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Abstract

In the present paper we develop the description of massive fields on the basis of space-time
algebra of sixteen-component sedeons. The generalized sedeonic second-order equation for the
potential of massive field is proposed. It is shown that this equation can be reformulated in
the form of a system of Maxwell-like equations for the field strengths. We also discuss the
generalized sedeonic first-order equation for massive field.

Introduction

Many attempts have been made to generalize the second-order wave equation for massive fields us-
ing different hypercomplex number systems, such as quaternions and octonions [1]-[5]. The authors
discussed the possibility of constructing the field equations similar to the equations of electrody-
namics but with a massive ”photon”. In particular they tried to represent the wave equation as
the system of first-order Maxwell-like equations. The resulting Proca-Maxwell equations enclose
field’s strengths and potentials [2, 3, 5]. Likewise hypercomplex number generalization of the Dirac
wave equation have been studied in [6]-[10]. In this approach, the wave function has a scalar-vector
structure similar in nature with the potential of field and the hypercomplex Dirac-like equation
can be reformulated as the wave equation for the potential of special field.

The consideration of multicomponent wave functions is an inevitable necessity in describing the
spin and space-time properties of fields and quantum systems. However, quaternions consisting
of a scalar and vector do not take into account the pseudoscalar and pseudovector properties of
physical quantities. From this viewpoint an approach based on the use of the eight-component
octonions including the scalar, vector, pseudoscalar and pseudovector components is more appro-
priate. However, the requirements of relativistic invariance leads to the necessity of introducing
sixteen-component algebras taking into account the full symmetry with respect to the spatial and
time inversion.

There are a few approaches in the development of field theory on the basis of sixteen-component
structures. One of them is the application of hypernumbers sedenions, which are obtained from
octonions by Cayley-Dickson extension procedure [11, 12]. However the essential imperfection of
sedenions is their nonassociativity. Another approach is based on the application of hypercomplex
multivectors generating associative space-time Clifford algebras. The basic idea of such multivec-
tors is an introduction of additional noncommutative time unit vector, which is orthogonal to the
space unit vectors [13]. However, the application of such multivectors in quantum mechanics and
field theory is considered in general as one of abstract algebraic scheme enabling the reformulation
of Klein-Gordon and Dirac equations for the multicomponent wave functions but does not touch
the physical entity of these equations.

Recently we developed the space-time algebra of sixteen-component sedeons generating non-
commutative associative scalar-vector Clifford algebra [14]. The sedeons take into account the
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properties of physical values with respect to the space-time inversion and realize the scalar-vector
representation of Poincare group. In present paper, we use the sedeonic approach for the consid-
eration of massive fields described by sedeonic first-order and second-order wave equations within
a unified field conception.

1 Sedeonic space-time algebra

To begin with we briefly review the basic properties of sedeons [14]. The sedeonic algebra encloses
four groups of values, which are differed with respect to spatial and time inversion.

1. Absolute scalars (V ) and absolute vectors (~V ) are not transformed under spatial and time
inversion.

2. Time scalars (Vt) and time vectors (~Vt) are changed (in sign) under time inversion and are
not transformed under spatial inversion.

3. Space scalars (Vr) and space vectors (~Vr) are changed under spatial inversion and are not
transformed under time inversion.

4. Space-time scalars (Vtr) and space-time vectors (~Vtr) are changed under spatial and time
inversion.

Here indexes t and r indicate the transformations (t for time inversion and r for spatial inversion),
which change the corresponding values. All introduced values can be integrated into one space-time
sedeon Ṽ, which is defined by the following expression:

Ṽ = V + ~V + Vt + ~Vt + Vr + ~Vr + Vtr + ~Vtr. (1)

Let us introduce scalar-vector basis a0, a1, a2, a3, where the value a0 ≡ 1 is absolute scalar
unit and the values a1, a2, a3 are absolute unit vectors generating the right Cartesian basis. We
introduce also four space-time scalar units e0, e1, e2, e3, where value e0 ≡ 1 is a absolute scalar
unit; e1 ≡ et is a time scalar unit; e2 ≡ er is a space scalar unit; e3 ≡ etr is a space-time scalar
unit. Using space-time scalar units ej (j = 0, 1, 2, 3) and scalar-vector basis ak (k = 0, 1, 2, 3) we
can introduce unified sedeonic components Vjk in accordance with the following relations:

V = e0V00a0,
~V = e0 (V01a1 + V02a2 + V03a3) ,
Vt = e1V10a0,
~Vt = e1 (V11a1 + V12a2 + V13a3) ,
Vr = e2V20a0,
~Vr = e2 (V21a1 + V22a2 + V23a3) ,
Vtr = e3V30a0,
~Vtr = e3 (V31a1 + V32a2 + V33a3) .

(2)

Then the sedeon (1) can be written in the following expanded form:

Ṽ = e0 (V00a0 + V01a1 + V02a2 + V03a3)
+e1 (V10a0 + V11a1 + V12a2 + V13a3)
+e2 (V20a0 + V21a1 + V22a2 + V23a3)
+e3 (V30a0 + V31a1 + V32a2 + V33a3) .

(3)

The sedeonic components Vjk are numbers (complex in general). Further we will use symbol 1
instead of units a0 and e0 for simplicity.

The multiplication and commutation rules for sedeonic absolute unit vectors a1, a2, a3 and
space-time units e1, e2, e3 are presented in tables 1 and 2 respectively.
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Table 1:

a1 a2 a3

a1 1 ia3 −ia2

a2 −ia3 1 ia1

a3 ia2 −ia1 1

Table 2:

e1 e2 e3

e1 1 ie3 −ie2

e2 −ie3 1 ie1

e3 ie2 −ie1 1

In the tables and further the value i is the imaginary unit (i2 = −1). Note that sedeonic units
e1, e2, e3 and unit vectors a1, a2, a3 generate the anticommutative algebras:

anam = −aman,
enem = −emen,

(4)

for n and m = 1, 2, 3 (n 6= m), but e1, e2, e3 commute with a1, a2, a3:

anem = eman, (5)

for any n and m.
Thus the sedeon Ṽ is the complicated space-time object consisting of absolute scalar, time

scalar, space scalar, space-time scalar, absolute vector, time vector, space vector and space-time
vector.

Introducing the designations of space-time sedeon-scalars

V0 = V00 + e1V10 + e2V20 + e3V30,
V1 = V01 + e1V11 + e2V21 + e3V31,
V2 = V02 + e1V12 + e2V22 + e3V32,
V3 = V03 + e1V13 + e2V23 + e3V33,

(6)

we can write the sedeon (3) in another form

Ṽ = V0 + V1a1 + V2a2 + V3a3, (7)

or introducing the sedeon-vector

~V = ~V + ~Vt + ~Vr + ~Vtr = V1a1 + V2a2 + V3a3, (8)

it can be represented in following compact form:

Ṽ = V0 + ~V. (9)

Further we will indicate the sedeon-scalars and the sedeon-vectors with the bold capital letters.
Let us consider the sedeonic multiplication in detail. The sedeonic product of two sedeons Ã

and B̃ can be presented in the following form:

ÃB̃ =
(
A0 + ~A

) (
B0 + ~B

)
= A0B0 + A0

~B + ~AB0 +
(

~A · ~B
)

+
[
~A× ~B

]
.

(10)

3



Here we denote the sedeonic scalar multiplication of two sedeon-vectors (internal product) by
symbol “·” and round brackets (

~A · ~B
)

= A1B1 + A2B2 + A3B3, (11)

and sedeonic vector multiplication (external product) by symbol “×” and square brackets[
~A× ~B

]
= i (A2B3 −A3B2)a1 + i (A3B1 −A1B3)a2

+ i (A1B2 −A2B1)a3.
(12)

In (11) and (12) the multiplication of sedeonic components is performed in accordance with (6)
and table 2. Note that in sedeonic algebra the expression for the vector product has some difference
from analogous expression in Gibbs vector algebra. Let us consider three absolute vectors ~A, ~B
and ~C. Then the formula for the vector triple product in sedeonic algebra has the following form:[

~A×
[
~B × ~C

]]
= − ~B

(
~A · ~C

)
+ ~C

(
~A · ~B

)
. (13)

Thus, the sedeonic product
F̃ = ÃB̃ = F0 + ~F (14)

has the following components:

F0 = A0B0 + A1B1 + A2B2 + A3B3,
F1 = A1B0 + A0B1 + iA2B3 − iA3B2,
F2 = A2B0 + A0B2 + iA3B1 − iA1B3,
F3 = A3B0 + A0B3 + iA1B2 − iA2B1.

