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Abstract

A model is presented where the Higgs mechanism of the Standard Model is deduced

from the alignment of a strongly correlated fermion system in an internal space with

A4 symmetry. The ground state is constructed and its energy calculated. Finally,

it is claimed that the model may be derived from a field theory in 6+1 dimensions.
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1 Introduction

The Higgs sector of the Standard Model (SM) of elementary particles and the as-

sociated spontaneous symmetry breaking (SSB) show a strong similarity with the

Landau-Ginzburg describtion of superconductivity as well as with the linear sigma

model of pion physics, and it has long been speculated, that just as in those cases

an underlying microscopic pairing interation may be at work in the SM. One op-

tion put forward already in 1979 is that the Higgs particle may be composed of

’techniquarks’ U and D[1, 2], in a similar way in which pions are composed of up-

and down-quarks u and d, and a technicolor QCD-like theory was suggested for the

underlying dynamics. The main drawback of such technicolor models, in particu-

lar in their ’extended’ form, is the appearance of unwanted flavor changing neutral

currents (FCNC)[9].

The starting point of the present approach is an isospin doublet ψ = (U,D) of Dirac

fermions much like in technicolor models, however without a technicolor quantum

number and, to avoid FCNCs, without a direct interaction to quarks and leptons.

Rather we shall assume that the pairing mechanism is due to exchange interac-

tions and strong correlations of fermions, effects which in many body physics are

known to be responsible for SSB in superconductors and (anti)ferromagnets. In

contrast to solid state physics we do not consider these effects in physical space,

but attribute them to arise from an independent dynamics which is active in the

internal spaces. To be concrete, we assume the existence of a non-relativistic real

internal 3-dimensional space R3 with rotational SO(3)-symmetry for which the dou-

blet ψ = (U,D) serves as an (internal) Pauli spinor with an initial internal SU(2)

spin symmetry. The geometrical picture is that the world is a fiber bundle over

Minkowski space with fibers given by the R3 spaces, and that within these fibers

physical processes take place. We further assume that at high temperatures there is

a symmetric state in which the internal spins are distributed randomly in the fibers,

giving rise to a local SU(2) symmetry of the Lagrangian, local in the sense that

on each site in each fiber the spins may be rotated independently. With respect to

Lorentz symmetry both U and D can appear as lefthanded or righthanded objects,

so that one may in fact consider separately a SU(2)L for the lefthanded and SU(2)R

for the righthanded objects.
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To recapitulate, the Standard Model SSB is triggered by the Higgs field H, a doublet

under SU(2)L which via a symmetry breaking potential

V (H) = −µ2H+H + λ(H+H)2 (1)

acquires a non-vanishing vacuum expectation value 〈H+H〉 = µ2

2λ
. More in detail

the Higgs doublet can be parametrized as

H =
1√
2

(

i(πx − iπy)

σ − iπz

)

(2)

so that

V (H) = −1

2
µ2(σ2 + ~π2) +

1

4
λ(σ2 + ~π2)2 (3)

with minimum at

Λ2
F := 〈σ2〉 = µ2

λ
(4)

which is often called the Fermi scale. Note that σ is a real scalar field, while

~π = (πx, πy, πz) is an axial vector field which can be interpreted as the longitudinal

components of the afterwards massive W/Z bosons. In the framework of our model

~π can be identified with the internal chiral spin vector, and x, y, z are the coordinates

of the internal 3-dimensional R3 space.

Although π-condensates could be conceivable, in particle physics it turns out that

the vev is attributed to the σ field alone, i.e.

〈H〉 = 1√
2

(

0

〈σ〉

)

=
1√
2

(

0

ΛF

)

(5)

The shifting relation σ = ΛF + φ defines the physical Higgs particle φ, whose tree

level mass can easily be shown to be mφ =
√
2µ. The values ΛF = 246 GeV and

mφ = 124 GeV fix the Higgs potential completely.

2 Symmetry Breaking in an A4 model

In ref. [4] it was shown that the internal (spin and vibrational) excitation spectrum

of the Shubnikov group A4 + S(S4 − A4)[16, 18, 17, 8] yields the correct multiplet
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Figure 1: The local ground state of the model, living in a 3-dimensional internal R3

space (called the ’fiber’). Shown are the corner points (small circles) of the internal

tetrahedron, which can be represented by their coordinate vectors ~ri. The origin of

coordinates is taken to be the center of the tetrahedron, and is identical to the base

point of the fiber in Minkowski space. On each corner point i = 1, 2, 3, 4 there is a

chiral spin vector ~πi, pointing in the same radial direction as ~ri. (Note that the spin

vectors are shown but not the coordinate vectors ~ri.) The tetrahedron itself has the

tetrahedral group S4 as point group symmetry. However due to the pseudovector

property of the spin vectors the whole system has the Shubnikov point symmetry

A4 + S(S4 − A4)[16], where S is the internal time reversal operation and A4 is the

subgroup of S4 which does not contain reflections. The Shubnikov group is chiral,

the configuration with opposite chirality being given when the 4 spin vectors would

point inwards instead of outwards. Before the formation of the chiral tetrahedron

the internal spins U and D, which according to eq. (7) are the building blocks of the

spin vectors ~πi, can freely rotate and thus there is an internal spin SU(2) symmetry

group, which however is broken to A4 + S(S4 − A4) when the chiral tetrahedron is

formed.
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structure of all 24 quark and lepton states of the 3 families

A(νe) + A′(νµ) + A′′(ντ ) + T (d) + T (s) + T (b) +

As(e) + A′
s(µ) + A′′

s(τ) + Ts(u) + Ts(c) + Ts(t) (6)

where A, A′, A′′ and T are singlet and triplet representations of A4 and the index

s denotes genuine representations of the Shubnikov group[16]. It should be stressed

that the eigenmodes of the vibrating spin vectors lead to exactly these 24 states,

not less and not more, and arranged in such a way that the correct mass spectrum

naturally arises.

This discovery has led to the main assumption of the present paper, namely that fig.

