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Abstract

The present book is devoted to the construction of a new theory for the elementary particles.

This theory was born in order to resolve some open issues of the Standard Model, among which

the research of a general equation for the description of all quantum particles in a unique way.

Starting from the Pauli equation, two relativistic partial di�erential equations are obtained, one

to the �rst and other to the second order, which are able to describe particles with arbitrary

spin. The analysis of the energetic spectrum concerning such equations puts in evidence that

the particles they describe have an imaginary mass. Then, the probability density study of these

equations shows the principle of causality is not satis�ed. Therefore, these equations character-

ize the tachyonic universe. We can see such a universe admits spontaneous symmetry breaking.

In general terms, we can establish the broken symmetry might be a global characteristic of the

tachyonic universe, due to its negative square energy, which made it unstable. Hence, it is pos-

sible to assume that after the hot Big-Bang there was another catastrophic cosmological event

� said Big-Break � which made to break down the tachyonic universe in a positive square en-

ergy one (bradyonic universe), and from which the four fundamental interactions are probably

generated. The transition from tachyonic to bradyonic universe transforms the tachyonic equa-

tions in bradyonic ones, being then able to describe elementary particles with arbitrary spin.

The �rst order partial di�erential equation gives asymmetric quantum states, while the second

order partial di�erential equation gives symmetric quantum states and so they describe di�erent

theories. In the course of this work, both these theories will be studied. Either way, only one

of the two could be the right theory of the elementary particles. Since this theory follows on

from the Big-Bang, from the resultant tachyonic universe and from Big-Break, it has been called

α-Theory, i.e. the �beginning theory.� The α-Theory may theoretically predict the experimental

properties of neutrinos and anti-neutrinos and allows, thanks to the appendix A, to generalize

the concepts of the Dirac sea, Pauli exclusion principle and spin-statistics theorem, thus giving

rise to �s-matter� and �multi-statistics,� which are able to take an interesting approach for the

explanation of the Dark Matter. Furthermore, it expects on large-scale the �double in�ation�

mechanism, which, without the Dark Energy, could explain the acceleration of our universe

(bradyonic universe). From the α-Theory, two string actions can be deduced too, by which

new ideas can be developed. Practically, the α-Theory wants to be a GUT, able to describe the

quantum particles and our universe in a simple and elegant way.
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Preface

The theory elaborated in this work is the result of over seven years of solitary study in theo-
retical physics. The version introduced here is nothing more than an abridgment of the original
manuscript, which took me nearly three years of every day uninterrupted job for being written up.
The sacri�ce deriving from such a wide-ranging and articulated scienti�c work is totally repaid by
the fact that the produced ideas and concepts can open new physical scenarios, able to let evolve
the knowledge of the elementary particles (Standard Model). As it is known, the Standard Model,
although having generated exceptional outcomes, in order to make it the human theoretical system
with most elevated predictive power, has many problems, that prevented physicists to consider it
a full theory, like the Einstein's Relativity. One of the greatest Standard Model problems is that
bosons and fermions are described by di�erent equations, which, in any case, can only give account
of particles with �xed spin, and not about arbitrary ones. All that has given place to a spasmodic
search for more general equations, which however have not carried useful expressions. A rib of
this research has given life to a new theory, the Supersymmetry, which has not produced experi-
mentally observable e�ects yet. Another great Standard Model problem is the uni�cation of the
strong, electromagnetic and weak interactions. The electroweak model of Glashow-Weinberg-Salam
showed the electromagnetic and weak interactions can be derived from the spontaneous symmetry
breaking of the group SU(2) ⊗ U(1). This created an idiosyncrasy among quantum interactions,
because it seems strange the electromagnetic and weak interactions are uni�ed while the strong one
is not so. This condition led the theoretical physicists to believe that in principle (post Big-Bang)
there was a wider group of symmetry, which, spontaneously breaking, produced all the fundamental
interactions, included the gravitational one. These problematics, still unsolved, induced to consider
the existence of a possible more general quantum theory, which one day will allow to solve the
Standard Model incoherences. Such a theory should contain the universal law in order to unify the
elementary interactions. This law should consist in a single equation that, case for case, can describe
quantum particles which are not subjected to interactions (free elementary particles equation). The
search for a more general physical model is becoming important not only from the quantum point
of view, but also from the cosmological one. In fact, the Standard Cosmological Model, although
having been the successfully starring of enormous theoretical and experimental triumphs, has still
open problems to resolve. This incompleteness originated in 1980s the In�ationary Model, which
allowed to give a coherent explanation to the horizon and �atness problems. However, also this
model is plagued by numerous issues, mostly because it cannot stand on a more general theory.
Moreover, the acceleration and lacking mass problems have not been still explained, if not through
some hypotheses, such as Dark Energy and Dark Matter, that must be proved. At the moment,
the exploration of all possible paths is tried by using Supersymmetry or Superstring theory too,
since most of the physicists are convinced the Standard Model and Standard Cosmological Model
problems will be resolved by a more general theory, which will connect micro and macro in an
elegant and comprehensive way. The α-Theory presents itself as that theory.
The corpus of this book is constituted by the discussion and analysis of a new quantum �eld

