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ABSTRACT

Monte Carlo (MC) methods are well-known computational techniques, widely used in different fields such as signal processing,
communications and machine learning. An important class of MC methods is composed of importance sampling (IS) and its
adaptive extensions, such as population Monte Carlo (PMC) and adaptive multiple IS (AMIS). In this work, we introduce
a novel adaptive and iterated importance sampler using a population of proposal densities. The proposed algorithm, named
adaptive population importance sampling (APIS), provides a global estimation of the variables of interest iteratively, making
use of all the samples previously generated. APIS combines a sophisticated scheme to build the IS estimators (based on the
deterministic mixture approach) with a simple temporal adaptation (based on epochs). In this way, APIS is able to keep all
the advantages of both AMIS and PMC, while minimizing their drawbacks. Furthermore, APIS is easily parallelizable. The
cloud of proposals is adapted in such a way that local features of the target density can be better taken into account compared
to single global adaptation procedures. The result is a fast, simple, robust and high-performance algorithm applicable to a wide
range of problems. Numerical results show the advantages of the proposed sampling scheme in four synthetic examples and a
localization problem in a wireless sensor network.

Index Terms— Monte Carlo methods, adaptive importance sampling, population Monte Carlo, iterative estimation.

1. INTRODUCTION

Monte Carlo (MC) methods are widely used in signal processing and communications for statistical inference and stochastic
optimization [1, 2, 3, 4, 5]. Importance sampling (IS) [6, 7] is a well-known MC methodology to compute efficiently integrals
involving a complicated multidimensional target probability density function (pdf), π(x) with x ∈ RDx . Moreover, it is
often used in order to calculate the normalizing constant of π(x) (also called partition function), which is required in several
applications, like model selection [6, 7, 8]. The standard IS technique draws samples from a simple proposal pdf, q(x), assigning
weights to them according to the ratio between the target and the proposal, i.e., w(x) = π(x)

q(x) . However, although the validity of
this approach is guaranteed under mild assumptions, the variance of the estimator depends notably on the discrepancy between
the shape of the proposal and the target [6, 7].

Many other techniques to approximate integrals for Bayesian inference have been developed, including asymptotic methods,
multiple quadrature rules and Markov Chain Monte Carlo (MCMC) algorithms [9, 10]. In particular, MCMC algorithms
are another well-known class of MC techniques which generate a Markov chain converging to the target distribution [6, 11].
MCMC techniques often lead to random walks of the samples generated around the regions of high probability. This exploratory
behaviour is responsible for MCMC methods being usually preferred in high-dimensional applications [5, 12, 13]. Nevertheless,
MCMC algorithms also suffer from several important shortcomings [6, 7]: the diagnostic of the convergence is often difficult
and it is not straightforward to estimate the partition function (i.e., the normalizing constant of the target) given the generated
samples, although several algorithms that can address this issue have been recently developed [14, 15, 16].

In the sequel we focus on IS schemes, which are often the preferred approach for the approximation of multi-dimensional
integrals in statistics [9, 10]. In order to overcome the problems of standard IS, substantial effort has been devoted to the design
of adaptive IS schemes [7], where the proposal density is updated by learning from all the previously generated samples. The
population Monte Carlo (PMC) [17] and the adaptive multiple importance sampling (AMIS) [18] methods are two general
schemes that combine the proposal adaptation idea with the cooperative use of a cloud of proposal pdfs. On the one hand, in
PMC a population of proposals is updated using propagation and resampling steps [7, Chapter 14]. The IS estimator is built as



in the standard IS approach, but using a mixture of different proposals [19, 20, 21]. PMC schemes have been widely used in
signal processing applications due to their simplicity and flexibility [22, 23, 24].

On the other hand, in AMIS a single proposal is adapted in a standard adaptive IS fashion, but the sequence of all the
previous proposals is used to build the importance weights, and the global estimator is constructed according to the so-called
deterministic mixture approach [25, 26]. This implies that all the previous proposals must be evaluated at the new samples,
and also that the new proposal pdf must be evaluated at all the previous samples, thus yielding an increase in computational
cost as the algorithm evolves in time. This single proposal could also be a mixture of pdfs, but the adaptation in this case
involves more complicated methodologies (such as clustering), increasing the computational cost even more [27]. AMIS has
been successfully applied to genetic inference problems recently [28]. Finally, let us remark that the update of the proposals in
both methodologies (AMIS and PMC) can also be carried out according to some optimality criterion, such as the minimization
of the Kullback-Leibler divergence [19, 20, 21], although at the expense of an increased complexity.

In this work, we introduce a novel population scheme, adaptive population importance sampling (APIS).1 APIS draws
samples from different proposal densities at each iteration, weighting these samples according to the deterministic mixture
approach [25, 26], which was originally developed for a fixed (i.e., non-adaptive) setting. At each iteration, the APIS algorithm
computes iteratively a global IS estimator, taking into account all the generated samples up to that point. The main difference
w.r.t. the existing AMIS and PMC schemes lies in the more streamlined adaptation procedure of APIS, as well as in the
approach followed to build the estimators. APIS starts with a cloud of N proposals, initialized randomly or according to the
prior information available, with the location parameters spread throughout the state space. The initial location parameter for
each proposal should be different, and different scale parameters can also be used.2 The algorithm is then divided into groups
(epochs) of Ta iterations, where the proposals are fixed and Ta samples are drawn from each one. At the end of every epoch, the
Ta samples drawn from each proposal are used to update its location parameter (using partial IS estimators), and the adaptation
memory is “refreshed”. This approach allows each proposal to concentrate on some particular region of the state space, thus
modelling specific and localized features of the target. In this way, APIS can obtain a very good global approximation of the
target by combining all the local approximations. This is achieved without any additional computation in terms of evaluation
of the target and proposal pdfs.

Unlike PMC, the novel technique does not require resampling steps to prevent the degeneracy of the mixture, thus avoiding
the loss of diversity in the population. This is a common problem for sampling-importance resampling type algorithms, where
additional MCMC moves are occasionally applied [30]. Indeed, in [31] the authors attempt to diminish this negative effect by
forcing artificially a pre-defined amount of the highest importance weights to be equal to control the loss of diversity caused by
resampling. Following the previous observations, we also propose a possible interaction among the proposal locations applying
MCMC moves, allowing us to preserve a higher degree of diversity in the population than through the use of resampling steps.
We call the resulting technique Markov APIS (MAPIS). MAPIS contains two sources of movement: the APIS movements with
the addition of MCMC iterations.

In APIS, at each iteration, the cloud of proposals partake jointly in the construction of an IS estimator using the deterministic
mixture approach [25, 26], that introduces more stability in the estimation. This estimator is combined with the past estimators
using a simpler strategy than in AMIS: a standard (simpler than the deterministic mixture) IS estimator using multiple propos-
als is built. Therefore, in this sense, APIS follows an approach “in-between” PMC and AMIS (for further clarifications see
Appendix A). Numerical results show that APIS improves the performance of a standard non-adaptive multiple importance
sampler regardless of the initial conditions and parameters. We have also compared the performance of APIS to that of several
AMIS and PMC schemes, showing that APIS outperforms both approaches in terms of robustness to the choice of the initial
parameters.

The paper is organized as follows. The general problem statement is provided in Section 2, and the novel APIS algorithm
is described in detail in Section 3. In Section 4, we introduce the additional MCMC adaptation which leads to the MAPIS
algorithm. Then, Section 5 is devoted to analyzing differences and similarities among APIS, AMIS and PMC methods. An
exhaustive numerical comparison among these three methods is provided in Section 6, where a bidimensional toy example is
considered, and Section 7, where two high-dimensional examples are addressed. Section 8 is devoted to comparing APIS with
other MCMC approaches (particle splitting methods), whereas the application of APIS to a localization problem in wireless
sensor networks is considered in Section 9. Finally, we conclude with a brief summary in Section 10.

1A preliminary version of this work has been published in [29]. With respect to that paper, here we propose an interacting adaptation using an MCMC
technique, discuss the construction and the consistency of the estimators, and provide more exhaustive numerical simulations, including a localization example
in wireless sensor networks. Comparisons with other sampling algorithms are also included.

2Since the adaptation of the scale parameters can be an issue for the performance of the sampler, here we focus only on the update of the location parameters
in order to ensure the robustness of the algorithm. The development of a robust update mechanism for the scales is left for a future work.



2. PROBLEM STATEMENT AND AIM OF THE WORK

In many applications, we are interested in inferring a variable given a set of observations or measurements. Let us consider the
variable of interest, x ∈ X ⊆ RDx , and let y ∈ RDy be the observed data. The posterior pdf is then

p(x|y) =
`(y|x)g(x)
Z(y)

∝ `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the model evidence or partition function (useful in
model selection). In general, Z(y) is unknown, so we consider the corresponding (usually unnormalized) target pdf,

π(x) = `(y|x)g(x). (2)

Our goal is computing efficiently the expected value of f(X), where X ∼ 1
Zπ(x), i.e., an integral measure w.r.t. the target pdf,

I = E[f(X)] =
1
Z

∫
X
f(x)π(x)dx, (3)

where Z =
∫
X π(x)dx. Our goal is to design a sampling algorithm able to estimate jointly I and Z. Furthermore, we would

like to obtain a sampler as efficient and robust as possible, so that the interested user can apply it easily to different problems
without having to perform an exhaustive fine tuning of the proposed approach.

3. THE APIS ALGORITHM

The adaptive population importance sampling (APIS) algorithm attempts to estimate jointly Z and I (for an arbitrary function
f(x)) by drawing samples from a population of adaptive proposals.

