχ σ π π χ−  has also been 

previously found in (9.3) and (9.4).  With (9.4) and ( )( ) ( ) 0T s j j i si i jAE Ai Eχ φ σ χσ =− , (11.4) 
reduces to:  
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 Now in (11.5) we have the term ( )( ) ( )T s i k i j k i j k sj A B B Aφχ σ σ π χσ π+ .  We first use 
identity (9.5) to expand to (contrast (9.6) and (10.6)): 
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Now, for reasons already stated via (9.7), ( ) 0j jA B = ⋅ = × =⋅ ∇B A AA  and j j j jB p Bπ = , so 
(11.6) may be reduced somewhat to (note the parallels to (9.8)): 
 

( )
( ) ( )
( )( ) ( )( )( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

T s i k i j k i j k s

T s j j i i i i j j j i j s i j k i j k

T s j

j

i ijk

i ijki j s i j k i j k

A B B A

p B A A B p A B A B B A

A B A B B

i

i A

σ

σ ε

φχ σ σ π π χ

φχ σ σ π χ φ π π

φχ π χ πσ εφ π

+

+

⋅ ⋅ + ⋅ ⋅

= − + +

= − + +p B A A B pσ σ

. (11.7) 

 
As after (9.8), we note that at rest ( ) 2 22j i j j ii jA B B A eσ π π− → − ⋅+ A Bσ , so leave this term 
exactly as is. 
 
 Finally we have the term ( )ijk i j k i j kA B Ai Bπ πε + .  Keeping in mind that k k kp eAπ = + , 

as noted before (9.9), 0kijk i jA B Aε =  by identity, but again, only for an Abelian gauge theory 
with , 0A Aμ ν⎡ ⎤ =⎣ ⎦ .  Also noted at (9.9) is that we are allowed to commute i j k k i jp B A A p B= .  
Finally, we make use of part of (9.9): 
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With this we revert to (11.7) and use (11.8) to write: 
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 Now we use (11.9) in (11.5) which yields: 
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We certainly see many parallels to the corresponding relationship (9.11).  These are 

brought to the forefront at rest, where again 0 m E e m eπ φ φ− = + − =  and 0=p  thus i ieAπ =  
and 2 222 j i ji A B eπσ = ⋅A Bσ .  Now we have: 
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12. Formulation of g-Factors for the Charged Higgs Leptons 
 

With (11.11), we now have all the ingredients needed to pinpoint the coefficients of the 
( )i i i ih i E hBψ ψα −Σ  term as laid out in (8.17) and (10.1).  Because the underlying premise of 

Higgs theory is that the observed physical particles are vacuum-expanded Higgs fields (h in 
scalar field theory and hψ  presently) and not of the seed fields (φ  in scalar field theory and ψ  
presently), we shall now wish to combine the results from (9.13), (11.11) and (10.8) respectively, 
to directly express ( )i i i ih i E hBψ ψα −Σ .  Doing so in terms of the E and B fields (recognizing 
that we can use Maxwell’s equations at any time to re-express in terms of sources ρ , J and time 
derivatives / t∂ ∂E , / t∂ ∂B ), we obtain: 
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Now we restructure this to segregate each of the field with its coefficients.  In so doing, we make 
use of 31/ 2 /f v mλ +=  from (6.17) to replace the coupling with a vacuum-to-mass ratio.  Thus: 
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Next, let us fine tune (12.2).  Because ( )i i i ih i E hBψ ψα −Σ  is part of a Lagrangian density 

in spacetime, it has a mass dimension 4D = +  in 1c= =h  units of mass, length and time.  Often, 
for example in [18] at (2.165) the ⋅Bσ  term appears as part of a Hamiltonian H, which has a 
mass dimensionality 1D = + .  In a Hamiltonian, the term of interest which “flags” the g-factor 

/ 2g  is ( )/ 2e m− ⋅Bσ .  And of course, the g-factor is a dimensionless number.  But in a 
Lagrangian formulation such as (12.2), we need to pick up an extra mass dimensionality of 

3D = + , to go from a 1D = +  Hamiltonian formulation to a 4D = +  Lagrangian formulation.  So 
the question presents: from whence do we pick up an added 3D = +  mass dimension?  And, of 
course, we also need to pick up the customary / 2e m  flag.  Specifically, the term ( ) ( )T s seχ χ⋅Bσ  
which has 2D = +  needs to acquire an additional 2D = +  to have a total 4D = +  and thus a 
dimensionless coefficient which we can relate to the g-factor.    Additionally, it needs to show 
( )/ 2e m− ⋅Bσ  to connect with the usual Hamiltonian form. 

 
We see that (12.2) has a ready-made answer, namely, the term 3 / 2v m+  which multiplies 

the latter occurrence of the term 1 /e mφ+ .  It naturally contains the extra 2D = + , and it 
contains the 1/ 2m  denominator to go with the e already present in ( ) ( )T s seχ χ⋅Bσ .  So we factor 

3 / 2v m+  out from the coefficient in the ( ) ( )T s seχ χ⋅Bσ  line of (2.12) and adjust the balance of 
the coefficient accordingly to show the desired ( )/ 2e m− ⋅Bσ  term as such: 
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 Now let’s progress to ( )( ) ( )T s siχ χ⋅ ∇× +∇ ⋅E Eσ .  This term has 3D = + , so we need to 
pick up 1D = +  to create a dimensionless coefficient.   In turn, the ( )∇× ⋅B A  term has 4D = +  

already, but needs to be reconfigured anyway.  Specifically, as we did for ( ) ( )T s sχ χ⋅Bσ  let us 
factor out 3 / 2v m+  from these other coefficients as well.  This will “overshoot” the mass 
dimensionality, but we will momentarily compensate.  We now have: 
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 The next cue comes from comparing the 2A  terms on all three lines, which we now 
need to harmonize.  At the same time we need to reduce the ( )( )( ) ( )T s siχ χ⋅ ∇× +∇ ⋅E Eσ  term 

by 1D = −  and the ( )∇× ⋅B A term by 2D = − .  That too is ready-made, for both of these objects 

are achieved by factoring out 1/φ  and 21/ A  respectively, then adjusting accordingly.  We also 
explicitly associate the charge strength e with each pertinent field, to make clear all of the 
dimensional and charge balancing that is embedded in (12.4).  With this final tune up, and 
creating dimensionally balanced ratios in the all terms, (12.4) becomes: 
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The term common to all, is now 2 23 23/ /2 em mv+ A .  It should be clear that (12.5) is precisely 
the same as (12.1), but in a form that will be very useful for carrying out calculations that can be 
compared with experimental data.  Now let’s take a close look at (12.5), starting with the e⋅ Bσ  
term for the magnetic moment.   
 

Aside from the 3v+  required to go from 1D = +  in a Hamiltonian to 4D = +  in a 
Lagrangian (and the ( )sχ  as well), we see precisely the ( ) ( )/ 2 / 2e m e m⋅ = ⋅B Bhσ σ  term for 

which the coefficient is understood to be / 2g .  Further, in the event that 2,m v+<<A , the 
dominant factor will be 1 /e mφ+  which if we trace this back originated in the vacuum-to-
vacuum self-interactions developed in (10.9).  Might this parenthetic term in fact be the g-factor 
of the Higgs fermion field hψ ?  And, if we only observe Higgs fields and not the seed fields from 
which these are expanded about the vacuum, might this in reality be the expression for the g-
factor which we do observe experimentally? 
 
 We have carried / 2 1g =  in all of our equations as a placeholder ever since equation 
(8.4) for the Gordon decomposition.  But this is just that, a placeholder which is equal to 1.  In 
reality, the g-factor is whatever dimensionless number we end up finding as the coefficient of 
( )/ 2e m− ⋅Bσ  in a Hamiltonian formulation, or of ( )3 ( ) ( )/ 2T s sv e mχ χ+− ⋅Bσ  in a Lagrangian 

formulation.  Thus, we now discard the / 2 1g =  placeholder and identify (define) the g-factor 
for the observed Higgs fermion to be: 
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with a reordering of terms from most-to-least dominant for 2,m v+<<A .  So starting to now 
think about physical particles, we expect the first term to be especially dominant for the electron 
if it should happen that 246.219650794137 GeVv+ = is the same vacuum associated with 
Fermi’s weak coupling constant 5 11.1663787 10  GeVFG − −= × [25] that is used elsewhere in 
particle physics, most notably, to arrive at the electroweak vector boson masses and the strength 
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of the weak interactions.  And, we expect the other terms to come more into play for the mu and 
especially tau leptons. 
 
