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Abstract

An SU3 unification theory with the electron, the positron, and the neutrino
is reviewed. A 10-spacetime gravidynamic unification of the internal charges
and the spin is formulated, with a 16-component Majorana-Weyl fermion that
consolidates the foregoing three Weyl particles with the antineutrino, and their
Dirac conjugates. Vector bosons and scalar (Higgs) particles are consolidated
in an antisymmetric tensor of 3rd rank, being the only tensor, apart from the
graviton of 10-spacetime, that can couple to the unifying fermion. We write the
Lorentz algebra of 10-spacetime in terms of the 4-spacetime Lorentz algebra and
the internal O6 factor, the latter expressed via its U3 subalgebra, and construct
the pertinent operator representations. We exhibit the complete structure of the
unified gauge-Higgs couplings, indicating the source terms of particle masses.
On the basis of this simple unification model, we propose the radical idea that
all observed bosonic and fermionic particles, whether leptonic or hadronic, may
be composed of just the underlying four fundamental fermions.

1 Introduction

This article describes the simplest and the most elegant gravidynamic unification model
in a spacetime with extra dimensions. Whereas we have constructed an enormous 18-
spacetime model[1], [2], [3] that can unify the spin and the internal charges of some four
generations of leptons and quarks all within a 256-component fermionic Majorana-Weyl
spinor of O1,17, and whereas we have also constructed a 14-spacetime model[4], [5] that
is able to consolidate two generations of quarks and leptons and their antiparticles,
or in an alternative scenario, 8 charged leptons with their associated neutrinos, and
antiparticles, all within a 64-component fermionic Weyl spinor of O1,13, here we shall
economize, and shall work with a 16-component fermionic Majorana-Weyl spinor of 10-
spacetime, with an underlying O1,9 symmetry. The latter spinor can accommodate only
four Weyl fermions in 4-spacetime that we can identify as the electron, the neutrino,
and their antiparticles. Our focus in this article will be the spectrum of bosonic particles
(vectors and scalars) that would couple to the forgoing four fundamental fermions. In
a 10-spacetime gravidynamic theory, these bosons would be represented by a 3rd rank
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antisymmetric Lorentzian tensor VABC and would get their dynamics in the effective
quantum action from a coupling of the form

1

3!
VABCΨ̄γABCΨ (1)

Here, Ψ is the fermionic Majorana-Weyl spinor of O1,9, with Dirac conjugate Ψ̄, and
the γ’s are elements of the associated Dirac algebra. The main drive of the present
work is to display the detailed structure of the above coupling. We shall show how this
describes vector boson couplings as well as Higgs couplings for scalars that can give
appropriate masses to the fermions via some non-vanishing vacuum components.

The 10-spacetime theory that will be assembled in this work can describe both the
gravidynamic and the electroweak interactions of the electron and the neutrino, and
their antiparticles. We shall construct the O1,9 algebra and its pertinent tensorial and
spinorial representations in a form exhibiting an internal SU3 symmetry. Whereas, the
latter SU3 can consolidate[6], [7], [8] the electroweak interactions[9], [10], [11] of the electron
and the neutrino by including the positron in the fundamental fermionic multiplet, the
10-spacetime extension will require the inclusion of the antineutrino.

Before proceeding to build our model, let us first consider and learn from the following
Lagrangian density of quantum electrodynamics that describes the coupling of a Dirac
field Ψ to the photon A,

Ψ(iγ · ∂)Ψ−AµΨγµΨ−mΨΨ (2)

Splitting Ψ into its two Weyl (chiral) parts, Ψ = ψ+ ξ, where ψ is left-handed and ξ is
right-handed, we obtain for the above,

ψ(iγ · ∂)ψ + ξ(iγ · ∂)ξ

−Aµ
(
ψγµψ + ξγµξ

)
−m(ψξ + ξψ)

 (3)

To the left-handed Weyl component ψ we may assign the electron e, while the right-
handed component ξ, may be related to the positron e∗ by writing

ξ → Cẽ∗ ξ → −ẽ∗C−1 (4)

Here, the tilde symbol denotes transposition, C is the antisymmetric Majorana (charge
conjugation or transposition) matrix, with the property C−1γµC = −γ̃µ. Hence, using
these properties and replacements, the foregoing Lagrangian density takes the form

e(iγ · ∂)e+ e∗(iγ · ∂)e∗

+Aµ (−eγµe+ e∗γµe
∗)

−m
(
eCẽ∗ − ẽ∗C−1e

)


(5)

Fundamental Unification Theory with the Electron,
the Neutrino, and Their Antiparticles by N.S. Baaklini

2



N.S.B. Letters NSBL-EP-011

It should be remarked that, in obtaining the kinetic terms and the coupling terms of the
above expression, we used integration by parts and the property that fermionic fields
anticommute. Notice how the system describes two fermionic particles, the electron e
and the positron e∗ that couple with opposite charge eigenvalues to the photon. Notice
as well how the Dirac mass term corresponds to a mixing between the electron and the
positron.

Notice that the electrodynamic system as described above, in terms of two Weyl
fermions (e, e∗) would admit an extension to an SU2 gauge system. However, this
can be seen as part of a larger SU3 system that includes a third Weyl fermion, the
neutrino. Such a system can describe electroweak interactions, and will be reviewed in
the following section.

Subsequently, several sections will present the algebraic work allowing the construction
of the 10-spacetime gravidynamic theory that can embed the SU3 electroweak model,
with the inclusion of the antineutrino. Important observations and remarks will be left
to the concluding discussion.