1 should be taken as the local ground state of the model. In other words, it is assumed

that in each of the 3-dimensional internal R3 fibers there is a discrete tetrahedral

structure and that the internal dynamics is such that spin vectors arrange themselves

according to this internal tetrahedral symmetry, as depicted in fig. 1. Shown are the

corner points of the internal tetrahedron and on each corner point i = 1, 2, 3, 4 the

chiral spin vector ~πi, pointing in the same radial direction as the coordinate vector ~ri.

(The ~ri are not shown in the figure, and the precise mathematical definition of the

chiral spin vectors ~πi will be given later in eq. (7).) The tetrahedron itself has the

tetrahedral group S4 as point group symmetry. However, due to the pseudovector

property of the internal spin vectors the whole system loses its reflection symmetries

and obtains instead the Shubnikov symmetry groupA4+S(S4−A4)[16, 18, 17], where

S is the internal time reversal operation and A4 is the subgroup of S4 which does

not contain reflections. Note that S itself does not belong to the Shubnikov group,

and also the internal reflections do not. In other words, both internal parity Q and

time reversal S are violated by the ground state fig. 1. Only their product SQ is a

symmetry of the system. One can rephrase this by stating that the ground state and

its symmetry are chiral with respect to the internal coordinates, the configuration

with opposite chirality being given when the 4 spin vectors would point inwards

instead of outwards.

In section 1 it was argued that the internal R3 spaces are nonrelativistic, at rest

(no boosts allowed, because they are fixed to their base point in Minkowski space)

and rotationally invariant, with an internal rotational SO(3) and a corresponding

spin SU(2) under which the fundamental spinor ψ = (U,D) transforms. Due to this
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symmetry at high temperatures each of the vectors ~πi can freely rotate in the internal

space. This symmetry, however, is valid only before the formation of the internal

tetrahedron and is broken to A4 + S(S4 − A4) when the tetrahedron is formed and

the ~πi are fixed to their position in fig. 1. In the language of many-particle physics

fig. 1 is a frustrated antiferromagnet configuration[12], because the spin vectors

try to avoid each other as far as possible, but do not achieve to form a completely

anti-parallel configuration.

Note that this breaking as yet has nothing to do with the spontaneous breaking of

SU(2)L, but is dictated by the internal dynamics which leads to the formation of

one tetrahedral ’molecule’. Rather it can be related to the breaking of the so called

’custodial’ SU(2) to be defined below.

As shown in section 3, the breaking of internal parity Q is accompanied by a breaking

of parity in physical Minkowski space. The point is that assuming a universal field

theory for 1+3+3 dimensions a connection will be established between the internal

and external parity operations. Any particle with chiral interactions in the internal

space will experience an internal polarization due to the chiral structure in fig. 1,

and this polarization will be accompanied by a corresponding chiral interaction of

the particle in the base space, an effect which will eventually be used to explain the

V − A structure of the weak interactions.

Within the formalism of section 3 the simultaneous violation of internal and external

parity will show up in the simultaneous appearance of ~τ and γ5 in eqs. (7) and (41),

where ~τ denotes the triplet of internal Pauli matrices and γ5 = iγ1γ2γ3γ4 the γ5-

matrix in Minkowski space. These quantities are representatives of parity violating

behavior in their respective spaces (internal R3 and Minkowski space), because γ5

gives it a pseudoscalar behavior in Minkowski space and ~τ a pseudovector behavior

in the internal space. They are the building blocks for the chiral spin vectors, which

will now be constructed. Namely, one chooses to define

~π =
1

Λ2
(ψ̄iγ5~τψ) =

2

Λ2









− Im[D̄RUL − D̄LUR]

Re[D̄RUL − D̄LUR]

− Im[ŪLUR + D̄RDL]









(7)

where Λ at this point is just a mass scale to keep the dimensions right. To make
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the list of components of the Higgs doublet eq. (2) complete we write

σ =
1

Λ2
(ψ̄ψ) =

1

Λ2
[ŪU + D̄D] =

2

Λ2
Re[ŪLUR + D̄RDL] (8)

When combined to the Higgs potential eq.(3), the theory is invariant under SU(2)L×
SU(2)R ×U(1) transformations, where the charge of the U(1)-transformations ψ →
eiαψ can be identified with the internal fermion number. The vev of the σ field

〈σ〉 = 1

Λ2
〈ψ̄ψ〉 (9)

breaks this symmetry to SU(2)V × U(1), where SU(2)V is the diagonal so called

’custodial’ SU(2) group. In the framework of the present model it can be identified

with the internal spin SU(2) introduced before, and one concludes that although it

is a symmetry of the Higgs potential it is not a symmetry of the system as a whole,

because it is broken by the formation of the internal tetrahedron.

Inserting (7) and (8) in (3), the bilinear term ∼ H+H of the Higgs potential has

precisely the form of a 4-fermion interaction as appears in the Nambu-Jona-Lasinio

(NJL) Lagrangian[10]

LNJL = ψ̄(iγµ∂
µ −m)ψ +

1

Λ2
R

[(ψ̄ψ)2 + (ψ̄iγ5~τψ)
2] (10)

where m denotes the bare mass of the fundamental fermions ψ = (U,D) and Λ−2
R the

NJL-coupling which for dimensional reasons is written in terms of a new scale ΛR.

In technicolor theories this scale is usually interpreted as the mass of a heavy vector

boson exchanged between the techniquarks, and is running due to renormalization

group effects. Introducing a vev 〈ψ̄ψ〉 a comparison between (10) and (1), i.e.

µ2H+H =
1

Λ2
R

[(ψ̄ψ)2 + (ψ̄iγ5~τψ)
2] (11)

fixes the unknown energy scale Λ in eqs. (7)-(9) in terms of ΛF and ΛR. Renor-

malization effects within the NJL-model even allow to derive a gap equation for the

mass of the fundamental fermion. For consistency reasons, at low energies ∼ ΛF all

scales involved Λ ∼ µ ∼ ΛR must then be of the same order O(ΛF ).