 To work with (12.6) (and also (12.5)), let us we write the fermion mass result (6.17) as 

2 2 2 22e me eφ φ= +A  (see (6.25), or better yet, 2 2 2 2 2 22 2e e me eφ φ φ+ = +A .  From there one 
derives the useful identity: 
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which may be rewritten also as (see yet another alternative in (6.25)): 
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Using (12.8) in (12.6) then yields: 
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which we re-factor into (again compare (6.25)): 
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The benefit of this formulation, which is one or several, alternatives, is that the A is removed and 
everything is expressed as a function of the dimensionless ratios /m v+  or /e mφ .  This is what 
we shall now use for a variety of g-factor related calculations. 
 
 Let us now use Maxwell’s equations to rewrite (12.5) in terms of sources rather than field 
densities, as: 
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This formulation is very interesting from a range of viewpoints including the fact that all of these 
spacetime dependencies was revealed following a canonical Heisenberg commutation of a field 
with the canonical momentum, but the one we shall focus upon here is the fact that this reveals 
an expression / t⋅∂ ∂Bσ  for the magnetic moment of the electron in a time-dependent magnetic 
field.  Specifically, analogously to (12.6) where we specified g, let us define another 
dimensionless ratio: 
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to be the coefficient of the ( )/ 2 /e m t− ⋅∂ ∂Bσ  term.  Why is this of particular interest?  For the 

( )/ 2e m− ⋅Bσ  term for a stationary (time-independent) magnetic field, the dominant term for 
2,m v+<<A  is 1 /e mφ+ , which is independent of the /m v+  ratio.  But for the time-dependent 

term ( )/ 2 /e m t− ⋅∂ ∂Bσ , this coefficient does not exist, and so the mass ratio /m v+  does come 
into play in the leading order effects.  This means while the electron and the mu and tau leptons 
all respond more or less similarly to a stationary B because of the dominance of 1 /e mφ+ , this 
will not be the case for a time-varying / t∂ ∂B .  Here, we expect to see the mu and especially the 
tau leptons responding with much more sensitivity to a magnetic field that varies in time.  In fact, 
g′  as defined above is best thought of as the g-factor for the response of a fermion in a time-
dependent magnetic field.  This will provide the basis for momentarily making quantitative 
predictions which it should be possible to confirm or contradict with experiments to measure and 
compare the behaviors of all three charged leptons in a given, time-dependent magnetic field. 
 
 Finally, for good measure, let also define a third dimensionless ratio: 
 

3 2 2 3 2 2
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≡ +A A . (12.13) 

 
which is the dimensionless factor in front of the term containing / t∇× = +∂ ∂B J E .  The second 
term is identical to that in (2.12) but the first term differs by the ratio 22 /φA .  This tells us about 
the response of the electron in a time-dependent electric field. 
 
  So, with the foregoing, as regards the charged leptons , ,e μ τ , it should be possible to use 
each of the known experimental g-factors , ,eg μ τ  and each of the known masses , ,em μ τ  in (12.10), 

together with a vev which we shall presume is 246.219650794137 GeVv+ =  as it is for 
electroweak and scalar Higgs theory, to derive definitive “values” eφ , μφ and τφ  for each lepton 

and then, via (12.8), the magnitude 2=A A  for each of , ,e μ τ .  Because these numbers are 

potentials, which presumably vary in space, it will also be important to understand that they 
actually mean when measured at various locales in relation to the charged lepton, which as we 
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shall see is closely related to charge screening and loop diagram calculations and 
renormalization, which will be the focus of section 14.  But this discussion will be easier to have 
with specific numbers as a backdrop for explanation. 
 
 Then, knowing φ  and A  for each lepton, we can calculate (predict) their various / 2g′  
factors which express their response to a time-dependent magnetic field.  Should it turn out that 
the heavier leptons exhibit a more sensitive response in the predicted manner, this would be a 
source of experimental validation.   
 

We take note that (12.10), (2.12) and (2.13) for the three g-factors are, for Higgs fermion 
theory, the “bonus” that emerges that is analogous to the gauge boson mass (2.19) that emerges 
from scalar Higgs field.  Scalar Higgs theory reveals a mass for a scalar field and a “bonus” 
gauge field along with its mass.  Fermion Higgs theory reveals a mass for the fermion and a 
“bonus” gauge field along with its magnetic moment which represents how a particular spatial 
dependencies of the gauge field, namely those given by ⋅Bσ , ∇×E , ∇⋅E  and ∇×B  in (12.5). 

 
Let us now turn to experimental data. 

 
13. Numerical Results Based on Empirical Data (and a Prediction for the 
Impact of a Time-Dependent Magnetic field on the Charged Lepton g-
Factors) 
 
 Our starting point for experimental comparisons will be equation (12.10).  The 
experimental data from [26], [27], [28] which we shall use for the three charged leptons are their  
masses 0.510998928 MeVem = ,  105.6583715 MeVmμ =  and 1776.82 MeVmτ =  and their g-
factors .001159652 02 6/ 1 18 7eg = , 1.001165 02 9/ 92gμ =  and 1.001177 02 0/ 21gτ = .  We shall 

also work on the supposition that 246.219650794137 GeVv+ = , though this is a supposition that 
can also be tested in the event that the data we are about to review points toward there being a 
different vev for Higgs fermions than for Higgs scalars, for some reason.  And of course, we 
shall use the low-energy running coupling 137.0359990740 0.007297351/ 2570α ==  [25], 
which is related to the charge strength via 0.30282214 20883e πα= = .  This data set via 
(12.10) will uniquely determine the potentials eφ , μφ and τφ  for each of these charged leptons.   
In this section we shall simply do the numeric calculations.  In the next section we shall discuss 
the meaning and interpretation of these results. 
 
 Now, the first inclination one has is to try to cast (12.10) as a quadratic in /e mφ .  But 

the term ( ) ( )22 / /e m e mφ φ+  makes this appear to not be possible, as this function becomes 
imaginary of the range 2 / 0e mφ− < < .  One could of course expand this square root as an 
infinite series and use only a / 0e mφ ≥  domain to yield a real range, but that would entail an 
approximation that is best not done given that we are trying to match up g-factor data which is 
known with extremely high experimental precision.   So instead we shall evaluate (12.10) 
numerically, inserting various values for /e mφ  until (12.10) produces an exact match to all 
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experimentally-known digits for each g-factor and each mass to all known experimental digits.  
The masses enter (12.10) via the three mass ratios for the , ,e μ τ  leptons respectively, namely: 
 

1 /
1/

0.0000020754 481,839.8578
0.0004291224 2330.337363 
0.0072164021 1/138.57320989

m
v+

=⎧
=
=

⎪= ⎨
⎪
⎩

 . (13.1) 

 
It is of interest to note that the tau ratio is not too different from 137.035999 01/ 074α =  which is 
suggestive that the tau mass is in some way a first order screening effect from the vacuum itself, 
but we shall not pursue this further right here.  Plugging all of this data into (12.10) enables us to 
find that the mass and g-factor data is fitted to all known decimal places (which are better known 
by several decimal places for the electron than for the mu and tau leptons) by the following 
potentials which we represent with a 2π  coefficient for reasons that will immediately be 
apparent when also comparing 137.035999 01/ 074α = , namely: 
 

136.64807         
0.0072863069

     
840 1/137.2437370810

2 0.0073180690 1/
0.0068818625 1/145.30950               

e
m
φπ

=
=
=

⎧
⎪= ⎨
⎪
⎩

 . (13.2) 

 
Writing (6.25) with 2=A A  as: 

 
2

2
e e e
m m m

φ φ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

A
, (13.3) 

 
we may also obtain the vector potential magnitudes: 
 

0.3026805646884
2 0.3033399428     

0.2941553923     

e
m

π
⎧
= ⎪⎨
⎪
⎩

A
. (13.4) 

 
The close comparison of the numbers above to 0.30282214 20883e πα= = is understood by 
writing an equation analogous to (13.3) multiplied by 2π , namely: 
 

2 2
2 2 2

2 22 4 4 4 0.30282212 8
4

4 0 83
4

eα α α απ π π πα α
π π π π

πα+ = + = + ≅ = = . (13.5) 

 
It is very telling (and closely related to Schwinger’s one-loop result [23] / 2 1 / 2 ...g α π= + + ) 
that ( )2 /e mπ φ behaves roughly like a running coupling ( )2 /e mα π φ , and that ( )2 /e mπ A
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behaves roughly like the associated running charge strength ( )2 /e e mπ A .  We shall take a 
closer look at this momentarily. 
 
