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Abstract- Smarandache (1995) defined the notion of neutrosophic sets, which is a generalization of Zadeh's fuzzy set and Atanassov's 

intuitionistic fuzzy set. In this paper, we first develop some similarity measures of neutrosophic sets. We will present a method to calculate the 
distance between neutrosophic sets (NS) on the basis of the Hausdorff  distance. Then we will use this distance to generate a new similarity 
measure to calculate the degree of similarity between NS. Finally we will prove some properties of the proposed similarity measures.  
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I-INTRODUCTION 

Smarandache introduced a concept of neutrosophic set which has been a mathematical tool for handling problems involving 
imprecise, indeterminacy, and inconsistent data [1, 2].The concept of similarity is fundamentally important in almost every 
scientific field. Many methods have been proposed for measuring the degree of similarity between fuzzy sets (Chen, [11]; Chen 
et al., [12]; Hyung, Song, & Lee, [14]; Pappis& Karacapilidis, [10]; Wang, [13]...). But these methods are unsuitable for dealing 
with the similarity measures of neutrosophic set (NS). Few researchers have dealt with similarity measures for neutrosophic set 
and single valued neutrosophic set ([3, 4,17,18]), (i.e. the crisp neutrosophic sets, where the components T, I, F are all crisp 
numbers). Recently, Jun [3] discussed similarity measures on interval neutrosophic set (which an instance of NS) based on 
Hamming distance and Euclidean distance and showed how these measures may be used in decision making problems. 
Furthermore, A.A.Salama [4] defined the correlation coefficient, on the domain of neutrosophic sets, which is another kind of 
similarity measurement. In this paper we first extend the Hausdorff distance to neutrosophic set which plays an important role in 
practical application, especially in many visual tasks, computer assisted surgery and so on. After that a new series of similarity 
measures has been proposed for neutrosophic set using different approaches. 

Similarity measures have extensive application in several areas such as pattern recognition, image processing, region 
extraction, psychology [5], handwriting recognition [6], decision making [7], coding theory etc. 

This paper is organized as follows: Section2 briefly reviews the definition of Hausdorff distance and the neutrosophic set. 
Section 3 presents the new extended Hausdorff distance between neutrosophic sets. Section 4 provides the new series of similarity 
measure between neutrosophic sets, some of its properties are discussed. In section 5 a comparative study was done. Finally the 
section 6 outlines some conclusions. 

II-PRELIMINARIES 

In this section we briefly review some definitions and examples which will be used in the rest of the paper.  

Definition 2.1: Hausdorff  Distance 

The Hausdorff  distance (Nadler, 1978)  is  the maximum distance of a set to the nearest point in the other set. More formal description 
is given by the following  

Given two finite sets A = {a1, ..., ap} and B = {b1, ..., bq}, the Hausdorff  distance H (A, B) is defined as:  

H (A, B) = max {h (A, B), h (B, A)}                           (1) 
where  
H (A, B) = max min d (a, b)                                                                                          (2) 

a∈A b∈B 
a and b are elements of sets A and B respectively; d (a, b) is any metric between these elements.  



The two distances h (A, B) and h (B, A) are called directed Hausdorff distances.  
The function h (A, B) (the directed Hausdorff distance from A to B) ranks each element of A based on its distance to the 

nearest element of B, and then the largest ranked such element (the most mismatched element of A) specifies the value 
of the distance. Intuitively, if h(A, B) = c, then each element of A must be within distance c of some element of B, and 
there also is some element of A that is exactly distance c from the nearest element of B (the most mismatched element).  In 
general h (A, B) and h (B, A) can attain very different values (the directed distances are not symmetric). 

 
Let us consider the real space R, for any two intervals A= [a1,a2] and B= [b1,b2], the Hausdorff  distance H(A,B) is given 

by 

H (A, B) =max {|aଵ −	bଵ|,	|aଶ −	bଶ|}                  (3)       

Definition 2.2 (see [2]). Let U be an universe of discourse  then the neutrosophic set A is an object having the form A = {< x: 
TA(x),IA(x),FA(x) >,x ∈ U}, where the functions T, I, F : U→]−0,1+[  define respectively the degree of membership (or Truth) , the 
degree of indeterminacy, and the degree of non-membership (or Falsehood) of the element x ∈ U to the set A with the condition.  

               −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.                             (4) 
From philosophical point of view, the neutrosophic set takes the value from real standard or non-standard subsets of ]−0,1+[. 

So instead of ]−0,1+[ we need to take the interval [0,1] for technical applications, because ]−0,1+[will be difficult to apply in the real 
applications  such as in scientific and engineering problems.  

 
Definition 2.3 (see [18] ): Let X be a space of points (objects) with generic elements in X denoted by x (Wang et al., 2010). An SVNS 
A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-
membership function FA(x) for each point x in X, TA(x), IA(x), FA(x) ∈[0, 1].  

When X is continuous, an SVNS A can be written as 

                                    A= ழ்ಲ(௫),ூಲ(௫),ிಲ(௫),வ௫ , ݔ ∈ ܺ.                                                          (5) 

When X is discrete, an SVNS A can be written as 
 

                                   A= ∑ ழ்ಲ(௫),ூಲ(௫),ிಲ(௫),வ௫ଵ , ݔ ∈ ܺ.                                                     (6) 

 
Definition 2.4 (see [2,18]). A neutrosophic set or single valued neutrosophic set (SVNS ) A is contained in another neutrosophic 
set B i.e. A ⊆ B if ∀x ∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x). 
 