3.1. Motivation

Our motivation in designing the APIS algorithm has been trying to exploit the strong points of other adaptive importance
sampling algorithms (such as PMC or AMIS), while minimizing their drawbacks. First of all, we consider a cloud of proposal
pdfs as in PMC and unlike in AMIS. Moreover, we include the deterministic mixture (DM) approach for building the estimators,
since the DM strategy presents advantages in terms of stability and variance w.r.t. the standard IS approach, as shown in
Appendix A. However, unlike AMIS (which also exploits the DM technique), we follow a much more efficient approach,
dividing the set of iterations of the algorithm into epochs and using the DM scheme to construct the partial IS estimators. In this
way, we avoid the increase in computational cost of AMIS with the number of iterations without sacrificing the performance
(as shown in the results section). Finally note that, unlike PMC, no resampling step is required in APIS, thus avoiding the loss
of diversity in the population.

3.2. Description of the algorithm

For the sake of simplicity, here we consider proposal pdfs defined by two parameters: a location and a scale parameter. However,
any other class of proposals can be used, as long as their tails are fatter than the tails of the target density. Currently the
adaptation mechanism of APIS focuses exclusively on the location (i.e., first order) parameters, whereas the scale (i.e., second
order) parameters are fixed. We have decided not to adapt second or higher order parameters, in order to reinforce the robustness
of the sampler.3

The APIS algorithm is summarized in Table 1. First of all, the class of the N proposal pdfs, the initial location parameters
µ

(0)
i and their scale parameters Ci have to be fixed. The number of epochs M = T

Ta
(or directly the parameter Ta ≥ 2) also has

to be selected. The algorithm works on two different time scales: at each iteration t = 1, . . . , T = MTa, the global estimates Ît
and Ẑt are updated; whereas, at the end of every epoch m = 1, . . . ,M = T

Ta
, the location parameters µ

(m)
i of the N proposals

are updated using the partial IS estimates in Eq. (8).
More specifically, at t-th iteration, one sample from every proposal pdf is generated. The resulting N samples are jointly

used, providing a current IS estimator Ĵt obtained by the DM approach. The global estimators Ît and Ẑt are built iteratively as
in Eq. (6). Alternative expressions of Ît and Ẑt are given in Eqs. (13)-(15).

3It is well-known that the adaptation of second or higher order parameters in adaptive importance sampling schemes is a very delicate issue that can
compromise the performance of the algorithm [17]. However, in APIS we can use different scale parameters for the cloud of proposals (as in PMC).



Table 1. APIS algorithm.

1. Initialization: Set t = 1, m = 0, Î0 = 0, H0 = 0, and L0 = 0. Choose N normalized proposal pdfs,

q
(0)
i (x) = qi(x; µ

(0)
i ,Ci), i = 1, . . . , N,

with location (i.e., mean) vectors µ
(0)
i and scale (i.e., covariance) matrices Ci (i = 1, . . . , N ). Select the number of iterations per epoch,

Ta ≥ 2, and the total number of iterations, T = MTa, with M ≤ T
2
∈ Z+ denoting the number of epochs. Set also ηi = 0 and Wi = 0 for

i = 1, . . . , N .

2. IS steps:

(a) Draw zi,t ∼ q
(m)
i (x) for i = 1, . . . , N .

(b) Compute the importance weights,

wi,t =
π(zi,t)

1
N

PN
j=1 q

(m)
j (zi,t)

, i = 1, . . . , N, (4)

and normalize them, w̄i,t =
wi,t
St

, where St =
PN

j=1 wj,t.

3. Iterative IS estimation: Calculate the current estimate of I = E[f(X)],

Ĵt =

NX
i=1

w̄i,tf(zi,t) ≈ I, (5)

and the global estimate, using the recursive formula

Ît =
1

Ht−1 + St

“
Ht−1Ît−1 + StĴt

”
≈ I, (6)

where Ht = Ht−1 + St. Note that Ẑt = 1
Nt
Ht.

4. Learning:

(a) Compute

ρi =
π(zi,t)

q
(m)
i (zi,t)

, i = 1, . . . , N. (7)

(b) Calculate the partial estimations of the mean of the target,

ηi =
1

Wi + ρi
(Wiηi + ρizi,t) , (8)

and set Wi = Wi + ρi for i = 1, . . . , N .

5. Proposal adaptation: If t = kTa (k = 1, 2, . . . ,M ):

(a) Change the location parameters µ
(m)
i according to their partial estimates of the mean of the target, i.e., set

µ
(m+1)
i = ηi, i = 1, . . . , N, (9)

and q(m+1)
i = qi(x; µ

(m+1)
i ,Ci).

(b) “Refresh memory” by setting ηi = 0 and Wi = 0 for i = 1, . . . , N . Set also m = m+ 1.

6. Stopping rule: If t < T , set t = t+ 1 and repeat from step 2. Otherwise, end.

7. Outputs: Return the random measure {zi,t, wi,t}, for i = 1, ..., N and t = 1, ..., Ta, as approximation of π̄(x). More specifically, return
the estimate of the desired integral,

ÎT ≈ I =
1

Z

Z
X
f(x)π(x)dx, (10)

as well as the normalizing constant of the target pdf,

ẐT ≈ Z =

Z
X
π(x)dx. (11)

At the end of each epoch, i.e., t = mTa, the locations of the N proposal pdfs are adapted. The update of the location
parameter µ

(m)
i is done using only the last Ta samples drawn from the i-th proposal, and building the standard IS estimate ηi

in Eq. (8) of the expected value E[X], with X ∼ π̄(x).

The underlying idea of APIS is providing a good configuration for the location parameters µ
(m)
i , i = 1, . . . , N . Indeed, in
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Fig. 1. Contour plot of π(x) in Section 6.1, the initial means µ
(0)
i (squares) and the final means µ

(T )
i (circles) obtained in a

single run of APIS (σ = 5, N = 100, T = 2000, Ta = T
M = 50). The trajectories of two means in the sample population are

depicted in dashed line. Left figure: µ
(0)
i ∼ U([−4, 4]× [−4, 4]) (In1). Right figure: µ

(0)
i ∼ U([−20, 20]× [−20, 20]) (In2).

APIS we can equivalently state that the proposal consists of an equally weighted mixture of N pdfs:

ψ(m)(x) =
1
N

N∑
i=1

q
(m)
i (x|µ(m)

i ,Ci). (12)

In every epoch, NTa samples are drawn from (12) deterministically by taking exactly one sample from each pdf in the mixture.
This mixture can be seen as a kernel density approximation of the target pdf, π̄(x) ∝ π(x), where the proposals qi play the
role of the kernels [32, Chapter 6]. Thus, following kernel density estimation arguments, the best configuration for the location
parameters is µ

(m)
i ∼ π̄(µ). Therefore, in general, a good configuration of µ

(m)
i , i = 1, . . . , N , is around the modes of the

target, as shown in Fig. 1. This ensures a good estimation of the desired integral measure for any arbitrary function f(x) (since
ψ(m)(x) approximates π̄(x), diminishing the variance of the IS weights wi,t). For related considerations and an alternative
view of APIS see also Appendix B.

An example of the behaviour of APIS is shown in Fig. 1, which displays a contour plot of a multimodal target π(x) and the
evolution of the location parameters µi, after a run of T = 2000 iterations of APIS with M = 40, Ta = T

M = 50. Gaussian
proposals with Ci = σ2I2, σ = 5 have been used and two initializations (shown with squares) have been considered. In the
left figure, the initialization is µ

(0)
i ∼ U([−4, 4]× [−4, 4]) (In1), whereas in the right figure µ

(0)
i ∼ U([−20, 20]× [−20, 20])

(In2). The second initialization is better than the first one, since it covers all the areas of high probability of the target and in
particular it spans all its modes, towards which the proposals converge. Fig. 1 also depicts the final locations of the means, µ(T )

i

(circles), after T iterations of APIS. Furthermore, the trajectories of two means in the population are depicted by a dashed line.
Note that a random walk among different modes is induced in some cases, whereas the corresponding mean remains trapped
(after some iterations) around a local mode in other cases.

3.3. Remarks and observations

In this section we provide several remarks on important aspects of the APIS algorithm:
1) All the different proposal pdfs must be normalized.
2) APIS provides a procedure to update the location parameters µi, i = 1, . . . , N , in the mixture ψ(m)(x) of Eq. (12).
3) The adaptive mechanism of APIS is driven by the uncertainty in the partial IS estimators (as quantified by their variance).
The memoryless feature of APIS facilitates that each proposal pdf can describe local features of the target. Typically, the
proposals remain invariable in some regions or a random walk is generated around areas of high probabilities, in the state space
X ⊂ RDx .
4) Steps 4 and 5 of APIS do not require additional evaluations of the target and the proposal pdfs since they are already evaluated
at zi, i = 1, . . . , N , in step 2.
5) The global estimators, ÎT and ẐT , are iteratively obtained by an importance sampling approach using NT samples drawn
from NM different proposals: N initial proposals chosen by the user, and N(M − 1) proposals adapted by the algorithm.



Indeed, recall that zi,t denotes the sample from i-th proposal at the t-th iteration with unnormalized weights in Eq. (4), i.e.,
wi,t = π(zi,t)

ψ(m)(zi,t)
, where ψ(m) is defined in Eq. (12) and m = b tTa c. Then, the final global estimator ÎT can be written as

ÎT =
T∑
t=1

N∑
i=1

δ̄i,tf(zi,t),

=
1
ẐT

(
1
NT

T∑
t=1

N∑
i=1

wi,tf(zi,t)

)
,

(13)

where

δ̄i,t =
wi,t∑T

t=1

∑N
i=1 wi,t

=
wi,t

NTẐT
, (14)

and

ẐT =
1
NT

T∑
t=1

N∑
i=1

wi,t. (15)

The expressions (13), (14), and (15) above show that the global estimator is built using a standard multiple IS approach with
the mixtures ψ(m)(x) in Eq. (12) as proposal pdfs, with m = 1, . . . ,M , and drawing Ta samples from each of them.
6) Note that the adaptation procedure is independent from each proposal function. Hence, APIS can be completely parallelized
if Steps 2(b) and 3 in Table 1 are computed in batch at the end of the algorithm. All the evaluations of the target are performed
in parallel in Step 4(a).
7) APIS degenerates into a static algorithm when Ta = T (i.e., M = 1). In this scenario, where the adaptation of the proposals
never occurs, an iterated multiple IS algorithm is performed. We denote this algorithm, which combines the deterministic
mixture idea and the standard IS approach to build the global estimators, and thus is different from a standard multiple IS
scheme, as static APIS or PIS.