 Next, we may directly find the energy magnitudes of each of the φ  and A , namely: 
 

0.0019568610 MeV
0.4063805796 MeV
6.4266102 MeV      

e

μ

τ

φ
φ
φ

=
=
=

⎧
⎪
⎨
⎪
⎩

, (13.6) 

   
0.0812899880 MeV   

16.8448073365  MeV 

274.6962830 MeV     

e

μ

τ

=

=

=

⎧
⎪
⎨
⎪
⎩

A

A

A

, (13.7) 

 
The experimentally-based finding in (13.6) that all three potentials 0φ >  finally answers for us, 
the question which arose originally at (3.6), then again at (6.24), as to the appropriate sign choice 
in the quadratic solution for φ .  With the empirical data telling us that the potentials 0φ >  are all 
positive numbers, we now see that the sign choice must be “+”, that is, that (6.24) is now finally 
to be written as: 
 

2 2

21 1e e
m m
φ ⎛ ⎞
= + −⎜ ⎟⎜ ⎟
⎝ ⎠

A  (13.8) 

 
 It is also instructive to return to the fermion mass result (6.17) and use (13.6) and (13.7) 
to decompose the three lepton masses into their respective contributions from the scalar (voltage) 
and vector potentials φ  and A.  These turn out to be: 
 

2
0.511295218 MeV 0.000296290 MeV 0.510998928 MeV
105.7199020 MeV 0.0615305 MeV=105.6583715 MeV      
1777.79 MeV 0.97 MeV 1776.82 MeV                          

1 1
2 2

   
m e e

φ
φ

⎧
⎪=

− =
− −

−
= ⎨
⎪ =⎩

A  (13.9) 

 
This brings us back to the point made after (6.17) that gauge potentials alone are not measurable 
numbers, and that physically observable energies are those which involve a difference between 
two potentials.  Usually, measurable energies reflect a difference between one type of potential 
(often a voltage Vφ = ) at two different spatial points 1x  and 2x .  But in (13.9) we see that the 
observed fermion masses are functions of a difference between two different types of potential V  
at a single spatial point x, namely, ( ) 21

1 2 /V e φ≡x A  and ( ) 1
2 2V eφ≡x , such that 

( ) ( )1 2m V V= −x x .  This still leaves the open question: what / where is x?  This will be an 
important part of the renormalization discussion in the next section.  Notice also that we 
deliberately did not write the mass here as ( )m x  but rather wrote the mass as a constant m which 
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is invariant as a function of space (or time).  This will all be central to and greatly expanded 
upon in the next section as we study what the result (13.9) says about running couplings and 
charge screening and renormalization.  This all relates to the fact that m in this development was 
not introduced by hand, but was naturally revealed in (6.17) as the coefficient of the term 
Lagrangian density term 32 f v h hψ ψλ +−  (6.17) for the Higgs fermion hψ  which represented the 
expansion ( ) ( )x v h xψ ′= +  of the Dirac wavefunction about the vacuum.  So this mass is not a 
typical “bare mass,” but rather is a renormalized “self-energy” mass Σ  that is built exclusively 
and naturally out of the gauge potentials ,φ A .  
 

We may also use (13.1), (13.2) and (13.4) in (12.12) to calculate the g-factor impact of a 
time-dependent magnetic field term / t⋅∂ ∂Bσ  in (12.11) to be: 
 

10

7
3 3

3 3
1.0184403241 10

1 2 3.0346364402 10
2

0.00002 9 2
2

02 4

g m e
m

em
v v m
φ

−

−

+ +

⎧ ×
⎪= ×+
⎪

≡ ⎨
′

⎩

A . (13.10) 

 
Comparing with the well-known experimental g-factors [ ]0.001159652 1/ 0762 8eg = , 

[ ]1.001165 02 9/ 92gμ =  and [ ]1.0011 77 02 0/ 21gτ =  which we write to enclose in brackets the 
(known) digits at which g′  comes into play (this is not an experimental error notation), we see 
that a time-dependent magnetic field can produce an effect which can be seen well within the 
experimental ranges of the g-factor for all three charged leptons, and that the / t⋅∂ ∂Bσ  effect is 
most pronounced for the tauon.  This prediction that the g-factor of the heaviest tau lepton is 
much more significantly impacted by a time-dependent magnetic field than that of the electron or 
muon, as well as the magnitude of the impact as predicted in (13.10), would appear to be a 
leading candidate for experimentally validating or contradicting the results derived here.  The 
same facilities which study and establish g-factors for ⋅Bσ , should be able to discern these 
effects for / t⋅∂ ∂Bσ , as they are well within experimentally-detectable ranges. 
 
 Similarly, (12.13) for the / t⋅∂ ∂A E  term of (12.11) is found to be: 
 

10
3

7
3 2 3

3 2
1.0184405028 10

1 2 3.0362168641
2

10
2

0.0000210458

g m e
m

em
v v m
φ
φ

−

−

+ +

′′
≡ +

⎧ ×
⎪= ×⎨
⎪
⎩

A A . (13.11) 

 
Clearly the right-most term dominates so this is close to (13.10), but the ratio  
 

2

2
1725.6556646595
1718.1702913569
1827.0130307872

φ

⎧
⎪= ⎨
⎪
⎩

A  (13.12) 
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does substantially enhance the less-dominant term.  So there may be a discernible effect for the 
mu lepton and there appears to be a definitely discernible effect for the tau lepton.  However, 
unlike ⋅Bσ  or / t⋅∂ ∂Bσ , the / t⋅∂ ∂A E  term contains the scalar product with A rather than a 
product with the spin matrices σ  and so the / t⋅∂ ∂A E  g′′ -factor  is unconnected to the spin of 
the charged leptons. 
 
 Now let us discuss these various numeric results. 
 
14. Invariant Mass, Variable Gauge Renormalization 
 
 What warrants immediate attention in the numeric data of the last section are the ratios in 
(13.2) being very close to the low energy electromagnetic “fine structure” coupling 

137.035999 01/ 074α = , especially for the electron and the muon.  It is independently known 
that Schwinger [23], when considering the “one loop” contribution to the magnetic moment, first 
described the small deviation of the electron’s .001159652 02 6/ 1 18 7eg =  from the / 2 1g =  of 
Dirac’s equation by finding that: 
 

1 ...
2 2
g α

π
+ +  . (14.1) 

 
Since Schwinger, painstaking calculations have been done for some higher-order loops, but the 
basic result that the one-loop correction equals / 2α π  remains valid to this day. 
 
 Because we shall be discussing loops and renormalization in some detail here, let us use 
the notation 0,1  in subscripted form to denote a physical quantity that is based on only 0- plus 1-
loop perturbative calculations.  Let us also use 2→∞  to denote the sum total of all corrections 
to a 0,1  quantity that occur as a result of all perturbative loop calculations from 2 loops all the 
way up to an infinite number of loops.  A simple 1 as a subscript will denote the 1-loop 
contribution only, absent the 0 loop or the 2→∞  loop contributions.  Using this notation, we 
may summarize what is being said in (13.2) for all three charged leptons by writing: 
 

1 1
2 2 137.0359990740

e
m
φ α

π π
= =

⋅
 (14.2) 

 
and 
 

0,1 11 1
2 2 137.0359990740

e
m
φ α

π π
= + = +

⋅
. (14.3) 

 
In other words, the one loop contribution to the potential, 1φ , when made dimensionless via the 
combination 1 /e mφ , is synonymous with Schwinger’s 1 loop-only correction.  More generally, 
this means that that the potential φ  at each order bears some very close relation to the loop 
calculations at each order.  We wish to explore more closely the manner in which this is so. 
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 The origin of this concurrence is to be found in the fact that the g-factor (12.10), in the 
leading order where the mass to vacuum ratio / 0m v+ →  which is especially pertinent to the 
electron and muon but less so to the tau lepton, reduces to: 
 

( ) 10 ./ ..
2
g e

m
m v φ

+ +→ = + , (14.4) 

 
and that comparison to Schwinger’s (14.1) therefore produces an immediate connection 

