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The distribution law for the values of pairs of the conserved additive quantum numbers of 

subatomic particles and antiparticles of all generations has been described that has made it possible 
to advance the hypothesis on the existence of the microcosm object, different states of which can be 
the mentioned particles. This object, named as bastron, has two very different groups of states. The 
smaller group in  number is easy to be put in correspondence with the weakly interacting particles 
and antiparticles, and the larger one in number – to the hadrons and their antiparticles. Quarks don’t 
correspond the bastron states and perhaps due to this fact they don’t exist as free particles outside 
hadrons. 

 

1 Introduction 
 
At present we know more than two hundred strongly interacting particles and about twenty 

weakly interacting particles. Previously a discovery of every new particle was interpreted as an 
important event. Now the situation is different – there appeared to exist a great number of particles. 
The reasons for existence of a large quantity of particles and a variety of their properties have no 
explanations in many cases as the modern theory (the Standard model) considers mainly interaction of 
particles. The fundamental particles are especially singled out as it is considered that they do not 
consist of other particles and can be regarded as primary elements. Despite quite a large range of the 
fundamental particles nevertheless many theorists suppose that the list of these particles is not 
complete and they predict new hypothetical particles. At first sight, the pattern with particles has the 
following view: there are a lot of primary elements in nature. But this pattern is most likely an 
outward appearance. 

According to the concept which is presented below instead of a great number of independent 
subatomic particles in fact we deal with only one object of the microcosm, the mentioned particles 
being different states of it. The hypothesis of existing the object that previously didn’t occur in the 
physics of particles appeared while interpreting the type of value distribution for the pairs of the 
conserved additive quantum numbers of subatomic particles described in [1]. Now we proceed to the 
description of this distribution. 
 

2 Distribution regularities for the conserved additive  
quantum numbers of strongly interacting particles 
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where the vector . Then we will be interested in the transformation properties (1), when the 

arguments m and n in the matrix-function (2) assume only the following values: 0, ±1, ±2, ±3,… and 
so on.  In general case, the vectors  obtained from the transformation (1) have the following view 
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Substituting in (3) different values for the pairs of integer numbers m and n for which 6n m r≠ ± , 
where r is an integer number or zero, we obtain twelve different vectors  ,m nV
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and also a zero vector  In (4) we have selected the vectors , the indices of which 

satisfy  the inequalities 0 5  and 1
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m≤ ≤ n≤ ≤ . There are no other vectors with the components 
that are different from (4). The vectors (4) can be juxtaposed to strongly interacting particles, 
indicated in braces as for the components  and  of these vectors the following equalities occur 
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where B  is a baryon number and Q  is an electric charge of the strongly interacting particle 
designated in braces in (4) in the system of units where the module of an electron charge is assumed 
equal to one. Substituting into (5) the values of the components  and from (3) we will get the 
following equalities which determine the values of pairs of the conserved additive quantum numbers 
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B  and Q  for the strongly interacting particles in the function of the integers and n m
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From (6) after the calculations we obtain the following possible values of pair quantum 
numbers B  and Q : 
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where  and D+ D−  are dibarions that are designated in a quark model as uuu  and ddd uuuddd  
accordingly. The calculated values of the number pairs B  and , as it can be easily seen, coincide 
with the well-known values of these numbers for all strongly interacting particles under examination 
[1], designated in (7). These results are unknown in the Standard model. 

Q

 

3 Distribution regularities for the conserved additive  
quantum numbers of weakly interacting particles 

 
Now let us consider the range of values for the numbers m and n in which , where r is an 
integer number or zero. Then from (3) we obtain the vectors 
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Substituting the values of these numbers into (3) we obtain only six different vectors. 
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In (9) the vectors  for the values 0,m mV m≤ ≤ have been presented. The vectors (9) can be 
juxtaposed to the weakly interacting particles, for example, the particles of the first generation 
indicated in braces as it is easy to notice that between the components  and of the vectors 

and the additive numbers and Q  of the juxtaposed particles the equalities occur 
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where  is a lepton number and  is an electric charge of the weakly interacting particle in the 
system of units where the module of an electron charge is taken equal to one. Substituting into (10) 
the values of the components  and from (8) we get the following equalities defining the values 
of pairs of the conserved additive quantum numbers  and Q  for the weakly interacting 
particles in the function of number m 
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From (11) after the calculations we obtain the following possible values of pair quantum 
numbers ( , , )eL L L Lμ τ  and : Q
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Whence it is clear, that the calculated values for the pair numbers ( , , )eL L L Lμ τ  and Q  exactly 
coincide with those that are known for the weakly interacting particles designated in (12). These 
results are unknown in the Standard model. 