3.4. Choice of the parameters

As in any other Monte Carlo technique, the performance of APIS depends on a proper initialization and choice of the param-
eters, although this sensitivity is reduced w.r.t. a standard IS approach, as illustrated in the simulations. Hence, if some prior
information about the target is available, it should be used to choose the initial parameters. In the following, we briefly discuss
how to select the main parameters of the algorithm: µ

(0)
i , Ci and Ta.

3.4.1. Initial location parameters µ
(0)
i

If no prior information about the target is available, then the initial locations for the proposals should be chosen in order to
cover as much as possible of the target’s domain, X ⊆ RDx . Otherwise, they should be distributed according to the prior.

3.4.2. Scale parameters Ci

Since the scale parameters are not adapted, it is advisable to use different scales for the proposals. The simplest possibility is
to choose them randomly (within a range of acceptable scales) for each proposal. Another possibility is associating more than
one variance to each proposal pdf. For instance, selecting Nµ initial location parameters and Nσ different scale parameters for
each one, implying that the total number of different proposals is N = NµNσ .

3.4.3. Samples from each proposal per epoch Ta = T
M

Ta is the number of samples used to choose the new location parameters at the end of every epoch. As Ta grows, each partial IS
estimator ηi (used to adapt the proposals) provides a better estimation, closer to the expected value of the target π(x), and also
closer to the estimates provided by other proposals. Although this is clearly a good scenario, it is not the best situation for APIS,
as the proposals would tend to cover the same region of the target’s domain, thus losing diversity in the population. For smaller
values of Ta the proposal pdfs tend to be spread out around the regions of high probability, which is a better configuration for



APIS. However, if Ta is too small, large and almost random movements of the proposals are encouraged throughout the state
space.4

In any case, even with a bad choice of the parameters APIS always provides a consistent IS estimator; even in the worst
cases APIS provides better performance than an adaptive IS scheme using a single proposal and a static multiple IS scheme with
a random choice of the parameters, as shown in the simulations. Furthermore, the numerical results in Section 6 also suggest
the existence of an optimal value T ∗a (or equivalently M∗ = T

T∗a
), which depends of the scale parameters Ci of the proposals

and the dimension Dx. In general, proposals with small variances provide a better performance using smaller values of Ta,
whereas big variances work better with larger values of Ta. Different values of T (i)

a (one for each proposal) could be applied
according to their scale parameters and they could even be changed with the time step: smaller values for a more explorative
behaviour at the beginning, and larger values to reduce the uncertainty of the proposals as time evolves.

4. MCMC INTERACTION: MARKOV APIS

In APIS the adaptation of the location parameter of a proposal is done independently from the rest of the population. Here we
propose a possible interaction procedure among the location parameters of the proposal pdfs that avoids the loss of diversity in
the population caused by a resampling step (another form of interaction). We propose to share information among proposals
by applying an MCMC technique over the cloud of means, {µi}Ni=1, at every transition between two epochs, i.e., t = mTa
with m = 1, . . . ,M . An appropriate MCMC technique for this purpose is the Sample Metropolis-Hastings (SMH) algorithm
[11, Chapter 5]. We denote the SMH-enhanced APIS algorithm as Markov APIS (MAPIS). The proposed MCMC iterations are
applied after step 5 of APIS. Thus, MAPIS contains two sources of movement for the proposals: step 5 of APIS plus the SMH
iterations. Observe that, unlike steps 4 and 5 of APIS, these SMH steps require new evaluations of the target pdf. For the sake
of simplicity, in this section we remove the super-index denoting the current epoch from the location parameters µi.

4.1. Sample Metropolis-Hastings (SMH) algorithm

Consider the extended target pdf

π̄g(µ1, . . . ,µN ) ∝
N∏
i=1

π(µi), (16)

where each marginal π(µi), i = 1, ..., N , coincides with the target pdf in Eq. (2). Let us denote as τ = 1, . . . ,Υ the SMH
iteration index. At the τ -iteration, we consider the population of samples

Pτ = {µ1,τ , ...,µN,τ}.

At each iteration, the underlying idea of SMH is to replace one “bad” sample in the population with a “better” one, according
to certain suitable probabilities. The algorithm is designed so that, after a burn-in period τb, the elements in Pτ ′ (τ ′ > τb) are
distributed according to πg(µ1,τ ′ , . . . ,µN,τ ′), i.e., µi,τ ′ are i.i.d. samples from π(x). For τ = 1, ...,Υ, the SMH algorithm
consists of the following steps:

1. Draw µ0,τ ∼ ϕ(µ), where ϕ is another proposal density, chosen by the user, which could be based on the information
obtained from the previous steps of APIS.

2. Choose a “bad” sample, µk,τ with k ∈ {1, ..., N}, from the population according to a probability proportional to ϕ(µk,τ )
π(µk,τ )

,
which corresponds to the inverse of the importance sampling weights.

3. Accept the new population, Pτ+1 = {µ1,τ+1 = µ1,τ , ...,µk,τ+1 = µ0,τ , ....,µN,τ+1 = µN,τ}, with probability

α(Pτ ,µ0,τ ) =

∑N
i=1

ϕ(µi,τ )
π(µi,τ )∑N

i=0
ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

. (17)

Otherwise, set Pτ+1 = Pτ .

4. If τ < Υ, set τ = τ + 1 and repeat from step 1.

4A physical analogy could help the reader in understanding the behavior: defining an energy variableE = 1
Ta

, increasing Ta means to cool down the cloud
(less energy E) whereas decreasing Ta means to heat up the system, i.e., rise the energy E in the cloud of particles, increasing the total entropy.



Observe that the difference between Pτ and Pτ+1 is at most one sample. The ergodicity can be proved considering the extended
target function π̄g(µ1, . . . ,µN ) and proving the detailed balance condition, as shown in Appendix C. Furthermore, for N = 1
it is possible to show that SMH becomes the standard MH method with an independent proposal pdf [11].

4.2. Benefits of the interaction via MCMC

The use of the MCMC step facilitates the movement of the means towards the high-probability regions of the target, regardless
of the choice of the initial parameters. Indeed, it can help to reallocate “lost” means in a better position. This step could stop an
explorative random walk behaviour of some proposal and reallocate it around a mode. This effect is particularly advantageous
when the chosen value Ta is smaller than the optimal one T ∗a and complements the basic adaptive mechanism of APIS, allowing
us to avoid the degeneracy problem characteristic of particle systems.

Note that only one new importance weight needs to be evaluated at each iteration, since the rest of the weights have already
been computed in the previous steps (except for the initial iteration, where all need to be computed). Finally, we note also that
the locations of the proposals hardly ever change if the parameters of ϕ are not properly chosen, since new points are never
accepted. However, this issue can be easily solved by adapting these parameters using some of the existing adaptive MCMC
strategies [13, 33].

5. RELATIONSHIP WITH AMIS AND PMC AND CONSISTENCY OF THE ESTIMATORS

5.1. Estimators in PMC and AMIS: relationship with APIS

Table 2. Comparison among the AIS, PMC, AMIS and APIS algorithms.
Algorithm Approaches in the estimation Adaptation

Space Time type of IS weights Memory Equilibrium
Standard none Standard IS Standard IS Long Static

Adaptive IS (single proposal)
(Basic) Short

Generic PMC [7, 17] Standard IS Standard IS Standard IS (Resampling done Dynamic
(Resampling) on the current cloud)

Modified Short
PMC Deterministic Standard IS Standard IS (Resampling done Dynamic

(as in [19, 20]) mixture (Resampling) on the current cloud)
AMIS [18] none Deterministic Deterministic Long Static

(single proposal) mixture mixture
Both Dynamic/

Modified AMIS [34] none Deterministic Standard IS Short Pseudo-static
(single proposal) mixture (like epochs in APIS) (with N fixed)

APIS Deterministic Standard IS Standard IS Short Both Dynamic/
mixture (epochs) Pseudo-static

Markov APIS Deterministic Standard IS Standard IS Short Dynamic
mixture (+ MCMC) (epochs)

To clarify the different estimators used in PMC, AMIS and APIS, we distinguish two different stages w.r.t. the exchange of
statistical information among the proposal pdfs:

• In space (x ∈ X ): creating an estimator by sharing information among different proposal pdfs (i.e., forming a population)
for a given time step.

• In time (t ∈ N): combining information obtained in different iterations to create a global estimator.



PMC schemes use a cloud of proposal pdfs in each iteration (spread throughout the state space of the variable of interest),
following the standard IS approach (see Appendix A.1) to construct the estimator. The temporal combination of the information
(i.e., the global estimator) can be built in different ways, but the importance weights are based on the standard IS approach in
general [35]. In the numerical simulations, we also consider a modified version of PMC (M-PMC), where the spatial sharing
of information is performed through a deterministic mixture (see Appendix A.2). This idea is based on the Rao-Blackwellised
version of the D-kernel PMC algorithm [19, 20]. However, the way in which the mixture of proposals is updated in this
algorithm (using the Kullback-Leibler divergence) is much more complicated than in APIS. Furthermore, in [21] the authors
suggest a procedure to adapt all the parameter of a mixture of pdfs. However, the resulting algorithm is extremely sensitive to
the initial conditions, and thus quite unstable.