Definition 2.5 (see [2]). The complement of a neutrosophic set A is denoted by Ac and is defined as TA

c
(x) = FA(x), IA

c
(x) = IA(x), and  

F A
c
(x) = TA(x) for every x in X. 

A complete study of the operations and applications of neutrosophic set can be found in [1], [2], [18]. 

In this paper we are concerned with neutrosophic sets whose TA, IA and FA values are single points in [0, 1] instead of 
subintervals/subsets in [0, 1]. 

 

III. EXTENDED HAUSDORFF  DISTANCE BETWEEN TWO NEUTROSOPHIC SETS 

 

Based on the Hausdorff  metric, Eulalia Szmidt and Janusz Kacprzyk  defined a new distance between intuitionistic fuzzy sets 
and/or interval-valued fuzzy sets in[8], taking into account three parameter representation (membership, non-membership values, 
and the hesitation margins) of A-IFSs which fulfill the properties of the Hausdorff distances. Their definition is defined by: 

,ܣ)ଷܪ    (ܤ = ଵ∑ μ(x)|}ݔܽ݉ −	μ(x)|, |ν(x) −	ν(x)|, |π(x) 	−	π(x)|}ୀଵ 				         (7) 

where A = {< x, µA(x), νA(x), πA(x) >} and B = {< x, µB(x), νB(x), πB(x)>}. 

The terms and symbols used in [8] are changed so that they are consistent with those in this section. 

In this paper we are interested in extending the Hausdorff distance formulation in constructing a new distance for neutrosophic 
set due to its simplicity in the calculation. 

Let X={x1,x2, …, xn} be a discrete finite set. Consider a neutrosophic set A in X, where TA(xi), IA(xi), FA(xi)	∈ [0, 1], for every 
xi	∈  X, represent its membership, indeterminacy, and non-membership values respectively denoted  by A = {< x, TA(xi) , IA(xi), 

FA(xi) >}.  

Then we propose a new distance between A ∈ NS and B	∈ NS defined by  

         dୌ(A, B) = ଵ୬∑ max{|T(x୧) −	T(x୧)|, |I(x୧) −	 I(x୧)|, |F(x୧) 	− 	F(x୧)|}		୬୧ୀଵ 												(8)	



Where ݀ு(ܤ,ܣ) =	H	(A,	B)		denote the extended Hausdorff distance between two neutrosophic sets A and B. 

Let A, B and C be three neutrosophic sets. For all xi	∈	X we have: 

  dୌ(A, B) = H (A, B) =	max	{|T(x୧) −	T(x୧)|, หI(x୧) − I(୶)	ห, |F(x୧) −	F(x୧)|}         (9) 

The same between A and C are written as: 

For all xi	∈	X 

H (A, C) =	max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}                 (10) 

and between B and C is written as: 

For all xi	∈	X  H	(B	,	C)	=	max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}																														(11)	
Proposition 3.1: 

The above defined distance  ݀ு(ܤ,ܣ)  between NS A and B satisfies the following properties (D1-D4):  

 
(D1) ݀ு(ܤ,ܣ) ≥ (12)                                                                                                                                     .0 
 
(D2) ݀ு(ܤ,ܣ) =0 if and only if A = B; for all A, B ∈ NS.                                                         (13)    
 
(D3) ݀ு(ܤ,ܣ) = ݀ு(ܣ,ܤ).                                                                                           (14) 
 
(D4) If A⊆B⊆C, C is an NS in X, then  

                                                                            ݀ு(ܣ, (ܥ ≥ ݀ு(ܤ,ܣ)                            (15) 

 And  
                                                                            ݀ு(ܣ, (ܥ ≥ ݀ு(ܤ, 	 (16)                            (ܥ

Remark: Let A, B ∈ NS, A⊆ B if and only if , for all xi in X 
 ܶ(ݔ) ≤ ܶ(ݔ), (ݔ)ܫ ≥ ,(ݔ)ܫ (ݔ)ܨ ≥ 	(17)																				(ݔ)ܨ
It is easy to see that the defined measure ݀ு(ܤ,ܣ) satisfies the above properties (D1)-(D3). Therefore, we only prove (D4). 

Proof of (D4) for the extended Hausdorff  distance between two  neutrosophic  sets. Since 

A⊆ B ⊆ C implies for all xi in X     ܶ(ݔ) ≤ ܶ(ݔ) ≤ ܶ(ݔ), (ݔ)ܫ ≥ (ݔ)ܫ ≥ ,(ݔ)ܫ (ݔ)ܨ ≥ (ݔ)ܨ ≥   (ݔ)ܨ
We prove that   ݀ு(ܤ,ܣ) ≤ ݀ு(ܣ,                          (18)                                                                          (ܥ

α - If  |T(x୧) −	Tେ(x୧)| ≥ |I(x୧) −	Iେ(x୧)| ≥ |F(x୧) −	Fେ(x୧)|                                 (19)       

Then 
H (A, C) =	|T(x୧) −	Tେ(x୧)| but we have  

(i)   For all xi in X,  |I(x୧) −	I(x୧)| ≤ |I(x୧) −	Iେ(x୧)|                                                           (20) 
                                                        ≤ |T(x୧) −	Tେ(x୧)| 