(15)

2 Fields described by sedeonic second-order equation

2.1 Generalized sedeonic wave equation for massive field

Let us consider the potential of massive field in the form of space-time sedeon

W̃(~r, t) = W0(~r, t) + ~W(~r, t). (16)

The generalized sedeonic wave equation for massive field can be written in the following symmetric
form [14]: (

ie1
1
c

∂

∂t
− e2

~∇− ie3
m0c

h̄

) (
ie1

1
c

∂

∂t
− e2

~∇− ie3
m0c

h̄

)
W̃ = 0. (17)

Here c is the velocity of light, h̄ is the Planck constant and the parameter m0 can be interpreted
as the mass of a quantum of field. The absolute gradient vector has the following form:

~∇ =
∂

∂x
a1 +

∂

∂y
a2 +

∂

∂z
a3. (18)

For convenience we introduce new operators

∂ =
1
c

∂

∂t
,

m =
m0c

h̄
.

(19)

Then we can rewrite the equation (17) in compact form:(
ie1∂ − e2

~∇− ie3m
) (

ie1∂ − e2
~∇− ie3m

)
W̃ = 0. (20)
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Let us choose the potential in the following form:

W̃ = a + ie1b− ie2c− ie3d + i ~A + e1
~B + e2

~C − e3
~D, (21)

where the components a, b, c, d, ~A, ~B, ~C and ~D are the functions of spatial coordinates and time.
Introducing the scalar and vector fields strengths according to the following definitions:

e = ∂b + (~∇ · ~C) + md,

f = ∂a + (~∇ · ~D) + mc,

g = ∂d + (~∇ · ~A)−mb,

h = ∂c + (~∇ · ~B)−ma,

~E = −∂ ~B − ~∇c− i[~∇× ~C]−m~D,

~F = −∂ ~A− ~∇d + i[~∇× ~D]−m~C,

~G = −∂ ~D − ~∇a− i[~∇× ~A] + m~B,

~H = −∂ ~C − ~∇b + i[~∇× ~B] + m ~A,

(22)

we get (
ie1∂ − e2

~∇− ie3m
) (

a + ie1b− ie2c− ie3d + i ~A + e1
~B + e2

~C − e3
~D

)
= −e + ie1f − ie2g + ie3h− i ~E + e1

~F + e2
~G + e3

~H

(23)

and the wave equation (20) takes the form(
ie1∂ − e2

~∇− ie3m
)

×
(
−e + ie1f − ie2g + ie3h− i ~E + e1

~F + e2
~G + e3

~H
)

= 0.
(24)

Performing the action of operator in the left part of the equation (24), and separating the terms
with different space-time properties, we obtain the system of equations for the field’s strengths,
similar to the system of Maxwell’s equations in electrodynamics:

∂f + (~∇ · ~G)−mh = 0,

∂e + (~∇ · ~H)−mg = 0,

∂h + (~∇ · ~E) + mf = 0,

∂g + (~∇ · ~F ) + me = 0,

∂ ~F + ~∇g + i[~∇× ~G]−m ~H = 0,

∂ ~E + ~∇h− i[~∇× ~H]−m~G = 0,

∂ ~H + ~∇e + i[~∇× ~E] + m~F = 0,

∂ ~G + ~∇f − i[~∇× ~F ] + m~E = 0.

