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Abstract

We review the fundamental rules for constructing the regular and the gauge-
invariant quantum field action both in the divergence-free approach and in the
cutoff approach. Loop computations in quantum electrodynamics of fermionic
spinor matter, and also in quantum gravity of fermionic spinor matter, are
presented in both approaches. We explain how the results of the divergence-
free method correspond to those of the cutoff method. We argue that in a
fundamental theory that contains quantum gravity, the cutoff framework might
be necessary, whereby the cutoff parameter and the gravitational coupling could
be related to each other quite consistently.

1 Introduction

The effective action framework[1]-[9] for computing the loop contributions of quantum
field theory represents a very powerful and an extremely elegant scheme preserving
underlying fundamental symmetries. In compact notation, for a theory with a classical
action functional W (φ) describing a set of fields φi, the effective quantum action Γ(φ)
is defined by the functional integral

e
i
h̄

Γ(φ) =

∫
( dϕ) e

i
h̄
{W (φ+ϕ)−ϕiΓi} (1)

Here Γi denotes the functional derivative of Γ(φ) with respect to the effective fields φi,
while ϕi represent the virtual (quantum) fields that are being integrated over. By first

replacing ϕ by
√
h̄ϕ, the above functional integral computation of the effective action

can be done iteratively[5], [6] in h̄, such as Γ = Γ0 + h̄Γ1 + h̄2Γ2 + · · · . Whereas Γ0 is
the classical action W (φ) itself, the first order (one-loop) contribution Γ1 comes from
evaluating the integral:

e
i
h̄

Γ1(φ) =

∫
( dϕ) e

i
2
Wijϕiϕj (2)

Here Wij is the bilinear kernel, or the second functional derivative of the classical action
W with respect to its field arguments. Evaluating the above (Gaussian) integral, we
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obtain the one-loop contribution,

Γ1(φ) =
i

2
tr(lnWij) (3)

While the 2-loop contribution can be computed analytically[5], [6], higher orders demand
the recourse to graphical methods and rules. The latter are simply the following.
Corresponding to any irreducible Feynman graph consisting of vertices and internal
lines only, we must associate an effective propagator W−1

ij , being the inverse of the
bilinear kernel, with every internal line, and an effective vertex term Wijk···, being the
nth derivative of the classical action, with each n-leg vertex. Each internal line and
each vertex must have a factor of the imaginary unit i. The whole contribution must
be multiplied by an overall factor of −i, and a combinatoric factor. The latter can
be deduced from the symmetries of the graph[10]. Notice that the effective propagator
W−1
ij and the effective vertices Wijk··· are all functions of the effective field φ.

The 2-loop contributions can be described by the following graphs,

and the following analytic expression gives the corresponding terms:

Γ2(φ) =
1

12
W−1
il W

−1
jmW

−1
knWijkWlmn −

1

8
W−1
ij W

−1
kl Wijkl (4)

The following shows all possible 3-loop graphs:

Having shown how the basic formalism of the effective quantum action, for a generic
field theory, can produce the successive loop contributions, the following subsections
will introduce our two approaches of regularizing and computing these contributions,
and how to control the divergences of quantum field theory, all in a manner preserving
the fundamental gauge invariances of the theory.
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1.1 The Divergence-Free Approach

In our divergence-free approach[6]-[8] for treating the divergences of the loop contribu-
tions, we begin by defining the logarithmic one-loop contribution as follows:

i

2
tr(lnWij)⇒ −

i

2
%ε tr

(
1

ε
W−ε
ij

)
(5)

Here the symbol %ε stands for applying the operator ( ∂
∂ε
ε), and the subsequent process

of taking the limit ε→ 0. The necessary rule is that we should apply the latter operator
and take the ε limit after the integration over loop momentum is done. Notice that the
above procedure corresponds to the well-known definition of the logarithm as the limit
of a power, such as lnA = − limε→0

∂
∂ε
A−ε.

Now correspondingly, higher-loop contributions will be regularized (actually becoming
divergence-free) by replacing each effective propagator W−1

ij by a regular counterpart

W
−(1+ε)
ij , and associating with it a limiting operator %ε to be applied after all loop

momenta are integrated over. It should be emphasized that each effective propaga-
tion entering a higher-loop expression should be associated with a different limiting
parameter and associated operator, and all these operator prescriptions would have to
be executed after all loop momenta are integrated over. This would preserve gauge
invariance, ensure freedom from divergences, and guarantee consistency.[6]

In order to compute the various loop contributions as perturbative expansions with
respect to the effective fields, we must split the effective bilinear kernel Wij(φ) into a
bare part ∆ij and a field-dependent part Yij(φ). In matrix form, we write W = ∆ + Y .
The one-loop contribution then takes the form:

− i

2
%ε tr

(
1

ε

1

(∆ + Y )ε

)
(6)

This can be expanded with respect to Y , to give

− i

2
%ε tr

 1

Γ(1 + ε)

∞∫
0

dλλε−1 ×


e−λ∆ − λe−λ∆Y

+λ2

2

∫ 1

0
dx e−(1−x)λ∆Y e−xλ∆Y + · · ·


 (7)

The integration over λ may be done once the operators are expressed in terms of matrix
elements in momentum space. The resulting series takes the form:

− i

2
%ε tr

1

ε

1

∆ε
− 1

∆1+ε
Y +

1

2

Γ(2 + ε)

Γ(1 + ε)

(
1

∆
Y

1

∆

)
︸ ︷︷ ︸

(2+ε)

Y − · · ·

 (8)

In the above series terms, it should be understood that two or several propagators
that are separated by field insertions (the underbraced factor) are actually combined
using Feynman parameters, with a power equal to the argument of the associated

Divergence-Free Versus Cutoff Quantum Field Theory by N.S. Baaklini 3



N.S.B. Letters NSBL-QF-009

upper gamma function. For instance, the second-degree term may be represented in
momentum space such as:

1∫
0

dx

∫
d4p

(2π)4

Y (r)Y (−r)
{(1− x)∆(p) + x∆(p+ r)}2+ε

(9)

where p is the loop momentum, and r is an external momentum carried by Y .