In contrast, at high energies, where there is no condensate and no symmetry breaking

potential (V > 0 → L < 0), the NJL coupling Λ−2
R must be small and negative, the

scale ΛR in the present model roughly corresponding to the extension of an internal
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Figure 2: The global ground state of the model after SSB consists of an aligned

system of chiral tetrahedrons over Minkowski space (the latter is represented by

the long arrow). R is the magnitude of a tetrahedron and r the distance between

two of them. Associated to the 2 length scales R and r are the energy scales ΛR

and Λr, as defined in the text. Before the SSB the chiral tetrahedrons are oriented

randomly (not shown) and there is a corresponding local SO(3) symmetry, because

each rigid tetrahedron can be rotated freely and independently from the others. For

reasons described in the main text, the covering group of this SO(3) can be identified

with the group SU(2)L, which gets broken spontaneously by the condensate 〈ŪU +

D̄D〉. Though formally it can be considered as part of an SO(4) vector in the (2,2)

representation of SU(2)L×SU(2)R, physically it corresponds to a particle density, a

scalar quantity giving the density of pairs of ionized tetrahedral components whose

dynamical formation is responsible for the SSB at distances of order ΛF , as explained

in the main text.
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tetrahedron, cf. fig. 2. In that regime it is thus a repulsive potential and leads to

the antiferromagnetic configuration fig. 1. If one is looking closely, one can identify

the ~π~π term in the original Higgs potential eq. (3) together with (7) as a sort of an

internal Heisenberg spin-spin interaction. The Hamiltonian of such an interaction

takes the form

HH = −J
∑

i 6=j

~πi~πj (12)

where the sum is over sites i and j of a given discrete structure and J is the coupling

derived from an exchange integral in internal space. J > 0 accounts for ferromag-

netic attraction and J < 0 for antiferromagnetic repulsion. The appearance of an

exchange integral is a quantum effect due the Pauli principle and explains the phe-

nomenon of magnetism in solid state physics. In the present model J is the internal

exchange integral defined by integrating over internal coordinates. A precise defini-

tion of J and a complete description of the connection between the NJL-model and

an SU(2)L ×SU(2)R Heisenberg type of spin interaction will be given at the end of

section 3 and in the appendix.

Comparing (12) with (3) one can identify J = µ2/2, i.e. there is attraction between

the internal spin vectors in the SSB regime of energies ∼ ΛF , where µ
2 > 0. In

contrast, for high energies (small distances) where the SSB gets lost, the potential

is repulsive with J < 0 and leads to the internally frustrated antiferromagnetic

configuration of fig. 1. Such an energy dependence of the exchange integral is very

well known from the theory of magnetism and is given by the so-called Bethe-Slater

curve depicted in fig. 3. It should be noted however, that in the context of normal

magnets, the Bethe-Slater curve is derived from 3-dimensional exchange integrals,

while here at energies ∼ ΛF we are facing a 6-dimensional problem. Anyway, in the

more sophisticated model described below further interactions come into play which

account for the SSB and also contribute to the attraction at large distances.

In the low energy (SSB) regime the ~π − ~π interaction eq. (12) seems to disappear,

because the sum of terms ∼ ~π2 vanishes in the potential

V (H) = −1

2
µ2[(ΛF + φ)2 + ~π2] +

1

4
λ[(ΛF + φ)2 + ~π2]2 (13)

However, when the ~π triplet is absorbed as the longitudinal mode of the ~W -boson the

internal Heisenberg spin interaction reappears as part of the mass term m2
WWµW

µ.
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Figure 3: Bethe-Slater curve: the exchange integral J as a function of the distance

between 2 internal spin vectors. If the spin vectors lie within one tetrahedron, their

distance is small ∼ R and according to the figure J is negative. This corresponds

to antiferromagnetic behavior and leads to the formation of the frustrated structure

fig. 1 with symmetry A4 + S(S4 − A4), because the spin vectors try to avoid each

other as far as possible. In contrast, if the internal spin vectors belong to different

tetrahedrons, their distance is large, of order r, and J is positive. This corresponds

to ferromagnetic behavior. At distances of the order of the Fermi scale, in the

picture denoted by F, one is still in the ferromagnetic regime. The reader is warned

however that in that region a further long range correlation comes into play which

is responsible for the SSB, as described in the main text. It may be remarked, that

in ordinary magnetism the Bethe-Slater curve is used to understand the magnetic

behavior of metals. Elements like Fe and Co are characterized by large lattice

spacings and corresponding large distances between spin vectors, much larger than

the extension of the electron wave function. In these cases one has J > 0 and a

ferromagnetic behavior. On the other hand, antiferromagnets like Cr and Mn are

characterized by small lattice spacings and corresponding small distances between

spin vectors, typically not much larger than the extension of the electron wave

function. In these cases J < 0, i.e. antiferromagnetic behavior.

.
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The internal antiferromagnetic repulsion at short distances follows from the internal

Coulomb force which governs the exchange integral J. A rigorous proof of this state-

ment will be given in section 3, where a field theory will be defined which generates

the internal Coulomb force. At this point, we can calculate the energy for the local

vacuum state fig. 1 and prove that it is a local minimum. To see this, just consider

the products ~πi~πj = |~π|2 cosαij where |~π|2 is the length of the spin vectors and αij

the angle between them (i, j = 1, 2, 3, 4). It can then easily be seen that for the

configuration fig. 1 one gets the same energy as for the ideal antiferromagnetic con-

figuration where 2 spin vectors show in the +z and the other 2 in the -z direction,

namely
∑4

i 6=j=1 ~πi~πj = 2|~π|2, while all other configurations give larger values.

When the distances become larger and the energy is lowered towards the Fermi scale,

J changes sign due to the Bethe-Slater effect shown in fig. 3, and would in principle

lead to an attractive ’ferromagnetic’ interaction between 2 distinct tetrahedrons fig.

2, so that an alignment of spin vectors of these tetrahedrons would occur, induced

by the last term ∼ ~π~π in the NJL-Lagrangean eq. (10). A useful order parameter for

magnetic systems in such a situation is the total magnetization, in our case the sum

of all internal chiral spin vectors over internal and Minkowski space. Unfortunately,

in the present case the total internal spin vector is not suitable to use. The point is

that for a single local ground state configuration fig. 1 the ’magnetization’ vanishes:

~π =

4
∑

i=1

~πi = 0 (14)

This is simply due to the tetrahedral arrangement of the chiral spin vectors and

implies that effectively there is no internal magnetic interaction between 2 tetrahe-

drons. In other words, looked at from the distance the ’magnetic field’ of a single

internal tetrahedron cannot be perceived. This is the deeper reason why there are

no chiral π-condensates in the Standard Model, cf. eq. (5). One has to search

for another order parameter, and that is how the Higgs doublet H comes into play.