(25)

The proposed equations for massive field possess a specific gauge invariance. It is easy to see
that fields strengths (22) and equations (25) are not changed under the following substitutions for
potentials:

a ⇒ a + ∂εa −mεc,

b ⇒ b + ∂εb −mεd,

c ⇒ c + ∂εc + mεa,

d ⇒ d + ∂εd + mεb,

~A ⇒ ~A− ~∇εd,

~B ⇒ ~B − ~∇εc,

~C ⇒ ~C − ~∇εb,

~D ⇒ ~D − ~∇εa,

(26)
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where εa, εb, εc, εd, are arbitrary scalar functions, which satisfy homogeneous Klein-Gordon equa-
tion. These gauge conditions are different from those taken in electrodynamics [15].

Multiplying each of the equations (25) to the corresponding field strength and adding these
equations to each other, we obtain:

1
2
∂

(
f2 + e2 + h2 + g2 + ~F 2 + ~E2 + ~H2 + ~G2

)
+f

(
~∇ · ~G

)
+ e

(
~∇ · ~H

)
+ h

(
~∇ · ~E

)
+ g

(
~∇ · ~F

)
+

(
~F · ~∇g

)
+

(
~E · ~∇h

)
+

(
~H · ~∇e

)
+

(
~G · ~∇f

)
+i

(
~F · [~∇× ~G]

)
− i

(
~E · [~∇× ~H]

)
+i

(
~H · [~∇× ~E]

)
− i

(
~G · [~∇× ~F ]

)
= 0.

(27)

Let us introduce the following notations:

w = − 1
8π

(
f2 + e2 + h2 + g2 + ~F 2 + ~E2 + ~H2 + ~G2

)
, (28)

~P = − c

4π

(
e ~H + f ~G + g ~F + h~E + i

[
~E × ~H

]
+ i

[
~G× ~F

])
. (29)

Then the equation (27) can be written as:

1
c

∂w

∂t
+

(
~∇ · ~P

)
= 0. (30)

This expression is an analog of the Poynting theorem for massive field. The value w plays the role
of the field energy density and ~P is a vector of energy flux density. The minus sign in expressions
(28) and (29) are chosen with respect to the attractive character of charges interaction (see further
Section 3.3.).

2.2 Nonhomogeneous equations for massive field

Let us consider the sedeonic equations for massive field with phenomenological source. In this case
the field potential is described by sedeonic nonhomogeneous wave equation:(

ie1∂ − e2
~∇− ie3m

) (
ie1∂ − e2

~∇− ie3m
)
W̃ = J̃. (31)

By analogy with electrodynamics we consider the source of field in the form of incomplete sedeon
[16, 17]:

J̃ = −ie14πρs − e2
4π

c
~js, (32)

where ρs is a volume density of charge and ~js is volume density of current. In this case the sedeonic
potential W̃ can be written in the following form

W̃ = ie1b + e2
~C, (33)

where b(~r, t) is a scalar part (time component) and ~C(~r, t) is a vector part (space component) of
potential. In this case we have only the following nonzero field’s strengths

e = ∂b +
(

~∇ · ~C
)

,

g = −mb,

~E = −i
[
~∇× ~C

]
,

~F = −m~C,

~H = −∂ ~C − ~∇b,

(34)
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and the equation (31) can be rewritten as(
ie1∂ − e2

~∇− ie3m
) (
−e− ie2g − i ~E + e1

~F + e3
~H

)
= −ie14πρs − e2

4π

c
~js.

(35)

Then we obtain the following equations for the field strengths:

∂e + (~∇ · ~H)−mg = 4πρs,

(~∇ · ~E) = 0,

∂g + (~∇ · ~F ) + me = 0,

∂ ~F + ~∇g −m ~H = 0,

∂ ~E − i[~∇× ~H] = 0,

∂ ~H + ~∇e + i[~∇× ~E] + m~F = −4π

c
~js,

i[~∇× ~F ]−m~E = 0.

(36)

On the other hand, applying the operator (ie1∂− e2
~∇− ie3m) to the equation (35) we obtain the

following wave equations for the field strengths:

(∂2 −4+ m2)e = 4π(∂ρs +
1
c
(~∇ ·~js)),

(∂2 −4+ m2)g = −4πmρs,

(∂2 −4+ m2)~F = −4π

c
m~js, ,

(∂2 −4+ m2) ~E = −i
4π

c
[~∇×~js],

(∂2 −4+ m2) ~H = −4π(
1
c
∂~js + ~∇ρs).