For the computation of higher-loop contributions, we must expand effective propagators
of the form

1

(∆ + Y )1+ε
=

1

Γ(1 + ε)

∞∫
0

dλλε e−λ(∆+Y ) (10)

In momentum space, and after integrating over λ, the corresponding series in Y takes
the form

1

∆1+ε
− Γ(2 + ε)

Γ(1 + ε)

(
1

∆
Y

1

∆

)
︸ ︷︷ ︸

(2+ε)

+
1

2

Γ(3 + ε)

Γ(1 + ε)

(
1

∆
Y

1

∆
Y

1

∆

)
︸ ︷︷ ︸

(3+ε)

− · · · (11)

The underbraced momentum-space propagators are understood to be combined using
Feynman parameters with a total power equal to their number plus ε (argument of the
associated upper gamma function).

1.2 The Cutoff Approach

In our cutoff approach[5] for regularizing the divergences of the loop contributions, we
replace the logarithmic one-loop contribution as follows:

i

2
tr(lnW )⇒ − i

2
tr


∞∫
a2

dλ

λ
e−λW

 = − i
2
tr


∞∫
a2

dλ

λ
e−λ(∆+Y )

 (12)

Here a is a cutoff length scale (since W is usually like squared momentum). Again,
in order to compute the various loop contributions as perturbative expansions with
respect to the effective fields, we split the effective bilinear kernel W into a bare part
∆ and a field-dependent part Y . The above can be expanded with respect to Y ,

− i

2

∞∫
a2

dλ

λ
tr

e−λ∆ − λe−λ∆Y +
λ2

2

1∫
0

dx e−(1−x)λ∆Y e−xλ∆Y + · · ·

 (13)

For the computation of higher-loop contributions, we must expand effective propagators
of the form

1

∆ + Y
=

∞∫
a2

dλ e−λ(∆+Y ) (14)
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We shall write for e−λ(∆+Y ),

e−λ∆ − λ
1∫

0

dx e−(1−x)λ∆Y e−xλ∆ + λ2

1∫
0

dx

x∫
0

dy e−λ(1−x)∆Y e−λ(x−y)∆Y e−λ∆ + · · · (15)

1.3 A Simple Comparison

Consider the Euclidean momentum-space integral

− 1

2

∫
d4p

(2π)4
ln(p2 +m2) (16)

In the divergence-free approach, we write

%ε
1

2

1

ε

∫
d4p

(2π)4

1

(p2 +m2)ε
= %ε

1

32π2

Γ(ε− 2)

Γ(ε+ 1)

(
m2
)2−ε

(17)

The effect of %ε is to pick the terms that are independent of ε. Hence, expanding with
respect to ε, and picking the pertinent terms, we obtain

1

64π2
m4

(
3

2
− ln(m2)

)
(18)

In the cutoff approach, we write

1

2

∞∫
a2

dλ

λ

∫
d4p

(2π)4
e−λ(p2+m2) =

1

32π2

∞∫
a2

dλ

λ3
e−λm

2

(19)

Expanding with respect to a2, dropping the terms that vanish as a→ 0, we obtain

1

64π2

{
1

a4
− 2m2

a2
+m4

(
3

2
− γ − ln(a2m2)

)}
(20)

Comparing this result with the earlier one, we see that the divergence-free approach
gives the same result obtained in the cutoff approach, provided that we drop the singular
terms (like 1/a2 and 1/a4) and scale the logarithmic terms appropriately.

One-loop examples from quantum electrodynamics and from quantum gravity will be
given in the following sections. Computations pertaining to higher loops will be the
subject of other articles.

2 Quantum Electrodynamics

Let us take the action density

ψ̄(iγ · ∇)ψ −mψ̄ψ (21)
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with iγ · ∇ = (iγ · ∂ + γ · A). The above describes the coupling of the photon Aµ to a
Dirac field ψ, having Dirac conjugate ψ̄, and mass parameter m. From the above, we
define the gauge-covariant bilinear kernel W , and its conjugate W̃ ,

W = (iγ · ∇ −m) W̃ = −(iγ · ∇+m) (22)

These give the quadratic operator

W̃W = (γ · ∇)2 +m2 = ∆− Y

 ∆ = ∂2 +m2

Y = i(γ · ∂γ · A+ γ · Aγ · ∂) + A2
(23)

The gauge-covariant inverse of the kernel may be given by

W−1 =
1

W̃W
W̃ = − 1

∆− Y
(iγ · ∇+m) (24)

The fermionic one-loop contribution is given by −itr(lnW ), or equivalently −itr(ln W̃ ).
Taking the average of the two expressions, we can write for the one-loop contribution

− i

2
tr ln(W̃W ) = − i

2
tr ln

{
(γ · ∇)2 +m2

}
= − i

2
tr ln(∆− Y ) (25)

In the following subsections we shall compute the above fermionic loop up to second
order in the photon field, first using the divergence-free approach, then using the cutoff
approach, and shall compare the results.