According to eq.(2), H contains besides the chiral spinvector ~π the scalar field σ,

and it is this quantity which carries the condensate and should be used as the or-

der parameter, cf. eq.(5). The deeper reason for that is that at energies ∼ ΛF

particle-antiparticle interactions come into play which induce the long range corre-

lation underlying the dynamics of the SSB. Details will be explained below in this

section.
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Strictly speaking one must distinguish the chiral spin vector ~π for the local internal

ground state in fig. 1, which sums up to zero, from the fields ~π in the Higgs doublet,

which can be interpreted as the longitudinal modes of the W/Z bosons. Concep-

tually, they are related to each other in the same way as the vacuum condensate

〈σ〉 is related to the Higgs field φ. While the spin vectors can be defined for one

tetrahedron alone (just as in ferromagnetism the spin vector f+~τf can be defined

for one electron alone), the bound states, when formed, turn out to be extended

objects over many tetrahedrons over Minkowski space.

To summarize the situation, the breaking of the internal symmetries consists in 2

steps:

• The formation of a tetrahedron due to an internal interaction within one sin-

gle internal space. This interaction is ’antiferromagnetic’ and leads to a ’frus-

trated’ configuration, because the spin vectors try to avoid each other but do

not achieve to form a completely anti-parallel configuration. How this kind

of internal magnetism can be understood from a more fundamental higher di-

mensional theory will be explained in section 3. The frustrated tetrahedron

breaks internal spin SU(2) as well as internal parity to the Shubnikov group

A4+S(S4−A4). This symmetry breaking however is not spontaneous but arises

from the arrangement of a single ’molecule’ due to the internal antiferromag-

netic exchange interaction which avoids parallel spin states. The local ground

state thus is a chiral configuration, i.e. it violates internal and, as shown in

section 3, external parity, and the whole system is left SU(2)L-symmetric -

where the precise definition of the group SU(2)L is as follows:

• Before the SSB each local tetrahedral ground state can rotate independently

of the others, i.e. it can freely rotate as a rigid body over its base point in

Minkowski space, and this rotational symmetry of the rigid chiral spin vec-

tor system corresponds to a SO(3) symmetry group, whose covering group is

taken to define SU(2)L. As a matter of fact it is a local symmetry, because the

rotation can be different for tetrahedrons over different base points. Further-

more, due to the V −A structure of the interactions induced by the tetrahedral

structure fig. 1, it is a symmetry involving only left handed particles. This

issue will be worked out in detail in the next section.
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Corresponding to this scenario two new energy scales may be introduced: one is the

magnitude of the tetrahedron ΛR, which determines the strength of the NJL-coupling

at small distances, and the other the average distance Λr between 2 tetrahedrons in

Minkowski space (cf. fig. 2). One can also associate these scales to 2 temperatures

TR > Tr. Cooling down the universe from big bang temperatures, at about TR

the rigid tetrahedrons are formed in the internal fibers. Afterwards, at T > Tr,

the spontaneous symmetry breaking sets in. In this regime of distances the NJL-

coupling becomes positive, increases and finally, at the Fermi temperature, reaches

its maximum value. In this picture the Fermi scale extends over many tetrahedrons,

and it is well possible that an additional long range correlation is at work here,

similar to the role phonons play in superconductivity.

In the following a tentative proposal will be presented that provides such a long

range correlation. Namely, consider an internal tetrahedron of spin vectors fig. 1,

which from its very nature is an internal-particle antiparticle conglomerate and as-

sume that for reasons of temperature it can ’ionize’, i.e. separate into its particle

and antiparticle component, and furthermore that the components can leave their

original place in the crystal of tetrahedrons fig. 2 and can freely move around. There

may in fact be a permanent equilibrium of ionizing and recombining tetrahedrons

in the system, taking care that the structure of the global vacuum percolates over

the whole of Minkowski space. It is further assumed that all on-site, fixed tetrahe-

drons are effectively neutral. In contrast, the ionized components, although in part

screened by the bulk of on-site tetrahedrons, will attract and encircle each other

even at distances as large as ΛF and thus temporarily form a sort of ’positronium’

state, where the Fermi scale plays the role of its ’Bohr radius’ and sets the length

scale of the problem, the physics being controlled by momentum exchange processes

of order ΛF . In this weak binding limit, i.e. when the screening from the bulk is

strong and the Bohr radius is much larger than the lattice spacing r, the interaction

will be dominated by the long range part of the ’Coulomb’ potential induced by the

internal photon, as introduced and discussed in section 3. The attractive force is

then described by the attractive version of the NJL-Lagrangian. If the number of

pairs exceeds a certain critical density, a Bose-Einstein condensation of 〈ψ̄ψ〉 sets in,
producing the required phase transition. Through the SSB, the Higgs field comes

into being, a coherent state corresponding to the superposition of all ionized and
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weakly bound pairs.

The expert reader will find that the start-out formulas eqs. (7)-(11) of these con-

siderations are similar to what one has in simple technicolor models[9]. It should be

noted, however, that there are some important differences: first, there is no need of a

(techni)color quantum number here, because the present model describes a strongly

correlated fermion system in the sense of solid state physics and the bound states

are formed by these correlations instead of by (techni)color forces. Furthermore,

the fermions U and D do not interact directly with quarks and leptons[4], and so

the model does not have problems with FCNCs. Thirdly, in technicolor theories the

value of the condensate is usually assumed to be

〈ψ̄ψ〉 ∼ Λ3
F (15)

In other words, the extension of the condensates (and of the Higgs particle) is of the

order of the Fermi scale. Such a value of the condensate is also appropriate in the

present model, although the interpretation is somewhat different (see above).

As for the symmetry breaking, the usual technicolor argument goes as follows: before

the introduction of gauge interactions the model has a global SU(2)L × SU(2)R

invariance, and this symmetry is broken to custodial SU(2)V by the Higgs potential.