// 2 e mα π φ↔ .  Thus, without any a priori expectation that the voltage / scalar potential would 
connect in some way to the running coupling α , we find that such a connection does exist 
precisely because the Higgs fermions, in leading order of low mass, produce the relationship 
(14.4), while Schwinger gives us (14.1).  If we trace back through the development here, we see 
that the term 1 /e mφ+  in the above originated in (10.8), which describes the self-interaction of 

the fermion vacuum via ( )1.5 1.5i i i iBv i E vα+ +−Σ , as part of the Higgs expansion of fermion fields 

via ( ) ( )1.5
fx v h xψ ′≡ +  of (4.17).  So what we see is that although Dirac’s equation yields 

/ 2 1g =  when analyzed in the form of (8.4) or (8.16) in relation to “seed fermions” ψ , it 
actually yields a 1 / .../ 2 eg mφ+ +=  when ψ  is dissected as in sections 10 and 11 into an 
expansion of a Higgs field about the vacuum and when the Higgs field rather than the seed 
fermion is understood to be the observable fermion.  Once we are able to use Dirac’s equation 
via a Higgs field dissection to identify 1 / .../ 2 eg mφ+ +=  rather than 1/ 2g =  as the leading-
order g-factor for ( )h xψ  rather than ( )xψ , and given Schwinger, we are able to uncover the 
very important 0,1 loop connections (14.2), (14.3) between the scalar potential φ  and the 
running coupling α . 
 
 With (14.2) and (14.3), we immediately may use the complete expression (12.10) for 

/ 2g  together with the specific numeric result (13.2) to tell us the value of 2φ →∞  for each of these 
three fermions, by simply subtracting off the α  from each ratio in (13.2).  This result is: 
 

2

1/137.2437370810 137.0359990740 0.0000110455858 1/ 90,533.90325
2 1/ 137.0359990740 0.0000207164 1/ 48, 270.95                          

1/145.30950 13

1/
136.64807

7.0359990740 0.0
1/
1 004154901 // 1

e
m
φπ →∞

− = − = −
− = =

−
=

− = = − 2406.7964                     

⎧
⎪
⎨
⎪
⎩

 .(14.5) 

 
To be clear:  This is the total contribution to the potential which is to be expected to arise from 
the 2→∞  loop diagrams, based on 1) theoretical relationships (14.2), (14.3), 2) theoretical 
relationship (12.10) for / 2g  to which the mass ratio /m v+  also makes a contribution which 
starts to noticeably impact these numbers for the heaviest tau lepton, and 3) the known empirical 
data for the three lepton g-factors g, the three lepton masses m, and the vev v+  which we take to 
be 246.219650794137 GeV  derived from the Fermi weak coupling constant FG . 
 
 Now, the results (14.2), (14.3) connecting the scalar potentials (voltages) φ  with the 
running coupling α  deliver us directly into a discussion of renormalization, and especially, of 
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mass renormalization.  We start this discussion by picking up where we left off following (13.9) 
where we noted that the fermion rest masses are revealed to be the difference ( ) ( )1 2m V V= −x x  
between two potentials ( ) 21

1 2 /V e φ≡x A  and ( ) 1
2 2V eφ≡x  at the same point in space, and where 

we regarded this mass m to be a constant which does not depend on x or time t.  Following up on 
this, we now ask two sets of questions.  First: at what point in space?  At 0=x , i.e., at the center 
of the charged lepton?  At = ∞x  all the way out to infinity?  Or somewhere else?  We pose this 
question because any time one talks about a potential, one is talking about a field, i.e., a variable 
function of space and time, and about a field which is not observable except as a difference 
between one potential and another potential.  Second, if the rest mass is a function 

( ) ( )1 2m V V= −x x  of a difference between two potentials taken at a single point in space, will 
this mass be the same when this potential difference is taken after we translate over to a different 
point in space, ′→x x .  That is, if ( ) ( )1 2m V V= −x x  and ( ) ( )1 2m V V′ ′ ′= −x x , will we have 
m m′= , or will we have m m′≠ ?   Is m an invariant at all points in space (and events in 
spacetime), or is it a function ( )m x  of spatial position (and time)?  We have regarded m as an 
invariant this far, but this supposition needs to be justified. 
 
 The critical ingredient needed to address these questions – and the reason we have not 
been able to address them until this moment – comes from finding in (14.2), which we rewrite 
using 24 /e cπα = h  in 1c= =h  units, that: 
 

( )1 2,
8
mm e eφ
π

= . (14.6) 

 
In other words, the potential φ , at the 1-loop level, assuming constant mass which is part of what 
we are now opening up for discussion, runs in direct proportion to the running electric charge 
strength ( ) 0.3028221209e = ∞ =x , which is based on ( ) 137.03591/ 990740α = ∞ =x  via 

24 eπα = , and which are both expressions for the running of charge and coupling only for a 
probe taken entirely outside the charge screening of the electron, muon or tauon, i.e., at spatial 
“infinity.”  As we probe more deeply into the electron at a probe energy / renormalization scale 
μ  (this is not the same μ  which was introduced as a mass parameter back in (3.3)), we know 
that these two numbers ( )1/e μ∝x  and ( )1/α μ∝x  will grow larger because we have 
penetrated past some of the charge screening / vacuum polarization which surrounds the “bare” 
electron (and we shortly return to examine “bareness”) and thus modified the observed charge 
strength.  It is also worth noting that if m is a constant, then (14.6) does not generalize to higher 
2→∞  loops, that is, that ( )2/ 8m eφ π≠  in general.  Why?  Because if ( )2/ 8m eφ π=  were to 
be generally true, then one could replace / / 2e mφ α π→  everywhere it appears in (12.10).  But 
if we do so, we would have: 
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2 211 2 2
2 2 2 2
g m m

v v
α α α
π π π+ +

⎛ ⎞ ⎛ ⎞= + +⎛ ⎞+ +⎜ ⎜ ⎟
⎝

⎜ ⎟
⎠⎝ ⎠ ⎠

⎟
⎝

. (14.7) 
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Then, if we were to use 137.035999 01/ 074α =  and the known m for each lepton, we would not 
get the experimentally observed g-factors.  That (14.7) is not true, and is contradicted by 
empirical data, is evidenced by the empirically-based result (13.2) in which all of the numbers 
would be 137.0359991/ 0740  if (14.7) were true.  So we do know that ( ),m eφ in general takes 
on a more complicated form in relation to the running charge e than (14.6), and is only a first 
loop relationship. 
 
 Still referring to (14.6), if the one loop potential 1φ  is the same as the electric charge 
strength e up to a factor 2/ 8m π which is a constant factor if we assume that m is constant (the 
topic of detailed exploration in a moment), then although the higher loop relations ( )2 ,m eφ →∞  
must be more complicated relationships than (14.6), it is safe to reach the qualitative conclusion 
that the overall potential φ  runs as a function of 1/ μ∝x  in the same sort of fashion as do e and 
α .  So because ( ) 0.3028221209e = ∞ =x  and ( ) 137.03591/ 990740α = ∞ =x  are both valid 
numeric relationships only outside the charged lepton at a spatial perch which we formally set to 
= ∞x , or in different words to say the same thing, at a renormalization scale 0μ → , we are able 

to answer the first question:  The potentials ( ) 21
1 2 /V e φ≡x A  and ( ) 1

2 2V eφ≡x  in 

( ) ( )1 2m V V= −x x  of (13.9), and more generally the potentials numerically characterized in 
(13.2), are all potentials taken at = ∞x , i.e., at a position formally identified with spatial 
infinity, or in equivalent terms, at a low probe energy / renormalization scale 0μ → . 
 