(37)

Assuming the charge conservation

∂ρs +
1
c
(~∇ ·~js) = 0 (38)

we can choose the field strength e equal to zero. This is equivalent to the following gauge condition
(see (34)):

∂b + (~∇ · ~C) = 0 (39)

similar to the Lorentz gauge.

2.3 Stationary field of point scalar source

In the stationary case ~js = 0 and potential of the field can be chosen as

W̃ = ie1b (~r) . (40)

Then we have only two nonzero field components

g = −mb,

~H = −~∇b
(41)

and the following field equations:

(~∇ · ~H)−mg = 4πρs,

~∇g −m ~H = 0,

[~∇× ~H] = 0.

(42)
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Let us calculate the field produced by a scalar stationary point source

J̃ = −ie14πqsδ(~r), (43)

where qs is the point charge and δ(~r) is delta function. Then stationary wave equation (31) can
be written in spherical coordinates as(

1
r2

∂

∂r

(
r2 ∂

∂r

)
− m2

0c
2

h̄2

)
b(r) = −4πqsδ(~r). (44)

The partial solution of the equation (44), which decays at r →∞, is

b =
qs

r
exp

(
−m0c

h̄
r
)

. (45)

This is the Yukava potential [18]. The stationary field has scalar and vector components

g =
m0c

h̄

qs

r
exp

(
−m0c

h̄
r
)

, (46)

~H =
(

1
r

+
m0c

h̄

)
qs

r
exp

(
−m0c

h̄
r
)

~r0, (47)

where ~r0 is a unit radial vector.
Let us consider the interaction of two point charges due to the overlap of their fields. Taking

into account that the field in this case is the sum of the two fields g = g1 + g2 and ~H = ~H1 + ~H2

the energy of interaction is equal (see expression (28))

Wss = − 1
4π

∫
{g1g2 + (H1 ·H2)}dV, (48)

where the integral is over all space. This expression can be derived analytically:

Wss = −qs1qs2

R
exp

(
−m0c

h̄
R

)
, (49)

where R is the distance between the point charges. By definition we assume the attractive inter-
action between charges.

3 Fields described by sedeonic first-order equation

3.1 Homogeneous sedeonic first-order equation

Let us consider the special class of massive field, which is described by homogeneous sedeonic
first-order equation: (

ie1∂ − e2
~∇− ie3m

)
W̃ = 0. (50)

In equation (50) the basis elements e1, e2, e3 and a1, a2, a3 play the role of the space-time
operators, which transform the wave function by means of component permutation. Choosing
potential W̃ in the form (21) we find that sedeonic equation (50) is equivalent to the following
system

∂a + (~∇ · ~D) + mc = 0,

∂b + (~∇ · ~C) + md = 0,

∂c + (~∇ · ~B)−ma = 0,

∂d + (~∇ · ~A)−mb = 0,

∂ ~A + ~∇d− i[~∇× ~D] + m~C = 0,

∂ ~B + ~∇c + i[~∇× ~C] + m~D = 0,

∂ ~C + ~∇b− i[~∇× ~B]−m ~A = 0,

∂ ~D + ~∇a + i[~∇× ~A]−m~B = 0.

(51)

In fact, these equations describe the special field [10, 14] with zero field strengths (see for compar-
ison the expressions (22)).

8



3.2 Plane wave solution

Let us consider the plane wave solution of equation (50) in detail. In this case the potential can
be written as

W̃ = Ũ exp
{
−iωt + i

(
~k · ~r

)}
, (52)

where ω is a frequency and ~k is an absolute wave vector; the amplitude of the wave U does not
depend on the coordinates and time. In this case, the dependence of frequency on the wave vector
has two branches:

ω± = ±

√
c2k2 +

m2
0c

4

h̄2 . (53)

Let us consider the amplitude of the wave function in the form of (21):

Ũ = a + ie1b− ie2c− ie3d + i ~A + e1
~B + e2

~C − e3
~D, (54)

where a, b, c, d, ~A, ~B, ~C and ~D are arbitrary constants. Then the solution can be written as

W̃ =
(
a + ie1b− ie2c− ie3d + i ~A + e1

~B + e2
~C − e3

~D
)

× exp
{
−iω±t + i

(
~k · ~r

)}
.