2 The SU3 Model & Boson-Fermion Couplings

The kinetic term of a system of three Weyl fermions ψa (a = 1, 2, 3), Dirac conjugates
ψ
a
, in 4-spacetime is invariant with respect to a global SU3 symmetry. Promoting

the latter to a local counterpart[6] would introduce an octet of gauge bosons Va
b, the

latter being traceless and corresponding to the generators of the SU3 algebra. The
resulting gauge-invariant fermionic Lagrangian takes the following form (suppressing
the vectorial spacetime indices)

ψ
a
(iγ · ∂)ψa + Va

bψ
a
γψb (6)

In order to spell out the content of the above system, in terms of actual fermionic and
bosonic particles, we make the following assignments. For the fermions, we write

ψ1 → ν ψ
1 → ν

ψ2 → e ψ
2 → e

ψ3 → e∗ ψ
3 → e∗

(7)

Notice that we have embedded the electric charge operator within SU3 with diagonal
eigenvalues (0,−1,+1). In the above, we have introduced the neutrino ν, the electron
e, and the positron e∗. The fermionic kinetic terms would translate like:

ψ
a
(iγ · ∂)ψa ⇒ ν(iγ · ∂)ν + e(iγ · ∂)e+ e∗(iγ · ∂)e∗ (8)
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For the vector bosons, we have
V1

1 → Z V1
2 →W∗ V1

3 → Y

V2
1 →W V2

2 → −A− 1
2
Z V2

3 → X

V3
1 → Y∗ V3

2 → X ∗ V3
3 → A− 1

2
Z

(9)

Here we have introduced the photon A, the neutral boson Z, the charge ±1 bosons
(W ,W∗), the charge ±2 bosons (X ,X ∗), and the charge ±1 bosons (Y ,Y∗). Notice
that a bosonic bilinear invariant takes the form,

Aa
bAb

a ⇒ 2A2 +
3

2
Z2 + 2WW∗ + 2XX ∗ + 2YY∗ (10)

A canonical form of the bosonic bilinears could be obtained by dividing the above by 4,
and rescaling fields other than A. However, we do not need to do that for our present
purposes.

Corresponding to the foregoing assignments of the fermions and the vector bosons, the
coupling term would translate as follows:

Va
bψ

a
γψb ⇒



A× (−eγe+ e∗γe∗)

+1
2
Z × (−eγe+ 2νγν − e∗γe∗)

+W × eγν +W∗ × νγe

+X × eγe∗ + X ∗ × e∗γe

+Y × νγe∗ + Y∗ × e∗γν


(11)

Notice that whereas the (W ,W∗) is the charged massive particle of the electroweak
theory[9], [10], [11] that would exchange the electron with the neutrino, the predicted[6]

particle (Y ,Y∗) of the SU3 theory would exchange the positron with the neutrino, and
the predicted[6] doubly-charged particle (X ,X ∗) would exchange the electron with the
positron.

3 The O1,9 Algebra in Terms of O1,3 & SU3

The generators of the O1,9 algebra would consist of the following set:

{Jµ,ν , Jab, Qab, Q
ab, Hµa, Hµ

a} (12)

Here, the antisymmetric Jµν are the generators of O1,3, with the indices (µ, ν, · · · )
corresponding to 4-spacetime vectors. The generators Ja

b are those of U3, the traceless
part corresponding to SU3, and the trace to a U1 factor, with the indices (a, b, c, . . .)
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being those of the fundamental 3-plet. The generators Qa,b and their conjugates Qab,
being antisymmetric, would correspond to the coset of O6 over SU3 and U1. The
remaining generators Hµa and their conjugates Hµ

a correspond to the coset of O1,9 over
O1,3 and O6. We shall write the commutators that constitute the O1,9 algebra.

First, we have the 4-spacetime Lorentz algebra1,

[Jµν , Jλρ] = (ηνλJµρ − ηµλJνρ + ηµρJνλ − ηνρJµλ) (13)

Whereas the Lorentz generators Jµν would commute with the generators of the internal
O6, namely Ja

b, Qab, and Qab, we have

[Jµν , Hλa] = (ηνλHµa − ηµλHνa) (14)

[Jµν , Hλ
a] = (ηνλHµ

a − ηµλHν
a) (15)

The generators Ja
b, Qab, and Qab, constituting the internal O6 algebra, would satisfy

the followings: [
Ja

b, Jc
d
]

=
(
δc
bJa

d − δadJcb
)

(16)[
Ja

b, Qcd

]
=
(
δc
bQad − δdbQac

)
(17)[

Ja
b, Qcd

]
= −

(
δa
cQbd − δadQbc

)
(18)

[Qab, Qcd] = 0 (19)[
Qab, Qcd

]
= 0 (20)[

Qab, Q
cd
]

=
(
δb
cJa

d − δacJbd + δa
dJb

c − δbdJac
)

(21)

The commutators of the Ja
b generators with the H’s are[

Ja
b, Hµc

]
= δc

bHµa (22)[
Ja

b, Hµ
c
]

= −δacHµ
b (23)

The commutators of the Q’s generators with the H’s are

[Qab, Hµc] = 0 (24)

[Qab, Hµ
c] = (δb

cHµa − δacHµb) (25)[
Qab, Hµc

]
=
(
δc
bHµ

a − δcaHµ
b
)

(26)[
Qab, Hµ

c
]

= 0 (27)

Finally, the commutators of the H’s among themselves are:

[Hµa, Hνb] = −ηµνQab (28)[
Hµa, Hν

b
]

= −ηµνJab − δabJµν (29)

1The alert reader should notice that in writing our Lie algebras, in this and other cited articles, we do not include
the imaginary unit i on the right side of the commutator equations. We employ this tactic for the purpose of simplifying
the algebraic work, and should not have adverse effects on the final results, if used properly.
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[
Hµ

a, Hν
b
]

= −ηµνQab (30)

We can verify that the Jacobi identities involving any three of the O1,9 generators Jµ,ν ,
Ja

b, Qab, Q
ab, Hµa, or Hµ

a, are all satisfied. Besides, any of these generators would
commute with the following quadratic (Casimir) operator:

1

2
JµνJµν − JabJba +

1

2
QabQ

ab +
1

2
QabQab +HµaHµ

a +Hµ
aHµa (31)

4 The Representation of an O1,9 Vector

Let us introduce the operators (Kµ, Ka, K
a). The commutators of these with the

Lorentz generators Jµν are

[Jµν , Kλ] = (ηνλKµ − ηµλKν) (32)

[Jµν , Ka] = 0 (33)

[Jµν , K
a] = 0 (34)

The commutators with the U3 generators Ja
b,[

Ja
b, Kµ

]
= 0 (35)[

Ja
b, Kc

]
= δc

bKa (36)[
Ja

b, Kc
]

= −δcaKb (37)

The commutators with Qab,
[Qab, Kµ] = 0 (38)

[Qab, Kc] = 0 (39)

[Qab, K
c] = δb

cKa − δacKb (40)

The commutators with Qab, [
Qab, Kµ

]
= 0 (41)[

Qab, Kc

]
= δc

bKa − δcaKb (42)[
Qab, Kc

]
= 0 (43)

The commutators with Hµa,
[Hµa, Kν ] = −ηµνKa (44)

[Hµa, Kb] = 0 (45)[
Hµa, K

b
]

= δa
bKµ (46)

The commutators with Hµ
a,

[Hµ
a, Kν ] = −ηµνKa (47)

[Hµ
a, Kb] = δb

aKµ (48)
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[
Hµ

a, Kb
]

= 0 (49)

We can verify that all the Jacobi identities involving any two of the O1,9 generators Jµν ,
Ja

b, Qab, Q
ab, Hµa or Hµ

a, with either of the operators Kµ, Ka, or Ka, are satisfied.
Moreover any of the O1,9 generators can be shown to commute with the following
quadratic operator:

KµKµ +KaK
a +KaKa (50)

We proceed now to the introduction of the multiplet that can be associated with the
above operator representation, and to the construction of the infinitesimal O1,9 trans-
formations that act on it. The desired multiplet with components {Bµ, Ba, B

a} can be
introduced by the vector module

B = BµKµ +BaK
a +BaKa (51)

Introducing the O1,9 parameter module,

W =
1

2
ΩµνJµν + Ωa

bJb
a +

1

2
ΩabQ

ab +
1

2
ΩabQab + ΩµaHµ

a + Ωµ
aHµa (52)

we can compute the commutator [W ,B]. The latter gives a vector module whose
components would define the needed infinitesimal transformations. We obtain

δBµ = ΩµνBν + ΩµaB
a + Ωµ

aBa (53)

δBa = −Ωa
bBb + ΩabB

b − ΩµaBµ (54)

δBa = Ωb
aBb + Ωa,bBb − Ωµ

aBµ (55)

We can verify that, for any two vector modules A and B, the above infinitesimal trans-
formations, acting in a like manner on the components of both, would leave invariant
the following bilinear form:

A · B = AµBµ + AaB
a + AaBa (56)

5 The Antisymmetric Tensor Representation of Rank 3

An O1,9 antisymmetric tensor representation of rank 3 would have the following O1,3

and U3 covariant components:

{Kµνλ, Kµνa, Kµν
a, Kµab, Kµa

b, Kµ
ab, Kabc, Kab

c, Ka
bc, Kabc} (57)

The symmetries of the above components with respect to their spacetime and SU3

indices should be clear. Notice that the tensor Kµνλ could be traded for a single-index
counterpart using the 4-dimensional epsilon symbol εµνλρ. However, it is convenient to
leave it in this form, at this stage. Likewise, the 2-index SU3 tensors can be traded
for single-index counterparts, and the 3-index SU3 tensors can be traded for scalars, all
using the pertinent epsilon symbol. Again, it is more convenient to leave them as such.
The replacements can be made later after the couplings are constructed.
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In order to be able to write out the infinitesimal transformations of an associated
multiplet, we proceed to the elaborate task of writing down the commutators of the
above component operators with the generators of the O1,9 algebra.

For the commutators of Jµν , we have

[Jµν , Kλρσ] = (ηνλKµρσ + ηνρKµσλ + ηνσKµλρ)− (µ↔ ν) (58)

[Jµν , Kλρa] = (ηνλKµρa − ηνρKµλa)− (µ↔ ν) (59)

[Jµν , Kλρ
a] = (ηνλKµρ

a − ηνρKµλ
a)− (µ↔ ν) (60)

[Jµν , Kλab] = ηνλKµab − ηµλKνab (61)[
Jµν , Kλa

b
]

= ηνλKµa
b − ηµλKνa

b (62)[
Jµν , Kλ

ab
]

= ηνλKµ
ab − ηµλKν

ab (63)

The commutators of Jµν with Kabc, Kab
c, Ka

bc, and Kabc are vanishing.

Whereas Ja
b commutes with Kµνλ, its commutators with the other K’s are[

Ja
b, Kµνc

]
= δc

bKµνa (64)[
Ja

b, Kµν
c
]

= −δacKµν
b (65)[

Ja
b, Kµcd

]
= δc

bKµad − δdbKµac (66)[
Ja

b, Kµc
d
]

= δc
bKµa

d − δadKµc
b (67)[

Ja
b, Kµ

cd
]

= −δacKµ
bd + δa

dKµ
bc (68)[

Ja
b, Kcde

]
= δc

bKade + δd
bKaec + δe

bKacd (69)[
Ja

b, Kcd
e
]

=
(
δc
bKa,d

e − δdbKac
e
)
−
(
δa
eKcd

b
)

(70)[
Ja

b, Kc
de
]

=
(
δc
bKa

de
)
−
(
δa
dKc

be − δaeKc
bd
)

(71)[
Ja

b, Kcde
]

= −
(
δa
cKbde + δa

dKbec + δa
eKbcd

)
(72)