      And, for all xi in X   |F(x୧) −	F(x୧)| ≤ |F(x୧) −	Fେ(x୧)|                                                    (21) 
                                                                ≤ |T(x୧) −	Tେ(x୧)| 
(ii) For all xi in X,   	|I(x୧) −	Iେ(x୧)| ≤ |I(x୧) −	Iେ(x୧)|                                                         (22) 

                                                              ≤ |T(x୧) −	Tେ(x୧)| 
  And, for all xi in X  |F(x୧) −	Fେ(x୧)| ≤ |F(x୧) −	Fେ(x୧)|                                                      (23) 

                                                               ≤ |T(x୧) −	Tେ(x୧)|   
On the other hand we have, for all xi in X 

(iii) |T(x୧) −	T(x୧)| ≤ |T(x୧) −	Tେ(x୧)|                                                                               (24) 
  and  |T(x୧) −	Tେ(x୧)| ≤ |T(x୧) −	Tେ(x୧)|       
 

Combining (i), (ii), and (iii) we obtain 

Therefore, for all xi in X 
 ଵ∑ max	{|T(x୧) −	T(x୧)|, |I(x୧) − I(x୧)	|, |F(x୧) −	F(x୧)|}ଵ  ≤ ଵ∑ max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}ଵ  



And ଵ∑ max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}ଵ  ≤ ଵ∑ max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}ଵ  

That is 

   ݀ு(ܤ,ܣ) ≤ ݀ு(ܣ, ,ܤ)and ݀ு (ܥ (ܥ ≤ ݀ு(ܣ,   (25)                 .(ܥ

β - If  |(ܑܠ)ۯ܂ |(ܑܠ)۱܂	− ≤ (ܑܠ)ۯ۴| |(ܑܠ)۴۱	− ≤ (ܑܠ)ۯ۷|  (26)                                                           |(ܑܠ)۷۱	−

Then 

H (A, C) =	|I(x୧) −	Iେ(x୧)| but we have for all xi in X                                                                      (27) 

 (a) |T(x୧) −	T(x୧)| ≤ |T(x୧) −	Tେ(x୧)|																																																																																																													(28)		 																						≤ |I(x୧) −	Iେ(x୧)|						And					|F(x୧) −	F(x୧)| ≤ |F(x୧) −	Fେ(x୧)|																																																																																														(29)																																							≤ |I(x୧) −	Iେ(x୧)|	(b) 					|T(x୧) −	Tେ(x୧)| ≤ |T(x୧) −	Tେ(x୧)|																																																																																																								(28)																												≤ |I(x୧) −	Iେ(x୧)|			And					|F(x୧) −	Fେ(x୧)| ≤ |F(x୧) −	Fେ(x୧)|																																																																																																			(30)																																	≤ |I(x୧) −	 Iେ(x୧)|	
On the other hand we have for all	xi	∈	X: (c) 			|I(x୧) −	I(x୧)| ≤ |I(x୧) −	Iେ(x୧)|	and																																																																															(31)					|I(x୧) −	Iେ(x୧)| ≤ |I(x୧) −	Iେ(x୧)|							
Combining (a) and (c) we obtain: 

Therefore, for all xi in X 
 ∑ (ܑܠ)ۯ܂|}	ܠ܉ܕ ,|(ܑܠ)۰܂	− (ܑܠ)ۯ۷| − ,|	(ܑܠ)۷۰ (ܑܠ)ۯ۴| {|(ܑܠ)۴۰	−  ≤ ∑ (ܑܠ)ۯ܂|}	ܠ܉ܕ ,|(ܑܠ)۱܂	− (ܑܠ)ۯ۷| − ,|	(ܑܠ)۷۱ (ܑܠ)ۯ۴| {|(ܑܠ)۴۱	−  

And ∑ (ܑܠ)۰܂|}	ܠ܉ܕ ,|(ܑܠ)۱܂	− (ܑܠ)۷۰| − ,|	(ܑܠ)۷۱ (ܑܠ)۴۰| {|(ܑܠ)۴۱	−  ≤ ∑ (ܑܠ)ۯ܂|}	ܠ܉ܕ ,|(ܑܠ)۱܂	− (ܑܠ)ۯ۷| − ,|	(ܑܠ)۷۱ (ܑܠ)ۯ۴| {|(ܑܠ)۴۱	−  

That is ݀ு(ܤ,ܣ) ≤ ݀ு(ܣ, ,ܤ)and ݀ு (ܥ (ܥ ≤ ݀ு(ܣ, (ܑܠ)ۯ܂|  If 	- ࢽ (32)                                                        (ܥ |(ܑܠ)۱܂	− ≤ (ܑܠ)ۯ۷| |(ܑܠ)۷۱	− ≤ (ܑܠ)ۯ۴|  (33)                                                        |(ܑܠ)۴۱	−

Then 

H (A, C) =	|F(x୧) −	Fେ(x୧)| but we have for all xi in X                                                                      (34) 

 (a) |T(x୧) −	T(x୧)| ≤ |T(x୧) −	Tେ(x୧)|																																																																														(35)																																	≤ |F(x୧) −	Fେ(x୧)|	
     and      |I(x୧) −	I(x୧)| ≤ |I(x୧) −	Iେ(x୧)|                                                          (36) 