 Now we get to the second question as to whether ( ) ( )m m′ ≠ ∞ = = ∞x x , where ′x  is a 
locale other than a formal spatial infinity, and in particular, is a locale at which the charge screen 
of the lepton is deeply probed with a definitively observable difference.   To explore this 
question, we start at spatial infinity, i.e., at a renormalization scale / probe energy 0μ = , and 
regard each of e, m, φ  and A  a to have 0μ =  values of ( ) 0.3028220 4 120883e πα= =  based 

on ( ) 137.035999 40 1/ 07 0α = , ( ) 0.5109989280 MeVem = ,  ( ) 105.65837150  MeVmμ =  and 

( ) 1776.82 M0  eVmτ = , ( )0φ  given by (13.6) and ( )0A  given by (13.7).  The relationship 
(13.3) is a generally-covariant relationship among e, m, A and φ  which is independent of locale, 
i.e., independent of renormalization scale.  So with all of this in mind, we may write (13.3) as: 
 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2
0 0 0 0 0 0

2
0 0 0

e e e
m m m

φ φ⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

A
, (14.8) 

 
 Let us now transform over to a different renormalization scale 0μ μ′ ≠ = .  Let us posit 
that each and every one of the objects with values v  appearing in (14.8) undergoes a change to a 
different value v′ , i.e., that at the new scale μ′ , (14.8) becomes: 
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( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2

2
e e e

m m m
μ μ μ φ μ μ φ μ
μ μ μ

⎛ ⎞′ ′ ′ ′ ⎛ ⎞′ ′ ′ ′ ′ ′ ′ ′
= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′ ′ ′ ′⎝ ⎠⎝ ⎠

A
. (14.9) 

  
So in the above, even the rest masses are presumed to have changed.  But suppose we would like 
to keep these masses invariant even under this change in renormalization scale.  That is, suppose 
we wish to have m m′ =  regardless of the change μ μ′→ .  Can we do this?  And if so, what are 
the conditions which would allow us to do this? 
 
 To see, let us take (14.9) and change m′  back to m, and then transform to a different 
( ) ( )φ μ φ μ′ ′ ′′ ′→ , ( ) ( )μ μ′ ′ ′′ ′→A A  and ( ) ( )e eμ μ′ ′ ′′ ′→  such that we are allowed to have 

( ) ( ) ( )0m m mμ μ′ ′ ′= = .  Take careful note: we are still at the same scale μ′ , but we are setting 

( )m μ′ ′  back to ( )0m  and then changing every other value in (14.9) to make this happen, i.e., to 
be able to make m invariant.  So now, still at μ′ , (14.9) becomes: 
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( ) ( )
( )

( ) ( )
( )

2 2
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e e e

m m m
μ μ μ φ μ μ φ μ
μ μ μ

⎛ ⎞′′ ′ ′′ ′ ⎛ ⎞′′ ′ ′′ ′ ′′ ′ ′′ ′
= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠⎝ ⎠

A
. (14.10) 

 
The two relationships (14.9) and (14.10) are totally equivalent relationships.  They just involve 
some shifting among e, m, φ  and A , and we keep in mind that φ  and A  are both gauge 
potentials and so are not observable except as a difference between potentials.  Because these are 
equivalent, setting (14.9) to equal (14.10) yields the following simultaneous relationships: 
 
( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( );

e ee e
m m m m

μ μ μ μμ φ μ μ φ μ
μ μ μ μ

′′ ′ ′′ ′ ′ ′ ′ ′′′ ′ ′′ ′ ′ ′ ′ ′
= =

′ ′ ′ ′ ′ ′
A A

. (14.11) 

 
This is turn is easily rewritten as: 
 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

ee m
e me

μ μμ φ μ μ
μ φ μ μμ μ

′′ ′ ′′ ′′′ ′ ′′ ′ ′
= =
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A
A
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which means the transformations we must use to maintain an invariant ( ) ( )m mμ μ′ =  regardless 
of renormalization scale are: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

     
m

e e e
m

m
e e e
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μ
μ φ μ μ φ μ μ φ μ
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μ

μ μ μ μ μ μ
μ

′⎧
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A A A

. (14.13) 
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But φ  and iA=A  are the components of the four-vector ( )1 2 3, , ,A A A Aμ φ= , and the 
transformations in (14.13) are of identical form for each component.  So we consolidate (14.13) 
into a single transformation on Aμ , and because everything is taken at the same scale μ′ , we 
remove that part of the notation and leave that understood so that the form of the transformation 
is highlighted without additional clutter.  So at the scaleμ′ , the transformation we do to maintain 
a constant, renormalization scale-invariant mass is: 
 

me A e A e A
m

μ μ′ ′ ′′ ′′ ′ ′→ =
′

. (14.13) 

 
Lo and behold, this looks like a gauge transformation on a gauge field!  Let us see. 
 
 Now, in (14.13), both the charge strength is transformed, e e′ ′′→  and the gauge field is 
transformed A Aμ μ′ ′′→  in order to return m m′→ .  But we saw in (14.6) that although Aμ  and 
e  both run with the renormalization scale, and while they are related by (14.6) at the one loop 
level, for higher loops they do have some independence, or more to the point, there is a more 
complicated relationship between them than (14.6).  And in general, we know that in 
renormalization theory, mass renormalization is not the same as charge renormalization, i.e., 
mass and charge renormalize differently.  Specifically, the mass get renormalized via 

2F FS Z S′ →  where FS  is the bare and FS′  is the complete, total observed propagator, while the 
charge strength / running coupling gets renormalized via ( ) ( )1,0, 1/p p Zμ μγΓ →  where μΓ  are 

the complete vertex operators and μγ  are the bare vertex Dirac gamma operators, and where 

1 2Z Z=  are infinite renormalization constants and are equal to one another because of the Ward 
identity ( )1 / ,0,FS p p pμ

μ
−′∂ ∂ = Γ .  (See [18], section 7.4.)  So while e in (14.13) has so far been 

caught up in our effort to maintain a constant mass at all scales, let us now cure that by leaving e 
alone and letting the entire job of keeping the constant mass fall to the gauge field Aμ .  That is, 
still at μ′ , we now set ( ) ( )e eμ μ′ ′ ′′ ′= .  Then, writing what looks like a gauge transformation in 
(14.13) to explicitly show that this is a gauge transformation, the above becomes: 
 

mA A A A
m

μ μ μ μθ′ ′′ ′ ′→ = ≡ +∂
′

. (14.14) 

 
Being as explicit as can be, the above means that: 
 

1m A
m

μ μθ ⎛ ⎞ ′∂ = −⎜ ⎟′⎝ ⎠
!!! (14.15) 

 
 So, we can maintain an invariant fermion rest mass over all scales of renormalization, 
simply via a suitable gauge transformation on the gauge field Aμ !  With ( )/A m m A μ′′ ′ ′=  

informing us that A μ′  scales up or down slightly in magnitude to keep the mass constant, this is 
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truly a “gauge” transformation the Weyl’s original sense of the word before he changed the ae  
exponential transformation factor of his original theory [9], [10] into the later ie θ  phase factor of 
modern gauge (really, “phase-invariant”) theory [11].  What is ordinarily a rest mass that varies 
with renormalization scale, becomes an invariant mass at all scales, because the gauge field 
becomes a proxy to absorb the changes in mass brought about by renormalization, and we exploit 
the gauge freedom to allow the gauge field to do this.  What we have just shown above, whereby 
we maintain a constant rest mass at all renormalization scales by using the gauge freedom of Aμ  
to instead make Aμ  scale-dependent, we shall refer to as “invariant mass, variable gauge 
renormalization,” the title of this section, or more simply, “Invariant Mass Renormalization.” 
 
 So now the question arises, what allows us to do this?  Ordinarily, the bare fermion 
propagator inverse 1

FS p mμ
μγ− = − , where m is a so-called “bare mass,” while the complete, 

observed propagator is 1 1
F FS p m Sμ

μγ− −′ = − −Σ = −Σ , where Σ  is the fermion “self-energy.”  
But here there is no bare mass.  The bare mass is what shows up in the Dirac Lagrangian density 

( )i mψ ψ∂/ −L = , but here we started with ( )iψ μ ψ∂/ −L =  in (3.8) and a mass parameter μ  
(here this is not the renormalization scale symbol) defined in (3.4) and then saw in (6.16) and 
(6.17) how this led to a mass m μ= −  for the Higgs fermion hψ .  But this mass (6.17) is defined 

totally as a function of the gauge field Aμ , with no “bareness” at all.  The bare mass is zero, and 
the revealed, observed mass is (6.17).   And because (13.3) and (14.8) et al. are just variants of 
(6.17), this is what led to the ability shown in (4.20) and (4.21) to maintain a renormalization 
scale-invariant mass simply by a gauge transformation.  So we should really now write (6.17), 
not as a “mass” in the sense of the bare mass in ( )i mψ ψ∂/ −L = , but as a self-energy, that is, as: 
 