The AMIS algorithm uses a single proposal pdf at each iteration: N samples are drawn at every step from the same proposal.
However, all of the previously adapted proposal pdfs are considered to build a global estimator, following the DM approach.
This is clearly the most stable way to construct the global estimator, but it is also the most costly, since all the past proposal pdfs
need to be re-evaluated at every iteration. Consequently, the computational cost of AMIS grows as the algorithm evolves and
the pool of previous proposals becomes larger, thus becoming unfeasible for a medium/large number of iterations in practice. In
this sense, APIS lies “in between” PMC and AMIS: we use the deterministic mixture idea in space at each iteration, as shown
in Eqs. (4)-(5), but keep the standard IS approach to build the global estimator (in time), as shown in Eq. (6). Therefore, the
computational cost of APIS is reduced w.r.t. AMIS, since APIS does not need to re-evaluate past proposal pdfs, thus being able
to maintain a fixed computational cost per iteration (unlike AMIS).

5.2. Consistency of the estimators

The consistency of the global estimator provided by APIS must be ensured when number of samples per time step (N ) and/or
the number of iterations of the algorithm (T ) grow to infinity. In APIS, the global estimator, ÎT , is given by (13), with the
estimator of the normalizing constant, ẐT , given by (15). ForN →∞ and a fixed number of iterations T <∞, the consistency
can be guaranteed by standard IS arguments, since it is well known that ẐT → Z and ÎT → I as N → ∞ [7]. For T → ∞
and N < ∞, we have a convex combination of independent, consistent and biased IS estimators [7].5 However, ẐT → Z as
T → ∞, as discussed in [7, Chapter 14] for PMC schemes. This scenario also applies to APIS, since a standard IS approach
is applied in time to build the global estimator. Hence, we can ensure that ÎT is asymptotically unbiased and consistent as
T →∞.

In AMIS, the analysis for T → ∞ is much more complicated [34], since a long memory dependence among the samples
is introduced by the use of the deterministic mixture approach in time. Indeed, the IS weights (built using the DM scheme)
are also used to adapt the proposal pdf in AMIS, yielding a bias that cannot be easily controlled from a theoretical point of
view. A similar and well-known problem appears in adaptive MCMC techniques: even if the kernel of the algorithm is valid
at every step, a wrong adaptation (change of the kernel) using all the previously generated samples can easily jeopardize the
convergence of the chain. Thus, in order to prove the consistency of AMIS, the authors in [34] suggest a simplification in the
adaptive structure of AMIS. In this modified approach, the adaptation is performed using only the more recently generated
samples (in APIS terminology this corresponds to one epoch) and standard IS weights, whereas the global estimation still uses
the deterministic mixture approach. Note that this resembles the adaptive structure of APIS, thus reinforcing the idea that APIS
is a robust technique, partly thanks to the memoryless feature of its adaptation.

5.3. Evolution of the proposals

In AMIS, the parameters of the proposal are updated and they converge to fixed values after a certain number of iterations (as
in a standard adaptive IS). Thus, the “distance” between two proposals at different time steps diminishes as T → ∞. In the
basic PMC schemes, the location parameters of the cloud of proposals are updated via resampling. In this case, the positions
of the proposals change at every iteration, moving around the modes of the target as in a “dynamic equilibrium”. In APIS both
situations can occur, as shown in Fig. 1. On the one hand, random walks around high probability regions can be generated
due to partial memoryless IS estimates or MCMC iterations (unlike PMC, where they are due to the resampling procedure and
can result in loss of diversity). On the other hand, some proposal could also reach a pseudo-static equilibrium as in AMIS, for
instance becoming trapped in a local mode. Both behaviours present certain advantages and APIS benefits from both features,
attaining a trade off between explorative search and stability in the estimation.

5The locations of the proposals depend on the previous configuration of the cloud, but the samples drawn at each iteration are independent of the previous
ones and each other, thus leading to independent IS estimators. The bias is due to the estimation of Z, the normalizing constant of π.



Table III.1
HHHHAlg.

Std
σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 29.56 41.95 64.51 42.84 2.17 0.0454 0.0147 0.0187 0.1914 4.55

PIS (Ta = T ) 29.28 47.74 75.22 17.61 0.2424 0.0280 0.0124 0.0176 0.1789 0.0651

APIS

Ta = 100 22.86 13.70 6.2606 2.47 0.0438 0.0131 0.0129 0.0212 0.1821 0.0110
Ta = 50 17.62 12.14 5.42 1.99 0.0501 0.0118 0.0138 0.0209 0.1750 0.0077
Ta = 20 14.75 11.33 4.77 1.66 0.0361 0.0108 0.0146 0.0208 0.1873 0.0056
Ta = 5 13.01 8.50 2.30 0.2831 0.0074 0.0114 0.0149 0.0251 0.2027 0.0045
Ta = 2 9.46 2.45 0.0225 0.0170 0.0103 0.0139 0.0185 0.0354 0.2007 0.0077

AMIS (best) 124.22 121.21 100.23 54.67 0.8640 0.0124 0.0121 0.0126 0.0136 −−−−−
(worst) 125.43 123.38 114.82 89.09 16.92 0.3626 0.0128 0.0131 18.66 −−−−−

PMC N = 100 112.99 114.11 47.97 26.32 2.34 0.5217 0.0559 0.4331 2.41 0.3017

M-PMC N = 100 111.92 107.58 26.86 6.03 0.6731 0.1154 0.0744 0.4142 2.42 0.07
Table III.2

Ta = 100 0.7134 0.0933 0.3213 0.1611 0.0167 0.0101 0.0147 0.0023 0.1765 0.0070
Ta = 50 0.7058 0.1287 0.1136 0.1097 0.0114 0.0094 0.0139 0.0020 0.1831 0.0051

MAPIS Ta = 20 0.6950 0.1319 0.0464 0.1040 0.0081 0.0098 0.0152 0.0021 0.1943 0.0041
(N = 100) Ta = 5 0.2729 0.0665 0.0319 0.0154 0.0082 0.0123 0.0151 0.0019 0.1946 0.0046

Ta = 2 0.1708 0.0148 0.0116 0.0138 0.0105 0.0130 0.0165 0.0027 0.1918 0.0075

PMC N = 500 112.18 113.10 36.63 18.59 2.20 0.4011 0.0134 0.0259 0.8891 0.2964
N = 2000 112.09 112.45 27.91 13.63 2.01 0.1899 0.0057 0.0028 0.1120 0.2802

Table 3. (Ex-in-Sect 6) MSE of the estimation of the mean of the target (first component) with the initialization In1. In Table
III.1, we set N = 100 (T = 2000; the total number of samples is L = NT = 2 ·105) for MIS, PIS, APIS and PMC. For AMIS,
we show the best results, obtained varying K and M such that L = KM = 2 · 105.

6. TOY EXAMPLE: NUMERICAL COMPARISON

6.1. Target distribution

In order to test and compare APIS with other algorithms, we first consider a bivariate multimodal target pdf, which is itself a
mixture of 5 Gaussians, i.e.,

π(x) =
1
5

5∑
i=1

N (x; νi,Σi), x ∈ R2, (18)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 = [−9, 7]>, ν5 = [14,−14]>, and covariance matrices
Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2], Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5] and Σ5 = [2, −0.1;−0.1, 2].
Fig. 1 shows a contour plot of π(x). Note that we can compute analytically moments of the target in Eq. (18), so we can easily
check the performance of the different techniques.

6.2. Goal, comparisons and initialization

We consider the problem of computing (a) the mean of the target, i.e., E[X] = [1.6, 1.4]> where X ∼ 1
Zπ(x), (b) and the

normalizing constant Z = 1, using Monte Carlo techniques. We compare the performance in terms of Mean Square Error
(MSE) in the estimation using different sampling methodologies: (1) standard, non-adaptive, Multiple IS (MIS) approach; (2)
PIS (or static APIS) scheme; (3-4) APIS and MAPIS (APIS with the MCMC interaction) methods; (5) the AMIS technique
[18]; and (6) a PMC acheme [17]. Moreover, we test for all the previous techniques two different initializations:

In1: First, we choose deliberately a “bad” initialization of the initial means in the sense that they are placed far away from
the modes. Thus, we can test the robustness of the algorithms and their ability to improve the corresponding static
approaches. Specifically, the initial location parameters are selected uniformly within a square,

µ
(0)
i ∼ U([−4, 4]× [−4, 4]),

for i = 1, . . . , N . A single realization of µ
(0)
i is depicted by the squares in Fig. 1(a) (jointly with the final locations µ

(T )
i ,

in one specific run).



Table IV.1
HHHHAlg.

Std
σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 12.00 9.40 10.26 10.64 7.67 4.40 0.5443 0.0321 0.1764 4.37

PIS (Ta = T ) 10.14 0.9469 0.0139 0.0085 0.0100 0.0115 0.0146 0.0237 0.1756 0.0106

APIS

Ta = 100 0.7741 0.0318 0.0011 0.0017 0.0054 0.0118 0.0129 0.0211 0.1794 0.0032
Ta = 50 0.5792 0.0144 0.0007 0.0015 0.0051 0.0112 0.0131 0.0221 0.1772 0.0029
Ta = 20 0.4831 0.0401 0.0006 0.0014 0.0047 0.0095 0.0136 0.0245 0.1732 0.0029
Ta = 5 0.2552 0.0008 0.0005 0.0022 0.0064 0.0111 0.0149 0.0270 0.2076 0.0039
Ta = 2 0.0547 0.0017 0.0116 0.0051 0.0103 0.0142 0.0182 0.0387 0.1844 0.0080

AMIS (best) 113.97 112.70 107.85 91.56 44.93 12.75 0.7404 0.0121 0.0141 −−−−−
(worst) 116.66 115.62 111.83 104.44 70.62 35.66 9.43 0.0871 18.62 −−−−−

PMC N = 100 111.54 110.78 90.21 46.84 2.29 0.5023 0.0631 0.4273 2.42 0.3082

M-PMC N = 100 23.16 7.43 7.56 3.11 0.6420 0.1173 0.0720 0.4194 2.37 0.0695
Table IV.2

Ta = 100 0.4753 0.0334 0.0027 0.0017 0.0059 0.0092 0.0135 0.0217 0.1762 0.0034
Ta = 50 0.4677 0.0287 0.0007 0.0015 0.0059 0.0091 0.0133 0.0222 0.1901 0.0031

MAPIS Ta = 20 0.3110 0.0092 0.0006 0.0014 0.0061 0.0091 0.0141 0.0233 0.1805 0.0030
(N = 100) Ta = 5 0.3497 0.0015 0.0007 0.0041 0.0079 0.0122 0.0155 0.0249 0.1933 0.0039

Ta = 2 0.0870 0.0101 0.0028 0.0060 0.0098 0.0126 0.0154 0.0333 0.2026 0.0078

PMC N = 500 110.58 109.69 64.81 15.99 2.09 0.4841 0.0144 0.0267 0.8924 0.2900
N = 2000 108.22 107.10 27.93 13.21 1.84 0.1912 0.0054 0.0027 0.0988 0.2805

Table 4. (Ex-in-Sect 6) MSE of the estimation of the mean of the target (first component) with the initialization In2. In Table
IV.1, we set N = 100 (T = 2000; the total number of samples is L = NT = 2 · 105) for MIS, PIS, APIS and PMC. For AMIS,
we show the best results, obtained varying K and M such that L = KM = 2 · 105.