                                           ≤ |F(x୧) −	Fେ(x୧)| (b) for all xi in X					|(ܑܠ)۰܂ |(ܑܠ)۱܂	− ≤ (ܑܠ)ۯ܂| ≥																																																						(37)																																																																														|(ܑܠ)۱܂	− (ܑܠ)ۯ۴| 	|(ܑܠ)۴۱	−
            and for all xi in X     |۷۰(ܑܠ) |(ܑܠ)۷۱	− ≤ (ܑܠ)ۯ۷|  (38)                                                          |(ܑܠ)۷۱	−

                                                     ≤ |F(x୧) −	Fେ(x୧)| 
On the other hand we have for all xi in X (c)								|F(x୧) −	F(x୧)| ≤ |F(x୧) −	Fେ(x୧)|     and                                                                     (39)                                                           

              |F(x୧) −	Fେ(x୧)| ≤ |F(x୧) −	Fେ(x୧)|                                                                                                        (40) 

Combining (a), (b), and (c) we obtain 

Therefore, for all xi in X 
 ଵ∑ max	{|T(x୧) −	T(x୧)|, |I(x୧) − I(x୧)	|, |F(x୧) −	F(x୧)|}ଵ  ≤ ଵ∑ max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}ଵ . 

And 



ଵ∑ max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}ଵ  ≤ ଵ∑ max	{|T(x୧) −	Tେ(x୧)|, |I(x୧) − Iେ(x୧)	|, |F(x୧) −	Fେ(x୧)|}ଵ  

That is ݀ு(ܤ,ܣ) ≤ ݀ு(ܣ, ,ܤ)and ݀ு (ܥ (ܥ ≤ ݀ு(ܣ,             (41)                                                        .(ܥ

From α, β , and		ߛ, we can obtain the property (D4). 

3.2 Weighted Extended Hausdorff  Distance Between Two Neutrosophic Sets. 

In many situations the weight of the element xi ∈ X should be taken into account. Usually the elements have 
different importance. We need to consider the weight of the element so that we have the following weighted 
distance between NS. Assume that the weight of xi ∈ X is wi where X={x1, x2,.., xn}, wi ∈ [0,1], i={1,2,3,.., n} 
and ∑ w୧୬ଵ =1. Then the weighted extended Hausdorff distance between NS A and B is defined as: 

          ݀ு௪(ܤ,ܣ) = ∑ ଵݓ ݀ு(ܣ(ݔ),  (42)                     (ݔ)ܤ

 

It is easy to check that dୌ୵(A, B) satisfies the four properties D1-D4 defined above. 

 

IV. SOME NEW SIMILARITY MEASURES FOR NEUTROSOPHIC SETS 

 

The distance measure between two NS is used in finding the similarity between neutrosophic sets. 

We found in the literature different similarity measures, and we extend them to neutrosophic sets (NS), 
several of them defined below: 

Liu [9] also gave an axiom definition for the similarity measure of fuzzy sets, which also can be expressed 
for neutrosophic sets (NS) as follow: 

 
Definition 4.1: Axioms of a Similarity Measure 

 A mapping S:NS(X)×NS(X)→[0,1], NS(X) denotes the set of all NS in X={x1,x2,…,xn}, S(A, B) is said to 
be the degree of similarity between A∈ NS and B	∈ NS, if S(A,B) satisfies the properties of conditions (P1-P4): 

(P1) S (A, B) = S (B, A).                                                                                    (43) 
(P2) S(A,B) = (1,0,0) =	1 .If  A = B  for all A,B ∈ NS.                                          (44) 
(P3) S(A,B) 	≥ 0, S୍(A,B) 	≥ 0, S(A,B) 	≥ 0.                                                (45)        

     (P4) If A⊆B⊆C for all A, B, C ∈ NS, then S (A, B) ≥S (A, C) and S (B, C) ≥ S (A, C).        (46) 
 

Numerical Example: 

Let  A ≤ B  ≤  C. with TA ≤ TB ≤ TC and IA≥IB≥IC and FA≥FB≥FC for each xi∈ NS. 

For example: 
A= { x1 (0.2, 0.5, 0.6); x2 (0.2, 0.4, 0.4) } 
B= { x1 (0.2, 0.4, 0.4); x2 (0.4, 0.2, 0.3) } 
C= { x1 (0.3, 0.3, 0.4); x2 (0.5, 0.0, 0.3) } 
In the following we define a new similarity measure of neutrosophic set and discuss its properties. 

4.2 Similarity Measures Based on the Set –Theoretic Approach. 

In this section we extend the similarity measure for intuitionistic and fuzzy set defined by Hung and Yung 
[16] to neutrosophic set which is based on set-theoretic approach as follow.  

Definition 4.2: Let A,B be two neutrosophic sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and B= 
{< x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of X in A and B respectively, then the similarity measure 
between the neutrosophic sets A and B can be evaluated by the function 

For all xi in X ்ܵ(ܣ, (ܤ = (∑ ൫்ಲ(௫),்ಳ(௫)൯ெ௫൫்ಲ(௫),்ಳ(௫)൯൨)ேଵ /n                                                                                      (47) 

ூܵ(ܣ, (ܤ = 1 − (∑ ൫ூಲ(௫),ூಳ(௫)൯ெ௫൫ூಲ(௫),ூಳ(௫)൯൨)ேଵ /n                                                                                 (48) ܵி(ܣ, (ܤ = 1 − (∑ ൫ிಲ(௫),ிಳ(௫)൯ெ௫൫ிಲ(௫),ிಳ(௫)൯൨ேଵ )/n                                                                               (49) 

and   ܵ(ܣ, (ܤ = ,ܣ)்ܵ) ,(ܤ ூܵ(ܣ, ,(ܤ ܵி(ܣ,  (50)                                                                         ((ܤ



where  S(A,B) denote the degree of similarity (where we take only the T's). S୍(A,B) denote the degree of indeterminate similarity (where we take only the I's). S(A,B) denote degree of nonsimilarity (where we take only the F's). 
Min  denotes the minimum between each element of A and B. 
Max denotes the minimum between each element of A and B. 
Proof of (P4) for the (1). 