The vector with components 1 0G =  and 2 0G =  can be obtained by adding the vectors 
. This vector can be put in correspondence with -bozon, as in this case , 3,m m m m+ ++V V 3

0Z 0, 0L Q= = . 
Therefore, all the known values of the pair numbers  and Q ,  and Q ,  and Q  for the weakly 
interacting particles and antiparticles follow from the transformation (1) and appear to be the 
functions of the integer . 
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4 On the distribution law of the conserved additive  
quantum numbers of subatomic particles 

 
The transformation (1) with the matrix-function (2) in fact can be regarded as the distribution 

law of the pair additive quantum numbers B and Q for the strongly interacting particles and 
antiparticles and also L and Q for the weakly interacting particles and antiparticles. Specifying any 
integer values for the numbers m  and  in the equalities (6) and (11) we can get the values for the 
pairs of the conserved additive numbers of real subatomic particles and antiparticles. The universality 
of this law is stipulated by the fact that it is not based on some specific model of particles. On the 
contrary, the whole spectrum of the observable values for the pairs of additive quantum numbers B 
and  for the strongly interacting particles and antiparticles and also L and Q  for the weakly 
interacting particles and antiparticles follows from it. The values 

n

Q
B  and Q  for the quarks and 

antiquarks are only absent. 
The transformation (1) with matrix (2) also allows describing mutual transformation of the 

subatomic particles. It is caused by the properties of the matrix-function (2). Indeed, from (1) we get 
the equalities  
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The vector equalities (15, 16), as it can be easily seen, describe transformation of the subatomic particles at 
which the components  and  remain as well as the numbers B and  or L and  remain separately 
due to the equalities (5) and (10). For example, the equality (15)  according to (9) 
represents the transformation 
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represent the transformations  and + +D P N→ + 0 0N π− −Δ → +  accordingly under which the numbers 
B  and Q   remain separately. 
 

5 Subatomic particles as different states of the same microcosm object 
 

The transformation (1) with the matrix-function (2) and following from it the corollaries that can 
be seen from the equalities (7), (12), (15) and (16) makes it possible to suggest the following concept of 
the nature of the subatomic particles. As far as all the vectors  are obtained from the same vector  
after the transformation (1) and these vectors can be associated with hadrons, leptons, their 
antiparticles, -and -bozons then the vector A  also can be associated with one object of the 
microcosm, different states of which are the mentioned particles and their antiparticles. 

,m mV A

W± 0Z

The object with such properties is named in [1] as bastron. It is supposed that a bastron doesn’t 
consist of any parts, each of which could exist independently outside a bastron. These assumptions are 
based on the fact that the weakly interacting particles regarded as bastron states are not composed of 
other particles, and the structure of hadrons, as the bastron states, is so that its component (quark) 
cannot exist independently outside a hadron. 

We designate the bastron in some state as a function . The vector  will be named as a 
vector of the bastron state with the quantum numbers m and n. Distribution regularities of the state 
vectors  which differ in the values for the pairs of the conserved additive quantum numbers L and 
Q or B and Q can be seen if we represent the vectors  in the form of the radius-vectors, the 
coordinates of their ends being equal to the components  and on the plane ( , ) (fig.1). 
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Figure 1: The vector-diagrams of the bastron states: 
 a) The radius-vectors  for the bastron states juxtaposed to weakly interacting particles and 

antiparticles, b) The radius-vectors  for the bastron states juxtaposed to hadrons and their 
antiparticles. 

,m mV

,m nV

 



 6

The modules of the radius-vectors  corresponding the weakly interacting particles are identical 

and the angles between them are multiple of π . The modules of groups of the radius-vectors 

,m mV

/3 , 1m m+V  

are identical as well as with the vectors , 2m m+V , and the angles between the radius-vectors of the states 

 corresponding hadrons are multiple of π .  For the radius-vectors  shown in Fig.1, a the 

equalities (15) occur, and for the radius-vectors  the equalities (15) and (16) occur. They describe 

different possible transformations of the bastron states. 