2 21
2

m e φ μ
φ

⎛ ⎞−Σ = = = −⎜ ⎟
⎝ ⎠

A  (14.16) 

 
The mass, i.e., the self-energy bubble, is a pure gauge field and charge / coupling bubble.   The 
mass no longer has an independent existence, except as a creature of the gauge field and the 
running coupling.  So now, how do we distinguish the bare propagator inverse 1

FS −  from the 
complete inverse 1

FS −′ ?  With mΣ = , if we write 1 1 1
F F FS S S m− − −′ = −Σ = − , but if 

1
FS p mμ

μγ− = −  as usual, then 1 2FS p mμ
μγ−′ = − .  That simply makes no sense.  What really 

happens is that the bare propagator is now 1
FS pμ μγ− =  with no mass at all, (i.e., this is the 

propagator for a luminous fermion), but the complete propagator is: 
 

2 2
1 1

2FS p p eμ μ
μ μ

φγ γ
φ

− ⎛ ⎞−′ = −Σ = − ⎜ ⎟
⎝ ⎠

A , (14.17) 

 
and the gauge fields bring about a subluminous, material fermion.   
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To renormalize, we then use the Ward identity ( )1 / ,0,FS p p pμ
μ

−′∂ ∂ = Γ  in the usual way 
on (14.17) including setting 2F FS Z S′ ≡  where FS′  is taken to be an infinite constant 2Z  times the 

bare ( ) 1

FS pμ μγ
−

= .  But let’s play this out.  Because 1
FS pμ μγ−′ = −Σ  and 1

FS pμ μγ− =  and Σ  is 
now held constant by the gauge transformation (14.14), the Ward identity says that: 
 

( ) ( )
1 1

1 2 2

2 2 2

2

1 1 1,0,

1 1 1 1
2 2 2

F FS Sp p p
Z p p Z p Z

ep e e
p

e
p p p

μ μ μ μ μ
μ

μ μ μ

μ μ
μ

μ μ μ μ

γ γ γ γ

φ φγ γ
φ φ φ

− −′∂ ∂∂Γ = = −Σ = = =
∂ ∂ ∂

⎛ ⎞ ∂⎛ ⎞∂ − ∂ ∂= − = − Σ − + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝

⎛ ⎞
⎜ ⎟
⎝ ⎠⎠

A AA A
. (14.18) 

 
Two things have happened.  First, matching up the μγ , we see an embedded differential equation 
 

2

2

1 10 1
2 2

e e
p p p

e
μ μ μ

φ
φ φ
∂∂ ∂= − Σ − +

⎛ ⎞
⎜ ⎟
⎝ ⎠
+

∂ ∂ ∂
A A A  (14.19) 

 
for the regauging of e, and Aμ  to provide an invariant mass / self-energy Σ .  Second, more 
deeply, we see that ( ) ( )1 21/ 1/Z Zμ μ μγ γ γ= =  which means that: 
 

1 2 1Z Z= = !  (14.20) 
 
The gauge transformation (4.14) enables us to maintain a constant mass, and as a result, our 
infinite renormalization constants have becomes finite and are equal to unity! 
 
 So if this is the case, then the Ward identity is now, simply: 
 
( ),0,p pμ μγΓ = . (14.21) 

 
But if the fully dressed vertex is equal to the bare vertex, where do all of the complexities of 
renormalization come in?  They now arise from how we establish the vertex.  To see how this 
occurs, it is helpful to return to the Gordon decomposition (8.4), into which we shall now insert 
the / 2g  of (12.10) as well as mμ → − , while promoting μ νγ → Γ , thus: 
 

( ) ( )
23

3

3

311 2 2" 1 2
2

2"
2

i m m e e
m m m m

e
m v v

ν ν ν μν
μ

φ φ φψ ψ ψ ψ ψψ ψσ ψ
+ +

⎛⎛ ⎞⎛ ⎞⎜ ⎟Γ = − ∂ − ∂ + + + ∂⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.(14.22) 

 
We have put the equal sign above in quotes because the fields in the above are ψ  but the g-
factor we have used is the one for the Higgs fermion hψ .  But sections 9 to 11 tell us how to 

dissect the seed fermions and we could readily set hψψ →  in νψ ψΓ  and μνψσ ψ  and have a 
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correct equation except for the ν νψ ψ ψψ∂ − ∂ , because this term has not yet been developed for 
the Higgs field.  So (14.22) is a mix of apples and oranges.  This term ν νψ ψ ψψ∂ − ∂  contains the 
orbital angular momentum and it too needs to be developed for the Higgs fermion hψ  before we 
can extract a complete vertex to use in the Ward identity (14.21).  So let us now look at that. 
 
15.   Orbital Angular Momentum and the Complete Renormalization 
Vertex 
 
 As a starting point for discussing the orbital angular momentum of Higgs fermion hψ , we 

turn to Dirac’s equation 0i e Aμ μ
μ μγ ψ γ ψ μψ∂ + − =  used after (8.1) for a free field 0Aμ = .  

Now, in contrast to (8.2) which enabled us to pinpoint the “intrinsic” spin, we write Dirac’s 
equation multiplied from the left by 0γ  and developed in a customary manner with 0 i iγ γ α= , 
see (8.13), as: 
 
( ) ( ) ( ) ( )

( )

0 0 0 0 0 0

0 0

0 i i

i i
i i

i i

i i p E p

uE p
E p u

vp E

μ μ μ
μ μ μγ μ ψ γ γ γ μ ψ γ γ γ μ ψ γ γ γ μ ψ

μ σγ γ γ μ
σ μ

= ∂ − = ∂ − = − = − −

⎛ ⎞− − ⎛ ⎞
= − − = ⎜ ⎟⎜ ⎟− + ⎝ ⎠⎝ ⎠

. (15.1) 

 
We then restructure this is the usual way into (see, e.g., [8] at [5.21]): 
 

( )00
0

i i
i i

i i

E u up
Eu p u Hu

E v vp
μ σ α μγ
σ μ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞

= = = + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (15.2) 

 
while defining the Dirac Hamiltonian via Hu Eu= , and specifically, as the operator:  
 

0i iH pα μγ≡ + . (15.3) 
 
 Then, because E is sandwiched between (operating on) Dirac spinors as in (15.2), we 
return to (8.16) and use (15.2) to replace each occurrence of 0E p=  with 

0 0i iE H pμγ α μγ→ + = + .  Then, with mμ → −  via (6.17), (8.16) yields: 
 

( ) ( ) ( )0 0 0

0 0 0

, 0,
2 2

2 2

i i i i i i i i i

i i i i i i i
i i

i

i

ii i i i i i i

e g eT p p p p p p A i E e
m m

p A p i Ee g ep p e
m mp p

B

B
A i E B

ψγ ψ ψγ ψ ψ α φ ψ ψ α ψ ψγ ψφ

σ φ σ σψγ ψ ψγ ψ ψ ψ ψ ψ ψγ ψφ
σ φ σ σ

= − − − + − Σ +

⎛ ⎞ ⎛ ⎞− −
= − − + +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

.(15.4) 
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The first term 0 0 i ip p pμ
μψγ ψ ψγ ψ ψγ ψ= −  is the term for the linear kinetic motion of a fermion 

and in the fermion rest frame this is zero.  But the latter term is equal to eJ A e Aσ σ
σ σψ ψ= Γ  for 

the complete vertex ( ),0,p pσΓ  for the seed fermion ψ .  That is: 
 

( ) ( ) ( ) 01 1
2 2

i i i i i i i igA l p p A E Bi
m m

σ
σψ ψ ψ α φ ψ ψ α ψ ψγ ψφ⎛ ⎞Γ = − − + − Σ +⎜ ⎟

⎝ ⎠
. (15.5) 

 
This has the equal sign restored, because we did not insert the / 2g  of (12.10) for the Higgs 
fermion hψ  into the / 2g   placeholder because this is the seed fermion ψ  and not the Higgs hψ .  
And, it is important to note that we have added a new number 1l =  in parenthesis in front of the 
( )i i i ip p Aψ α φ ψ− , which we shall call the “l-factor.”  This is an orbital analog to the g-factor, 

as we momentarily discuss.  Now we need to make two points, one about the orbital angular 
momentum, the other about renormalization and the vertex ( ),0,p pμ μγΓ =  because of the now-
finite Ward identity (14.21). 
 