In2: We also consider a better initialization where some proposals are placed close to the modes. Specifically, the initial means
are selected uniformly within a square,

µ
(0)
i ∼ U([−20, 20]× [−20, 20]),

for i = 1, . . . , N . A single realization of µ
(0)
i is depicted by the squares in Fig. 1(b) (jointly with the final locations µ

(T )
i ,

in one specific run).

Below we provide more details of each applied scheme (providing the used parameters).

6.3. Techniques

We apply the following techniques proposed in this paper:
• APIS: we apply APIS with N = 100 Gaussian proposals

q
(m)
i (x) = N (x; µ(m)

i ,Ci), i = 1, . . . , N.

The initial configurations of the means µ
(0)
i are described above. First, we use the same isotropic covariance matrix,

Ci = σ2I2, for each proposal. We test different values of σ ∈ {0.5, 1, 2, 3, 5, 7, 10, 20, 70}, to gauge the performance of
APIS. Then, we also try different non-isotropic diagonal covariance matrices, Ci = diag(σ2

i,1, σ
2
i,2), where σi,j ∼ U([1, 10])

for j ∈ {1, 2} and i = 1, . . . N , i.e., different for each proposal. We set T = 2000 and Ta ∈ {2, 5, 20, 50, 100}, i.e.,
M = T

Ta
∈ {20, 40, 100, 400, T2 = 1000}. We test the performance of APIS with the two initializations described above In1

and In2.
• PIS (static APIS): we also consider the case M = 1, which corresponds to a static APIS technique with multiple proposals
and no adaptation. PIS combines the deterministic mixture idea and the standard IS approach to build the global estimators (see
Appendix A). For this reason, it is different from the standard multiple IS scheme, described below.
•MAPIS: for the MCMC interaction, we consider again a Gaussian proposal for the SMH method, i.e., ϕ(µ) = N (x; [0, 0]>, λ2I2),
with λ = 10. To maintain a constant computational cost in each simulation, we fix Υ = Ta = T

M (the number of iterations of
SMH, at the end of each epoch), i.e., the total number of iterations of SMH in the entire MAPIS method is alway MΥ = T .
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Fig. 2. (Ex-in-Sect 6) MSE in log-scale versus the scale parameters, σi,j , in the estimation of the first component of the
expected value of π. For the APIS and AMIS methods, we show the best and worst results. (a) Comparison among MIS
(rhombus), PIS (triangles) and APIS. (b) Comparison between AMIS and APIS. (c) Comparison among M-PMC (rhombus),
PMC with N = 100 (triangles) and APIS. (d) Comparison among PMC with N = 500 (X-marks), PMC with N = 2000
(triangles), APIS and MAPIS (squares).

Moreover, we compare these techniques with the following benchmark schemes:
• Non-adaptive Multiple IS (MIS): Given the initial µ

(0)
i , these positions never change as in PIS. We set N = 100. Thus,

T = 2000 samples are drawn from each proposal in order to perform a fair comparison with APIS (in APIS we use
L = NT = 2 · 105 samples). The IS weights are built using the standard IS approach described in Appendix A.1.
• AMIS scheme: AMIS uses only one proposal pdf in the space fixing the temporal iteration index m, i.e.,

hm(x) = N (x; µm,Φm), m = 0, . . . ,M − 1,

Both parameters µm and Φm are updated after each iteration. Note that we have used M as the number of adaptive iterations
in AMIS since it is equivalent to the number of epochs M used in APIS. The initial mean µ0 is chosen according to In1 and
In2, whereas Φ0 = σ2I2 with σ ∈ {0.5, 1, 2, 3, 5, 7, 10, 20, 70}. At each iteration m, K samples are drawn from hm(x).
Then, IS weights are associated to these samples using the deterministic mixture idea, taking into account all the previous
proposals h0(x), h1(x),. . . , hm−1(x). Therefore, the weights associated to previous samples need to be updated as well. For
these reasons, AMIS is more costly than APIS. Then, the parameters µm and Φm are updated according to the IS estimation
of the mean and variances of the target. We have considered values of K and M such that L = KM = NT = 2 · 105, for
a fair comparison with APIS. Specifically, we have run different simulations using K ∈ {500, 1000, 2000, 5000} and, as a
consequence, M ∈ {40, 20, 10, 4}. Obviously, AMIS becomes more costly when M increases. However, depending on the
starting value σ, the best results of AMIS in this scenario are usually provided byM ∈ {4, 10} (i.e.,K = 5000 andK = 2000).
This is due to the fact that better estimations of the mean and covariance of the target are achieved, so that the adaptation is also
improved.



• PMC schemes: we also apply the mixture PMC scheme [17]. More precisely, we consider a population of samples

{x(t)
1 , . . . ,x(t)

N },

at the t-th iteration, and propagate them with random walks

x(t+1)
i = x(t)

i + εt, i = 1, . . . , N,

where εt ∼ N (x; [0, 0]>,Φ), with Φ = σ2I2 and σ ∈ {0.5, 1, 2, 5, 10, 20, 70}. At each iteration, the resampling step is
performed according to the normalized importance weights. The initial cloud {x(0)

i }Ni=1 is chosen according to the same
initialization procedure described for In1 and In2. The cumulative mean of the cloud {x(0)

i }
N,T
i=1,t=1, as well as the cumulative

estimate of the normalizing constant, are computed until T = 2000. We have not been able to apply the adaptive strategy
suggested in [17] in order to select suitable scale parameters, within a population of pre-chosen values, since it has been
difficult to select these values adequately. More specifically, we have not been able to find a set of parameters for this approach
that provides reasonable results in this scenario. We have set N = 100 for a fair comparison with APIS, using the same
total number of samples L = NT . Moreover, we have also run other simulations with N = 500, 2000 in order to see the
computational cost needed to reach the performance of APIS. Finally, we have also considered a Modified PMC (M-PMC) that,
similarly to [19, 20], uses the deterministic mixture for the spatial construction of the global estimator as in APIS. The results
are shown in Tables 3-4.

6.4. Results

All the results are averaged over 2000 independent experiments. Tables 3 and 4 show the Mean Square Error (MSE) in the
estimation of the mean (first component), with the initialization In1 and In2, for the different algorithms. In AMIS, for the
sake of simplicity, we only show the worst and best results among the several simulations made with different parameters (see
the detailed description above). The results of MAPIS and PMC with N ∈ {500, 2000} are included in two different subtables
since their application entails more computational effort. In each subtable, the best results in each column are highlighted in
bold-face.

We can observe that APIS outperforms the other techniques, except for a few values of σ, where APIS has a negligibly larger
error. Only with σ = 70, AMIS has an MSE sensibly smaller than APIS in its best case. However, this result depends strictly
on the choice of the parameter: the MSE of AMIS in its worst case is the highest whereas APIS provides always small MSE
regardless of the choice of Ta. Moreover, for high values of σ ∈ {10, 20, 70}, the results of APIS could be easily improved
using a higher value of Ta (for instance, Ta = 500). Observe also that the robust implementation, choosing randomly the scale
parameters σi,j ∼ U([1, 10]), provides the best results (with the exception of PMC with N = 2000 which provides negligibly
smaller MSE, with much higher computational cost). Moreover, MAPIS in general improves the results and the robustness of
APIS, although at the expense of a higher computational cost due to the additional MCMC steps. Figure 2 depicts the MSE in
log-scale of the estimation of the mean of π versus the choice of the scale parameters σi,j , comparing the different techniques.

7. NUMERICAL COMPARISONS IN HIGHER DIMENSION

In this section, we investigate there performance of APIS and MAPIS in higher dimensional problems. As a target density, we
consider a mixture of Gaussians π̄(x) = 1

3

∑3
k=1N (x; νk,Σk), with x ∈ RDx , νk = [νk,1, . . . , νk,Dx ]> and Σk = ξkIDx ,

k = 1, 2, 3, where IDx is the Dx ×Dx identity matrix. In this example, we consider two different cases: Dx ∈ {10, 30}. We
use Gaussian proposal densities for all the analyzed methodologies: we compare APIS and MAPIS, with PMC and AMIS as
in the previous examples. Furthermore, here we also test the mixture AIS scheme in [21]. In this method, weights, means and
covariances of a mixture of Gaussians (with a fixed number of component denoted as J) are adapted.