Since A⊆B⊆C implies,  for all xi in X 

  	 ܶ(ݔ) ≤ ܶ(ݔ) ≤ ܶ(ݔ), (ݔ)ܫ ≥ (ݔ)ܫ ≥ ,(ݔ)ܫ (ݔ)ܨ ≥ (ݔ)ܨ ≥    (ݔ)ܨ
Then, for all xi in X 
 
 

     
൫்ಲ(௫),்ಳ(௫)൯ெ௫൫்ಲ(௫),்ಳ(௫)൯ = ்ಲ(௫)்ಳ(௫)                                               (51) 

      
൫்ಲ(௫),்(௫)൯ெ௫൫்ಲ(௫),்(௫)൯ = ்ಲ(௫)்(௫)                                                (52) 

       
൫்ಳ(௫),்(௫)൯ெ௫൫்ಳ(௫),்(௫)൯ = ்ಳ(௫)்(௫)                                               (53) 

Therefore, for all xi in X 

                                                               
்ಲ(௫)்(௫) = ்ಳ(௫)்(௫) + ்ಲ(௫)ି்ಳ(௫)்(௫) ≤ ்ಳ(௫)்(௫)                           (54) 

(since ܶ(ݔ) ≤ ܶ(ݔ) ) 
Furthermore, for all xi in X 

൯(࢞)ࢀ,(࢞)ࢀ൫࢞ࢇࡹ൯(࢞)ࢀ,(࢞)ࢀ൫          ≥  ൯                             (55)(࢞)ࢀ,(࢞)ࢀ൫࢞ࢇࡹ൯(࢞)ࢀ,(࢞)ࢀ൫

Or 

(࢞)ࢀ(࢞)ࢀ     ≥ (ݔ)or ܶ  (࢞)ࢀ(࢞)ࢀ ≤ ܶ(ݔ)                                   (56) 

(since TC(xi) ≥ TB(xi)). 

Inequality (56) implies that, for all xi in X 

(࢞)ࢀ(࢞)ࢀ        ≤  (57)                                                          (࢞)ࢀ(࢞)ࢀ

From the inequalities (54) and (57), the property (P4) for ்ܵ(ܣ, ≤ (ܤ ,ܣ)்ܵ  .is proven (ܥ

In a similar way we can prove that ூܵ(ܣ, ,ܣ)and ܵி (ܤ  .(ܤ
We will to prove that S୍(A, C) ≥ S୍(A, B). For all xi∈ X we have: 

ூܵ(ܣ, (ܥ = 1 − ൫ூಲ(௫),ூ(௫)൯ெ௫൫ூಲ(௫),ூ(௫)൯=1 − ூ(௫)ூಲ(௫) ≥ 1 − ூಳ(௫)ூಲ(௫)                                                           (58) 

Since ܫ(ݔ) ≤  (ݔ)ܫ
Similarly we prove  ܵி(ܣ, (ܥ ≥ ܵி(ܣ,  for all xi in X                                                           (59) (ܤ
,)ࡲࡿ  ( =  − ൯=(࢞)ࡲ,(࢞)ࡲ൫࢞ࢇࡹ൯(࢞)ࡲ,(࢞)ࡲ൫ − (࢞)ࡲ(࢞)ࡲ ≥  −  (60)                                                        (࢞)ࡲ(࢞)ࡲ

Since Fେ(x୧) ≤ F(x୧) 
Then   S(A, C)≤S(A, B) where S(A,C)=(	S(A,C), S୍(A, C), S(A,C)) and 
            S (A, B) = (	S(A,B),	S୍(A,B),	S(A,B)).                                              (61) 
In a similar way we can prove that S (B, C) ≥ S (A, C). If A⊆B⊆C therefore S (A, B) satisfies (P4) of definition 4.1. 
By applying (50), the degree of similarity between the neutrosophic sets (A, B), (A, C) and (B, C) are: 

S(A, B) =(்ܵ(ܣ, ,(ܤ 	 ூܵ(ܣ, ,(ܤ 	ܵி(ܣ,  (0.30 ,0.35 ,0.75) =((ܤ
S (A, C) =	(்ܵ(ܣ, ,(ܥ 	 ூܵ(ܣ, ,(ܥ 	ܵி(ܣ,  (0.30 ,0.7 ,0.53) =((ܥ
S (B, C) =	(்ܵ(ܤ, ,(ܥ 	 ூܵ(ܤ, ,(ܥ 	ܵி(ܤ,  (0 ,0.63 ,0.73) =((ܥ
Then  (49) satisfies property P4: S(A, C)		≤ S(A, B) and S(A, C)		≤ S(B, C). 
Usually, the weight of the element xi ∈ X should be taken into account, then we present the following weighted similarity 

between NS. Assume that the weight of xi ∈ X={1,2,…,n} is wi (i=1,2,…, n) when wi ∈ [0,1],∑ ଵݓ = 1. 