However, when the SM gauge interactions are turned on, the SU(2)R part of the

chiral symmetry group automatically disappears, so that the SSB concerns only the

remaining SU(2)L factor. In the present model the disappearance of SU(2)R has a

clear physical interpretation. It is simply due to the fact that the chiral tetrahedrons

are formed. As proved in the next section, this formation implies the V −A structure

of the weak interactions.

It is interesting to note that at energies ≤ ΛF the microscopic tetrahedral structure

does not shine up at all in the Higgs system. The only effect of the tetrahedral

structure at low energies are the multiplets of the vibrational and spin excitations

eq. (6), to be interpreted as the observed quark and lepton spectrum.

I repeat that the internal spin transformations are local in the sense, that the tetrahe-

drons can be rotated independently over different points of the base space (Minkowski

space), and can therefore be used as a basis to define local gauge interactions. One

has here a fiber space, each fiber with a discrete crystalline structure. Connections
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can be defined over the fibers, which give rise to the gauge fields. While the photon

is a story of its own to be discussed in the next section, the explicit construction

of the SU(2)L gauge fields may easily be sketched, because it is quite similar to

the construction of the Higgs doublet. In fact they are also bound states of the

fundamental fermions U and D and differ from the chiral internal spin vector field

~π only by their Lorentz behavior:

~W =
1

Λ2
(ψ̄γµ(1− γ5)~τψ) (16)

Due to the appearance of the factor ~τ they are polarized in internal space by the

internal chiral vacuum fig. 1, and, as shown in the next section, this polarization

will carry down to give a handedness ∼ 1 − γ5 in Minkowski space, providing the

chiral V − A nature of the weak interactions.

3 The background Scenery: QED in 7 and 8 Di-

mensions

The interested reader may worry, what kind of dynamical framework can account for

the phenomena described in the last section. The correlations between the internal

(~τ ) and external (γ5) axial structures are so intriguing that one is tempted to look

for a unifying higher dimensional model which comprises all the necessary features.

In view of the internal ’magnetic’ effects described in the last section, an immediate

suggestion is to consider QED-like interactions in a 6+1 dimensional space R6+1

with SO(6,1) symmetry which fibers out to give the R3 fibers depicted in figures 1

and 2. This fibration may be associated with the formation of the tetrahedrons (fig.

1) at scale ΛR, which span a 3-dimensional subspace of R6+1 and may in fact be

used to pinpoint what a fiber is. Namely, the fibers can be defined to be spanned by

the tetrahedrons, while everything orthogonal is called Minkowski space. One then

has

SO(6, 1) → SO(3, 1)× SO(3) (17)

While the base space is to be identified with physical Minkowski space and its

SO(3,1) Lorentz group, a kind of non-relativistic physics with rotational SO(3) will

take place in the fibers.
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As to the dynamics I suggest to consider 6+1-dimensional QED (’QED7’) broken

down to the above fiber space, and want to show how this splits into ordinary QED4

plus a non-relativistic electrodynamics in the fibers, i.e. an interaction which to some

extent can be discussed within the so-called NRQED framework[13, 14]. A major

difference as compared to ordinary NRQED will be the appearance of a chiral factor

γ5 which prevents the whole problem from being fully factorizable and furthermore

relates internal and external chiralities.

The main ingredients of QED7 are a SO(6,1) spinor field (the QED7-’electron’) and

a massless vector field (the QED7-’photon’). As for the fermion there is a single

8-dimensional spinor representation in SO(6,1) decomposing as[11]

8 → (1, 2, 2) + (2, 1, 2) (18)

under the fibration SO(6, 1) → SO(3, 1)×SO(3). Here representations of SO(3, 1)×
SO(3) are denoted by a set of 3 numbers (a, b, c), where (a, b) are representations of

the Lorentz group and c is the dimension of a SO(3)-representation. For example,

c=2 corresponds to a non-relativistic Pauli spinor in internal space, whose 2 spin

orientations are identified with the SU(2) flavors U and D introduced in the last

section. It should be noted that (1,2,2) and (2,1,2) are complex conjugate with

respect to each other, so one is the antiparticle representation of the other.

The QED7-photon transforms according to the fundamental 7-dimensional repre-

sentation of SO(6,1) and decomposes as[11]

7 → (2, 2, 1) + (1, 1, 3) (19)

i.e. into an ordinary QED4 photon which is a singlet under internal spin SU(2) plus

an internal 3-dimensional vector potential to describe the internal interactions.

The Lagrangian of QED7 resembles that of QED4

LQED7 = −1

4
FµνF

µν + ψ̄(iΓµD
µ −m)ψ (20)

where µ and ν run from 0 to 6, ψ is the 8-dimensional spinor of eq. (18), Γµ are the

Dirac matrices in 6+1 dimensions and Dµ = ∂µ + ieAµ is the covariant derivative

containing the 7-vector multiplet Aµ of eq. (19).
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To make the decomposition SO(6, 1) → SO(3, 1) × SO(3) explicit one should de-

compose the corresponding 6+1 dimensional Dirac algebra. The Dirac matrices of

SO(6,1) are 8×8 matrices and can be built up as tensor products of Pauli matrices[19]

Γ0 = τ1 ⊗ τ0 ⊗ τ0 (21)

Γ1 = iτ2 ⊗ τ0 ⊗ τ0 (22)

Γ2 = iτ3 ⊗ τ1 ⊗ τ0 (23)

Γ3 = iτ3 ⊗ τ2 ⊗ τ0 (24)

Γ4 = iτ3 ⊗ τ3 ⊗ τ1 (25)

Γ5 = iτ3 ⊗ τ3 ⊗ τ2 (26)

Γ6 = iτ3 ⊗ τ3 ⊗ τ3 (27)

where the first 2 columns on the rhs correspond to Lorentz SO(3,1) and the last

column to internal SO(3). τ0 is the 2-dimensional unit matrix, so that the first 4

Γ-matrices Γ0,1,2,3 = γ0,1,2,3⊗τ0 give a set of Dirac matrices in Minkowski space. The

last 3 Γ-matrices have the form Γ4,5,6 = iτ3 ⊗ τ3 ⊗ τ1,2,3, i.e. they are proportional

to ~τ in the internal space part. The interesting point to note here is the appearance

of a common prefactor iτ3 ⊗ τ3 in Γ4,5,6, which is nothing else than the matrix

γ5 = iγ1γ2γ3γ4 in Minkowski space. We thus have Γ4,5,6 = γ5 ⊗ τ1,2,3 and this will in

fact lead to the anticipated appearance of products of the form γ5~τ in the internal

interactions, which is responsible for the structure of the NJL-Lagrangian eq. (10).