theory, that, taking life by a global phase transition process � named Big-Break � from an unstable
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universe (tachyonic universe) � arisen from Big-Bang � to a stable universe (bradyonic universe),
is called α-Theory, i.e. the �beginning theory.� The chapter 1 is dedicated to the description of
tachyonic universe and characteristic equations of particles composing it. It is demonstrated such
a universe does not respect the principle of causality and his constituent particles are characterized
by negative square energy rather than superluminal speeds. The chapter 2 begins with the study
of the spontaneous symmetry breaking of the two proposed tachyonic theories. From that follows
the negative square energy characterizing it is a source of instability, which probably caused a big
spontaneous symmetry breaking � called Big-Break � which induced the tachyonic universe to get
supercooled into the bradyonic one. The equations of elementary particles deriving by this process
are a direct consequence of the tachyonic equations. In chapter 3, these results will be applied to the
inequivalent representations (1

2
, 0) and (0, 1

2
) of the Lorentz group, developing the �eld equations of

left- and right-handed particles, that commonly are associated to the neutrinos and anti-neutrinos,
respectively. It will be seen such equations are characterized to the parity violation and nonzero
masses, as the physical experiences about neutrinos and anti-neutrinos prescribe. The chapter 4
will allow to describe the Lagrangian formalism from which the bradyonic equations rise (only one
of these equations should be the right equation of the elementary particles, even if both will be stud-
ied) and that will give place to the Lagrangian densities individualizing the α-Theory. Furthermore,
the conserved charges and currents deriving from the space-time invariance of the theory will be
studied and, �nally, it will be seen the connection with an external electromagnetic �eld and most
in general with a Yang-Mills �eld. Also the free propagators will be calculated, for an approach to a
future perturbative analysis. In chapter 5, it will be dealt, instead, with the second quantization of
the α-Theory, which will carry to extend Fermi-Dirac and Bose-Einstein quantum statistics, thanks
to the review of the Pauli's �spin-statistics theorem.� This will concur to generalize Dirac sea as well
as the exclusion principle and to de�ne the �s-matter� and �multi-statistics,� that could give new
tools for resolving the lacking mass problem within our universe. Concerning the chapter 6, it will
allow to put in relation the Big-Break with the �mass gap� problem of the Yang-Mills theory. This
will enable to propose the mechanism of Big-Break like the true liable one for the hypothetical gluon
mass, deriving from a physical process rather than from hidden mathematical properties. Then, a
simple selection rule will be given, which will allow to tie the energy to the gauge groups and these
last to the spin value of particles. This will help to explain the reason for which particles of high
spin are not observed and to select, for each interaction, a set of spins to which we usually associate
some particles. In chapter 7 it will be studied, from holistic point of view, as the α-Theory should
be compared with classical and quantum �elds, until the cosmology. It will be seen that α-Theory,
with the �double in�ation� mechanism, wants to resolve not only the horizon and �atness problems,
but also the one about the acceleration of our universe. Lastly, it will be matched the α-Theory
with the two most important GUT theories of the twentieth century, i.e. the Supersymmetry and
String theory. It will be made to see that the α-Theory represents a real alternative to the Super-