Denote 		ܵ௪்(ܣ, (ܤ = (∑ ݓ ൫்ಲ(௫),்ಳ(௫)൯ெ௫൫்ಲ(௫),்ಳ(௫)൯൨)ேଵ /n                                                                   (62)        



              		ܵ௪ூ ,ܣ) (ܤ = 1 − (∑ ݓ ൫ூಲ(௫),ூಳ(௫)൯ெ௫൫ூಲ(௫),ூಳ(௫)൯൨)ேଵ /n                                                           (63) 

              		ܵ௪ி(ܣ, (ܤ = 1 − (∑ ݓ ൫ிಲ(௫),ிಳ(௫)൯ெ௫൫ிಲ(௫),ிಳ(௫)൯൨ேଵ )/n                                                                 (64) 

and   ܵ௪(ܣ, (ܤ = (		ܵ௪்((ܣ, ,(ܤ 		ܵ௪ூ ,ܣ)) ,(ܤ 		ܵ௪ி((ܣ,      (65)                                                                         ((ܤ

It is easy to check that ܵ௪(ܤ,ܣ) satisfies the four properties P1-P4 defined above. 

4.3 Similarity Measure Based on the Type1 Geometric Distance Model  
In the following, we express the definition of similarity measure between fuzzy sets based on the model of 

geometric distance proposed by Pappis and Karacapilidis in [10] to similarity of neutrosophic set. 

Definition 4.3 : Let A,B be two neutrosophic sets in X={x1, x2,..., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and 
B= {< x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of X in A and B respectively, then the similarity 
measure between the neutrosophic sets A and B can be evaluated by the function    

For all xi in X 
 

,ܣ)்ܮ        (ܤ = 1 − ∑ |ఽ(୶)ି	ా(୶)|భ∑ (ఽ(୶)ା	ా(୶))భ ,ܣ)ூܮ	     (66)                                                                                            (ܤ = ∑ |୍ఽ(୶)ି	୍ా(୶)|భ∑ (୍ఽ(୶)ା	୍ా(୶))భ                                                                                                      (67)           

,ܣ)ிܮ       (ܤ = ∑ |ிಲ(௫)ି	ிಳ(௫)|భ∑ (ிಲ(௫)ା	ிಳ(௫))భ               and                                                                                 (68) 

,ܣ)ܮ       (ܤ = ,ܣ)்ܮ) ,(ܤ ,ܣ)ூܮ ,(ܤ ,ܣ)ிܮ  (69)                                                                              ((ܤ

We will prove this similarity measure satisfies the properties 1-4 as above. The property (P1) for the 
similarity measure (69) is obtained directly from the definition 4.1. 

Proof: obviously, (68) satisfies P1-P3-P4 of definition 4.1. In the following L (A, B) will be proved to satisfy (P2) and (P4). 
   Proof of (P2) for the (69) 

     For all xi in X 

First of all, ܣ)்ܮ, (ܤ = 1 ↔ 
∑ |ఽ(୶)ି	ా(୶)|భ∑ (ఽ(୶)ା	ా(୶))భ = 0                                                                (70) 

                                      ↔ |T(x୧) −	T(x୧)| = 0  

                                      ↔ T(x୧) = 	T(x୧) ܮூ(ܣ, (ܤ = 0 ↔ 
∑ |୍ఽ(୶)ି	୍ా(୶)|భ∑ (୍ఽ(୶)ା	୍ా(୶))భ = 0                                                                                     (71) 

  ↔ |I(x୧) −	I(x୧)| = 0   ↔ I(x୧) = 	 I(x୧) ܮி(ܣ, (ܤ = 0 ↔ 
∑ |ఽ(୶)ି	ా(୶)|భ∑ (ఽ(୶)ା	ా(୶))భ = 0                                                                                     (72) 

    ↔ |F(x୧) −	F(x୧)| = 0 ↔ F(x୧) = 	F(x୧) 
Then  ࡸ(A, B) = (L(A, B), 	L୍(A, B), 	L(A, B)) = (1, 0, 0) if A=B for all A, B ∈ NS.      (73) 

   Proof of P3 for the (69) is obvious. 

By applying (69) the degree of similarity between the neutrosophic sets (A, B), (A, C) and (B, C) are: 

L (A, B) =(ܣ)்ܮ, ,(ܤ ,ܣ)ூܮ ,(ܤ ,ܣ)ிܮ  .(0.17 ,0.2 ,0.8) =((ܤ
L (A, C) =	(ܣ)்ܮ, ,(ܥ ,ܣ)ூܮ ,(ܥ ,ܣ)ிܮ  .(0.17 ,0.5 ,0.67) =((ܥ
L (B, C) =	(ܤ)்ܮ, ,(ܥ ,ܤ)ூܮ ,(ܥ ,ܤ)ிܮ  .(0 ,0.33 ,0.85) =((ܥ

The result indicates that the degree of similarity between neutrosophic sets A and B ∈ [0, 1]. Then (69) 
satisfies property P4: L(A, C)	≤ L(A, B) and L(A, C)	≤ L(B, C). 