,m nV /6 ,m mV

,m nV

It is obvious from the equalities (7) and (12) that antiparticles are the same bastron states as the 

particles. If the state vector  corresponds to a particle, then the state vector ,m nV 3, 3 ,m n m n+ + = −V V  

corresponds to an antiparticle.  

 
6 Transformation of the bastron states 

 
 
Now we consider the transformation of subatomic particles as the states of a bastron. 

Transmutation of such particles occurs as a result of a bastron transition from one state into another. Let us 

consider this process at greater length. Let the bastron changes over from the state  to the state 

 or . Then it follows from the equalities (15) or (16) that this transition is 

accompanied by appearance of a new bastron in the state 
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1, 1( )m nB − −V  or   accordingly. 

According to the stated concept the initial bastron, as it can be seen from the equalities (13) and (14), 

transforms into two bastrons in other states. However, it is incorrect to consider this process as a 

division of the initial bastron into two parts. A bastron doesn’t contain any parts it could be divided 

into. Therefore the processes (13) and (14) are due to the mechanism that doesn’t break the integrity 

of a bastron. The main point of this mechanism is in the following. When the bastron changes over 

from the state  to the state  the vector of a new state  can be presented 

according to (15) in the form of 
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The equalities (17) can be interpreted in the following way: in the transition , 1( ) (m n m nB B + +→V V  the 

bastron in the state of  entirely absorbs a virtual bastron in the state of ,( m nB V ) 1, 1( )m nB − −−V  taken 

from a virtual pair of bastrons . Following which the second virtual 

bastron of this pair in the state of 

1, 1 1, 1 virt
( ) ( )m n m nB B− − − −− +⎡⎣ V V ⎤⎦

)1, 1( m nB − −V  becomes real (Fig.2, a). We should note here that if the 

vector  corresponds to the particle, then the vector  corresponds to the 

antiparticle. 
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Figure 2: a) The bastron transition from the state  to the state   and appearing 

of a new bastron in the state of 
,( m nB V ) )

)
1, 1( m nB + +V

1, 1( m nB − −V , b) The bastron transition from the state  to the 

state  and appearing of a new bastron in the state of . 
,( m nB V )

), 1( m nB +V 1,( )m nB −V
 

In the examined process the initial bastron absorbs a virtual bastron completely rather than some its 
part, and after this the second bastron of the virtual pair becomes the real one. This bastron emerges 
entirely from the vacuum and is not built up of some parts. Therefore, the number of bastrons may not 
conserve when its state is changing, and for these processes it is not required at all the bastron to 
consist of some parts. The bastron always participate in any processes as a whole object, as a 
structural unit of matter [4]. 
 

7 Conclusions 

 

In the presented concept based on the law of distribution of pair additive quantum numbers the 
independent subatomic particles and antiparticles observed in nature are considered to be different 
states of the same microcosm object called a bastron. From the law of distribution of pair additive 
quantum numbers it follows that there are two groups of the bastron states which differ in values of 
quantum numbers. The smaller group in number is easy to be put in correspondence with the weakly 
interacting particles and antiparticles, and the larger one in number – to the hadrons and their 
antiparticles. 

In the presented concept only the bastron states can be independent states. The properties of 
quarks don’t correspond to the bastron states and perhaps due to this fact they don’t exist as free 
particles. The idea of a bastron is indirectly confirmed by the fact that the quarks have failed               
to be discovered outside hadrons yet. The concept briefly presented here can be called a bastron 
pattern of the microcosm. In this pattern there is no absolute elementary object the subatomic particles 
would consist of, but the subatomic particles as different states of the bastron appeared as a result of 
the primary matter decay and therefore the states of the bastron corresponding to the antiparticles 
could not appear. 

The concept of a bastron can be briefly expressed as follows: any subatomic particle or its 
antiparticle is a bastron in some definite state. Therefore, a bastron is more general concept than a 
subatomic particle. It can be described only with a range of states in which it can be. 
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