The nonvanishing commutators of Qab with the K’s are:

[Qab, Kµν
c] = δb

cKµνa − δacKµνb (73)[
Qab, Kµc

d
]

= δa
dKµbc − δbdKµac (74)[

Qab, Kµ
cd
]

= −
(
δa
cKµb

d − δbcKµa
d + δb

dKµa
c − δadKµb

c
)

(75)

[Qab, Kcd
e] = (δb

eKacd − δaeKbcd) (76)[
Qab, Kc

de
]

= −
(
δb
dKac

e − δadKbc
e + δa

eKbc
d − δbeKac

d
)

(77)[
Qab, K

cde
]

=
(
δb
cKa

de + δb
dKa

ec + δb
eKa

cd
)
− (a↔ b) (78)

The nonvanishing commutators of Qab with the K’s are:[
Qab, Kµνc

]
= δc

bKµν
a − δcaKµν

b (79)
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[
Qab, Kµcd

]
=
(
δc
aKµd

b − δcbKµd
a + δd

bKµc
a − δdaKµc

b
)

(80)[
Qab, Kµc

d
]

= δc
bKµ

ad − δcaKµ
bd (81)[

Qab, Kcde

]
=
(
δc
bKde

a + δd
bKec

a + δe
bKcd

a
)
− (a↔ b) (82)[

Qab, Kcd
e
]

=
(
−δcbKd

ae + δd
bKc

ae
)
− (a↔ b) (83)[

Qab, Kc
de
]

= δc
bKade − δcaKbde (84)

The nonvanishing commutators of Hµa with the K’s are:

[Hµa, Kνλρ] = − (ηµνKλρa + ηµρKνλa + ηµλKρνa) (85)

[Hµa, Kνλb] = (ηµνKλab − ηµλKνab) (86)[
Hµa, Kνλ

b
]

=
(
ηµνKλa

b − ηµλKνa
b
)

+
(
δa
bKµνλ

)
(87)

[Hµa, Kνbc] = −ηµνKabc (88)

[Hµa, Kνb
c] = −ηµνKab

c + δa
cKµνb (89)[

Hµa, Kν
bc
]

= −
(
ηµνKa

bc
)
−
(
δa
bKµν

c − δacKµν
b
)

(90)[
Hµa, Kbc

d
]

= δa
dKµbc (91)[

Hµa, Kb
cd
]

= −δacKµb
d + δa

dKµb
c

(92)[
Hµa, K

bcd
]

=
(
δa
bKµ

cd + δa
dKµ

bc + δa
cKµ

db
)

(93)

Finally, the nonvanishing commutators of Hµ
a with the K’s are:

[Hµ
a, Kνλρ] = − (ηµνKλρ

a + ηµρKνλ
a + ηµλKρν

a) (94)

[Hµ
a, Kνλb] = − (ηµνKλb

a − ηµλKνb
a) + (δb

aKµνλ) (95)[
Hµ

a, Kνλ
b
]

=
(
ηµνKλ

ab − ηµλKν
ab
)

(96)

[Hµ
a, Kνbc] = − (ηµνKbc

a)− (δb
aKµνc − δcaKµνb) (97)

[Hµ
a, Kνb

c] = ηµνKb
ac − δbaKµν

c (98)[
Hµ

a, Kν
bc
]

= −ηµνKabc (99)

[Hµ
a, Kbcd] = (δb

aKµcd + δd
aKµbc + δc

aKµdb) (100)[
Hµ

a, Kbc
d
]

=
(
δb
aKµc

d − δcaKµb
d
)

(101)[
Hµ

a, Kb
cd
]

= δb
aKµ

cd (102)

We can verify that all the Jacobi identities involving any two of the O1,9 generators Jµν ,
Ja

b, Qab, Q
ab, Hµa or Hµ

a, with either of the operators Kµνλ, Kµνa, · · · , are satisfied.2

2For extensive manipulations and verifications of the kind presented in this, and other
articles, it would be useful to use efficient symbolic computational software. Readers
who have access to a Mathematica program can inspect the illustrative notebooks that
are embedded in our article: “Symbolic Manipulations in High-Energy Theory”, N.S.B.
Computing, NSBC-NB-007, http://www.vixra.org/abs/1402.0033
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Moreover any of the O1,9 generators can be shown to commute with the following
quadratic operator:

1
3!
KµνλKµνλ

+1
2
KµνaKµν

a + 1
2
Kµν

aKµνa

+1
2
KµabKµ

ab + 1
2
Kµ

abKµab −Kµa
bKµb

a

+ 1
3!
KabcK

abc + 1
3!
KabcKabc + 1

2
Kab

cKc
ab + 1

2
Ka

bcKbc
a

(103)

We proceed now to the introduction of the multiplet that can be associated with the
above operator representation, and to the construction of the infinitesimal O1,9 trans-
formations that act on it. The desired multiplet with components {Bµνλ, Bµνa, · · · } can
be introduced by the tensor module

B =


1
3!
BµνλKµνλ + 1

2
BµνaKµν

a + 1
2
Bµν

aKµνa

+1
2
BµabKµ

ab +Bµa
bKµb

a + 1
2
Bµ

abKµab

+ 1
3!
BabcK

abc + 1
2
Bab

cKc
ab + 1

2
Ba

bcKbc
a + 1

3!
BabcKabc

 (104)

Introducing the O1,9 parameter module,

W =
1

2
ΩµνJµν + Ωa

bJb
a +

1

2
ΩabQ

ab +
1

2
ΩabQab + ΩµaHµ

a + Ωµ
aHµa (105)

we can compute the commutator [W ,B]. The latter gives a tensor module whose
components would define the needed infinitesimal transformations.