We have tried different combinations of parameters keeping fixed the total number of samples, L = 4·105. The initial means
are selected randomly µ(0)

i ∼ U([−W ×W ]Dx), for i = 1, . . . , N , and for all the techniques. We set W = 10 for Dx = 10,
whereasW = 6 forDx = 30. For APIS, we testN ∈ {10, 100, 200, 500, 103} and for PMCN ∈ {100, 200, 103, 104}. For the
method in [21], we use J ∈ {10, 20, 100, 500}. In APIS, we also test different values of Ta ∈ {100, 200, 500}. We recall that
in AMIS there is only one proposal. In AMIS, we test different values of samples per iteration K ∈ {500, 103, 5 · 103, 104, 2 ·
104, 105}.

We use different initial covariance matrices, Ci = diag(σ2
i,1, . . . , σ

2
i,10). We choose randomly at each run the values of

σi,j ∼ U([1, Q]), for all i = 1, . . . , N , and j = 1, . . . , Dx. We test Q = 11 for Dx = 10 whereas Q ∈ {6, 11} for Dx = 30.



The total number of iterations is chosen adequately for each simulation in order to keep the computational effort fixed to
L = 4 · 105. For MAPIS, we consider again a Gaussian proposal for the SMH method, i.e., ϕ(µ) = N (x; [0, 0]>, λ2I2), with
λ = 5. To keep a constant computational cost in each simulation of MAPIS, we fix Υ = Ta, that is the number of iterations of
SMH. Thus, the total steps of SMH are ΥM = TaM = T . Hence, in MAPIS the total number of evaluations of the target is
L′ = T + L (where L = 4 · 105 and T is chosen differently in each run in order to keep L fixed).

7.1. Target specifications for Dx = 10

In this case, we set ν1,j = 6, ν2,j = −5 with j = 1, . . . , 10, and ν3 = [1, 2, 3, 4, 5, 5, 4, 3, 2, 1]>. Moreover, we set ξk = 3, for
all k = 1, 2, 3. The expected value of the target π̄(x) is E[X] =

[
2
3 , 1,

4
3 ,

5
3 , 2, 2,

5
3 ,

4
3 , 1,

2
3

]>
, where X ∼ π̄(x).

7.2. Target specifications for Dx = 30

For Dx = 30, we set ν1,j = −5, ν2,j = 3 and ν3,j = 6, with j = 1, . . . , 30. We set again ξk = 3, for all k = 1, 2, 3. In this
case, E[X] =

[
4
3 , . . . ,

4
3

]>
.

7.3. Results

For each combination of parameters, we have run 103 independent simulations and compute the mean square error (MSE) in
the estimation of E[X] (we have averaged the MSEs of all the components). The best and the averaged results in terms of MSE
are shown in Table 5. With Dx = 10, PMC provides the minimum MSE but APIS obtains the best averaged results. AMIS
suffers in this multimodal scenario since it often converges to a specific mode. On the contrary, with Dx = 30, AMIS provides
the best results. However, in both cases, APIS provides results close to the best performance. The results also show that MAPIS
is more robust than APIS, but at the expense of an increased computational effort.

Dim. Dx Results PMC AMIS AIS in [21] APIS MAPIS

10 best 0.0858 13.70 7.68 0.3857 0.3213
average 7.52 16.92 10.92 2.82 2.06

30 best 8.34 4.75 8.81 5.58 4.81
average 17.35 8.73 13.46 10.20 9.17

Table 5. (Ex-in-Sect 7) Averaged and best results in terms of MSE.

8. COMPARISON WITH PARTICLE SPLITTING METHODS

8.1. Bivariate bimodal target function

Let us consider the following target pdf used in [15, pages 495-498],

π̄(x1, x2) ∝ exp
(
−x

2
1 + x2

2 + (x1x2)2 − 24x1x2

2

)
,

x1, x2 ∈ R. The goal is to compute the normalizing constant Z = 1
2.539·1026 = 2.825 · 10−27 (approximated via an exhaustive

deterministic method). The authors in [15] apply a particle splitting technique with a computational effort equivalent to L ≈
1.2 · 105 samples (as stated in [15, page 498]), obtaining an averaged relative error of 5%.

We apply APIS with N = 100 Gaussian proposal pdfs and T = 103, so that L = NT = 105. In each run, the initial means
are chosen randomly µ

(0)
i ∼ U([−6, 6] × [−6, 6]). The covariance matrices are also chosen randomly Ci = diag(σ2

i,1, σ
2
i,2),

with σi,j ∼ U([1, 6]), i = 1, . . . , N and j = 1, 2. We run 103 different simulations with different epochs 2 ≤ M ≤ T
2

(recall M = b TTa c). Figure 3(a) shows the percentage of relative error obtained with APIS (solid line) and particle splitting
method (dashed line). APIS outperforms the technique in [15, pages 495-498] for every value of M . Furthermore with M = 1,
corresponding to the (static) PIS method, we obtain a relative error of 6%. In the other extreme case, with M = T , the
movements of the means µ

(m)
i are random walks (i.e., non-driven movements) producing a relative error of 78% (this shows

the effectiveness in the learning movements of APIS).
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Fig. 3. (Ex-in-Sect 8.1-8.2) Relative error (%) obtained with APIS as a function of the number of epochs M = b TTa c (solid
line) and the particle splitting method [15, pages 495-498] (dashed line), (a) for the example in Section 8.1 and (b) for the
example in Section 8.2.

8.2. Logistic model

Consider a set of binary observations yk ∈ {0, 1} and the the likelihood function

`(y|x) ∝
Dy∏
k

pykk (1− pk)1−yk , pk =
(
1 + exp(−s>k x)

)−1
,

with x = [x1, x2, x3]> ∈ R3 and where sk = [sk,1, sk,2, sk,3]> is the k-th explanatory variable. We use a Gaussian prior

g(x) ∝ exp
(
− 1

2ξ2 x2
)

with ξ = 10. We generate Dy = 100 artificial data y∗ = [y∗1 , . . . , y
∗
Dy

]> from this model given

x∗ = [1,−5.5, 1]> (vectors sk are generated as in [15, page 500]). Let us consider the posterior pdf

π̄(x|y∗) ∝ `(y∗|x)g(x).

The goal consists on computing E[X] with X ∼ π̄(x|y∗), as an estimate of x∗. We compare the ADAM technique in [36,
14, 15]6 with APIS. We use N = 10 Gaussian pdfs in APIS and T ∈ 103 (recall that L = NT = 104 total samples).7 The
initial means are chosen randomly µ(0)

i ∼ U([−6 × 6]3), for i = 1, . . . , N , in each simulation. The covariance matrices
Ci = diag(σ2

i,1, σ
2
i,2, σ

2
i,3) are also chosen randomly in each run, σi,j ∼ U([1, 6]). We test APIS considering different number

of epochs M = b TTa c.
Figure 3(b) depicts the percentage of the relative error (averaged over the 3 components) for APIS (solid line) and ADAM

(dashed line). APIS, in general, outperforms ADAM (for several values of M ). The results are averaged over 103 independent
runs.

9. LOCALIZATION PROBLEM IN A WIRELESS SENSOR NETWORK

We consider the problem of positioning a target in a 2-dimensional space using range measurements. This is a problem that
appears frequently in localization applications in wireless sensor networks [37, 38, 39]. Namely, we consider a random vector
X = [X1, X2]> to denote the target position in the plane R2. The position of the target is then a specific realization X = x.
The range measurements are obtained from 3 sensors located at h1 = [−10, 2]>, h2 = [8, 8]> and h3 = [−20,−18]>. The
observation equations are given by

Yj = a log
(
||x− hj ||

0.3

)
+ Θj , j = 1, . . . , 3, (19)

where Θj are independent Gaussian random variables with identical pdfs, N (ϑj ; 0, ω2), j = 1, 2. We also consider a prior
density over ω, i.e., Ω ∼ p(ω) = N (ω; 0, 25)I(ω > 0), where I(ω > 0) is 1 if ω > 0 and 0 otherwise. The parameter A = a is

6We use the code provided directly by the authors in [15, pages 500-503] considering the generated Dy = 100 observations and only one run of ADAM in
each simulation.

7The authors in [15] use 103 particles but it is not straightforward to compute the overall computational effort. The computational cost of ADAM in [15,
pages 500-503] is L ≥ 104 (in terms of evaluations of the target) since they also applied a Newton-Raphson method before running the algorithm and at least
10 steps of an hybrid MCMC technique before each iteration of ADAM.



also unknown and we again consider a Gaussian prior A ∼ p(a) = N (a; 0, 25). Moreover, we also apply Gaussian priors over
X, i.e., p(xi) = N (xi; 0, 25) with i = 1, 2. Thus, the posterior pdf π(x1, x2, a, ω) = p(x1, x2, a, ω|y) is

π(x1, x2, a, ω) ∝ `(y|x1, x2, a, ω)p(x1)p(x2)p(a)p(ω),

where y ∈ RDy is the vector of received measurements. We simulate d = 30 observations from the model (Dy/3 = 10 from
each of the three sensors) fixing x1 = 3, x2 = 3, a = −20 and ω = 5. With Dy = 30, the expected value of the target
(E[X1] ≈ 2.8749, E[X2] ≈ 3.0266, E[A] ≈ 5.2344, E[Ω] ≈ 20.1582)8 is quite close to the true values.

Our goal is computing the expected value of (X1, X2, A,Ω) ∼ π(x1, x2, a, ω) via Monte Carlo, in order to provide an
estimation of the position of the target, the parameter a and the standard deviation ω of the noise in the system. We apply APIS
and PMC schemes both using N Gaussian proposals as in the previous example. For both algorithms, we initialize the cloud of
particles spread throughout the space of the variables of interest, i.e.,

µ
(0)
i ∼ N (µ; 0, 302I4), i = 1, ..., N,

and the scale parameters Ci = diag(σ2
i,1, . . . , σ

2
i,4)I4 with i = 1, . . . , N . The values of the standard deviations σi,j are chosen

randomly for each Gaussian pdf. Specifically, σi,j ∼ U([1, Q]), where we have considered three possible values for Q, i.e.,
Q ∈ {5, 10, 30}.

