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We present an alternative type of sixteen-component hypercomplex scalar-vector values named “space-time 
sedenions”, generating associative noncommutative space-time Clifford algebra. The generalization of 
relativistic quantum mechanics and field theory on the basis of sedenionic space-time operators and 
hypercomplex wave functions is discussed. 

1. Introduction 

The multicomponent hypercomplex numbers and multivectors are widely used for the 
reformulation of the equations of quantum mechanics and field theory. The early generalization of 
quantum mechanics and electrodynamics were made on the basis of quaternions [1-5] with scalar-
vector structure. The next step was taken on the basis of biquaternions and octonions [6-11] 
enclosing scalar, pseudoscalar, vector and pseudovector components. These structures take into 
account the space symmetry with respect to the spatial inversion. However, a consistent relativistic 
approach requires taking into consideration full time and space symmetries that leads to the sixteen-
component space-time algebras.  

The well known sixteen-component hypercomplex numbers, sedenions, are obtained from 
octonions by the Cayley-Dickson extension procedure [12,13]. In this case the sedenion is defined 
as  

1 2S O O  e ,      (1) 

where iO  is an octonion and the parameter of duplication e  is similar to imaginary unit 2 1 e . 
The algebra of sedenions has the specific rules of multiplication. The product of two sedenions  

1 11 12S O O  e , 

2 21 22S O O  e , 
is defined as  

      1 2 11 12 21 22 11 21 22 12 22 11 12 21S S O O O O O O O O O O O O      e e e ,  (2) 

where iO  is conjugated octonion. The sedenionic multiplication (2) allows one to introduce a well 
defined norm of sedenion. However such procedure of constructing the higher hypercomplex 
numbers leads to the fact that the sedenions as well as octonions generate normed but 
nonassociative algebra [14-16]. This greatly complicates the use of the Cayley-Dickson sedenions 
in the physical applications. 

Recently we have developed an alternative approach to constructing the multicomponent values 
based on our scalar-vector conception realized in associative eight-component octons [17-19] and 
sixteen-component sedeons [20-23]. In particular, we have demonstrated the method, which allows 
one to reformulate the equations of relativistic quantum mechanics and field theory on the basis of 
sedeonic space-time operators and scalar-vector wave functions. In this paper we present an 
alternative version of the sixteen-component associative space-time algebra and demonstrate some 
of its application to the generalization of the field theory equations.  
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2. Sedenionic space-time algebra 

It is known, the quaternion is a four-component object 

0 1 2 3q q q q q   0 1 2 3a a a a ,     (3) 

where components q (Greek indexes 0,1, 2, 3  ) are numbers (complex in general), 10a  is 
scalar units and values ma  (Latin indexes m 1, 2, 3 ) are quaternionic units, which are interpreted 
as unit vectors. The rules of multiplication and commutation for ma  are presented in Table 1. We 
introduce also the space-time basis , ,t r tre e e , which is responsible for the space-time inversions. 
The indexes t and r indicate the transformations (t for time inversion and r for spatial inversion), 
which change the corresponding values. The value 10e  is a scalar unit. For convenience we 
introduce numerical designations 1 te e  (time scalar unit); 2 re e  (space scalar unit) and 3 tre e  
(space-time scalar unit). The rules of multiplication and commutation for this basis we choose 
similar to the rules for quaternionic units (see Table 2). 

 
Table 1.           Table 2. 

 
 
 
 
 
 
 
 

 

Note that the unit vectors , ,1 2 3a a a  and the space-time units , ,1 2 3e e e  generate the anticommutative 
algebras: 

,
,

 
 

n m m n

n m m n

a a a a
e e e e

       (4) 

for n m , but , ,1 2 3e e e  commute with , ,1 2 3a a a : 

n m m ne a a e ,       (5) 

for any n  and m . Then we can introduce the sixteen-component space-time sedenion V  in the 
following form: 

   
   

00 01 02 03 10 11 12 13

20 21 22 23 30 31 32 33 .