For Bµνλ, we obtain

δBµνλ =


ΩλρBµνρ − ΩµρBλνρ + ΩνρBλµρ

+ΩνaBλµ
a − ΩµaBλν

a + ΩλaBµν
a

+Ωλ
aBµνa − Ωµ

aBλνa + Ων
aBλµa

 (106)

For Bµνa, we obtain

δBµνa =


−ΩλaBλµν − ΩλµBλνa + ΩλνBλµa

+ΩνbBµa
b + ΩabBµν

b − ΩµbBνa
b

−Ωa
bBµνb + Ωµ

bBνab − Ων
bBµab

 (107)
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For Bµν
a, we obtain

δBµν
a =


ΩabBµνb − ΩνbBµ

ab + ΩµbBν
ab

+ΩλνBλµ
a − ΩλµBλν

a + Ωb
aBµν

b

−Ωλ
aBλµν + Ωµ

bBνb
a − Ων

bBµb
a

 (108)

For Bµab, we obtain

δBµab =


ΩµνBνab − ΩνaBµνb + ΩνbBµνa

+ΩµcBab
c − ΩbcBµa

c + ΩacBµb
c

+Ωa
cBµbc − Ωb

cBµac + Ωµ
cBabc

 (109)

For Bµa
b, we obtain

δBµa
b =


−ΩbcBµac − ΩµcBa

bc + ΩacBµ
bc

+ΩνaBµν
b + ΩµνBνa

b − Ωa
cBµc

b

+Ωc
bBµa

c + Ωµ
cBac

b − Ων
bBµνa

 (110)

For Bµ
ab, we obtain

δBµ
ab =


ΩµcB

abc + ΩµνBν
ab + ΩbcBa

µc

−ΩacBµc
b − Ωc

aBµ
bc + Ωc

bBµ
ac

Ωµ
cBc

ab − Ων
aBµν

b + Ων
bBµν

a

 (111)

For Babc, we obtain

δBabc =


−ΩµaBµbc + ΩµbBµac − ΩµcBµab

+ΩcdBab
d − ΩbdBac

d + ΩadBbc
d

−Ωa
dBbcd + Ωb

dBacd − Ωc
dBabd

 (112)

For Bab
c, we obtain

δBab
c =


ΩcdBabd − ΩbdBa

cd + ΩadBb
cd

−ΩµbBµa
c + ΩµaBµb

c + Ωa
dBbd

c

−Ωb
dBad

c + Ωd
cBab

d − Ωµ
cBµab

 (113)
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For Ba
bc, we obtain

δBa
bc =


ΩadB

bcd − ΩµaBµ
bc − ΩcdBc

ad

+ΩbdBad
c − Ωa

dBd
bc − Ωd

bBa
cd

+Ωd
cBa

bd − Ωµ
bBµa

c + Ωµ
cBµa

b

 (114)

Finally, for Babc, we obtain

δBabc =


ΩcdBd

ab − ΩbdBd
ac + ΩadBd

bc

+Ωd
aBbcd − Ωd

bBacd + Ωd
cBabd

−Ωµ
aBµ

bc + Ωµ
bBµ

ac − Ωµ
cBµ

ab

 (115)

We can verify that, for any two tensor modules A and B, the above infinitesimal trans-
formations, acting in a like manner on the components of both, would leave invariant
the following bilinear form:

A · B =


1
3!
AµνλBµνλ + 1

2
AµνaBµν

a + 1
2
Aµν

aBµνa

+1
2
AµabBµ

ab − AµabBµb
a + 1

2
Aµ

abBµab

+ 1
3!
AabcB

abc + 1
2
Aab

cBc
ab + 1

2
Aa

bcBbc
a + 1

3!
AabcBabc

 (116)

6 The Dirac-Weyl Spinorial Representation of O1,9

A Dirac spinor in 10-spacetime has 25 = 32 components. A Weyl (chiral) constraint
would reduce this to 16 components. A Majorana constraint, relating the components
to their Dirac conjugates, for fermions in 10-spacetime, would reduce the number of
components further to 8. In order to construct a corresponding multiplet of Weyl
spinors in 4-spacetime, with components that are described by SU3 tensors, we must
introduce the following set of operators:

{L,Ra, L
a, R} (117)

The above objects are alternately left-handed and right-handed Weyl spinors of the
4-spacetime. As before, the symbols (a, b, c, . . .) do pertain to SU3. We now write the
commutators of the above operators with the generators of the O1,9 algebra.

For the commutators with Jµν , the generators of the 4-spacetime Lorentz algebra, all
the foregoing operator elements would satisfy commutators like this:

[Jµν , L] = −1

2
γµνL (118)
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In the above, γµν is a member of the Dirac algebra, being equal to 1
2

[γµ, γν ] in terms of
the Dirac matrix operators γµ that satisfy {γµ, γν} = 2ηµν .

For the commutators with Ja
b, the generators of U3, we have[

Ja
b, L
]

= −1

2
δa
bL (119)

[
Ja

b, Rc

]
= δc

bRa −
1

2
δa
bRc (120)[

Ja
b, Lc

]
= −δacLb +

1

2
δa
bLc (121)[

Ja
b, R
]

=
1

2
δa
bR (122)

For the commutators with Qab, we have

[Qab, L] = εabcL
c (123)

[Qab, Rc] = εabcR (124)

[Qab, L
c] = 0 (125)

[Qab, R] = 0 (126)

For the commutators with Qab, we have[
Qab, L

]
= 0 (127)[

Qab, Rc

]
= 0 (128)[

Qab, Lc
]

= −εabcL (129)[
Qab, R

]
= −εabcRc (130)

For the commutators with Hµa, we have

[Hµa, L] = − 1√
2
γµRa (131)

[Hµa, Rb] =
1√
2
εabcγµL

c (132)

[
Hµa, L

b
]

= − 1√
2
δa
bγµR (133)

[Hµa, R] = 0 (134)

For the commutators with Hµ
a, we have

[Hµ
a, L] = 0 (135)

[Hµ
a, Rb] =

1√
2
δb
aγµL (136)
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[
Hµ

a, Lb
]

=
1√
2
εabcγµRc (137)

[Hµ
a, R] =

1√
2
γµL

a (138)

We can verify that all the Jacobi identities involving any two of the O1,9 generators Jµν ,
Ja

b, Qab, Q
ab, Hµa, or Hµ

a, with any of the operators L, Ra, L
a, or R, are satisfied.