As will shortly be seen, this makes sure that internal parity violating effects from the

A4 symmetry structure are passed down to Minkowski space. In more mathematical

terms it can be related to the structure and existence of octonion multiplication,

when 6+1 spacetime is assumed to be spanned by the octonion units I,J ,K,L,IL,JL

and KL[6, 7, 3].

Writing Aµ = (Ãµ=0−3, ~C) in eq. (20) the separation of ordinary QED from the

internal interaction can be made explicit

ψ̄ΓµA
µψ = ψ̄γµÃ

µψ + ψ̄γ5~τ ~Cψ (28)

Now that one has established products γ5~τ in the internal couplings, one can try

to derive the parity violation of the weak interaction. In principle, the presence of

such a coupling corresponds already to a parity violating behavior, both in internal
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and Minkowski space. However, for this to actually become perceivable, an addi-

tional appropriate ’chiral situation’ has to be provided, again both in internal and

Minkowski space. In Minkowski space this can be achieved, for example, by using

polarized beams or if there is a second vertex with a γ5-coupling in the Feynman di-

agram of the process. An analogous requirement must be met in the internal space.

In other words, a configuration with a handedness must be present, in order to pick

up a non-vanishing contribution from the axial coupling, and this in the case at hand

is given by the local chiral ground state structure fig. 1. As a matter of fact, the

non-relativistic circumstances of the internal R3 space make it a similar situation as

one has in optical activity of molecules, where in addition to a circularly polarized

photon there must be a handed molecule in order to produce a non-vanishing effect.

In conclusion, the structure of the second term in eq. (28) looks quite promising,

because it corresponds to a chiral interaction in Minkowski space. Unfortunately,

its magnitude is of order of the electromagnetic coupling and not large enough to

explain the antiferromagnetism at small distances fig. 3. On the other hand we know

since the time of Heisenberg[15], that ordinary magnetism is purely an effect of the

Coulomb interaction plus the Pauli principle, which lead to the exchange integral J.

What is therefore missing in the above equation, is an internal scalar potential C0

to provide for the Coulomb force.

To introduce such a field we restart by considering one more dimension, namely a

space with SO(6,2) symmetry group instead of SO(6,1)and decompose it as

SO(6, 2) → SO(3, 1)× SO(3, 1) → SO(3, 1)× SO(3) (29)

i.e. we allow for a separate dynamics and time evolution within the fibers. After-

wards however (second arrow in eq. (29)), the fibers are fixed to their base point

in Minkowski space and become non-relativistic at rest (no boosts allowed) with

symmetry group SO(3).

Introducing this preface step makes some difference concerning the fermions, and

affects the internal photon in the desired way. To see this, one should remember

that SO(6,2) possesses three 8-dimensional spinor representations. Two of these

are Weyl representations (8L and 8R) which build up a 16-dimensional Dirac field,

just as in 3+1 dimensions a Dirac fermion can be built from two 2-dimensional

Weyl representations. The third 8-dimensional spinor representation 8V coincides
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with the fundamental 8-dimensional vector representation of SO(6,2). The fact that

these SO(6,2) representations appear in 3 inequivalent forms is known as triality[5],

a characteristic property of this group, which makes it very special indeed and again

goes back to the existence of the division algebra of octonions. When one decomposes

these representations according to (29) one obtains[11]

8L → (1, 2, 1, 2) + (2, 1, 2, 1) → (1, 2, 2) + (2, 1, 2) (30)

8R → (1, 2, 2, 1) + (2, 1, 1, 2) → (1, 2, 2) + (2, 1, 2) (31)

8V → (2, 2, 1, 1) + (1, 1, 2, 2) → (2, 2, 1) + (1, 1, 3) + (1, 1, 1) (32)

Here representations of SO(3, 1)×SO(3, 1) are denoted by (a,b,c,d), where the first 2

numbers (a,b) stand for representations of the Lorentz group, and (c,d) characterize

representations of the internal SO(3,1). While (30) and (31) yield the same structure

as eq. (18) in the limit eq. (17), the expression (32) does not agree with eq. (19), but

contains the desired singlet field (1,1,1). Note that (2,2,1,1) resp. (2,2,1) denotes the

ordinary photon, while (1,1,2,2)→ (1,1,3)+(1,1,1) is the (internally) non-relativistic

decomposition of the internal ’photon’.

As for the fermion representation (1,2,2)+(2,1,2) in (30) and (31) there is one im-

portant physical difference as compared to the representation (18) of SO(6,1). The

point is that in SO(6,2) the nonrelativistic internal component of the antiparticle

spinor (2,1,2) possesses an internal antiparticle property as compared to (1,2,2),

which makes it behave like a nonrelativistic ’positron’ with respect to the internal

space as compared to a nonrelativistic ’electron’ in the case of (1,2,2). This prop-

erty is lacking in SO(6,1) (no internal antiparticles) and is of importance for the

Bose-Einstein condensation proposed in section 2.