As regards the orbital angular momentum, the next step is to develop the term 
( )i i i ip p Aψ α φ ψ−  in (15.4) in exactly the same way via Higgs expansion as we developed the 

term ( )i i i ii E Bψ α ψ−Σ  by Higgs expansion in sections 9, 10 and 11.  In the process of this 

development, originating from i ipα , we will come across the cross product [ ],i H× =p Lα  
which commutes the Hamiltonian with the orbital angular momentum just as we earlier came 
across terms based in i ii Eα  which ended up yielding both the ∇⋅E  and ∇×E  terms from 
Maxwell’s equations.  And, because the lead coefficient for ( )i i i ip p Aψ α φ ψ−  is /e m  rather 

than the / 2e m  which precedes ( )i i i ii E Bψ α ψ−Σ , the orbital angular momentum will 
inherently have twice the magnitude as the spin angular momentum, that is, it will come in whole 
increments of h  rather than only in a 1

2 h  packet.   
 
Structurally, the difference between orbital and spin angular momentum is that for spin 

i i i iBi Eα −Σ  is sandwiched between the spinors and for orbital momentum i i i ip p Aα φ −  is 
sandwiched.  The term i i i ii E pα α φ→  and the term i i ii AB p→Σ  when moving from spin to 
orbital.  So when we repeat sections 9, 10 and 11 to obtain ( )i i i ih p p A hψ ψα φ −  rather than the 

seed term ( )i i i ip p Aψ α φ ψ− , we expect the same sorts of things to occur: further time and 

space dependencies will be revealed out of ( )i i i ih p p A hψ ψα φ −  and new dimensionless 
coefficients will emerge which are akin to the three g-factors (12.10), (12.12) and (12.13).  That 
is why we put an “l-factor” into (15.5) – to alert us to expect this in the downstream development 
of (15.5).  And, just like (12.10), (12.12) and (12.13), these l-factors should be expected to be 
functions of the gauge fields Aμ  and the running charge e and the masses and the vacuum, that 
is, ( )1.5, , ,l l e A m vμ

+= . 
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So in this context, and leaving the repetition of sections 9, 10 and 11 but for i i i ip p Aα φ −  

rather than i i i iBi Eα −Σ  as a future exercise, let us lay out in general terms what we should have 
in hand after such an exercise.  At that point, setting hψψ →  and using the / 2g  of (12.10) and 

leaving ( )1.5, , ,l e A m vμ
+  as a “to be derived” unknown, we will be able to write (15.5) as: 

 

( ) ( )

( )

1.5

3 3

23 3
0

1 , , ,

1 2 211 2 2
2

i i i i

i i i ie B
m

h h A l e A m v h p p A h
m

m m e e h i E h h
v

h
m mvm

σ μ
ψ ψ σ ψ ψ

ψ ψ ψ ψ

α φ

φ φ α φφ γ
+

+

+

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟

Γ = − −

⎛ ⎞⎛ ⎞⎜ ⎟+ + + − Σ +⎜ ⎟⎜ ⎟⎝⎝ ⎠ ⎝ ⎠ ⎠⎝ ⎠

. (15.6) 

 
where ( )1.5, , ,l e A m vμ

+  is whatever coefficient analogous to the g-factor that we come across for 

the orbital momentum, and where this is the ( ),0,p pσΓ  vertex.  In contrast to (14.22), this no 
longer mixes apples and oranges because the g-factor is that of the Higgs field which is the field 
shown, and we have a placeholder for the ( )1.5, , ,l e A m vμ

+  that one would expect will develop in 
the orbital term. 
 
 As regards renormalization, at this juncture, the goal is to use ( ),0,p pσΓ  above in the 

no-longer-infinite Ward identity ( ),0,p pμ μγΓ =  of (14.21).  But (15.6) contains h h Aσ
ψ ψ σΓ  

which is a scalar product hJ Aσ σ  of the Higgs field current density hJ h hσ σ
ψ ψ≡ Γ  with the gauge 

field.  So we need to strip off Aσ , not dissimilarly to how we start with the Ward-Takahashi 
identity ( ) ( ) ( )1 1, , F Fq p q p q S p q S pμ

μ
− −′ ′Γ + = + −  and take the 0qμ →  limit to reach the Ward 

identity.  Specifically, we can isolate h hνψ ψΓ  is we take a derivative / Aμ∂ ∂   of (15.6) with 

respect to the gauge field.  So we do just that, noting that / / 0A Aσ σ
μ μγ∂Γ ∂ = ∂ ∂ = , to obtain: 

 

( ) ( )

( )

1.5

23 3

3 3
01

1 , , ,

1 2 221 2
2

i i i i

i i i ie B

h h
h h A h A h A h h

A A A

l e A m v h p p A h
A m

m m e e
m v v

h i E h h h
A m m m A

ψ ψσ σ σ μ
ψ ψ σ ψ σ ψ σ ψ ψ

μ μ μ

μ
ψ ψ

μ

ψ ψ ψ ψ
μ μ

α φ

φ αφ φ γ φ
+ +

+

⎛ ⎞⎛

∂ ∂∂ Γ = Γ + Γ + Γ
∂ ∂ ∂

∂ ⎡ ⎤= − −⎢

⎞+ +⎜ ⎟⎜ ⎟
⎝

⎥∂ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞⎢ ⎥⎜ ⎟ ⎡ ⎤+ + + − Σ +⎜ ⎟ ⎣ ⎦⎢ ⎥⎜ ⎟∂ ∂⎝⎝⎝ ⎠⎠ ⎦⎠ ⎠⎣

.(15.7) 

 
Now, we may isolate ( ),0,p pσΓ  in a form which includes the Ward identity while also setting 
σ σγΓ =  throughout and then setting A Aσ σγ/ = , namely: 
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( ) ( )

( )

1.5
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3 3

3 3
0

1 , , ,

1 2 21 21 2
2

i i i i

ii i ie B
m

h h h h

h h
Ah h A l e A m v h p p A h

A A A m

m m e e h i E h h h
A m m mv Av

μ μ
ψ ψ ψ ψ

ψ ψ μ
ψ ψ ψ ψ

μ μ μ

ψ ψ ψ ψ
μ μ

γ

α φ

φ φ γ φφ α
+ +

+

⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝

Γ =

∂ ∂ ∂ ⎡ ⎤/ /= − − + − −⎢ ⎥∂ ∂ ∂ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞⎢ ⎥⎜ ⎟ ⎡ ⎤+ + + − Σ +⎜ ⎟ ⎣ ⎦⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎦⎠⎣

.(15.8) 

 
So what has happened?  Normally, renormalization is all about using the Ward identity

( ) ( )1 / / ,0,FS p p m p p pμ μ
μ μ μγ−′∂ ∂ = ∂ − −Σ ∂ = Γ  to establish a differential equation in / pμ∂ ∂ , 

and we cannot do that without infinite renormalization constants.  With “Invariant Mass, 
Variable Gauge Renormalization,” the Ward identity is the simple ( ),0,p pμ μγΓ =  and the 
formerly-infinite constants are equal to unity.  But all of the complexities of renormalization 
instead are transferred into a differential equation of the form (15.8), and this is now a 
differential equation in / Aμ∂ ∂  rather than / pμ∂ ∂ .  Certainly, (15.8) is a complicated equation 

and we have not yet even found the orbital ( )1.5, , ,l e A m vμ
+  factors.  But the h hνψ ψΓ  at the front 

of (15.8) now gets discarded in favor of h hνψ ψγ , and this is now the differential equation that 
gets used for renormalization. 
 

So what does this all mean?  Let us now write the fermion mass relation (6.17) as: 
 

2 21 1
2 2

A Am e e
σ

σφ
φ φ

⎛ ⎞−= = −⎜ ⎟
⎝ ⎠

A  (15.9) 

 
and then 
 

2 mA A
e

σ
σ

φ= − . (15.10) 

 
Instead of expressing the physical quantities e  and m with no φ  as a running function of 

p pσσμ =  because the differential equation is for / pμ∂ ∂ , we express the physical quantities e 

and φ  with invariant m as a function of A Aσσμ′ ≡  because the differential equation is for 

/ Aμ∂ ∂ .  The content of the renormalization is the same, but we are on a A Aσσμ′ ≡  rather than 

a p pσσμ =  scale, the masses are invariants, and the renormalization constants are unity rather 

than infinite.  And, if we do wish to convert over to p pσσμ = , then we can make use of 

(14.19) which is the differential equation which contains the /A pμ ν∂ ∂  relation which is required 
to maintain the constant mass with finite renormalization constant equal to unity.  So all that is 
expressed as / Aμ∂ ∂  can be reexpressed as / pμ∂ ∂  via (14.19).  To be complete, we note that we 
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have not renormalized the wavefunction ψ  at any point.  It appears that turning this into a Higgs 
field hψψ →  implicitly tends to that matter. 