7 The Dirac Conjugate Spinorial Representation of O1,9

In order to be able to write Lagrangian terms for fermionic fields we must introduce
the conjugate spinorial representation. This can be done with the operator set{

L,R
a
, La, R

}
(139)

All these are Dirac conjugate spinors. We now write the commutators of all the O1,9

generators with the elements of the above set.

First, all the above set of operators, being all Dirac conjugate spinors, would have
commutators with Jµν , the 4-spacetime Lorentz generators, that are like this:[

Jµν , L
]

=
1

2
Lγµν (140)

For the commutators with Ja
b, the U3 generators, we have[

Ja
b, L
]

=
1

2
δa
bL (141)

[
Ja

b, R
c]

= −δacR
b

+
1

2
δa
bR

c
(142)[

Ja
b, Lc

]
= δc

bLa −
1

2
δa
bLc (143)[

Ja
b, R
]

= −1

2
δa
bR (144)

For the commutators with Qab, we have[
Qab, L

]
= 0 (145)[

Qab, R
c]

= 0 (146)[
Qab, Lc

]
= εabcL (147)[

Qab, R
]

= εabcR
c

(148)

For the commutators with Qab, we have[
Qab, L

]
= −εabcLc (149)
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[
Qab, R

c]
= −εabcR (150)[

Qab, Lc
]

= 0 (151)[
Qab, R

]
= 0 (152)

For the commutators with Hµa, we have[
Hµa, L

]
= 0 (153)[

Hµa, R
b
]

=
1√
2
δa
bLγµ (154)

[
Hµa, Lb

]
= − 1√

2
εabcR

c
γµ (155)

[
Hµa, R

]
=

1√
2
Laγµ (156)

For the commutators with Hµ
a, we have[

Hµ
a, L
]

= − 1√
2
R
a
γµ (157)

[
Hµ

a, R
b
]

= − 1√
2
εabcLcγµ (158)

[
Hµ

a, Lb
]

= − 1√
2
δb
aRγµ (159)[

Hµ
a, R

]
= 0 (160)

We can verify that all the Jacobi identities involving any two of the O1,9 generators Jµν ,

Ja
b, Qab, Q

ab, Hµa, or Hµ
a, with anyone of the operators L, R

a
, La, or R, are satisfied.

Having constructed the manifestly 4-spacetime Lorentz covariant, as well as the SU3

covariant, algebraic representations for a fundamental O1,9 spinor, and for its Dirac
conjugate, we can verify that all generators Jµν , Ja

b, Qab, Q
ab, Hµa, or Hµ

a, of O1,9 do
commute with the following quadratic operator:

LL+R
a
Ra − LaLa −RR (161)

We now proceed to construct the spinorial multiplet modules, giving the infinitesimal
transformations of the components, and the invariant bilinear. Notice, that if the L’s
and the R’s are truly left-handed and right-handed Weyl spinors, the above quandratic
form would be zero. However, the above is written for the purpose of normalizing
the algebraic operators corresponding to unconstrained spinors, before the chirality
constraints are applied.
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8 Fundamental Spinorial Multiplet

We introduce an SU3 covariant multiplet of Weyl spinors in 4-spacetime, represented
by the following module:

Ψ = Rψ + Laξ
a +R

a
ψa + Lξ (162)

Notice that the ψ’s are left-handed Weyl spinors, while the ξ’s are right-handed. We
also introduce the Dirac conjugate module:

Ψ = ψR + ξaL
a + ψ

a
Ra + ξL (163)

Now, with the O1,9 parameter module,

W =
1

2
ΩµνJµν + Ωa

bJb
a +

1

2
ΩabQ

ab +
1

2
ΩabQab + ΩµaHµ

a + Ωµ
aHµa (164)

we can compute the commutators [W ,Ψ] and
[
W ,Ψ

]
. These give the corresponding

spinorial modules whose components define the O1,9 infinitesimal transformations.

For the infinitesimal transformations of the Ψ components, we obtain

δψ =
1

4
Ωµνγµνψ −

1

2
Ωa

aψ − 1

2
εabcΩabψc −

1√
2

Ωµaγµξ
a (165)

δξa =

 1
4
Ωµνγµνξ

a + Ωb
aξb − 1

2
Ωb

bξa

−1
2
ΩabcΩbcξ − 1√

2
εabcΩµbγµψc + 1√

2
Ωµ

aγµψ

 (166)

δψa =

 1
4
Ωµνγµνψa − Ωa

bψb + 1
2
Ωb

bψa

+1
2
εabcΩ

bcψ − 1√
2
Ωµaγµξ − 1√

2
εabcΩµ

bγµξ
c

 (167)

δξ =
1

4
Ωµνγµνξ +

1

2
Ωa

aξ +
1

2
εabcΩ

abξc +
1√
2

Ωµ
aγµψa (168)

For the infinitesimal transformations of the Ψ components, we obtain

δψ = −1

4
Ωµνψγµν +

1

2
Ωa

aψ +
1

2
εabcΩ

abψ
c − 1√

2
Ωµ

aξaγµ (169)

δξa =

 −1
4
Ωµνξaγµν − Ωa

bξb + 1
2
Ωb

bξa

+1
2
εabcΩ

bcξ + 1√
2
Ωµaψγµ + 1√

2
εabcΩµ

bψ
c
γµ

 (170)