V V V V V V V V

V V V V V V V V

       

       
0 0 1 2 3 1 0 1 2 3

2 0 1 2 3 3 0 1 2 3

e a a a a e a a a a

e a a a a e a a a a

V
 (6) 

The sedenionic components V  are numbers (complex in general). Introducing designation of 
scalar and vector values in accordance with the following relations 

00V V 0 0e a ,         

 01 02 03V V V V  0 1 2 3e a a a


,       

10V V V t 1 1 0e a ,        

 11 12 13V V V V V   t 1 1 1 2 3e a a a
 

,           (7) 

   1a    2a    3a  

1a  1    3a   2a  

2a   3a  1    1a  

3a    2a   1a  1  
 

   1e    2e    3e  

1e  1    3e  2e  

2e  3e  1    1e  

3e    2e  1e  1  
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20V V V r 2 2 0e a ,        

 21 22 23V V V V V   r 2 2 1 2 3e a a a
 

,      

30V V V tr 3 3 0e a ,        

 31 32 33V V V V V   tr 3 3 1 2 3e a a a
 

,      

We can represent the sedenion in the following scalar-vector form: 

V V V V V V V V       t t r r tr tr

   
V .     (8) 

Thus, the sedenionic algebra encloses four groups of values, which are differed with respect to 
spatial and time inversion.  

(1) Absolute scalars (V ) and absolute vectors (V


) are not transformed under spatial and time 
inversion.  

(2) Time scalars (Vt ) and time vectors (Vt


) are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  
(3) Space scalars (Vr ) and space vectors (Vr


) are changed under spatial inversion and are not 

transformed under time inversion.  
(4) Space-time scalars (Vtr ) and space-time vectors (Vtr


) are changed under spatial and time 

inversion. 

Further we will use the symbol 1 instead units 0a  and 0e  for simplicity. Introducing the 
designations of scalar-vector values 

0 00 01 03V V V V   1 2 3a a a02V ,      

1 10 11 12 13V V V V   1 2 3a a aV ,           (9) 

2 20 21 22 23V V V V   1 2 3a a aV ,      

3 30 31 32 33V V V V   1 2 3a a aV ,      

we can write the sedenion (6) in the following compact form  

0 1 2 3 1 2 3e e eV = V + V V V .     (10) 

On the other hand, introducing designations of space-time sedenion-scalars 

0 00 10 20 30( )V V V V   1 2 3e e eV ,      

1 01 11 21 31( )V V V V   1 2 3e e eV ,      

2 02 12 22 32( )V V V V   1 2 3e e eV ,         (11) 

3 03 13 23 33( )V V V V   1 2 3e e eV ,      

we can write the sedenion (6) as 

0 1 2 3   1 2 3a a aV V V V V ,     (12) 

or introducing the sedenion-vector  

1 2 3V V V V    t r tr 1 2 3a a a
    

V = = V V V ,     (13) 

we can rewrite the sedenion in following compact form 

0 


V V V .       (14) 

Further we will indicate sedenion-scalars and sedenion-vectors with the bold capital letters. 
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Let us consider the sedenionic multiplication in detail. The sedenionic product of two 
sedenions A and B can be represented in the following form  

    0 0 0 0 0 0            
      

 AB A A B B A B A B AB A B A B   (15) 

Here we denoted the sedenionic scalar multiplication of two sedenion-vectors (internal product) by 
symbol “  ” and round brackets 

  1 1 2 2 3 3    
 
A B A B A B A B ,    (16) 

and sedenionic vector multiplication (external product) by symbol “” and square brackets, 

     2 3 3 2 3 1 1 3 1 2 2 1       1 2 3a a a
 
A B A B A B + A B A B + A B A B .  (17) 

In (16) and (17) the multiplication of sedenionic components is performed in accordance with (11) 
and Table 2. Thus the sedenionic product  

0


 F = AB F + F       (18) 
has the following components: 

0 0 0 1 1 2 2 3 3  F = A B A B A B A B ,      

 1 1 0 0 2 3 3 21F = A B + A B + A B A B ,         (19) 

 2 2 0 0 2 3 1 1 3 F = A B + A B A B A B ,      

 3 3 0 0 3 1 2 2 1 F = A B + A B A B A B .      