 
4.4 Similarity Measure Based on the Type 2 Geometric Distance model  

In this section we extend the similarity measure proposed by Yang and Hang [16] to neutrosophic set as 
follow: 

Definition 4.4: Let A, B be two neutrosophic set in X={x1,x2,.., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and B= 
{<x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of X in A and B respectively, then the similarity measure 
between the neutrosophic set A and B can be evaluated by the function: 

For all xi in X 
 



 =(A, B) ்ܯ
ଵ ∑ (1 − |ఽ(୶)ିా(୶)|ଶ )ଵ  =ூ (A, B)ܯ (74)                                                                                       .
ଵ ∑ (|୍ఽ(୶)ି୍ా(୶)|ଶ )ଵ  =ி (A, B)ܯ (75)                                                                                                . 
ଵ ∑ (|ఽ(୶)ିా(୶)|ଶ )ଵ .  

And M,୍, = (M(A,B),M୍(A,B),M(A,B))  for all i={x1,x2 ,.., xn}                (76) 

The proofs of the properties P1-P2-P3 in definition 4.1 (Axioms of a Similarity Measure) of the similarity measure in 
definition 4.4 are obvious. 

Proof of (P4) for the (76). 
 

Since for all xi in X 

 ܶ(ݔ) ≤ ܶ(ݔ) ≤ ܶ(ݔ), (ݔ)ܫ ≥ (ݔ)ܫ ≥ ,(ݔ)ܫ (ݔ)ܨ ≥ (ݔ)ܨ ≥  Then for all xi in X  (ݔ)ܨ

 1 − |ి(୶)ିఽ(୶)|ଶ = 1 − (ి(୶)ିఽ(୶))ଶ                                                                                   (77) 

                                      		= 1 − ((ి(୶)ିా(୶))ଶ 	+ 
(ా(୶)ିఽ(୶))ଶ ) 

                                         ≤ 1 − ((ి(୶)ିా(୶))ଶ 	) 
                                        = 1 − |ి(୶)ିా(୶)|ଶ  

Then 		்ܯ(A, C) ≤	்ܯ(B, C).                                                                                                 (78) 
Similarly, M(A, C) ≤	M(A, B) can be proved easily. 
For M୍(A, C) ≥	M୍(B, C) and M(A, C) ≥	M(B, C) the proof is easy. 
Then by the definition 4.4, (P4) for definition 4.1, is satisfied as well. 
By applying (76), the degree of similarity between the neutrosophic sets (A, B), (A, C) and (B, C) are: 

M(A,B)=(	்ܯ (A,B),	ܯூ (A,B),	ܯி (A,B))=(0.95 , 0.075 , 0.075) 
M(A,C)= (	்ܯ (A,C),	ܯூ (A,C),	ܯி (A,C))=(0.9, 0.15 , 0.075) 
M(B,C)= (	்ܯ (B,C),	ܯூ (B,C),	ܯி (B,C))=(0.9, 0.075 , 0) 
 
Then (76) satisfies property P4: 
 M (A, C)		≤ M (A, B) and M (A, C)		≤ M (B, C).                                                                                  (79) 
 
Another way of calculating similarity (degree) of neutrosophic sets is based on their distance. There are more approaches on 

how the relation between the two notions in form of a function can be expressed. Two of them are presented below (in section 
4.5 and 4.6).  

4.5 Similarity Measure Based on the Type3 Geometric Distance Model. 

In the following we extended the similarity measure proposed by Koczy in [15] to neutrosophic set (NS). 

Definition 4.5: Let A, B be two neutrosophic sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and B= 
{< x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of x in A and B respectively, then the similarity measure 
between the neutrosophic sets A and B can be evaluated by the function ۶ۯ)܂, ۰) = ା(۰,ۯ)܂∞܌  denotes  the degree of similarity.                                                             (80) ۶۷(۰,ۯ) =  − ା۷∞܌ ,ۯ)denotes the degree of indeterminate similarity.                                 (81) ۶۴  (۰,ۯ) ۰) =  − ା۴∞܌  denotes degree of non-similarity                                                       (82)  (۰,ۯ)

where  ݀∞்(ܣ, ூ∞݀	 ,(ܤ ,ܣ)    .are the distance measure of two neutrosophic  sets A and B (ܤ,ܣ)and ݀∞ி ,(ܤ

For all xi in X ݀∞்(ܣ, (ܤ = max{|T(x୧) −	T(x୧)|}.                                                                         (83) ݀∞ூ ,ܣ) (ܤ = max{ |I(x୧) −	I(x୧)|}.                                                                          (84) ݀∞ி(ܣ, (ܤ = max{ |F(x୧) −	F(x୧)|}.                                                                        (85) 

and   H (A, B) = (	்ܪ(A, B),	ܪூ(A, B), ,ி(Aܪ B)).                                                                    (86) 

By applying the (86) in  numerical example we obtain: ݀∞(ܣ,  .then H (A, B) = (0.83, 0.17, 0.17) ,(0.2 ,0.2 ,0.2) =(ܤ



,ܣ)∞݀ ,ܤ)∞݀ .then H (A, C) = (0.76, 0.29, 0.17) ,(0.1 ,0.4 ,0.3) =(ܥ  .then H (B, C) = (0.90, 0.17, 0) ,(0 ,0.2 ,0.1) =(ܥ

It can be verified that H (A, B) also has the properties (P1)-(P4). 