δψ
a

=

 −1
4
Ωµνψ

a
γµν + Ωb

aψ
b − 1

2
Ωb

bψ
a

−1
2
εabcΩbcψ + 1√

2
εabcΩµbξcγµ − 1√

2
Ωµ

aξγµ

 (171)

δξ = −1

4
Ωµνξγµν −

1

2
Ωa

aξ − 1

2
εabcΩabξc +

1√
2

Ωµaψ
a
γµ (172)
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9 The Composition of a Vector Mutiplet from Fermionic
Bilinears, and the Fermionic Kinetic Terms

Here we give the composition of an O1,9 vector multiplet with components {Vµ, Va, V a}
from the ψ and ξ components of a fundamental spinorial multiplet:

Vµ =
1√
2

(
ψγµψ − ξaγµξa − ψ

a
γµψa + ξγµξ

)
(173)

Va = ξψa − ξaψ − εabcψ
b
ξc (174)

V a = ψ
a
ξ − ψξa − εabcξbψc (175)

Using the O1,9 infinitesimal transformations of the components on both sides, we can
verify that the above expressions are identities, in the sense that they are constructed
properly to be covariant with respect to the full O1,9 algebra.

The importance of being able to compose an O1,9 vector from the fermionic spinorial
components is connected with the need to translate the 10-spacetime kinetic term to
its 4-spacetime counterpart. From the foregoing composition of the vector Vµ, we can
deduce for the kinetic terms:

Ψ̄(iγ · ∂)Ψ⇒ 1

2

{
ψ̄(iγ · ∂)ψ − ψ̄a(iγ · ∂)ψa + ξ̄(iγ · ∂)ξ − ξ̄a(iγ · ∂)ξa

}
(176)

Now we proceed to the application of the Majorana constraint that takes the form ξ → C ˜̄ψ ξ̄ → −ψ̃C−1

ξa → C ˜̄ψa ξ̄a → −ψ̃aC−1

(177)

where again, the tilde symbol and the matrix C are as described in the introduction.
Hence, the fermionic kinetic terms become{

ψ̄(iγ · ∂)ψ − ψ̄a(iγ · ∂)ψa
}

(178)

We can replace ψ by the antineutrino ν∗, and ψa by the SU3 triplet (ν, e, e∗), as we
shall do later in connection with the writing out of the coupling terms.

10 The Composition of a 3rd Rank Tensor Multiplet
from Fermionic Bilinears

Here we give the composition of an O1,9 tensor multiplet of 3rd rank with components
Vµνλ, Vµνa, V

a
µν , etc., from the ψ and the ξ components of a fundamental spinorial

multiplet:

Vµνλ =
1

2
√

2

(
ξγµνλξ − ψ

a
γµνλψa − ξaγµνλξa + ψγµνλψ

)
(179)
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Vµνa =
1

2

(
ξγµνψa − ξaγµνψ − εabcψ

b
γµνξ

c
)

(180)

Vµν
a =

1

2

(
ψ
a
γµνξ − ψγµνξa − εabcξbγµνψc

)
(181)

Vµa
b =

1√
2


(
ξaγµξ

b − ψbγµψa
)

−1
2
δa
b
(
ξγµξ − ψ

c
γµψc + ξcγµξ

c − ψγµψ
)
 (182)

Vµ
ab =

1√
2
εabc

(
ξcγµξ − ψγµψc

)
(183)

Vabc = εabcξψ (184)

Vab
c =

{
1

2

(
ξψa + ξaψ

)
δb
c − (a↔ b)

}
+

1

2
εabd

(
ψ
d
ξc + ψ

c
ξd
)

(185)

Va
bc = −

{
1

2

(
ψ
b
ξ + ψξb

)
δca − (b↔ c)

}
+

1

2
εbcd
(
ξdψa + ξaψd

)
(186)

V abc = εabcψξ (187)

Using the infinitesimal O1,9 transformations of the components on both sides, we can
verify that the above expressions are identities, in the sense that they are constructed
properly to be covariant with respect to the full O1,9 algebra.

11 The O1,9 Couplings of a 3rd Rank Tensor
to the Majorana-Weyl Fermion

Using the foregoing composition of a 3rd rank O1,9 tensor in terms of the components
of a Weyl fermion, we can now construct the couplings. Starting with the bilinear
invariant V · W , for two tensor modules V and W , we would replace the components
of W by their compositions in terms of the ψ and ξ fermionic components. We then
trade the ξ components for the ψ counterparts according to the Majorana constraint
described earlier. We obtain the manifestly 4-spacetime Lorentz invariant, and SU3

invariant, coupling terms. These will be given according to the respective bosonic field
component.

11.1 Couplings to the Tensor Vµνλ

The couplings of the fermions to the tensor Vµνλ are given by

1

12
Vλµν

(
ψγλµνψ − ψ

a
γλµνψa

)
(188)
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Here we have an SU3 singlet Weyl fermion ψ, and a triplet ψa. Trading the tensor Vµνλ
to an axial vector using Vµνλ = εµνλρAρ, and reducing the Dirac element γλµν likewise
to γµγ5, noting that we deal with Weyl fermions, we obtain the couplings in the form:

1

2
Aµ

(
ψγµψ − ψ

a
γµψa

)
(189)

Assigning the singlet ψ to the antineutrino ν∗, and as in the SU3 theory, the triplet of
fermions to (ν, e, e∗), we can expand the above couplings to

− 1

2
Aµ (νγµν + eγµe+ e∗γµe

∗ − ν∗γµν∗) (190)

11.2 Couplings to the Conjugate Field Triplets Vµνa and Vµν
a

Here we give the couplings to Vµνa. The couplings to Vµν
a can be obtained by simple

conjugation. We have

1

2
√

2
Vµνa

(
ψ
a
γµνCψ̃ +

1

2
εabcψ̃bC

−1γµνψc

)
(191)