2.1 Fermionic Loop in the Divergence-Free Approach

Here we regularize the gauge-invariant one-loop contributions[8] as follows:

− i

2
tr ln(∆− Y )⇒ i

2
%ε tr

(
1

ε

1

(∆− Y )ε

)
(26)

We shall expand the above to 2nd order with respect to Y ,

i

2
%εtr


1

ε

1

∆ε
+

1

∆1+ε
Y +

1

2

Γ(2 + ε)

Γ(1 + ε)

1

∆
Y

1

∆︸ ︷︷ ︸
2+ε

Y + · · ·

 (27)

We must recall that

∆ = (∂2 +m2) Y = i(γ · ∂γ · A+ γ · Aγ · ∂) + A2 (28)

2.1.1 The Vacuum Contribution

The vacuum contribution resulting from the foregoing series is

i

2
%ε tr

(
1

ε

1

(∂2 +m2)ε

)
(29)

Divergence-Free Versus Cutoff Quantum Field Theory by N.S. Baaklini 6



N.S.B. Letters NSBL-QF-009

In momentum space, this gives

2i%ε

∫
d4p

(2π)4

(
1

ε

1

(−p2 +m2)ε

)
(30)

where a factor of 4 has resulted from the trace over spinor matrices. Transforming the
above to Euclidean momentum space,1 then integrating over momentum, and executing
the operator %ε, we obtain

1

16π2
m4

(
−3

2
+ ln(m2)

)
(31)

2.1.2 The Photon Bilinear

Substituting for Y , the bilinear contribution in the photon field is

i

2
tr


1

(∂2+m2)1+εA
2

+1
2

Γ(2+ε)
Γ(1+ε)

1

∂2 +m2
i(γ · ∂γ ·A+ γ ·Aγ · ∂)

1

∂2 +m2︸ ︷︷ ︸
2+ε

i(γ · ∂γ · A+ γ · Aγ · ∂)

 (32)

where the meaning of the underbrace notation is as explained in the introduction.
Translating to momentum space, we obtain the bilinear 1

2
Aµ(r)Aν(−r)Xµν(r), where r

is the external photon momentum, and the kernel Xµν(r) is given by

i%ε

∫
d4p

(2π)4


1

(−p2+m2)1+εηµν

+1
2

Γ(2+ε)
Γ(1+ε)

∫ 1

0
dx 1
{(1−x)(−p2+m2)+x(−(p+r)2+m2)}2+ε × (· · · )

 (33)

(· · · ) = {γ · pγµ + γµγ · (p+ r)} {γ · (p+ r)γν + γνγ · p} (34)

Now the numerator involving the gamma matrices gives

(· · · ) = (2pµ + γµγ · r) (2pν + γ · rγν) (35)

Taking the trace over gamma matrices, this gives

4
(
4pµpν + 2pµrν + 2pνrµ + r2ηµν

)
(36)

Also simplifying the denominator which involves the Feynman parameter, we obtain

4i%ε

∫
d4p

(2π)4



1
(−p2+m2)1+εηµν+

1
2

Γ(2+ε)
Γ(1+ε)

∫ 1

0
dx 1
{−(p+xr)2−x(1−x)r2+m2}2+ε×

(4pµpν + 2pµrν + 2pνrµ + r2ηµν)

 (37)

1The Euclidean continuation of loop momentum is equivalent to Feynman’s iε prescription for propa-
gators and is equivalent to d4p→ id4p and p2 → −p2.
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Now, we have to make a shift in the loop momentum of the second term with p→ p−xr.
The numerator becomes under this shift and a subsequent symmetrization:

p2ηµν − 4x(1− x)rµrν + r2ηµν (38)

Hence, we obtain

4i%ε

∫
d4p

(2π)4



1
(−p2+m2)1+εηµν+

1
2

Γ(2+ε)
Γ(1+ε)

∫ 1

0
dx 1
{−p2−x(1−x)r2+m2}2+ε×

(p2ηµν − 4x(1− x)rµrν + r2ηµν)

 (39)

Converting the above to Euclidean loop momentum, then integrating over the latter, ex-
panding with respect to external momentum to order r4, integrating over the Feynman
parameter x, and executing the operator %ε, we obtain the gauge-invariant result:

1

2π2

(
r2ηµν − rµrν

)(
ln(m2)− 1

5

r2

m2
+ · · ·

)
(40)

2.2 Fermionic Loop in the Cutoff Approach

The gauge-invariant one-loop contribution, in the cutoff approach, is expressed like

i

2

∞∫
a2

dλ

λ
tr
(
e−λ(∆−Y )

)
(41)

and this gives to 2nd order in Y ,

i

2

∞∫
a2

dλ

λ
tr

 e−λ∆ + λe−λ∆Y+

λ2

2

∫ 1

0
dx e−(1−x)λ∆Y e−xλ∆Y + · · ·

 (42)

We must recall that

∆ = (∂2 +m2) Y = i(γ · ∂γ · A+ γ · Aγ · ∂) + A2 (43)

2.2.1 The Vacuum Contribution

Here we have

i

2

∞∫
a2

dλ

λ
tr
(
e−λ(∂2+m2)

)
(44)

Going to momentum space, and taking the trace over spinor indices, we get

2i

∞∫
a2

dλ

λ

∫
d4p

(2π)4

(
e−λ(−p2+m2)

)
(45)
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Converting to Euclidean momentum, and integrating over p, we have

− 1

8π2

∞∫
a2

dλ

λ3
e−λm

2

(46)

Expanding with respect to a2, dropping the terms that vanish as a→ 0, we obtain

− 1

16π2

{
1

a4
− 2m2

a2
+m4

(
3

2
− γ − ln(a2m2)

)}
(47)

2.2.2 The Photon Bilinear

Substituting for Y , we obtain the following bilinear contribution

i

2

∞∫
a2

dλ tr


e−λ(∂2+m2)A2

−λ
2

∫ 1

0
dx e−(1−x)λ(∂2+m2)(γ · ∂γ · A+ γ · Aγ · ∂)×

e−xλ(∂2+m2)(γ · ∂γ · A+ γ · Aγ · ∂)

 (48)

Converting to momentum space, we obtain the bilinear 1
2
Aµ(r)Aν(−r)Xµν(r), with the

kernel Xµν(r) given by

i

∞∫
a2

dλ

∫
d4p

(2π)4
tr


e−λ(−p2+m2)ηµν+

λ
2

∫ 1

0
dx e−λ{(1−x)(−p2+m2)+x[−(p+r)2+m2]}×

{γ · pγµ + γµγ · (p+ r)} {γ · (p+ r)γν + γνγ · p}

 (49)