(55)

Substituting this expression in the original equation (50) we get:(
e1

ω±
c
− ie2

~k − ie3
m0c

h̄

)
×

(
a + ie1b− ie2c− ie3d + i ~A + e1

~B + e2
~C − e3

~D
)

= 0.
(56)

For convenience we introduce the following notation:

ω′ =
ω±
c

,

m =
m0c

h̄
,

(57)

then equation (56) can be rewritten as(
e1ω′ − ie2

~k − ie3m
)

×
(
a + ie1b− ie2c− ie3d + i ~A + e1

~B + e2
~C − e3

~D
)

= 0.
(58)

For fixed ~k let us represent the vector constants in (54) in the form

~A = ~A‖ + ~A⊥,

~B = ~B‖ + ~B⊥,

~C = ~C‖ + ~C⊥,

~D = ~D‖ + ~D⊥,

(59)

where the vectors ~A‖, ~B‖, ~C‖ and ~D‖ are parallel to the vector ~k while the vectors ~A⊥, ~B⊥, ~C⊥ and
~D⊥ are perpendicular to ~k. Then performing the multiplication in (58), we obtain the following
system of algebraic equations:

iω′b− ikC‖ −md = 0, (60)

ω′a− kD‖ + imc = 0, (61)
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−ω′d + kA‖ + imb = 0, (62)

ω′c− kB‖ − ima = 0, (63)

ω′B‖ − kc + imD‖ = 0, (64)

iω′A‖ − ikd−mC‖ = 0, (65)

iω′D‖ − ika + mB‖ = 0, (66)

iω′C‖ − ikb + mA‖ = 0, (67)

ω′ ~B⊥ − i
[
~k × ~C⊥

]
+ im~D⊥ = 0, (68)

iω′ ~A⊥ −
[
~k × ~D⊥

]
−m~C⊥ = 0, (69)

iω′ ~D⊥ +
[
~k × ~A⊥

]
+ m~B⊥ = 0, (70)

iω′ ~C⊥ −
[
~k × ~B⊥

]
+ m ~A⊥ = 0, (71)

where the values A‖, B‖, C‖ and D‖ are the projections of the vectors ~A‖, ~B‖, ~C‖ and ~D‖ on the
vector ~k.

Let us solve this system of equations. From (70) and (71) we find

~D⊥ =
im

ω′
~B⊥ +

i

ω′

[
~k × ~A⊥

]
, (72)

~C⊥ =
im

ω′
~A⊥ −

i

ω′

[
~k × ~B⊥

]
. (73)

Using (53) one can easily check that for arbitrary A⊥ and B⊥ the equations (68) and (69) are
fulfilled.

As a next step from equations (60)-(63) we obtain:

C‖ =
ω′

k
b + i

m

k
d, (74)

D‖ =
ω′

k
a + i

m

k
c, (75)

A‖ =
ω′

k
d− i

m

k
b, (76)

B‖ =
ω′

k
c− i

m

k
a. (77)

One can check that these solution fulfill the equations (64)-(67).
Thus the sedeon Ũ has the form

Ũ = a + ie1b− ie2c− ie3d

+ {iω′d + mb + e1ω′c− ie1ma + e2ω′b + ie2md− e3ω′a− ie3mc}
~k

k2

+i ~A⊥ + e1
~B⊥ + ie2

m

ω′
~A⊥ − ie3

m

ω′
~B⊥

−ie3
1
ω′

[
~k × ~A⊥

]
− ie2

1
ω′

[
~k × ~B⊥

]
.

(78)

Note that this expression can be rewritten in the following form:

Ũ =
(
e1ω′ − ie2

~k − ie3m
)

×

{
ie2

~k

k2
(a + ie1b− ie2c− ie3d) + ie1

1
ω′

~A⊥ +
1
ω′

~B⊥

}
.

(79)
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Substituted this amplitude into (58) one can see that this equation is satisfied for any parameters
a, b, c, d, ~A⊥, ~B⊥ because the expression in round brackets is sedeonic zero divisor. Indeed it is
simple to check that (

e1ω′ − ie2
~k − ie3m

) (
e1ω′ − ie2

~k − ie3m
)

= 0. (80)

In general, the plane wave solution for the equation (50) can be written in the following sedeonic
form:

W̃ =
(
e1ω′ − ie2

~k − ie3m
)
M̃ exp

{
−iωt + i

(
~k · ~r

)}
, (81)

where M̃ is an arbitrary sedeon with constant components. In this case after performing mul-
tiplication in (81) we obtain that the components of the resulting sedeon are defined only by 8
independent combinations of the sedeon M̃ components. Note that the internal structure of this
wave is changed under space and time inversion.

In massless case the dispersion relation is

ω± = ± ck (82)

and plane wave solution can be written as

W̃ =
(
et

ω±
c
− ier

~k
)
M̃ exp

{
−iω±t + i

(
~k · ~r

)}
. (83)

Let us analyze the structure of the plane wave (83) in detail. We suppose that wave vector
is directed along z axis. Then the first-order equation (50) can be rewritten in the following
equivalent form: (

1
c

∂

∂t
+ etra3

∂

∂z

)
W̃′ = 0, (84)

where W̃′ = ietW̃. Using (82) and (83) we can write solution of (84) in the following form:

W̃′
+ = − (1 + etra3) kM̃ exp {−iω+t + ikz} , (85)

and
W̃′− = (1− etra3) kM̃ exp {−iω−t + ikz} . (86)

Note that the wave function W̃′
+ describes the positive branch of dispersion law (82) that cor-

responds, for example, to the ”antiparticle”, while W̃′− describes the negative branch that cor-
responds to the ”particle” state. Besides, as it is seen the wave functions (85) and (86) are the
eigenfunctions of spin operator [21]:

Ŝz =
1
2

etra3. (87)

Indeed it is simple to check that
ŜzW̃′ = SzW̃′, (88)

where eigenvalue Sz = ±1/2. It is seen that plane waves (85) and (86) correspond to the different
eigenvalues Sz. Thus W̃′

+ describes ”antiparticle” state with spirality Sz = +1/2, while W̃′−
describes ”particle” state with spirality Sz = −1/2. However in the case of massive field the plane
wave (81) has more complicated space-time structure.

3.3 Nonhomogeneous first-order equation

Let us consider the nonhomogeneous equation corresponding to the equation (50)(
ie1∂ − e2

~∇− ie3m
)
W̃ = Ĩ. (89)

Here Ĩ is the field source. Choosing the potential W̃ in the form (21), we obtain the following
equation for the field strengths:

−e + ie1f − ie2g + ie3h− i ~E + e1
~F + e2

~G + e3
~H = I0 +~I. (90)

11



This equation means that the strengths of this field are nonzero only in the region of field source.
Let us consider the sedeonic source in the following form:

Ĩ = −ie24πρv + e1
4π

c
~jv. (91)

where ρv is a volume density of charge and ~jv is volume density of current. In this case the equation
(90) is rewritten as

−ie2g + e1
~F = −ie24πρv + e1

4π

c
~jv, (92)

Applying the operator (ie1∂ − e2
~∇− ie3m) to the equation (92) and separating the values with

different space-time properties we obtain the following equations for the field strengths:

g = 4πρv,

~F =
4π

c
~jv,

∂g + (~∇ · ~F ) = 4π[∂ρv +
1
c
(~∇ ·~jv)],

[~∇× ~F ] =
4π

c
[~∇×~jv],

∂ ~F + ~∇g = 4π[
1
c
∂~jv + ~∇ρv].

(93)

Assuming charge conservation

∂ρv +
1
c
(~∇ ·~jv) = 0 (94)

we have the following gauge condition:

∂g + (~∇ · ~F ) = 0 (95)

which is similar to the Lorentz gauge, but for the field strengths.
Let us consider the a stationary field generated by a scalar point source

I0 = −ie24πqvδ(~r), (96)

where qv is the point charge. Then the intensity of the scalar field is

gv(~r) = 4πqvδ(~r). (97)

This field is non-zero only in the region of source. It indicates that two point charges interact only
if they are at the same point of space. The interaction energy for two point charges qv1 and qv2 is
equal

Wvv = − 1
4π

∫
gv1gv2dV = −4πqv1qv2δ(~R), (98)

where ~R is the vector of distance between point charges.
Moreover one can suppose the interaction between qs and qv charges due to the overlap of scalar

fields gs and gv. In the case of point qs and qv the fields are determined by the expressions (46)
and (97), so that the interaction energy is equal to:

Wsv = − 1
4π

∫
gsgvdV. (99)

As a result, we get:
Wsv = −m0c

h̄

qsqv

R
exp

(
−m0c

h̄
R

)
, (100)

where R is the distance between charges.
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4 Discussion

The algebra of space-time sedeons can be considered as the scalar-vector variant of Clifford algebra
with specific commutation and multiplication rules. The sedeonic basis elements a1, a2, a3 are
responsible for the spatial rotation, while the elements e1, e2, e3 are responsible for the space-time
inversions. In contrast to the Heaviside-Gibbs vector algebra the multiplication rules for vector
basis in sedeonic algebra contain the imaginary unit (see Table 1). It allows realizing the scalar-
vector algebra with Clifford product [16]. Apparently, such possibility of vector basis multiplication
was pointed first by A.Macfarlane [19]. The non-commutative en basis plays an important role.
First, it allows to take into account the space-time properties of the field potentials (33) and sources
(32) explicitly, because the scalar and vector potentials as well as charge density and current density
are the temporal and spatial components of corresponding four-vectors. This ensures the correct
Lorentz transformation of these values from one inertial frame to another [14]. On the other hand,
the non-commutative en basis allows us to represent the second-order differential operator in the
Klein-Gordon equation as the product of two identical first-order operators and thereby write the
sedeonic wave equation in a symmetric form.

The sedeonic approach enables constructing a description of massive fields in complete analogy
with classical electrodynamics. In particular, we have shown the correct way to introduce the fields
described by the system of equations (25) similar to the Maxwell’s equations. In contrast to the
Proca-Maxwell equations for the fields and field potentials [2, 3, 5] the equations (25) contain only
the field strengths. This allowed us to generalize the concepts of density of energy and density
of energy flux for the massive field and derive the relations for the field energy and momentum
similar to the Poynting theorem in electrodynamics.

In the particular case of a stationary point source the solution of the sedeonic wave equation
is the potential of the Yukawa type. It allows to assume that the charge qs can be interpreted as
the baryon charge and apparently the equations (25) can be used for the description of the baryon
field. On the other hand, the nonhomogeneous sedeonic first-order equation (89) describes the
specific short-acting fields. In this case the charge qv can be interpreted as the lepton charge and
apparently the equations (89) can be used for the description of the lepton field. The fact that the
homogeneous first-order and second-order octonic and sedeonic wave equations for the quantum
particles interacting with electromagnetic field describe the particles with spin 1/2 was previously
discussed in Refs. [10, 20, 21].

5 Summary

Thus, in this paper we have considered the sedeonic generalization of equations describing the
massive fields. It was shown that this approach allows one to construct the theory of massive fields
analogous to the theory of massless electromagnetic field in classical electrodynamics.

We have considered the sedeonic second-order wave equation for the sedeonic potential of the
massive field. It was demonstrated that this wave equation can be represented as a system of first-
order equations for the field intensities similar to the system of Maxwell’s equations. We generalized
the concepts of density of energy and density of energy flux for the massive field. The relation for
the energy and momentum of massive field similar to the Poynting theorem in electrodynamics
have been derived. Besides, we considered the stationary massive fields generated by point sources
(charges). The interaction energy of two point charges as a function of the distance between them
have been calculated.

Additionally, we have discussed the massive fields described by first-order sedeonic wave equa-
tion. It was shown that the intensity of these fields are nonzero only in the region of field sources
that leads to the specific short-range interaction between charges field sources.
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