Note that in the sedenionic algebra the square of vector is defined as  

  2 2 2
1 2 3

2A A A A A A     
  

,     (20) 

and the square of modulus of vector is  

 2 2 2 2
1 2 3A A A A + A + A   

  
.    (21) 

3. Spatial rotation and space-time inversion 

The rotation of sedenion V on the angle   around the absolute unit vector n  is realized by 
uncompleted sedenion  

   cos / 2 sin / 2n  
U       (22) 

and by conjugated sedenion *U : 

   * cos / 2 sin / 2n  
U      (23) 

with 
* * 1   UU = U U .      (24) 

The transformed sedenion V  is defined as sedenionic product  
*    V U  V U ,      (25) 

Thus the transformed sedenion V can be written as  
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         cos / 2 sin / 2 cos / 2 sin / 20n n             
 V V V  

  cos 1 cos sin0 n n n          
    V V V V .    (26) 

It is clearly seen that rotation does not transform the sedenion-scalar part, but the sedenionic vector 


V  is rotated on the angle   around n . 
The operations of time inversion ( tR̂ ), space inversion ( rR̂ ) and space-time inversion ( trR̂ ) are 

connected with transformations in 1e , 2e , 3e  basis and can be presented as  

R̂      t 2 2 1 2 3e e e e e 
0 1 2 3V  V V V V V ,      

R̂      r 1 1 1 2 3e e e e e 
0 1 2 3V V V V V V ,          (27) 

R̂      tr 3 3 1 2 3e e e e e 
0 1 2 3V V V V V V .      

4. Sedenionic Lorentz transformations 

The relativistic event four-vector can be represented in the follow sedenionic form: 

+ct r 1 2e e S .      (28) 

The square of this value is the Lorentz invariant 
2 2 2 2 2c t + x + y + z  S S .     (29) 

The Lorentz transformation of event four-vector is realized by uncompleted sedenions 

ch sh ,

ch sh ,

m

m

 

 

 

 
3

3

e
e



*
L
L

      (30) 

where th 2 v / c  , v  is velocity of motion along the absolute unit vector m . Note that 

 1     L L L L .      (31) 

The transformed event four-vector S  is written as 

    ch sh + ch shm ct r m        3 1 2 3e e e e    *S L  S L  

 ch2 sh2ct m r  1 1e e          (32) 

     2sh2 2 sh 1 ch2r ctm m r m m r m       2 2 2 2+e e e e        . 

Separating the values with 1e  and 2e  we get the well known formulas for time and coordinates 
transformation [24]: 

2

2 2

/
1 /

t x v ct
v c

 


, 
2 21 v /

x t vx
c

 


, y y  , z z  ,   (33) 

where x  is the coordinate along the m  vector. 

Let us also consider the Lorentz transformation of the full sedenion V .  

The transformed sedenion V  can be written as sedenionic product 
    *V L  V L .       (34) 
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    
 

 
2 2

2 2

ch sh ch sh

ch sh ch sh

ch sh ch sh .

0

0 0 0 0

m m

m

m m m m

   

   

   

    

   

   

tr tr

tr rt tr tr

tr tr tr tr

e e

e e e e

e e e e

 



      

V V V

V V V V

V V V V

   (35) 

Rewriting the expression (35) with scalar (16) and vector (17) products we get  

 
 

      

2 2

2 2 2

ch sh ch sh

ch sh 2 sh

ch sh ch sh .

0 0 0 0 m

m m

m m m m

   

  

   

    

   

             

tr tr tr tr

tr tr tr tr

tr tr tr tr

e e e e

e e e e

e e e e



   

      

V V V V V

V V V

V V V V

  (36) 

Thus, the transformed sedenion has the following components:  

V V  ,          
V V tr tr ,          

 ch 2 sh 2V V m V    r r tr te
 ,       

 ch 2 sh 2V V m V    t t tr re
 ,       

  2ch 2 2 sh sh2V V m V m m V         tr rte
      ,        (37) 

  2ch 2 2 sh sh2V V m V m m V         tr tr tr tre
      ,    

  22 sh sh 2V V m V m V m     r r r tr te
     ,      

  22 sh sh 2V V m V m V m     t t t tr re
     .      