Taking the spinorial trace, and simplifying the argument that involves the Feynman
parameter x, we obtain

4i

∞∫
a2

dλ

∫
d4p

(2π)4


e−λ(−p2+m2)ηµν+

λ
2

∫ 1

0
dx e−λ{−(p+xr)2−x(1−x)r2+m2}×

(4pµpν + 2pµrν + 2pνrµ + r2ηµν)

 (50)

With a momentum shift p→ (p− xr), in the loop momentum of the second term, and
a subsequent momentum symmetrization, then converting to Euclidean momentum
integration, we obtain

− 4

∞∫
a2

dλ

∫
d4p

(2π)4


e−λ(p2+m2)ηµν+

λ
2

∫ 1

0
dx e−λ{p2−x(1−x)r2+m2}×

(−p2ηµν − 4x(1− x)rµrν + r2ηµν)

 (51)
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Now integrating over loop momentum p, expanding to 4th order in the external mo-
mentum r, integrating over the the Feynman parameter x, and expanding with respect
to a2 (dropping the terms that vanish as a→ 0), we obtain the gauge-invariant result:

1

12π2

(
r2ηµν − rµrν

)(
γ + ln(a2m2)− 1

5

r2

m2
+ · · ·

)
(52)

2.3 Comparing Results

For the vacuum contribution of the fermionic loop in the divergence-free approach, we
obtain

− m4

16π2

(
3

2
− ln(m2)

)
(53)

The corresponding contribution in the cutoff approach is

− 1

16π2

{
1

a4
− 2m2

a2
+m4

(
3

2
− γ − ln(a2m2)

)}
(54)

For the fermionic loop contribution to the photon kernel, in the divergence-free ap-
proach, we obtain

1

2π2

(
r2ηµν − rµrν

)(
ln(m2)− 1

5

r2

m2
+ · · ·

)
(55)

The corresponding contribution in the cutoff approach is

1

2π2

(
r2ηµν − rµrν

)(
γ + ln(a2m2)− 1

5

r2

m2
+ · · ·

)
(56)

3 Quantum Gravity

We consider the following action density,

1

2
V ψ̄ (iV µaγa∇µ −m)ψ + h.c. (57)

∇µψ =

(
∂µ +

1

4
γabωµ

ab

)
ψ (58)

Here we have the coupling of the vierbein field Vµ
a (inverse V µa, V = detVµ

a) to the
Dirac field ψ, having Dirac conjugate ψ̄, and mass parameter m. The field ωµ

ab is the
Lorentz gauge field. In fact, we shall not need the coupling of ωµ

ab in the following
computations. We shall scale the spinor field like ψ → V −1/2ψ, and shall expand the
vierbein field about flat spacetime, Vµa = ηµa + 1

2
φµa

V µa = ηµa − 1
2
φµa + 1

4
(φ2)µa + · · ·

(59)
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Here φµν represents the (symmetric) graviton field. Notice that the metric tensor is
related to the vierbein by gµν = Vµ

aVνa, and
√
g = V , and with the above expansion,

gµν = ηµν + φµν +
1

4
(φ2)µν (60)

We obtain for the foregoing action density, to 2nd order in φ,

ψ̄(iγ · ∂ −m)ψ − hµν
{
ψ̄γµ(∂νψ)− (∂µψ̄)iγνψ

}
(61)

hµν =

(
1

2
φµν −

1

8
(φ2)µν

)
(62)

Notice that (φ2)µν would represent φµλφλν , and is symmetric.

From the above, we can define the bilinear spinorial kernel W , and its conjugate W̃ ,
W = (iγ · ∂ −m)− iγµ (hµν∂ν + ∂νhµν)

W̃ = −(iγ · ∂ +m) + iγµ (hµν∂ν + ∂νhµν)
(63)

Hence we have WW̃ = ∆− Y , with ∆ = (∂2 +m2), and

Y =

 γ · ∂γµ(hµν∂ν + ∂νhµν) + γµ(hµν∂ν + ∂νhµν)γ · ∂

−γµ(hµν∂ν + ∂νhµν)γλ(hλρ∂ρ + ∂ρhλρ)

 (64)

The fermionic one-loop contribution is given by

− i

2
tr ln(WW̃ ) = − i

2
tr ln(∆− Y ) (65)

In the following subsections we shall compute the above fermionic loop up to second
order in the graviton field, first using the divergence-free approach, then using the cutoff
approach, and shall compare the results.

3.1 Fermionic Loop in the Divergence-Free Approach

Here we regularize the gauge-invariant one-loop contributions as follows:

− i

2
tr ln(∆− Y )⇒ i

2
%ε tr

(
1

ε

1

(∆− Y )ε

)
(66)

We shall expand the above to 2nd order with respect to Y ,

i

2
%ε tr


1

ε

1

∆ε
+

1

∆1+ε
Y +

1

2

Γ(2 + ε)

Γ(1 + ε)

1

∆
Y

1

∆︸ ︷︷ ︸
2+ε

Y + · · ·

 (67)
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We must recall that ∆ = (∂2 +m2), and

Y =

 γ · ∂γµ(hµν∂ν + ∂νhµν) + γµ(hµν∂ν + ∂νhµν)γ · ∂

−γµ(hµν∂ν + ∂νhµν)γλ(hλρ∂ρ + ∂ρhλρ)

 (68)

hµν =

(
1

2
φµν −

1

8
(φ2)µν

)
(69)

3.1.1 Vacuum Contribution

The vacuum contribution from the fermionic one-loop is

i

2
%ε tr

(
1

ε

1

∆ε

)
=
i

2
%ε tr

(
1

ε

1

(∂2 +m2)ε

)
(70)

Translating to momentum space, and taking the spinorial trace, we obtain

2i%ε

∫
d4p

(2π)4

(
1

ε

1

(−p2 +m2)ε

)
(71)

Converting to Euclidean momentum and integrating, we obtain

− 1

8π2
%ε

Γ(−2 + ε)

Γ(1 + ε)

(
m2
)2−ε

(72)

Executing the %ε operator, we get

− m4

16π2

(
3

2
− ln(m2)

)
(73)

3.1.2 Linear Contribution

The one-loop fermionic contribution that is linear in the graviton field comes from

i

2
%ε tr

(
1

∆1+ε
Y

)
= itr

(
1

∆1+ε
γµ (hµν∂ν + ∂νhµν) γ · ∂

)
(74)

Taking the spinorial trace, substituting for ∆, and hµν → 1
4
φµν ,

i%ε tr

(
1

(∂2 +m2)1+ε
(φµν∂ν + ∂νφµν) ∂µ

)
(75)

Manipulating objects under the trace, this gives

2iφµν%ε tr

(
1

(∂2 +m2)1+ε
∂µ∂ν

)
(76)
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Translating to momentum space, then symmetrizing with respect to loop momentum,

− 2iφµν%ε

∫
d4p

(2π)4

(
pµpν

(−p2 +m2)1+ε

)
⇒ − i

2
φ %ε

∫
d4p

(2π)4

(
p2

(−p2 +m2)1+ε

)
(77)

Here φ denote φµµ. Converting to Euclidean loop momentum, and integrating,

− 1

16π2
φ %ε

Γ(−2 + ε)

Γ(1 + ε)
(78)

Executing the %ε operator, we get

− m4

32π2

(
3

2
− ln(m2)

)
φ (79)

3.1.3 The Graviton Bilinear

The one-loop fermionic contribution that is bilinear in the graviton field comes from:

i

2
%ε tr


1

∆1+ε
Y +

1

2

Γ(2 + ε)

Γ(1 + ε)

1

∆
Y

1

∆︸ ︷︷ ︸
2+ε

Y + · · ·

 (80)

Substituting for Y , and subsequently for hµν in terms of φµν , we obtain to second order
in the latter,

i

8
%ε tr



− 1
∆1+ε γµ

(
(φ2)µν∂ν + ∂ν(φ2)µν

)
γ · ∂

− 1
4

1
∆1+ε γµ (φµν∂ν + ∂νφµν) γλ (φλρ∂ρ + ∂ρφλρ) +

1
8

Γ(2+ε)
Γ(1+ε)


1

∆
(γ · ∂γµ(φµν∂ν + ∂νφµν) + γµ(φµν∂ν + ∂νφµν)γ · ∂)

1

∆︸ ︷︷ ︸
2+ε

×

(γ · ∂γλ(φλρ∂ρ + ∂ρφλρ) + γλ(φλρ∂ρ + ∂ρφλρ)γ · ∂)




(81)

The above three terms will be computed successively.

3.1.4 Computing the First Bilinear Term

We shall compute the first bilinear term

− i

8
%ε tr

{
1

∆1+ε
γµ
(
(φ2)µν∂ν + ∂ν(φ

2)µν
)
γ · ∂

}
(82)

Manipulating operators under the trace, translating to momentum space, doing the
spinorial trace, and symmetrizing loop momenta, we obtain

i

4
(φ2)µµ %ε

∫
d4p

(2π)4

p2

(−p2 +m2)1+ε
(83)
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Converting to Euclidean loop momentum, integrating, and applying %ε, we obtain

m4

64π2

(
3

2
− ln(m2)

)
(φ2)µµ (84)

3.1.5 Computing the Second Bilinear Term

We shall compute the second bilinear term

− i

32
%ε tr

{
1

∆1+ε
γµ (φµν∂ν + ∂νφµν) γλ (φλρ∂ρ + ∂ρφλρ)

}
(85)

Doing the spinorial trace, and going to momentum space, we obtain

i

8
%ε

∫
d4p

(2π)4

{
(2pν + rν)(2pρ + rρ)

(−p2 +m2)1+ε

}
φµν(−r)φµρ(r) (86)

Here r is the momentum carried by the external graviton. Symmetrizing with respect
to the loop momentum p, converting to Euclidean loop momentum, integrating, and
applying %ε, we obtain

1

128π2

(
m4

{
3

2
− ln(m2)

)
ηνρ +m2(1− ln(m2))rνrρ

}
φµν(−r)φµρ(r) (87)

3.1.6 Computing the Third Bilinear Term

We shall compute the third bilinear term

i

64
%ε

Γ(2 + ε)

Γ(1 + ε)
tr


1

∆
(γ · ∂γµ(φµν∂ν + ∂νφµν) + γµ(φµν∂ν + ∂νφµν)γ · ∂)

1

∆︸ ︷︷ ︸
2+ε

×

(γ · ∂γλ(φλρ∂ρ + ∂ρφλρ) + γλ(φλρ∂ρ + ∂ρφλρ)γ · ∂)

 (88)

Translating to momentum space, combining the underbraced propagators with a Feyn-
man parameter x, and taking the spinorial trace, we obtain for the coefficient of
φµν(−r)φλρ(r),

i

16
%ε

Γ(2 + ε)

Γ(1 + ε)

1∫
0

dx

∫
d4p

(2π)4



1
(−(p+xr)2−x(1−x)r2+m2)2+ε×

(4pµpλ + 2pµrλ + 2pλrµ + r2ηµλ)×

(2pν + rν)(2pρ + rρ)

 (89)

Making the shift p→ (p−xr) in the loop momentum, symmetrizing with respect to the
latter, converting to Euclidean loop momentum, and integrating, then expanding to 4th
order with respect to the external graviton momentum r, and subsequently integrating
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with respect to the Feynman parameter, finally applying the operator %ε, we obtain our
result for the third bilinear term. The latter consists of three parts. For the part that
is independent of graviton momentum, we have

− m4

128π2

(
3

2
− ln(m2)

)
(ηµληνρ + ηµρηνλ + ηµνηλρ) (90)

For the part that is quadratic in the graviton momentum, we have

− m2

384π2
(1− lnm2)

 ηµλrνrρ + ηνλrµrρ + ηλρrµrν + ηµνrλrρ + ηµρrλrν

−2ηνρrµrλ + r2(2ηµληνρ − ηµρηνλ − ηµνηλρ)

 (91)

For the part that is quartic in the graviton momentum, we have

lnm2

3840π2

 r2 (4ηµλrνrρ − ηνλrµrρ − ηλρrµrν − ηµνrλrρ − ηµρrνrλ + 4ηνρrµrλ)

−2rµrνrλrρ − r4 (4ηµληνρ − ηµρηνλ − ηµνηλρ)

 (92)

3.1.7 Collected Cosmological Term

The cosmological term corresponds to
√
g = V in the effective action. Expanding to

2nd order in the graviton field we have

etr ln(η+ 1
2
φ) = e( 1

2
φ− 1

8
φ·φ) ≈ 1 +

1

2
φ+

1

8

(
φ2 − φµνφµν

)
+ · · · (93)

In our foregoing fermionic loop computations, we obtained the vacuum term:

− m4

16π2

(
3

2
− ln(m2)

)
(94)

We obtained the linear term:

− m4

32π2

(
3

2
− ln(m2)

)
φ (95)

And obtained the (momentum-independent) bilinear:

− m4

128π2

(
3

2
− ln(m2)

)(
φ2 − φµνφµν

)
(96)

Hence combining, we obtain the contribution to the cosmological term
√
g, with coef-

ficient:

− m4

16π2

(
3

2
− ln(m2)

)
(97)

Divergence-Free Versus Cutoff Quantum Field Theory by N.S. Baaklini 15



N.S.B. Letters NSBL-QF-009

3.1.8 Collected Einstein Term

The bilinear terms of the graviton that come from the Einstein action density
√
ggµνRµν ,

with Rµν the Ricci tensor, take the usual form for a massless spin-2 field:

1

4
(∂λφµν)

2 − 1

4
(∂µφνν)

2 +
1

2
∂µφµν∂νφλλ −

1

2
∂µφµλ∂νφνλ (98)

In momentum space this gives

φµν(r)φλρ(−r)
(

1

4
r2ηµληνρ −

1

4
r2ηµνηλρ +

1

2
rµrνηλρ −

1

2
rµrληνρ

)
(99)

The collected bilinears with quadratic momentum that we obtained in the preceding
sections correspond to the above, with the coefficient:

− m2

96π2
(1− lnm2) (100)

3.1.9 Collected Curvature Squared Terms

For the graviton bilinear terms with quartic momentum, we obtained

lnm2

3840π2

 r2 (4ηµλrνrρ − ηνλrµrρ − ηλρrµrν − ηµνrλrρ − ηµρrνrλ + 4ηνρrµrλ)

−2rµrνrλrρ − r4 (4ηµληνρ − ηµρηνλ − ηµνηλρ)

 (101)

multiplied by φµν(−r)φλρ(r). In fact we can show that this corresponds to the bilinears
of the following Einstein invariant action density

√
g
(
3Rµν

2 −R2
)
, with coefficient

lnm2

960π2
(102)

3.2 Fermionic Loop in the Cutoff Approach

Like the preceding section that was concerned with the divergence-free approach, we
shall use the following fermionic kernel operator W and its conjugate W̃ ,

W = (iγ · ∂ −m)− iγµ (hµν∂ν + ∂νhµν)

W̃ = −(iγ · ∂ +m) + iγµ (hµν∂ν + ∂νhµν)
(103)

with

hµν =

(
1

4
φµν −

1

8
(φ2)µν

)
(104)

We shall write WW̃ = (∆− Y ), with ∆ = (∂2 +m2) and

Y =

 γ · ∂γµ (hµν∂ν + ∂νhµν) + γµ (hµν∂ν + ∂νhµν) γ · ∂

−γµ (hµν∂ν + ∂νhµν) γλ (hλρ∂ρ + ∂ρhλρ)

 (105)
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The cutoff-regularized fermionic one-loop contribution will be given by

− i

2
tr ln(WW̃ )⇒ i

2

∞∫
a2

dλ

λ
tr
{
e−λ(∆+Y )

}
(106)

And we have the following expansion to 2nd order in Y ,

i

2

∞∫
a2

dλ tr


1
λ
e−λ∆ + e−λ∆Y+

λ
2

∫ 1

0
dx e−(1−x)λ∆Y e−xλ∆Y + · · ·

 (107)

3.2.1 Vacuum Contribution

The fermionic one-loop contribution to the vacuum term is

i

2

∞∫
a2

dλ tr

(
1

λ
e−λ(∂2+m2)

)
(108)

Translating to momentum space, and taking the spinorial trace, we obtain

2i

∞∫
a2

dλ

∫
d4p

(2π)4

(
1

λ
e−λ(−p2+m2)

)
(109)

Converting to Euclidean loop momentum, and integrating over the latter,

− 1

8π2

∞∫
a2

dλ

λ3
e−λm

2

(110)

Expanding the above with respect to a2, dropping the terms that vanish as a→ 0, we
obtain

− 1

16π2

{
1

a2
− 2m2

a2
+m2

(
3

2
− γ − ln(a2m2)

)}
(111)

3.2.2 Linear Contribution

The fermionic one-loop contribution that is linear in the graviton field is given by

i

2

∞∫
a2

dλ tr
(
e−λ∆Y

)
(112)

Substituting for ∆ and Y , manipulating the operators under the trace, and taking the
spinorial trace, we obtain

8i

∞∫
a2

dλ tr
(
e−λ(∂2+m2)hµν∂µ∂ν

)
(113)
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Translating to momentum space, and with hµν → 1
4
φµν , then symmetrizing with respect

to loop momentum, we obtain

− i

2

∞∫
a2

dλ

∫
d4p

(2π)4

(
e−λ(−p2+m2)p2

)
φµµ (114)

Converting to Euclidean loop momentum, and integrating over the latter, we obtain

− 1

16π2

∞∫
a2

dλ

λ3
e−λm

2

(115)

3.2.3 The Graviton Bilinear

The one-loop fermionic contribution that is bilinear in the graviton field comes from:

i

2

∞∫
a2

dλ tr

e−λ∆Y +

1∫
0

dx e−(1−x)λ∆Y e−xλ∆Y

 (116)

Substituting for Y , and subsequently for hµν in terms of φµν , we obtain to second order
in the latter,

− i
8

∞∫
a2

dλ tr



e−λ(∂2+m2)γµ ((φ2)µν∂ν + ∂ν(φ
2)µν) γ · ∂

+1
4
e−λ(∂2+m2)γµ (φµν∂ν + ∂νφµν) γλ (φλρ∂ρ + ∂ρφλρ)

−λ
8

∫ 1

0
dx e−(1−x)λ(∂2+m2)×

(γ · ∂γµ(φµν∂ν + ∂νφµν) + γµ(φµν∂ν + ∂νφµν)γ · ∂)×

e−xλ(∂2+m2) (γ · ∂γλ(φλρ∂ρ + ∂ρφλρ) + γλ(φλρ∂ρ + ∂ρφλρ)γ · ∂)


(117)

The above three terms will be computed successively.

3.2.4 Computing the First Bilinear Term

We shall compute the first bilinear term

− i

8

∞∫
a2

dλ tr
{
e−λ(∂2+m2)γµ

(
(φ2)µν∂ν + ∂ν(φ

2)µν
)
γ · ∂

}
(118)

Taking the spinorial trace, translating to momentum space, and symmetrizing over loop
momentum,

i

4

∞∫
a2

dλ

∫
d4p

(2π)4

{
e−λ(−p2+m2)p2

}
(φ2)µµ (119)
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Converting to Euclidean loop momentum, and integrating over the latter, we obtain

1

32π2

∞∫
a2

dλ

λ3
e−λm

2

(φ2)µµ (120)

3.2.5 Computing the Second Bilinear Term

We shall compute the second bilinear term

− i

32

∞∫
a2

dλ tr
{
e−λ(∂2+m2)γµ (φµν∂ν + ∂νφµν) γλ (φλρ∂ρ + ∂ρφλρ)

}
(121)

Taking the spinorial trace, translating to momentum space, and symmetrizing with
respect to loop momentum, we obtain

i

8

∞∫
a2

dλ

∫
d4p

(2π)4

{
e−λ(−p2+m2)

(
p2ηνρ + rνrρ

)}
φµν(r)φµρ(−r) (122)

Converting to Euclidean loop momentum, and integrating over the latter, we obtain

− 1

128π2

∞∫
a2

dλ e−λm
2

(
1

λ2
rνrρ −

2

λ3
ηνρ

)
φµν(r)φµρ(−r) (123)

3.2.6 Computing the Third Bilinear Term

We compute the third bilinear term

i

64

∞∫
a2

dλλ

1∫
0

dx tr



e−(1−x)λ(∂2+m2)×

(γ · ∂γµ(φµν∂ν + ∂νφµν) + γµ(φµν∂ν + ∂νφµν)γ · ∂)×

e−xλ(∂2+m2)×

(γ · ∂γλ(φλρ∂ρ + ∂ρφλρ) + γλ(φλρ∂ρ + ∂ρφλρ)γ · ∂)


(124)

Taking the spinorial trace, and translating to momentum space, we obtain for the
coefficient of φµν(r)φλρ(−r)

i

64

∞∫
a2

dλλ

1∫
0

dx

∫
d4p

(2π)4


e−λ{−(p+xr)2−x(1−x)r2+m2}×

(4pµpλ + 2pµrλ + 2pλrµ + ηµλr
2)×

(2p+ r)ν(2p+ r)ρ

 (125)
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Making the shift p→ (p−xr) in the loop momentum, symmetrizing with respect to the
latter, then converting to Euclidean loop momentum, and integrating over the latter,
then expanding to 4th order in the external graviton momentum r, and integrating over
the Feynman parameter x, we obtain the result for our third bilinear term. The latter
consists of three parts. The part that is independent of graviton momentum is

− 1

64π2

∞∫
a2

dλ

λ3
e−λm

2

(ηµληνρ + ηµρηνλ + ηµνηλρ) (126)

The part that is quadratic in the graviton momentum is

1

384π2

∞∫
a2

dλ

λ2
e−λm

2

 ηµλrνrρ + ηνλrµrρ + ηλρrµrν + ηµνrλrρ + ηµρrνrλ

−2ηνρrµrλ + r2(2ηµληνρ − ηµρηνλ − ηµνηλρ)

 (127)

The part that is quartic in the graviton momentum is

− 1

3840π2

∞∫
a2

dλ

λ
e−λm

2


r2 (4ηµλrνrρ − ηνλrµrρ − ηλρrµrν

−ηµνrλrρ − ηµρrνrλ + 4ηνρrµrλ)

−2rµrνrλrρ − r4 (4ηµληνρ − ηµρηνλ − ηµνηλρ)

 (128)

3.2.7 Collected Cosmological Term

The cosmological term corresponds to
√
g = V in the effective action. Expanding to

2nd order in the graviton field we have

etr ln(η+ 1
2
φ) = e( 1

2
φ− 1

8
φ·φ) ≈ 1 +

1

2
φ+

1

8

(
φ2 − φµνφµν

)
+ · · · (129)

In our foregoing fermionic loop computations, we obtained the vacuum term:

− 1

8π2

∞∫
a2

dλ

λ3
e−λm

2

(130)

We obtained the linear term:

− 1

16π2

∞∫
a2

dλ

λ3
e−λm

2

(131)

And obtained the (momentum-independent) bilinear:

− 1

64π2

∞∫
a2

dλ

λ3
e−λm

2

(132)
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Hence combining, we obtain the contribution to the cosmological term
√
g, with coef-

ficient

− 1

8π2

∞∫
a2

dλ

λ3
e−λm

2

(133)

Expanding the above integral with respect to a2, dropping the terms that vanish as
a→ 0, we obtain

− 1

16π2

{
1

a4
− 2m2

a2
+m4

(
3

2
− γ − ln(a2m2)

)}
(134)

3.2.8 Collected Einstein Term

The bilinear terms of the graviton that come from the Einstein action density
√
ggµνRµν ,

with Rµν the Ricci tensor, take the usual form for a massless spin-2 field:

1

4
(∂λφµν)

2 − 1

4
(∂µφνν)

2 +
1

2
∂µφµν∂νφλλ −

1

2
∂µφµλ∂νφνλ (135)

In momentum space this gives

φµν(r)φλρ(−r)
(

1

4
r2ηµληνρ −

1

4
r2ηµνηλρ +

1

2
rµrνηλρ −

1

2
rµrληνρ

)
(136)

The collected bilinears with quadratic momentum that we obtained in the preceding
sections correspond to the above, with the coefficient:

1

96π2

∞∫
a2

dλ

λ2
e−λm

2

(137)

Expanding the above integral with respect to a2, dropping the terms that vanish as
a→ 0, we obtain

1

96π2

{
1

a2
−m2

(
1− γ − ln(a2m2)

)}
(138)

3.2.9 Collected Curvature Squared Terms

For the graviton bilinear terms with quartic momentum, we obtained

− 1

3840π2

∞∫
a2

dλ

λ
e−λm

2


r2 (4ηµλrνrρ − ηνλrµrρ − ηλρrµrν

−ηµνrλrρ − ηµρrνrλ + 4ηνρrµrλ)

−2rµrνrλrρ − r4 (4ηµληνρ − ηµρηνλ − ηµνηλρ)

 (139)
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multiplied by φµν(−r)φλρ(r). In fact we can show that this corresponds to the bilinears
of the following Einstein invariant action density

√
g
(
3Rµν

2 −R2
)

with coefficient

− 1

960π2

∞∫
a2

dλ

λ
e−λm

2

(140)

Expanding the above integral with respect to a2, dropping the terms that vanish as
a→ 0, we obtain

1

960π2

(
γ + ln(a2m2)

)
(141)

3.3 Comparing Results

For the fermionic one-loop contribution to the cosmological term
√
g, we obtained in

the divergence-free approach the coefficient

− m4

16π2

(
3

2
− ln(m2)

)
(142)

while in the cutoff approach, we obtained

− 1

16π2

{
1

a4
− 2m2

a2
+m4

(
3

2
− γ − ln(a2m2)

)}
(143)

For the Einstein term
√
gR, in the divergence-free approach, we obtained the coefficient

− m2

96π2

(
1− ln(m2)

)
(144)

while in the cutoff approach,

1

96π2

{
1

a2
−m2

(
1− γ − ln(a2m2)

)}
(145)

For the curvature squared contribution
√
g
(
3Rµν

2 −R2
)
, in the divergence-free ap-

proach, we obtained the coefficient

1

960π2
ln(m2) (146)

while in the cutoff approach,

1

960π2

{
γ + ln(a2m2)

}
(147)

4 Discussion

We have presented detailed computations of the one-loop contributions of a Dirac field
in quantum electrodynamics and in quantum gravity both, in the divergence-free, and
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in the cutoff approaches for constructing regular, and gauge-invariant, effective action.
Comparing our results shows that the divergence-free approach eliminates the quadratic
and the quartic divergences (terms that diverge like 1/a2 and like 1/a4, respectively,
where a is the cutoff length parameter). However, the omnipresent logarithmic terms
of the divergence-free approach, such as ln(m2), always correspond to the combination
(γ+ln(a2m2)), where γ is the Euler constant. This means that these logarithmic terms
(characterized by arbitrary scale) of the divergence-free approach do in fact correspond
to the logarithmic divergences of the cutoff approach (having a definite scale deter-
mined by the cutoff). Hence, it seems quite acceptable to do regular computations
in either approach. If computations are done in the cutoff approach, then discarding
the power-like divergences would seem to give us the equivalent of the divergence-free
approach. Whereas this correspondence is perfect as far as one-loop computations can
show, we still need to show whether this correspondence is also perfect in higher-loop
computations.

On the other hand, we tend to believe that a cutoff parameter must exist in a truly
fundamental field theory. This cutoff is likely to be related to the gravitational coupling.
Notice, for instance, that the one-loop contributions to the Einstein term would generate
a coefficient like 1/a2, showing that perhaps the origin of the gravitational coupling
is the cutoff parameter itself. However, a better comprehension of the relationship
between the gravitational coupling and the cutoff parameter can be obtained from
the realization that while the effective quantum action is computed in flat spacetime,
consistency requires that any generated cosmological constant must be equated to zero.
We can easily see that computing the cosmological constant to several loop orders in
quantum gravity would give us a series of the form

∼ 1

a4

{
c0 + c1

κ2

a2
+ c2

κ4

a4
+ . . .

}
(148)

Here, κ is the gravitational coupling constant, and a is the cutoff parameter, while the
coefficients ci are numerical constants that depend on the bosonic and the fermionic
particle content of the fundamental theory. Whether the above series can be put equal
to zero, leading to an inverted series relating κ and a, remains to be seen in a definite
fundamental unification theory. If this idea can be successful then the problem of
quantum gravity and the inherent problem of quantum field theory divergences can
both be solved simultaneously and consistently.

What is needed now is to settle on a definite fundamental unification theory contain-
ing the gravitational interaction, and proceed to compute the contributions to several
loop orders, all within a gauge-invariant effective action framework, and in the cutoff
approach.
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