The MSE of the estimations (averaged over 3000 independent runs) are provided in Tables 6 and 7 for different values of
N ∈ {50, 100, 200}, T ∈ {1000, 2000, 4000} and Ta ∈ {20, 100}. More specifically, in Table 6, we maintain fixed T = 2000
whereas in Table 7 we keep fixed the total number of generated samples NT = 2 105. APIS outperforms always PMC when
σi,j ∼ U([1, 5]) and σi,j ∼ U([1, 10]) whereas PMC provides better results for σi,j ∼ U([1, 30]) (with the exception of the
case N = 200 and T = 2000 in Table 6). This is owing to APIS needs the use of a greater value of Ta with bigger variances.
Therefore, the results show jointly the robustness and flexibility of the APIS technique.

HH
HHAlg.

Std
σi,j ∼ U([1, 5]) σi,j ∼ U([1, 10]) σi,j ∼ U([1, 30])

APIS
N = 50

Ta = 20 0.0181 0.0768 0.8298
Ta = 100 0.0261 0.0770 0.6808

PMC —– 0.2067 0.5224 0.2421

APIS
N = 100

Ta = 20 0.0073 0.0379 0.5075
Ta = 100 0.0147 0.0433 0.3702

PMC —– 0.0642 0.4345 0.1533

APIS
N = 200

Ta = 20 0.0053 0.0174 0.2816
Ta = 100 0.0111 0.0229 0.1886

PMC —– 0.0136 0.2741 0.3455

Table 6. (Ex-in-Sect 9) MSE of the estimation of E[(X1, X2, A,Ω)] using APIS and PMC with T = 2000, for different
random choices of the scale parameters and different number of particles N in the population. The best results, in each column
and with the same number N , are highlighted with bold-faces.

10. CONCLUSIONS

In this work, we have introduced the adaptive population importance sampling (APIS) algorithm. APIS is an iterative impor-
tance sampling (IS) technique which uses multiple adaptive proposal pdfs. On the one hand, the deterministic mixture is used
to build the partial IS estimators for the population of proposals in APIS, thus providing an increased robustness w.r.t. the
population Monte Carlo (PMC) approach. On the other hand, the temporal evolution makes use of a standard IS estimator,
thus avoiding the increase in computational cost as the algorithm evolves occurring in the adaptive multiple importance sam-
pling (AMIS) scheme. Consequently, APIS is able to attain simultaneously the advantages of these two approaches (simplicity
and robustness) while minimizing their drawbacks. Unlike PMC, APIS updates the proposal pdfs in an adaptive IS fashion,
without using resampling. Hence, there is no loss of diversity in the mixture of proposals. Furthermore, by introducing an
MCMC approach on top of APIS (thus leading to the so-called MAPIS algorithm) that diversity may be increased w.r.t. the
initial population. Another advantage of APIS is that it is easily parallelizable, thus serving as the basis to develop distributed

8These values have been obtained with a deterministic, expensive and exhaustive numerical integration method, using a thin grid.



H
HHHAlg.

Std
σi,j ∼ U([1, 5]) σi,j ∼ U([1, 10]) σi,j ∼ U([1, 30])

APIS
N = 50 T = 4000

Ta = 20 0.0067 0.0330 0.4827
Ta = 100 0.0069 0.0269 0.3078

PMC —– 0.2014 0.5151 0.2214

APIS
N = 200 T = 1000

Ta = 20 0.0139 0.0498 0.5800
Ta = 100 0.0453 0.0947 0.5439

PMC —– 0.0153 0.2747 0.3540

Table 7. (Ex-in-Sect 9) MSE of the estimation of E[(X1, X2, A,Ω)] using APIS and PMC, for different random choices of the
scale parameters, keeping constant the total number of drawn samples NT = 2 105. The best results, in each column and with
the same number N , are highlighted with bold-faces.

importance sampling estimators. Numerical results confirm that APIS outperforms both techniques (AMIS and PMC) in terms
of performance and robustness w.r.t. the choice of the initial parameters.
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A. IS APPROACHES USING WITH MULTIPLE PROPOSAL PDFS

Recall that our goal is computing efficiently some moment of x, i.e., an integral measure w.r.t. the target pdf 1
Zπ(x), I =

1
Z

∫
X f(x)π(x)dx. Let us assume that we have two normalized proposal pdfs, q1(x) and q2(x), from which we intend to draw

K1 and K2 samples respectively: x(1)
1 , . . . ,x(1)

K1
∼ q1(x) and x(2)

1 , . . . ,x(2)
K2
∼ q2(x). Then, there are at least two procedures

to build a joint IS estimator: the standard importance sampling (IS) approach and the deterministic mixture (DM) IS technique.
Both are briefly reviewed in the following.

A.1. Standard IS approach

The simplest approach [7, Chapter 14] is computing the classical IS weights:

w
(1)
i =

π(x(1)
i )

q1(x(1)
i )

, w
(2)
j =

π(x(2)
j )

q2(x(2)
j )

, (20)

with i = 1, . . . ,K1 and j = 1, . . . ,K2. The IS estimator is then built by normalizing them jointly, i.e., computing

ÎIS =
1
Stot

K1∑
i=1

w
(1)
i f(x(1)

i ) +
K2∑
j=1

w
(2)
j f(x(2)

j )

 , (21)

where Stot = S1+S2 and the two partial sums are given by S1 =
∑K1
i=1 w

(1)
i and S2 =

∑K2
j=1 w

(2)
j . Considering the normalized

weights, w̄(1)
i = w

(1)
i

S1
and w̄(2)

j =
w

(2)
j

S2
, Eq. (21) can be rewritten as

ÎIS =
1

S1 + S2

(
S1Î1 + S2Î2

)
=

S1

S1 + S2
Î1 +

S2

S1 + S2
Î2,

where Î1 and Î2 are the two partial IS estimators, obtained by considering only one proposal pdf. This procedure can be easily
extended for N > 2 different proposal pdfs, obtaining the complete IS estimator as the convex combination of the N partial IS
estimators:

ÎIS =
∑N
n=1 SnÎn∑N
n=1 Sn

, (22)

where x(n)
1 , . . . ,x(n)

Kn
∼ qn(x), w(n)

i = π(x(n)
i )/qn(x(n)

i ), Sn =
∑Kn
i=1 w

(n)
i and În =

∑Kn
i=1 w

(n)
i f(x(n)

i ).



A.2. Deterministic mixture

An alternative approach is provided by the so-called deterministic mixture [25, 26]. For N = 2 proposals, setting

Z =
[
x(1)

1 , . . . ,x(1)
K1
,x(2)

1 , . . . ,x(2)
K2

]
,

with x(j)
i ∈ RDx×1 (j ∈ {1, 2} and 1 ≤ i ≤ Kj) and Z ∈ RDx×(K1+K2), the weights are now defined as

wi =
π(Zi)

K1
K1+K2

q1(Zi) + K2
K1+K2

q2(Zi)
, (23)

with Zi denoting the i-th column of Z for i = 1, . . . ,K1 +K2. In this case, the complete proposal is considered to be a mixture
of q1 and q2, weighted according to the number of samples drawn from each one. Note that, unlike in the standard procedure
for sampling from a mixture, a deterministic and fixed number of samples are drawn from each proposal in the DM approach.
However, it can be easily proved that the samples drawn in this deterministic way is exactly distributed according to the mixture
q(z) = K1

K1+K2
q1(z) + K2

K1+K2
q2(z) [25]. The DM estimator is finally given by

ÎDM =
1
Stot

K1+K2∑
i=1

wif(Zi),

where Stot =
∑K1+K2
i=1 wi and the wi are given by (23). For N > 2 proposal pdfs, the DM estimator can also be easily

generalized:

ÎDM =
1∑K

j=1 wj

K∑
i=1

wif(Zi),

with wi = π(Zi)/(
∑N
n=1

Kn
K qn(Zi)) and K = K1 +K2 + . . .+KN . On the one hand, the DM approach is more stable than

the IS method, thus providing a better performance in terms of a reduced variance of the corresponding estimator, as shown in
the following section. On the other hand, it needs to evaluate every proposal K times (i.e., KN total evaluations) instead of
Kn times (i.e., K total evaluations), and therefore is more costly from a computational point of view. However, this increased
computational cost is negligible when the proposal is much cheaper to evaluate than the target, as it often happens in practical
applications.

A.3. Comparison in terms of variance

In this section we prove that the variance of the DM estimator is always lower or equal than the variance of the IS estimator.
For the sake of simplicity we focus on the case where Kn = 1 for n = 1, . . . , N (and thus K = N ), as this is the case in APIS,
but this result can be easily extended to any value of Kn. We first prove the following lemma and then state our main theorem.

Lemma A.1 Let ϕ1(x), ϕ2(x) > 0 for x ∈ X ⊆ RDx . Then, for all x ∈ X and any α such that 0 ≤ α ≤ 1,

1
(1− α)ϕ1(x) + αϕ2(x)

≤ 1− α
ϕ1(x)

+
α

ϕ2(x)
. (24)

Proof: Note that (24) is equivalent to

1
(1− α)ϕ1(x) + αϕ2(x)

≤ (1− α)ϕ2(x) + αϕ1(x)
ϕ1(x)ϕ2(x)

. (25)

Defining β = 1− α, (25) can be rewritten as

ϕ1(x)ϕ2(x) ≤[αϕ1(x) + βϕ2(x)][βϕ1(x) + αϕ2(x)]

=β2ϕ1(x)ϕ2(x) + αβ[ϕ1(x)2 + ϕ2(x)2]

+ α2ϕ1(x)ϕ2(x). (26)



Rearranging terms in (26), we obtain

0 ≤ [β2 + α2 − 1]ϕ1(x)ϕ2(x) + αβ[ϕ1(x)2 + ϕ2(x)2]

= −2αβϕ1(x)ϕ2(x) + αβ[ϕ1(x)2 + ϕ2(x)2]

= αβ[ϕ1(x)− ϕ2(x)]2, (27)

which is obviously verified, since α, β ≥ 0. �

Theorem A.2 Consider a normalized target pdf, π̄(x) = 1
Zπ(x), and N samples drawn from a set of N normalized proposal

pdfs (one from each pdf), xi ∼ qi(x) for i = 1, 2, . . . , N . In this case, the standard importance sampling (IS) estimator and
the deterministic mixture (DM) IS can be expressed as

ÎIS =
1
N

N∑
i=1

f(xi)π(xi)
qi(xi)

, ÎDM =
1
N

N∑
i=1

f(xi)π(xi)
1
N

∑N
j=1 qj(xi)

.