The SO(6,2) Dirac spinor is the sum of 8L and 8R

8L + 8R → (1, 2, 1, 2) + (2, 1, 1, 2) + (1, 2, 2, 1) + (2, 1, 2, 1) = (12 + 21, 12 + 21)

where the underlined expression is a short form which makes it easy to understand,

that it decomposes into a Dirac fermion in Minkowski space times a Dirac fermion

in the internal space (as long as it is internally relativistic and not fixed to its

base point). This object enters the QED8-Lagrangian which formally has the same

structure as eq. (20) with the indices now running from 0 to 7.
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The Dirac matrices of SO(6,2) appearing in the QED8-Lagrangian will be called Gµ

and are 16×16 Matrices which can be written as tensor products of the form

G0 = τ1 ⊗ τ0 ⊗ τ0 ⊗ τ0 (33)

G1 = iτ2 ⊗ τ0 ⊗ τ0 ⊗ τ0 (34)

G2 = iτ3 ⊗ τ1 ⊗ τ0 ⊗ τ0 (35)

G3 = iτ3 ⊗ τ2 ⊗ τ0 ⊗ τ0 (36)

G4 = τ3 ⊗ τ3 ⊗ τ1 ⊗ τ0 (37)

G5 = iτ3 ⊗ τ3 ⊗ τ2 ⊗ τ0 (38)

G6 = iτ3 ⊗ τ3 ⊗ τ3 ⊗ τ1 (39)

G7 = iτ3 ⊗ τ3 ⊗ τ3 ⊗ τ2 (40)

where the first 2 columns on the rhs correspond to the Lorentz group and the last

2 to the internal SO(3,1). Looking closely at these equations one understands that

G0,1,2,3 yield the ordinary Dirac matrices in Minkowski space (up to trivial factors

τ0 ⊗ τ0), and G4,5,6,7 yield Dirac matrices in the internal space - however with a

prefactor γ5 ∼ τ3 ⊗ τ3.

Taking the non-relativistic limit in the internal fibers we end up with the γ-matrices

discussed after eq. (27). Furthermore, there is an internal scalar potential C0 = A4

in addition to the internal vector potential ~C = Aµ=5,6,7. What we have achieved

then is that we can apply the ordinary NRQED machinery to the internal spaces

(except for the appearance of factors of γ5 in the interactions). For example, the

internal dynamics will be governed by the (slightly modified) Pauli Lagrangian

L2f = ψ̄{iDt +
1

2m
~D2 +

e

2m
γ5~τ ~B}ψ (41)

where m and e are the mass and charge of the fundamental fermion ψ = (U,D).

Dt = −∂t + ieγ5C0 and ~D = −~∇ + ieγ5 ~C are covariant derivatives in the internal

dimensions. ~B is the internal magnetic field strength of the internal photon, C0 its

desired scalar and ~C its vector potential. The Pauli Lagrangian may be considered

as the leading order NRQED contribution to the 2-fermion interactions of internal

NRQED. There is also a leading 4-fermion Lagrangian[13, 14] which contains the
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terms arising in the NJL-Lagrangian (10):

L4f =
ds
m2

(ψ̄ψ)2 +
dv
m2

(ψ̄γ5~τψ)
2 (42)

with ds, dv = O(α) being couplings of the effective NRQED field theory. They

are obviously too small to account for the internal magnetic effects discussed in

the last section. Strong correlations are needed to explain the formation of the

internal tetrahedral structure. As discussed earlier, these naturally arise as exchange

contributions via the (internal) Pauli principle.

To make this statement more precise we consider the situation before the formation

of the tetrahedrons where the system still has its SU(2)L × SU(2)R symmetry. As

well known, this group is isomorphic to an SO(4), whose fundamental representation

(2,2) is spanned by the ’4-vector’ T = (σ, ~π), which is nothing else than the original

Higgs doublet eq. (2). The representation eq. (3) of the Higgs potential explicitly

shows that it is invariant under this SO(4) group.

We now want to analyze the behavior of a pair of internal non-relativistic fermions,

using the generalization of the Pauli principle to the internal space. The fermions

called a and b are assumed to be bound on sites with internal coordinates ~q and

~r. Such a pair will predominantly interact via the internal Coulomb potential V =

V (|~q − ~r|) generated by the exchange of internal photons. We want to show that

the net outcome of such an analysis is an SO(4) Heisenberg type of magnetic model

which in the continuum limit agrees with the quadratic term in (3) or, equivalently,

with the NJL-interaction term in eq. (10).

Using the chiral properties of QED8, it can be shown that the internal spin part of

the internal wave function for the a-b-system in the (2,2) representation is symmetric

under the exchange a ↔ b. It then follows from the (internal) Pauli principle that

the corresponding internal R3 part of the wave function must be antisymmetric, of

the form

f(2,2) =
1√
2
[fa(~q)fb(~r)− fa(~r)fb(~q)] (43)

corresponding to an energy eigenvalue E(2,2) = 〈f(2,2)|V |f(2,2)〉.

Eq. (43) may be compared to the internal R3 wave function in case that an SO(4)

singlet (1,1) is formed out of the pair a and b. In this case a symmetric R3 part arises,
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because the internal spin part is antisymmetric, and the energy can be calculated via

E(1,1) = 〈f(1,1)|V |f(1,1)〉. Working out the formulas one finds for the energy difference

E(2,2) − E(1,1) = 2J = 2〈a(~q)b(~r)|V |a(~r)b(~q)〉 (44)

which defines the internal exchange integral J. If one now parametrizes this energy

spectrum in the Heisenberg manner as product of 2 spin 4-vectors Ta and Tb

HH = A +BTaTb (45)

one easily finds B = −J , while the constant A is irrelevant for most considerations.

Clearly, the products TaTb are the discrete version of the term ∼ σ2 + ~π2 in the

Higgs potential and in the NJL-Lagrangian eq. (10). In other words, the strong

(anti)binding effects which lead to the frustrated tetrahedral structure fig. 1 arise in

a similar manner from the SU(2)L×SU(2)R symmetry structure as the Heisenberg-

model in ordinary magnetism from the underlying spin SU(2).

Numerically it turns out that J < 0. This sign of the exchange integral corresponds

indeed to the antiferromagnetic behavior needed at small distances ∼ ΛR for the

formation of the internal ’frustrated’ tetrahedral structure fig. 1. As argued in

section 2, after this formation there is a local SU(2)L symmetry left in the basket.

To account for the attractive SSB forces, which lead to the breaking of this symmetry

at large distances ∼ ΛF , in principle integrals over the whole of 6-dimensional space

have to be evaluated, and furthermore the long range correlation picture with the

’ionization’ of tetrahedrons and condensation of pairs as discussed in section 2 has

to be taken into consideration.