4. Subalgebras of space-time quaternions and octonions 

The sedenionic basis introduced above enables constructing different types of low-dimensional 
hypercomplex numbers. For example one can introduce space-time complex numbers  

1 2Z z z t te ,        

1 2Z z z r re ,            (38) 

1 2Z z z tr tre ,        

which are transformed under space and time conjugation. Moreover we can consider the space-time 
quaternions, which differ in their properties with respect to the operations of the spatial and time 
inversion. 

 0 1 2 3q q q q q   0 0 1 2 3a e a a a ,     (39) 

 0 1 2 3q q q q q   t 0 t 1 2 3a e a a a ,    (40) 

 0 1 2 3q q q q q   r 0 r 1 2 3a e a a a ,    (41) 

 0 1 2 3q q q q q   tr 0 tr 1 2 3a e a a a ,    (42) 

The absolute quaternion (39) is the sum of the absolute scalar and absolute vector. It remains 
constant under the transformations of space and time inversion (27). Time quaternion qt

 , space 
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quaternion qr

  and space-time quaternion qtr

  are transformed under inversions in accordance with 
the commutation rules for the basis elements , ,t r tre e e . For example, performing the operation of 
time inversion (see (27)) with the quaternion qt

  we obtain the conjugated quaternion  

 0 1 2 3q q q q q q    t r t r 0 t 1 2 3= e e a e a a a  .    (43) 

On the other hand, the sedenionic basis allows one to construct various types of space-time eight-
component octonions: 

 00 01 02 03 10 11 12 13G = G +G +G +G + G + G +G +Gt 1 2 3 t t 1 2 3a a a e e a a a


,   (44) 

 00 01 02 03 20 21 22 23G = G +G +G +G + G + G +G +Gr 1 2 3 r r 1 2 3a a a e e a a a


,  (45) 

 00 01 02 03 30 31 32 33G = G +G +G +G + G + G +G +Gtr 1 2 3 tr tr 1 2 3a a a e e a a a


.  (46) 

5. Generalized sedenionic equations of relativistic quantum mechanics 

The wave function of free quantum particle should satisfy an equation, which is obtained from 
the Einstein relation for energy and momentum  

0
2 2 2 2 4E c p m c         (47) 

by means of changing classical energy E  and momentum p  on corresponding quantum-
mechanical operators: 

t
iE



 ˆ  and 


ip̂ .      (48) 

Here c  is the velocity of light, 0m  is the particle rest mass,   is the Planck constant. The Einstein 
relation (47) can be written using space-time sedenion algebra in the following form:  

   2 2
0 0 0E cp i m c E cp i m c    t r tr t r tre e e e e e 

.       (49) 

Let us consider the wave function in the form of space-time sedenion 

     0t,r t,r t,r 
  W W W .          (50) 

Then the generalized sedenionic wave equation for free particle can be written in the symmetric 
form 

0 01 1 0m c m c
c t c t
              

t r tr t r tre e e e e e
 


 

W .   (51) 

Note that for electrically charged particle in an external electromagnetic field we have the 
following sedenionic wave equation: 

0 01 1 0m c m cie ie ie ieA A
c t c c c t c c

                 
t t r r tr t t r r tre e e e e e e e e e

  


     
W . (52) 

This equation describes the particles with spin 1/2 in an external electromagnetic field [18, 21]. 
There is a special class of particles described by the first-order wave equation [25]. For these 

particles the sedenionic Dirac-like wave equation has the following form: 

01 0
m c

c t
     

t r tre e e





W .     (53) 
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In fact, this equation describes the special quantum field with zero field intensities [19]. 
Analogously the electrically charged particle interacting with external electromagnetic field is 
described by the following sedenionic first-order wave equation: 

01 0
m cie ie A

c t c c


        
t t r r tre e e e e




  
W .   (54) 

This equation also describes the particles with spin 1/2 in an external electromagnetic field [19]. 

5. Generalized sedenionic equations for massive force field 

The generalized sedenionic wave equation 

0 01 1 0m c m c
c t c t
              

t r tr t r tre e e e e e
 


 

W    (55) 

enables another interpretation. It can be considered as the equation for the force massive field [26]. 
In this case the parameter 0m  is the mass of quantum of field. Then considering the 
phenomenological source of field we can propose the following nonhomogeneous wave equation 
for the field potential: 

0 01 1m c m c
c t c t
              

t r tr t r tre e e e e e
 

 
 

W J .   (56) 

In the special case when the mass is equal to zero the equation (56) coincides with the equation 
for electromagnetic field in a vacuum. Indeed, choosing the potential as 

A t re e


W = ,      (57) 

and the source of electromagnetic field as 
44= j
c
 t re e


J ,      (58) 

we obtain the following wave equation: 

 1 1 44A j
c t c t c


 

               
t r t r t r t re e e e e e e e

  
.   (59) 

After the action of the first operator in the left-hand side of equation (59) we obtain 

   1 1 1 AA A A
c t c t c t


 

                     
t r t r tr tre e e e + e + e


     

.  (60) 

Using the sedenionic definitions of the electric and magnetic fields 

1 ,

,

AE
c t

H A


  


   


 

 
      (61) 

and taking into account the Lorentz gauge condition 

 1 0A
c t


   




,       (62) 

We can rewrite the expression (60) as 
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 1 A E H
c t


        

t r t r tre e e e e
  

.      (63) 

Then the wave equation (59) can be represented in the following form: 

 1 44E H j
c t c




         
t r tr t re e e e e

   
.    (64) 

Performing sedenionic multiplication in the left-hand side of equation (64) we get 

 

 

1

1 44 .

E E E
c t

H H H j
c t c




     
           

r t t

t r r t r

e + e + e

e e e e e


   


    

  (65) 

Separating space-time values we obtain the system of Maxwell equations in the following form: 

   

 

 

   

4 , time scalar part

1 4 , space vector part

1 , time vector part

0 . space scalar part

E

EH j
c t c

HE
c t

H





   

     
     

  

t t

r r r

t t

r

e e

e e e

e e

e

 


  


 

 

   (66) 

The system (66) coincides with the Maxwell equations. 

6. Discussion 

The algebra of sedenions proposed in this article is the anticommutative associative space-time 
Clifford algebra. The sedenionic basis elements na  are responsible for the spatial rotation, while the 
elements ne  are responsible for the space-time inversions. Mathematically, these two bases are 
equivalent, and the different physical properties attributed to them are an important physical essence 
of our sedenionic hypothesis.  

In contrast to the previously discussed sedeonic algebra [20-23], which uses the multiplication 
rules of basic elements na and ne  proposed by A.Macfarlane [27], the multiplication rules for 
sedenionic basis elements na and ne  coincide with the rules for quaternion units introduced by 
W.R.Hamilton [28]. There is a close connection between these two basses. The transition from the 
sedeonic basis to sedenionic basis is performed by following replacement: 

i n na a , 
i n ne e . 

There is one disadvantage of sedenions connected with the fact that the square of the vector is a 
negative value. However, on the other side the sedenionic rules of cross-multiplying do not contain 
the imaginary unit and this leads to the considerable simplifications in the calculations. But of 
course, the physical results do not depend on the choice of algebra, so these two algebras are 
equivalent. 
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7. Conclusion 

Thus in this paper we presented the sixteen-component hypercomplex values sedenions, 
generating associative noncommutative space-time algebra. We proposed the generalization of the 
relativistic quantum mechanics equations and equations for the massive field based on sedenionic 
space-time operators and hypercomplex scalar-vector wave functions.  
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