 

4.6 Similarity Measure Based on Extended Hausdorff  Distance  

It is well known that similarity measures can be generated from distance measures. Therefore, we may use 
the proposed distance measure based on extended Hausdorff distance to define similarity measures. Based on 
the relationship of similarity measures and distance measures, we can define a new similarity measure between 
NS A and B as follows: 

(ܤ,ܣ)ܰ                  = 1− ݀ு(ܤ,ܣ)                        (87) 
 
Where ݀ு(ܤ,ܣ)		represent the extended Hausdorff  distance between  neutrosophic sets (NS) A and  B.  

According to the above distance properties (D1-D4).It is easy to check that the similarity measure (87) satisfies the 
four properties of axiom similarity defined in 4.1 

By applying the (87) in numerical example we obtain: ܰ(ܤ,ܣ) (ܥ,ܣ)ܰ 0.8= (ܥ,ܤ)ܰ 0.7= =0.85 
Then (5) satisfies property P4: 
N(A, C)		≤ N(A, B) and N(A, C)		≤ N(B, C) 
 
Remark: It is clear that the larger the value of  N(A, B),  the more the similarity between NS A and B. 
Next we define similarity measure between NS A and B using a matching function. 
 

4.7 Similarity Measure of two Neutrosophic  Sets Based on Matching Function. 

 
Chen [11] and Chen et al. [12] introduced a matching function to calculate the degree of similarity between fuzzy sets. In the 

following, we extend the matching function to deal with the similarity measure of NS. 

Definition 4.7 Let F and E be two neutrosophic sets over U. Then the similarity between them, denoted by K (F, G) or KF, G   

has been defined based on the matching function as: 

For all xi in X ܨ)ܭ, (ܩ = ீ,ிܭ = ∑ ( ிܶ(ݔ) ∙ ܶீ (ݔ) + (ݔ)ிܫ ∙ ܫீ (ݔ) + (ݔ)ிܨ ∙ ܨீ ∑)	ଵmax((ݔ) (( ிܶ(ݔ))ଶଵ + ଶ((ݔ)ிܫ) + ,(ଶ((ݔ)ிܨ) ∑ ((ܶீ ଶଵ((ݔ) + ଶ((ݔ)ீܫ) + ܨீ)  ((ଶ((ݔ)

 (88) 

Considering the weight wj ∈ [0, 1] of each element xi ∈ X, we get the weighting similarity measure between NS as: 

For all xi in X ܭ௪(ܨ, (ܩ = ∑ )ݓ ிܶ(ݔ) ∙ ܶீ (ݔ) + (ݔ)ிܫ ∙ (ݔ)ீܫ + (ݔ)ிܨ ∙ ܨீ ∑)	ଵmax((ݔ) ))ݓ ிܶ(ݔ))ଶଵ + ଶ((ݔ)ிܫ) + ,(ଶ((ݔ)ிܨ) ∑ ீܶ))ݓ ଶଵ((ݔ) + ܫீ) ଶ((ݔ) + ܨீ)  ((ଶ((ݔ)

 (89) 

If each element xi∈ X has the same importance, then (89) is reduced to (88). The larger the value of	ܨ)ܭ,  the more the (ܩ
similarity between F and G. Here	ܨ)ܭ,  .has all the properties described as listed in the definition 4.1 (ܩ

By applying the (88) in  numerical example we obtain: (ܤ,ܣ)ܭ (ܥ,ܣ)ܭ , 0.75	= =	0.66, and ܤ)ܭ, (ܥ =	0.92 

Then (87) satisfies property P4: K(A, C)		≤ K(A, B) and K(A, C)		≤ K(B, C) 

 

V. COMPARISON OF VARIOUS SIMILARITY MEASURES 

In this section, we make a comparison among similarity measures proposed in the paper. Table I show the 
comparison of various similarity measures between two neutrosophic sets respectively. 

Table I . Example results obtained from the similarity measures between neutrosophic sets A , B and C. 



 A, B A, C B, C
 (50) (0.75, 0.35, 0.3) (0.53, 0.7, 0.3) (0.73, 0.63, 0) 
 (69) (0.8, 0.2,0.17) (0.67, 0.5, 0.17) (0.85, 0.33, 0) 
 (76) (0.95, 0.075, 0.075) (0.9, 0.15, 0.075) (0.9, 0.075, 0) 
 (86) (0.83, 0.17, 0.17) (0.76, 0.29, 0.17) (0.9, 0.17, 0) 
 (87) 0.8 0.7 0.85 

 (88) 0.75 0.66 0.92 

Each similarity measure expression has its own measuring. They all evaluate the similarities in neutrosophic sets, and they can 
meet all or most of  the properties of similarity measure. 

In definition 4.1, that is P1-P4. It seems from the table above that from the results of similarity measures between neutrosophic 
sets  can be  classified in two type of similarity measures: the first type which we called “crisp similarity measure” is illustrated by 
similarity measures (N and K) and the second type called  “neutrosophic similarity measures” illustrated by similarity measures (S, 
L, M and H). The computation of measure H , N and S are much simpler than that of  L, M and K  

CONCLUSIONS 

 

In this paper we have presented a new distance called "extended Hausdorff distance for neutrosophic sets" 
or "neutrosophic Hausdorff distance". Then, we defined a new series of similarity measures to calculate the 
similarity between neutrosophic sets. It’s hoped that our findings will help enhancing this study on neutrosophic 
set for researchers. 
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