 
This is the upshot of “Invariant Mass Renormalization.”  Renormalization of rest mass is 

no more and no less than a re-gauging of gauge fields.  The ability to renormalize using gauge 
symmetry during renormalization to absorb any variation of the mass into the gauge freedom of 
the gauge field Aμ , is another reason for having made definition (3.4), (3.5) in the first place. 
 
16. Conclusion 
 
 As observed throughout this paper, Higgs theory is fundamentally a theory about the 
particles and fields that we do and do not observe in nature.  It informs us that the fields we write 
down in our Lagrangians or Hamiltonians are not the fields we observe, and that only after we 
have expanded these “seed” fields about a non-trivial non-zero vacuum do we obtain the 
particles and fields that are actually observed.    But to date, Higgs theory has only been fully 
developed for scalars, and the experimental data for Higgs scalars is very thin compared to the 
wealth of data that is available and known for fermions.  It is intended that the application of 
Higgs theory to fermions as developed in this paper will provide additional avenues through 
which this fundamentally-important theory of what we observe in the physical universe might be 
experimentally validated. 
 

One possible avenue for validation, at (13.10), involves detecting the impact of a time-
dependent magnetic field on the known g-factors of the charged leptons.  This is a specific 
numeric prediction as to the magnitude of the g-prime-factor associated with a time-dependent 
magnetic field, as well as a qualitative prediction that a time-dependent magnetic field will cause 
a much greater response for the tau lepton than for the other two charged leptons, and in the 
muon more than in the electron, progressively by about 2 to 3 orders of magnitude from one 
generation to the next.  In general, all three of the g-factor types (12.10), (12.12) and (12.13) 
could with some ingenuity provide paths to further validation of the Higgs thesis. 
 
 Another possible venue for validation is (13.9) which decomposes the mass of each 
fermion into the two constituent gauge potentials for which the observed mass is the difference 
between potentials.  Of course, gauge fields are not observables as absolute numbers; the only 
thing that has physical meaning is a difference in potential.  So one expects the separate energy 
contributions in (13.9) will not be directly observable.  Yet at the same time, there can be little 
doubt that the scalar potential φ  is fundamentally an indicator of the fact that an electrically-
charged fermion has a charge, while the vector potential A fundamentally indicates that that 
charge is spinning and thus has “intrinsic” kinetic aspects as well.  Whether there is some 
alternate, observable way to discern how much of the mass-energy associated with a charged 
lepton comes from its charge and how much comes from its spin is left as an open question, but 
(13.9) is the “food for thought” as to this possible avenue for validation.  
 
 Another avenue to consider originates when contrasting the particle Lagrangian (5.13) 
with the antiparticle Lagrangian (5.14).  Clearly, there is a broken symmetry as between 
fermions and antifermions.  Beyond (5.14), we focused full attention on developing the particle 



85 
 

(positive energy, positive vacuum) Lagrangian, and did no further development for the 
antiparticle Lagrangian.  That is clearly a “to do” item for which the development path is well-
laid out by the particle development.  Whether this broken symmetry between particles and 
antiparticles translates into something that can be or has been observed is unclear at the moment, 
but is worth further exploration. 
 
 In section 15, we laid out how the orbital angular momentum is to be developed, but 
stopped short adding the several additional sections akin to sections 9 through 11 to do this 
complete development.  This is a worthwhile pursuit, and could lead to further validation 
opportunities by finding the l-factors for orbital angular momentum introduced in (15.5), which 
are of an analogous nature to the spin g-factors developed here, and then comparing what they 
tell us to what we observe in the orbital angular momentum of the three charged leptons.  
 
 Another important topic for further development is renormalization, which has bedeviled 
physicists for years.  In many ways, doing renormalization is like trying to walk on air, because 
everything becomes scale dependent and as soon as one changes the scale, everything else 
changes.  This is especially so the moment that rest mass cannot even be regarded as an 
invariant.  In the 20th century, physicists learned the value of finding invariant quantities in 
nature, and of understanding the symmetries and conservation laws behind those invariants.  
Renormalization poses a severe challenge that notion, because even the supposedly reliable 
ground of an invariant rest mass apparently is no more.  But the constant-mass renormalization 
of section 14 appears to put an end to that quandary: mass is a constant, even as one shifts the 
renormalization scale, because a variation in the mass along the renormalization scale can 
always be gauged out and the infinite constants of renormalization may be set to unity.  What 
(14.14) and (14.15) tell us, is we can treat the mass m as well as the vev v+  as constant numbers 
when solving the now-finite Ward identity (15.8), so that the only variables in the differential 
equation are the gauge fields Aμ  and the running charge 4e πα= .  And then, we can simply 

use the gauge fields and specifically (15.10) to renormalize against A Aσσμ′ ≡  rather than 

p pσσμ = , and can further, if desired, convert over to p pσσμ =  via (14.19).  Being able to 
treat the mass as a constant will make mathematical life much simpler when trying to solve a 
differential equation such as (15.8). 
 
 Another avenue for development that appeared along the way which we bypassed in the 
present development, was non-Abelian, Yang-Mills gauge theory.  In (9.9) and its later 
counterparts (10.6) and (11.8), we ran into commutator terms ,A Aμ ν⎡ ⎤⎣ ⎦ .  We were not seeking 
these, but they appeared anyway.  To simplify development and restrict ourselves to 
electrodynamics for the time being, we set , 0A Aμ ν⎡ ⎤ =⎣ ⎦ .  But Yang-Mills theory is distinguished 
from Abelian gauge theory solely and exclusively by the fact that its gauge fields do not 
commute, , 0A Aμ ν⎡ ⎤ ≠⎣ ⎦ , because they are now defined as the matrices i iA Aμ μλ≡  where iλ are 
the group structure constants for a gauge group for SU(N) .  Were we to forego setting 

, 0A Aμ ν⎡ ⎤ =⎣ ⎦ , we would have additional terms in results such as (12.5) and (12.11) which would 
represent non-Abelian theory, and then the running of renormalization would invert the running 
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of coupling and charges and produce asymptotic freedom, etc., and all of this development could 
then be applied, most notably, to weak and strong interactions.  Clearly, this too is an avenue that 
ought to be pursued. 
 
 The one final aspect of this development which is nothing if not stunning, exemplified by 
(12.5) and (12.11), is that all of the time and space dependencies of Maxwell’s equations are 
“revealed” from gauge fields which start out as Heisenberg operators without any explicit space 
or time dependency.  This time and space dependency is revealed because Dirac’s equation and 
its spinor solutions created commutation relationships with the canonical momentum that placed 
a time or space dependency back into the Dirac equation for all of the gauge fields Aμ   to reveal 
the electric and magnetic fields E and B, and then went even further to commute the electric and 
magnetic fields with the canonical momentum to put ⋅Bσ , ∇×E , ∇⋅E  and ∇×B  terms right 
into the middle of the Dirac Lagrangian.  And the only reason we did not have a ∇⋅B  magnetic 
monopole term is because we turned off any non-Abelian interactions.  It is a testament to the 
economy of nature that Dirac, Heisenberg and Maxwell all converge in this way.  But what is 
tremendously profound is the realization that one can start with an equation which has no space 
or time dependencies, and then by the simple application of Heisenberg commutation to various 
commutator relationships that emerge, end up with a full space and time dependency for all of 
the electric and magnetic fields akin to those of Maxwell’s equations.  If Higgs theory is about 
“revealing” fields and masses which are not in our original Lagrangian, then what is 
demonstrated here is that that Dirac and Heisenberg theory reveal space and time dependencies 
even when they are not in the original Lagrangian.  If the entirety of our experience in the 
physical universe is about what transpires in space over time, then the fact that space and time 
dependencies can emerge from a Lagrangian without any ab initio space and time dependency – 
what Wheeler in a Geometrodynamic mind might call “spacetime without spacetime” – is a 
deeply penetrating insight into the nature of our world. 
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