symmetry, exceeding it for conceptual and formal elegance. On the contrary, with regard to String
theory, two string actions based on the α-Theory scenario will be presented, which could give a new
impulse to the researches in this �eld. In the last chapter, of philosophical kind, it will be inquired
into the foundations of the α-Theory. It will be seen this model could give whole justi�cation to
the two most important principles of the modern physics � the uncertainty principle and constancy
of the speed of light � and, at the same time, suggesting the resolution of the quantum mechan-
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ics paradoxes. Moreover, the falsi�ability concept � introduced by Karl Popper � will be studied,
in order to establish the validity of a scienti�c theory. For this purpose, it will be seen that the
α-Theory, unlike Supersymmetry or String Theory, having the typical constituent equations of a
Quantum Field Theory (QFT), is falsi�able, that is, independently from its predictive power, it is a
�good theory.� The appendix A is an integral part of the α-Theory. It is turned to the analysis on
the concepts of: physical information, indistinguishability principle of quantum particles, relation
between symmetry (or anti-symmetry) concerning a wave function of a system of identical particles
and the exclusion principle. The examination of these concepts will concur to operate a critical
review of the �spin-statistics theorem,� whose inconsistency will be shown from physical as well as
mathematical point of view, highlighting that the occupation numbers play a fundamental role for
quantum statistics and that it is necessary to �nd a theory connecting these numbers to the spin of
elementary particles, in order to restore, in another way, the validity of the relation between spin
and statistics. The α-Theory seems to satisfy such a wish.
In conclusion, the work introduced in this book wants to lay the foundations of the α-Theory,

so allowing all the experts to deepen and develop it in the best possible way, with the opinion and
aspiration that it should represent the theory which the physics will be uni�ed by.1

Vincenzo Maiella

1This book is in copyright. Included the free on-line consultation, it may be reproduced and distributed in whole
or in part, by any physical or electronic medium, as long as this copyright notice is retained on all copies. Commercial
redistribution is not allowed.
c©2014 Vincenzo Maiella
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1 Introduction � The Tachyonic World

The Standard Model of particle physics is based on Klein-Gordon, Dirac and Yang-Mills equations.
Each of them gives rise to a precise theory. Therefore, within the Standard Model there are three
theories, able to explain dynamics of scalar, spinorial and gauge �elds, respectively. This means
the Standard Model is not a uni�ed theory, because it is not devised on a unique theory, but
represents a grouping of independent theories, and, although supported by important experimental
con�rmations, it is not in a position for explaining the fundamental interactions in a single way.
This chapter was born with the attempt to �nd a single theory able to describe elementary particles.
Such a theory can be obtained from the development of an equation that can describe the elementary
particles all at once. Since the spin is an intrinsic property of quantum particles, it seems correct
to identify such a general equation with the equation capable of describing the elementary particles
with arbitrary spin. The search for such an equation will take us to understand the true nature of
superluminal particles called �tachyons,� using them not again for metaphysical or science �ction
interpretations, but revealing themselves as a logical and needful characteristic of our universe,
without which we could not be.