Making the fermionic assignments together with the following bosonic one:

Vµν1 → Nµν Vµν2 → Eµν Vµν3 → Fµν (192)

we obtain

1

4
√

2



Nµν
(

2νγµνCν̃∗ + ẽC−1γµνe
∗ − ẽ∗C−1γµνe

)
+Eµν

(
2eγµνCν̃∗ − ν̃C−1γµνe

∗ + ẽ∗C−1γµνν
)

+Fµν
(

2e∗γµνCν̃∗ − ẽC−1γµνν + ν̃C−1γµνe
)


(193)

11.3 Couplings to the Vector Bosons Vµa
b

The couplings to Vµa
b are

Vµa
bψ

a
γµψb −

1

2
Vµa

a
(
ψγµψ + ψ

b
γµψb

)
(194)

Splitting the U3 tensor Vµa
b into a traceless part, that of the SU3 octet called again

Vµa
b, and a trace Vµ, we obtain

Vµa
bψ

a
γµψb +

1

2
Vµ

(
ψγµψ +

1

3
ψ
b
γµψb

)
(195)
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Making the fermionic assignments, and the SU3 assignments for Vµa
b, with Vµ → Bµ,

we obtain 

Aµ (−eγµe+ e∗γµe
∗)

+1
2
Zµ (−eγµe+ 2νγµν − e∗γµe∗)

−1
6
Bµ (eγµe+ νγµν + e∗γµe

∗ + 3ν∗γµν
∗)

+Wµeγµν +W∗µνγµe

+Xµeγµe∗ + X ∗µe∗γµe

+Yµνγµe∗ + Y∗µe∗γµν



(196)

11.4 Couplings to the Vector Bosons Vµab and Vµ
ab

We give here the couplings to Vµab, while those pertaining to Vµ
ab can be obtained by

simple conjugation. We have

− 1

2
εabcVµabψγµψc (197)

Now we make the replacement Vµab → εabcVµ
c, to obtain

− Vµaψγµψa (198)

Making the fermionic assignments, together with

Vµ
1 → N ∗µ Vµ

2 → E∗µ Vµ
3 → Fµ (199)

we obtain
−N ∗µν∗γµν − E∗µν∗γµe−Fµν∗γµe∗ (200)

11.5 Coupling to the Scalar Bosons Vabc and V abc

Here we give the couplings to the scalars Vabc, while the couplings to V abc can be
obtained by simple conjugation. We have

1

6
√

2
εabcVabcψCψ̃ (201)

Making the replacement Vabc → εabcφ
∗, we obtain

1√
2
φ∗ψCψ̃ (202)

Now with the fermionic replacement ψ → ν∗, we have

1√
2
φ∗ν∗Cν̃∗ (203)
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Notice that this is the term which gives the antineutrino its Majorana mass, when the
Higgs scalar φ gets a real vacuum value.

11.6 Couplings to the Scalar Bosons Va,b
c and Va

bc

Here we give the couplings to the scalars Va,b
c, while the couplings to Va

bc can be
obtained by simple conjugation. We have

1√
2
Vab

aψ
b
Cψ̃ − 1

2
√

2
εabcVab

dψcC
−1ψd (204)

We make the replacement Va,b
c → εabdφ

dc, where φab is 9-component scalar, to obtain

− 1√
2
φabψaC

−1ψb +
1√
2
εabcφ

abψ
c
Cψ (205)

We can make the fermionic assignments in the above after splitting the SU3 indices,
however, we shall give here the terms that contribute to fermionic masses. The term
that gives a Dirac mass to the electron comes from the symmetric part of φab, with
indices 2 and 3,

−
√

2φ23ẽC−1e∗ + h.c. (206)

The term that gives a Dirac mass to the neutrino comes from the antisymmetric part
of φab, again with indices 2 and 3,

√
2φ23νCν̃∗ + h.c. (207)

A Majorana mass to the neutrino comes from

− 1√
2
φ11ν̃C−1ν + h.c. (208)

12 Discussion

We have constructed the couplings of bosons to fermions in a 10-spacetime gravidynamic
model where the fundamental fermions (the electron, the neutrino, and antiparticles)
are described unitedly by a Majorana-Weyl fermionic spinor of O1,9. Likewise, the
vector bosons which gauge the electroweak interactions of the four Weyl fermions, as
well as the Higgs bosons that provide them with masses, are all consolidated in an
antisymmetric 3rd rank tensor of O1,9. Whereas the dynamics and the self-interactions
of the bosonic particles are not described in this article, we intend to make provisions
in other articles.

The foregoing 10-spacetime theory is an economic analogue to the 18-spacetime theory.
Whereas the latter theory[3] would be able to describe the grand unified electroweak
and strong interactions of four generations of leptons and quarks in the framework of
a 256-component Majorana-Weyl fermion via an underlying SU7 internal symmetry,
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the present theory can describe the electroweak interactions of only four fundamental
fermions (the electron, the neutrino, and their antiparticles) in the framework of a 16-
component Majorana-Weyl fermion via an underlying SU3 internal symmetry. Whereas
we have proposed[4] in connection with the 14-spacetime unification theory for leptons
that the latter, and for the sake of theoretical economy, could be able to describe
hadronic structure rather than introducing quarks, the simplicity and the elegance of
the present 10-spacetime theory would implore us to think of the four fundamental
fermions (the electron, the neutrino, and antiparticles) as possible constituents of all
leptonic as well as hadronic matter. How this can be done is a matter yet to be
formulated. However, we must realize that the implications underlying the gauge and
the geometrical structure of the present 10-spacetime theory is a realm yet to be explored.
We must explore the solitonic and the magnetic-like interactions of the four fundamental
particles and their bosonic allies, and their possibilities for generating both the leptonic
and the hadronic worlds.
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