Moreover, we also consider N independent samples zi ∼ 1
N

∑N
j=1 qj(x), drawn from the mixture in a standard way and the

corresponding standard mixture estimator

ÎSM =
1
N

N∑
i=1

f(zi)π(zi)
1
N

∑N
j=1 qj(zi)

.

The variance of the DM estimator is always lower or equal than the variance of the corresponding standard IS estimators, i.e.,

Var(ÎDM ) ≤ Var(ÎSM ) ≤ Var(ÎIS). (28)

Proof: It is straightforward to see that
Var(ÎDM ) ≤ Var(ÎSM ),

since the DM procedure follows a well-known variance reduction method (such as the stratified sampling [7, Chapter 4], [15,
Chapter 9]). The variance of the IS estimator is [7]

Var(ÎIS) =
1
N2

N∑
i=1

(∫
X

f2(x)π2(x)
qi(x)

dx− I2

)
, (29)

where I =
∫
X f(x)π̄(x)dx is the true value of the integral that we want to estimate. The variance of the standard mixture

estimator is given by

Var(ÎSM ) =
1
N2

N∑
i=1

(∫
X

f2(x)π2(x)
1
N

∑N
j=1 qj(x)

dx− I2

)
. (30)

Substracting (30) and (29), we get

Var(ÎSM )− Var(ÎIS)

=
∫
X

[
N

1
N

∑N
j=1 qj(x)

−
N∑
i=1

1
qi(x)

]
f2(x)π2(x)dx ≤ 0,

where the last inequality is required to fulfill (28). Hence, since f2(x)π2(x) ≥ 0 ∀x ∈ X , in order to prove the theorem it is
sufficient to show that

1
1
N

∑N
j=1 qj(x)

≤ 1
N

N∑
i=1

1
qi(x)

, (31)

which can be easily proved by induction. Let us consider first the case N = 2, where (31) becomes

1
1
2 (q1(x) + q2(x))

≤ 1
2

(
1

q1(x)
+

1
q2(x)

)
, (32)



which can be obtained directly from Lemma A.1, setting α = β = 1
2 , ϕ1(x) = q1(x) and ϕ2(x) = q2(x). Now, let us assume

that (31) is true for N − 1, i.e.,
1

1
N−1

∑N−1
j=1 qj(x)

≤ 1
N − 1

N−1∑
i=1

1
qi(x)

. (33)

Then, for N we have

1
1
N

∑N
j=1 qj(x)

=
1

N−1
N

1
N−1

∑N−1
j=1 qj(x) + 1

N qN (x)

≤ (N − 1)/N
1

N−1

∑N−1
j=1 qj(x)

+
1/N
qN (x)

, (34)

where we have applied Lemma A.1 with α = 1
N , β = 1 − 1

N = N−1
N , ϕ1(x) = 1

N−1

∑N−1
j=1 qj(x) and ϕ2(x) = qN (x).

Finally, making use of (33) we obtain

1
1
N

∑N
j=1 qj(x)

≤ N − 1
N

1
N − 1

N−1∑
i=1

1
qi(x)

+
1
N

1
qN (x)

=
1
N

N∑
i=1

1
qi(x)

.

Thus Var(ÎSM ) ≤ Var(ÎIS) and, as a consequence, Var(ÎDM ) ≤ Var(ÎIS). �

B. IDEAL CONFIGURATION: PROPOSALS AND LOCATIONS

From a probabilistic point of view, APIS adaptive approach to update the i-th proposal, within the m-th epoch, can be summa-
rized by the following two steps:

1. Draw a location parameter µ
(m)
i ∼ φ(m)

i (µ).

2. Draw samples zi,t ∼ q(m)
i (z|µ(m)

i ,Ci).

The pdf φ(m)
i (µ) is associated to the IS estimator used to update the mean of the i-th proposal at the m-th epoch,

µ̂
(m)
i ∝

Ta∑
t=1

π(zi,t)

q
(m−1)
i (zi,t)

zi,t. (35)

Hence, φ(m)
i (µ) is the pdf of µ̂

(m)
i given in (35). This procedure leads to the following equivalent proposal pdf:

q̃
(m)
i (z|Ci) =

∫
X
q
(m)
i (z− µ|Ci)φ

(m)
i (µ)dµ

= q
(m)
i (z|Ci) ∗ φ(m)

i (µ),
(36)

where we have used the fact that q(m)
i (z|µ,Ci) = q

(m)
i (z − µ|Ci), since µ

(m)
i is a location parameter, and ∗ denotes the

Dx-dimensional linear convolution operator.
Ideally we would like to have q̃(m)

i (z|Ci) = π̄(z), since this proposal is optimal from the point of view of interpreting APIS
as a kernel density estimator (as discussed in the text). Then, from (36) we would have

π̄(z) = q
(m)
i (z|Ci) ∗ φ(m)

i (µ). (37)

Eq. (37) can be rewritten, in terms of the characteristic functions Π̄(ν) = E[π̄(x)ejνx], Q(m)
i (ν|Ci) = E[q(m)

i (x|Ci)ejνx],
Φ(m)
i (ν) = E[φ(m)

i (x)ejνx], as
Π̄(ν) = Q

(m)
i (ν|Ci)Φ

(m)
i (ν). (38)



On the one hand, from (38) we note that the characteristic function of the proposals should ideally be given by

Q
(m)
i (ν|Ci) =

Π̄(ν)

Φ(m)
i (ν)

.

Moreover, since the IS estimator is known to be asymptotically unbiased and consistent [7], φ(m)
i (µ)→ δ(µ−µπ) as Ta →∞

and thus Φ(m)
i (ν) → 1. Consequently, in the limit we would have Q(m)

i (ν|Ci) = Π̄(ν), and the proposals would have to be
distributed exactly as the target ideally. On the other hand, the characteristic function associated to the optimal distribution of
the means would be

Φ(m)
i (ν) =

Π̄(ν)

Q
(m)
i (ν|Ci)

. (39)

Particularizing this equation for m = 0 we would have the optimal distribution for the prior used to draw the initial means:
Φ(0)
i (ν) = Π̄(ν)/Q(0)

i (ν|Ci). Unfortunately, the optimal prior pdf cannot be obtained analytically in general.

C. DETAILED BALANCE CONDITION FOR SMH

For simplicity, in the following we remove the super-index in µi denoting the current epoch, and add the iteration index τ of
the SMH technique. Thus, we denote as

Pτ−1 = {µ1,τ−1, ...,µN,τ−1}

the population of means at the τ -th iteration. A sufficient condition for proving the ergodicity of the chain (generated by SMH)
is given by the detailed balance condition.

Theorem C.1 The chain yielded by SMH converges to the stationary pdf in Eq. (16), π̄g(Pτ ) =
∏N
i=1 π̄(µi,τ ), since the

balance condition,
π̄g(Pτ−1)K(Pτ |Pτ−1) = π̄g(Pτ )K(Pτ−1|Pτ ), (40)

is satisfied. The conditional probability K(Pτ |Pτ−1) denotes the transition kernel of the SMH method.

Proof: For the case Pτ 6= Pτ−1 (the case Pτ = Pτ−1 is trivial), the kernel K can be expressed as

K(Pτ |Pτ−1) = Nϕ(µ0,τ )
ϕ(µj,τ )
π(µj,τ )∑N
i=1

ϕ(µi,τ )
π(µi,τ )

α(Pτ−1,µ0,τ ),

where we have considered that the j-th mean has been selected as a candidate for replacement and α is given by Eq. (17). Since
j ∈ {1, . . . , N}, for the interchangeability we have N equal probabilities (this is the reason of the factor N ). Replacing the
expression of α in Eq. (17), we obtain

K(Pτ |Pτ−1) = Nϕ(µ0,τ )
ϕ(µj,τ )
π(µj,τ )∑N
i=1

ϕ(µi,τ )
π(µi,τ )

×

∑N
i=1

ϕ(µi,τ )
π(µi,τ )∑N

i=0
ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

,

K(Pτ |Pτ−1) =
N

π(µj,τ )
ϕ(µ0,τ )ϕ(µj,τ )∑N

i=0
ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

.

Now we can also write

π̄g(Pτ−1)K(Pτ |Pτ−1) =

[
N∏
i=1

π̄(µi)

]
N

π(µj,τ )
×

ϕ(µ0,τ )ϕ(µj,τ )∑N
i=0

ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

,



and defining γ(Pt−1,µ0,τ ) =
∑N
i=0

ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

, we have

π̄g(Pτ−1)K(Pτ |Pτ−1) =
N

Z

 N∏
i=16=j

π̄(µi)

 ϕ(µ0,τ )ϕ(µj,τ )
γ(Pτ−1,µ0,τ )

.

This expression above is symmetric w.r.t. µ0,τ and µj,τ . Since Pτ−1 and Pτ differ only in the elements µ0,τ and µj,τ (Pτ−1

contains µj,τ whereas Pτ contains µ0,τ ), then π̄g(Pτ−1)K(Pτ |Pτ−1) = π̄g(Pτ )K(Pτ−1|Pτ ), which is precisely the detailed
balance condition. �


