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Abstract:

Why massless particles, for example photons, can only have two helicity one-particle states is the main

subject of this work. As we know, the little group which describes massive particle one-particle states’ transformations

under the Lorentz transformation is SO(3), while the little group describing massless states is ISO(2). In this paper,

a new method is proposed to contract SO(3) group to ISO(2) group. We use this contraction method to prove that

the particle can only have two helicity one-particle states from the perspective of kinematics, when the particle mass

trends to zero. Our proof is different from the dynamic explanation in the existing theories.
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1 Introduction

In The Quantum Theory of Fields of Weinberg [1],
the one-particle states are defined as the common eigen-
vectors of four-momentum operator and spin operator.
The transformation of massive one-particle states under

the Lorentz transformation is as follows (Eq.2.5.23 in
ref.[1]):

UM, =/ (Ap?o S0y, DL (W(AD) (1)

Where, A is Lorentz coordinate transformation; U (A)
is the corresponding unitary transformation of the one-
particle states in the Hilbert space; ¥, , is one-particle
states; p is momentum; o is 3-spin quantum num-
ber(helicity); and D?,_ (W) is the representation of the
little group W which keeps the standard momentums (
k =(0,0,0,F), where E is the particle’s energy) of the
massive particles invariant; j is the spin quantum num-
ber, and it can take integer and half-integer. Here, we
only discuss the situation of j > 0. It can be seen that
the massive particle totally have 25+ 1 helicity states.
Correspondingly, the transformation of the massless
one-particle states is as follows (Eq.2.5.42 in ref.[1]):

U, = (A;Z’O%,aexpaae(A,p)) (2)

Where, the representation of the little group which keeps
the standard momentums (k = (0,0, E, E)) of the mass-
less particles invariant has been written out obviously.
The helicity of the massless particles described in Eq.(2)
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can only have one value (p72,p78 in ref.[1]), the other
value can be obtained through space inversion, and thus
there are totally two helicity states for massless particles.

The little group representation in Eq.(1) is SO(3) rep-
resentation, and the little group representation in Eq.(2)
is the degenerated ISO(2) representation (in fact, it is
the representation of SO(2) group). In ref.[1], differ-
ent methods are used to obtain these two little groups
and their representations. In order to obviously reveal
the internal physical relationship between massive and
massless one-particle states, in this paper we used a new
method to simultaneously obtain the little groups of mas-
sive and massless states and their representations. This
method is associated with the mass-energy relation of
special relativity, and it is different from Inoni-Wigner
contraction[2].

In the existing theoretical system, generally the re-
searchers explain why the massless particles (photons)
can only have two helicity states from the dynamic per-
spective [3]. Namely, it describes that the scalar photons
and longitudinal photons are nonphysical, and these two
kinds of photons cancel in the average value of any phys-
ical quantity and only leave the action of the two trans-
verse photons whose helicity are +1. In the latter part of
the paper, we use the new contraction method proposed
by us to prove the experimental fact that the helicity of
the massless particles has only two values from the per-
spective of kinematics. The proof proposed by us is dif-
ferent from the dynamic method in existing theories[3].

The Lorentz metric used in this paper is as follows:
g = diag(1,1,1,—1), which is the same as ref.[1]. Our
work is mainly based on the section 2.5 in ref.[1]. In the
following we will firstly introduce this new contraction



method.

2 Method of contracting SO(3) group to
ISO(2) group

We know that the selection of the standard momen-
tums is considerable arbitrary. In ref.[1], different stan-
dard momentums are selected for massive and massless
particles. Selecting the same standard momentums for
both is a very natural consideration. For massive and
massless particles, their standard momentums are both
set as k=(0,0,p, E) in our work. For some specific posi-
tive energy, from the mass-energy equation E? = p?>+m?,
it can know that the particles with different masses ap-
pear as different 3-component p. When p =0, k return-
s to the standard momentum ((0,0,0, F),p66 in ref.[1])
of the massive one-particle states; when p = F, which
means that the particle’s mass (m) is 0, k is the stan-
dard momentum ((0,0, E, E'),p66 in ref.[1]) of the mass-
less one-particle states. The standard momentums set in
this way can simultaneously discuss massive and mass-
less one-particle states.

In the following, we will solve the expression of the
little group W which satisfies W* k" = k* (that is to
say, the little group W keeps the standard momentum
k* = (0,0,p,F) invariant). First, W can be split in-
to the product of two Lorentz transformations, name-
ly W(a,5,0) = S(a, ) R(0) (p69-70 in ref.[1]), where,
a, 3,0 are three continuous parameters which describe
the little group W. R(0) is the two-dimensional rotation
around z axis;

cosf sinf 0 O

R(0) = —sinf cosf@ 0 O
0 0 1 0

0 0 01

The matrix S is a general Lorentz transformation, and
it can be expressed as the following form:

U v -« qo
| w s =B a8
SWA=l 1
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Where, ¢ =p/F is a dimensionless real parameter; g =1
represents the massless standard momentum, and ¢ # 1
represents massive ones. Besides, we can obtain the fol-
lowing equation:

o’ + 5%+ (1-¢*)¢* =20 =0

The ¢ satisfying this equation has two solutions, and only
the following solution is taken:

1=V (=) (@5 5)
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The former two columns of the matrix S are still un-
known, and it can be solved by the conditions of Lorentz
transformation, which is g = ST¢S (Eq.2.3.5 in ref.[1]),
where ¢ is the Lorentz metric. In fact all the matrix
elements can be solved through this equation. The fol-
lowing results are obtained:

= VOB v== (1)
w =0;

T=Yq

Note that: the obtained solutions are not unique, and
here we only select one group among them. It can be
verified that the different solutions corresponding to Lie
algebra are equivalent to each other.

The infinitesimal transformation is conducted for the
little group W («,8,6) = S(a, B) R(A) to obtain its Lie
algebra. That is to say, make o — 0,5 — 0,0 — 0, si-
multaneously ignore second order and above items, and
then obtain the following expression:

0 0 —-a qo
-0 0 -8 ¢B
a 0 0
gao g8 0 0

WH (0,a,8) =1+

The above is the infinitesimal expression of the little
group W which keeps the standard momentum k =
(0,0,p, F) invariant.

The infinitesimal unitary transformation in the
Hilbert space which corresponds to the little group W
is as follows (p71 in ref.[1]):

U (W (a,8,0)) =1 +iaA+iBB+ifJ;

Where, A = J,+qK, B = —J, +qK,; J; are angu-
lar momentum operators; K; are boost operators. The
commutation relations of the generators are as follows:

[Js, Al =iB; [B,Js] =iA; [AvB]:ia*QQ)JS (3)

From the generators (A, B, J3) of the unitary trans-
formation U(W) and their commutation relations (3)
(namely Lie algebra), it can be seen that: if ¢ =1, this Lie
algebra is the Lie algebra iso(2) (eqs.2.5.35-37 in ref.[1])
of the massless states; if ¢ =0, it is the Lie algebra o(3)
(angular momentums) of the massive states. That is to
say, as the particle mass trends to 0, namely, ¢ trends to
1, the Lie algebra of the little group W contracts from
0(3) to is0(2). As the mass becomes 0, the Lie algebra
has essential changes.



3 Kinematic proof of massless particles
having only two helicity states

When ¢ # 1, we make

And then the above commutation relations (3) become

[Js, Sl =idy; [, el =iJis [J7, Ja]=id;
These are the commutation relations of the angular mo-
mentums, and thus the Lie algebra (3) is 0(3). Obviously
it is correct, because when ¢ # 1, the standard momen-
tum k = (0,0,p, F) is the situation of massive particles,
and its little group is naturally SO(3).

It needs to note that: when the particle mass trends
to 0, the denominators in Eq.(4) are singular; when the

eigenvalues of the operators A and B are not 0, it makes

the eigenvalues of Ji , trend to infinity. Generally infini-
ty values are unobservable in physics, so the one-particle
states which make the eigenvalues of J| , trend to infinity
are nonphysical. Therefore, only the states which make
the eigenvalues of the operators A and B be 0 are phys-
ical, and then these states make the eigenvalues of Ji ,
be also 0. It needs to note that, here we do not need any
experimental hypothesis (this is different from p71-72 in
ref.[1]) and just admit: the states which make the eigen-
values of Jj , trend to infinity are nonphysical, thereby
obtaining that physical states are the one-particle states
which make the eigenvalues of the operators A and B be
0. The obtained conclusions are the same as those of E-
q.2.5.38 in ref.[1]. However, any experimental hypothesis
is not needed.

Below we discuss the group representations. The rep-
resentation [4] of the SO(3) group which corresponds to
Lie algebra (3) is as follows:

D2, (W)=DZ,_ (afy) = (¥, |exp(—iaJs) exp (=i B) exp (—ivJs) [¥,,)
= (U, |exp(—iaJ’s)exp (fzﬂ\/l — q2J’2) exp (=17 J"3) |V po)

V3= (i+0) (i =) (j+0")!

= (-1

Where, j is the spin quantum number; the value
range of indexes of the matrix is 0,0’ =j,j—1,-+-,—j+
1,—j ; the value range of the summation index integer n
isn>0, n>d -0, n<j—0o, n<j+o' ; param-
eters «, 8 and v are Eulerian angles. When ¢ = 0, the
representation (5) is just the representation of the SO(3)

(j+0'/*n)! (jf(jfn)'n' (n+070—/)'

2j+0/7072n 2n—o’'+o
By/1-42 . By/1-¢2
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rexp (—io’a) x (5)
exp (—io7)

group in Eq.(1).

As the particle mass trends to 0, the physical one-
particle states are only considered which make the eigen-
values of the operators A and B be 0, and the above rep-
resentation (5) of SO(3) group contracts to the following
finite-dimensional representation:

D,y (W)= (U, |exp(—ias)exp(—iBB)exp (—ivJ3) |¥po)
—exp(~io'a) (B (14 5 220 ) 1, exp (i) ©)

= 50”0’ exp (—ZU (a—’—’}/))

Eq.(6) is just the representation of the SO(2) group,
namely the representation of the group in Eq.(2). This
proves that: in the physical level, as the particle’s mass
trends to 0, representation (5) contracts to representa-
tion (6), and thus Eq.(1) is continuously changed into
Eq.(2); the 2j4 1 massive one-particle states are degen-
erated to two states of the massless particles.

It is needed to prove that the massive one-particle s-
tates converge to massless states when the particle’s mass
trends to zero. First, we discuss the changes of the vec-
tor particles whose spin is 1 when the mass trends to O.
According to the helicity of the vector particles, all the
states of the vector particles can be divided into the fol-

lowing three parts:W,,,¥,,,¥,_;. The set of the states
which make the eigenvalues of the operators A and B be
0 is some subset of all the above states, and such subset
has two kinds: @ ¥,1,V,_1; @ ¥,0. Because the ma-
trix elements of ladder operators J\ = J; £4J; (which
includes the operators A and B) are all 0 in the above
mentioned any subset, those eigenvalues are naturally al-
so 0, and these two subsets may be physical states. When
the particle mass trends to 0, which subset of the above
is physical? If the subset @) is physical, the helicity of
all the observed particles will be 0, and these particles
should be considered as scalar particles while not vec-
tor particles. Therefore, the physical states can only be



the subset (), and the helicity observed in this subset
are £1. In this way, it can clearly see which states are
physical and which states are nonphysical as the particle
mass trends to 0.

For the massless particles whose spin is other values,
the same discussion can be conducted. Below we con-
ducted explanations with particles spin 2. The subset-
s of the states which make the eigenvalues of the op-
erators A and B be 0 have the following four kinds:
DOV, ¥y 23 @QWp1, ¥y 15 AVp0; DVp2, ¥, 5, V0. The
helicity shown by the subsets@) and @) is not 2, and thus
they are excluded. The subset @) contains two invariant
subspaces, namely () and @), and thus the Lorentz group
representation carried by the subset @ is reducible. Gen-
erally this is impossible in physics. Therefore, only the
subset @ is physically allowed, and the helicity has only
two states. In this way, as the mass trends to 0, the states
with mass are degenerated into the massless states.

Below, we prove it again from dynamic perspectives.
Let us consider the particle’s momentum is in the 3-
direction. The polarization vectors e* (p,A) (p154-158
in ref.[3]) for the massive vector field are (where p is the
four momentum)

e (p,0)= &

e*(p,1)= (1 0,0,0)

e (p,2) = (0,1,0 0)

e"(p,3) = E (0,0,E,vVE>—m?)

Correspondingly, the polarization vectors for the mass-
less vector field are

p*=(0,0,E,F)

et (p,0)=(0,0,0,1)
e (p,1)=(1,0,0,0)
e (p,2)=(0,1,0,0)
e*(p,3)=1(0,0,1,0)

The transverse polarization vectors of massive and
massless particles are the same, and they are no relation
with particles’ masses. The creation operators (p162 in
ref.[3]) of massive and massless particles are

Ay () +ip° A, (z))

—zp x

pA:Z/d3 ) ——=¢"(p,N) (%

Because the transverse polarization vectors (e (p,\) , A=
1,2) of massive and massless particles are the same, the
transverse creation operators of massive and massless
particles are the same when the particles mass trend to
zZero.

The transverse one-particle states (|1) =
[dpf (p) a;A [0) A =1,2) of massive particles converge
to those of massless ones when particles masses trend to
Zero.

Therefore, one-particle states generated by creation
operators are the same when ¢ — 1. The proof is from
dynamic perspectives. We do not discuss the scalar and
longitudinal one-particle states generated by creation op-
erators which are nonphysical for massless particles.

4 Conclusions

The difference between the method used by us and
Weinberg’s method lies in that: the standard momen-
tum is set as k = (0,0,p, E), and the massive and the
massless states are unified together. The little group-
s of the massive states and the massless states can be
obtained simultaneously; when ¢ = 1, namely when the
states are massless ones, the little group is ISO(2); when
q# 1, namely when the states are massive ones, the little
group is SO(3). The benefit of our method is that the
little groups of massive and massless states are obtained
simultaneously; as the mass trends to 0, the group SO(3)
is naturally deformed to ISO(2).

As the particle mass trends to 0, when the eigenval-
ues of the operators A and B are not 0, the eigenvalues
of Ji , trend to infinity, and this is nonphysical. There-
fore only those states which make the eigenvalues of the
operators A and B be 0 are physical. Such states make
representation (5) degenerate to representation (6), and
thus Eq.(1) is continuously changed to Eq.(2). In this
way, any experimental hypotheses are not needed, and
from the perspectives of pure theory and kinematics it
proves that: when the particle mass trends to 0, the
2j+1(j > 0) helicity states of massive particles degener-
ate to 2 helicity states of the massless particles.
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