4 Conclusions

In this paper the SM Higgs mechanism has been analyzed on the basis of dynamics

taking place in a 3-dimensional internal space with a chiral tetrahedral structure. It

was shown that weak parity violation can be completely understood from interac-

tions within one single tetrahedron and has no spontaneous character. In contrast,

the breaking of SU(2)L is spontaneous and due to an alignment of all internal fibers

over the whole of Minkowski space.
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Since this is a rather unusual approach it may seem hard to understand where it

comes from and to where it will lead, in particular because I have mostly restricted

myself to the symmetry breaking aspects and did not consider other questions[3, 4].

Actually, there is a certain physical picture in my mind where our universe resembles

a huge crystal of molecules, each ’molecule’ of tetrahedral form like in fig. 1, and

arranged in such a way that certain symmetries are (spontaneously) broken. For

such a model to be consistent, a 6+1 dimensional space time has been introduced,

i.e. the ’molecules’ extend to 3 internal dimensions which are orthogonal to physical

space. The strong correlations within this system provide for the Higgs particle

and the weak vector bosons as bound states. Furthermore, as shown in ref. [4],

internal spin and vibrational excitations can be interpreted as the quark and lepton

spectrum. Then, it happens that an excitation in one molecule is able to excite an

excitation in the neighbouring internal space and thus can travel as a quasi-particle

through Minkowski space with a certain wave vector ~k which is to be interpreted as

the physical momentum of the particle.

These considerations directly lead to a comment on the widespread belief that in-

ternal spaces must be ’compactified’ to a small radius because otherwise they would

be easily detectable. Such an assumption is not really needed in the present model,

because the tetrahedrons arrange themselves to form a crystal which exists only on a

3-dimensional subspace of the 6-dimensional universe, and everything physically rel-

evant for us happens in a small neighbourhood of this 3-surface. The point is that an

internal tetrahedron fig. 1 cannot be extended to a crystal structure in the internal

fibers. The reason for that is that a crystal with point symmetry A4 + S(S4 − A4)

cannot grow into the internal dimension, because there is no 3-dimensional space

symmetry group possessing this point symmetry[20]. Whenever a tetrahedron or

its constituents ionize from the 3-surface crystal, they cannot dock at an arbitrary

point above or below the surface, but have to search for a point defect within the

’surface’ crystal, where they fit in. As long as they cannot find such a vacancy they

fluctuate around near the surface forming the positronium like ’Cooper’ pairs as

described in section 2.

In ferromagnets with Pauli spinors f = (f↑, f↓) the appropriate order parameter is
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the sum of the spin vectors

< f+~τf > (46)

whereas in superconductivity the condensate of Cooper pairs

< f↑f↓ > (47)

determines the order of the system. The phenomena of high energy physics are such

that the relevant quantity is the (internal + relativistic) generalization of (47), but

not that of (46). In section 2 an intriguing explanation was found for this fact.

Nevertheless, it was shown that the chiral spin vectors eq. (7) play an important

role in the dynamics of the system. They are not only essential ingredients of the

Higgs doublet and the NJL Lagrangian, but in the internal spaces they interact in an

’antiferromagnetic’ way, thereby determining the local ground state of the system.

I have finished this paper leaving a lot of open questions. For example, the mixing

of the photon and Z-boson has not been worked out. Then there is the question,

whether the fundamental fermions U and D are in principle observable or whether

they act just as a sort of background fields for the physical excitations. Thirdly, it is

unclear, whether the condensate 〈ψ̄ψ〉 = 〈ŪU + D̄D〉 is really SU(2)V -symmetric or

whether 〈ŪU〉 6= 〈D̄D〉. This is a well justified question in view of the fact that the

chiral tetrahedron breaks SU(2)V . And finally, there is the question, which force

keeps the original tetrahedron (the circles in fig. 1) together.

5 Appendix

I have been a little sloppy when discussing the interface between the Higgs La-

grangian and the Heisenberg Hamiltonian. This appendix is devoted to clarify the

relationship between the two models.

The SM Lagrangian L = T − V (H) with potential V(H) given in eq. (1) is in fact

a Lagrange density with energy dimension 4, the Higgs doublet H being a scalar

with dimension 1. On the other hand, the usual Heisenberg Hamiltonian HH for

magnetic systems has dimension 1 and reads

HH = −J
∑

i 6=j

~Si
~Sj (48)
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where the spin vector ~S is an angular momentum ~S = ~r × ~p and therefore dimen-

sionless while J is the exchange energy with dimension 1. When considering the

Hamiltonian density one has

HH = −J
∑

i 6=j

~Si
~Sj (49)

with J being the exchange energy density of dimension 4.

There is then an appearant mismatch within eq. (12) of the main text because ~π

as part of the Higgs doublet carries dimension 1. To be correct one should compare

the contents of eqs. (3) and (49). This yields

−J~Si
~Sj = −1

2
µ2Λ2

F

~πi
ΛF

~πj
ΛF

(50)

in the SSB/ferromagnetic regime of low energies ∼ ΛF . Thus one obtains

J =
1

2
µ2Λ2

F (51)

~S =
~π

ΛF

(52)

for the exchange energy density and the spin vector, respectively. Obviously then,

J is positive in this regime in agreement with fig. 3.

At high energies / small distances we should compare (49) and −LNJL of eq. (10)

to obtain

−J~Si
~Sj = −GNJLΛ

4
R

(ψ̄iγ5~τψ)i
Λ3

R

(ψ̄iγ5~τψ)j
Λ3

R

(53)

where a dimensionless coupling GNJL of order 1 has been introduced, which in

the main text was left out to simplify the discussion, and factors of ΛR have been

rearranged to obtain dimensionless spin vectors. From this one obtains

J = GNJLΛ
4
R (54)

~S =
1

Λ3
R

(ψ̄iγ5~τψ) (55)

with GNJL < 0 and J < 0 in the antiferromagnetic regime of high energies in

agreement with fig. 3. Since J is the exchange energy density and 1
Λ3

R

corresponds

to the internal volume of one tetrahedron, the corresponding exchange energy is

given by J = GNJLΛR. In other words, a calculation of the internal microscopic

exchange integral would directly yield the high energy value of the NJL-coupling.
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