1.1 The problem of Dirac and Klein-Gordon theories

The Dirac and Klein-Gordon theories, characterized, in general terms, by the Lagrangian densities
(in natural units)

LDirac = ψ̄ (iγµ∂µ −m)ψ (1)

LK−G = ∂µφ
∗∂µφ−m2φ∗φ, (2)

even though represent the core theories of the elementary particle physics, and therefore of the
Standard Model, they only concern a limited particle classes: those having spin s = 1/2 and s = 0.
This is an old problem in QFT, because the absence of an equation able to describe all the particles
with arbitrary spin makes incomplete the entire theoretical framework of the high energy physics.
This anomaly becomes still more obvious by the moment when an important particle class � the
gauge bosons � is described by the Yang-Mills theory, through the Lagrangian density 2

LY−M = − 1

2g2
Tr(F̃µνF̃

µν). (3)

The reason of such a conceptual disparity between particle classes is not understood, since in
principle they would be described in a unitary way and not separately. This issue has gripped for a

2F̃µν ≡ (∂µÃν − ∂νÃµ) + ig[Ãµ, Ãν ].
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long time the theorists, and in fact the development of a unique theory for quantum particles was
born with the dawn of the research in this discipline. The �rst one that noticed the necessity of
a unitary model was Ettore Majorana who, without success, tried to extend the Dirac equation to
particles having arbitrary spin [1, 2, 3]. Since then, many theoretical physicists have attempted in
the search for a complete theory of the elementary particles. The dream to �nd a unitary way in
order to describe the particles with arbitrary spin is not pointless, but it is fundamental for reaching
the so long wanted uni�cation of the four fundamental interactions, which is the Saint Graal of the
contemporary physics. The supergravity models are proof of that, since they use an equation of high
spin, such as the Rarita-Schwinger one, in order to �nd an e�ective connection between Einstein
�eld and particles with spin s = 3/2 [4]. What already said con�rms that the elaboration of a
theory capable of describing all the elementary particles, independently from their spin value, is
fundamental into theoretical research, but also in the experimental one. In fact, necessarily, the
birth of this model will bring conceptual innovations, which should concur to understand better, and
maybe to resolve, modern problems, such as the existence or the non-existence of super-symmetrical
particles, the Dark Matter and Dark Energy, the construction of an e�ective quantum gravity, and
the understanding of the non-Standard properties of the Higgs boson [5, 6, 7].

1.2 Equations for particles with arbitrary spin

The problems of the Klein-Gordon and Dirac equations, developed in the past century, can thus be
summarized:

1. Even if the Klein-Gordon equation usually describes particles with zero spin, it was really
born as a relativistic equation for all quantum particles and in its genesis there is no reference
neither zero spin nor other spin value (integer or half-integer).

2. The Dirac equation was born in order to describe the electrons (the only known elementary
particles with the photons, at the time) and it is not suited for describing particles with
arbitrary half-integer spin.

3. The Dirac equation is based on the strange linearization: H ≈ cαipi+βmc
2 (with i ∈ {1,2,3}),

which is not explained by a formal point of view.3

4. In the Dirac equation there are the matrices αi and β (enclosed, in the four-dimensional
expression of this equation, into matrices γµ), which have no direct physical meaning.

The issues 1, 2, 3, 4 tell us that Dirac and Klein-Gordon equations, taken singularly or in couples,
cannot really describe all the elementary particles, but only parts of them or overabundant systems.
What we need is, then, a new equation describing the elementary particles for any spin value, integer
or half-integer. How can we derive such a super-equation? Let us �rst observe this new equation

3It is not su�cient to assert it is used for having an expression proportional to the amount (p2c2 +m2c4)
1/2

, that
still does not su�er of the problems occurring as a consequence of the square root presence.
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will have to respect the Quantum Mechanics and special Relativity principles. In order to �nd it
seems, therefore, necessary to use the non-relativistic quantum mechanics before and then to extend
the found result to the case of particles with speed compared with the light one.
At this point, we can write the Schrödinger equation for a particle having arbitrary spin. For

making it, we use the Pauli equation for an electron in an electromagnetic �eld [8, 9, 10]{
1

2m

[
~σ · (~p− e

c
~A)
]2

+ eϕ

}
ψ(~x, t) = i~

∂ψ

∂t
, (4)

where the ~σ are the Pauli matrices. This equation, in absence of electromagnetic �eld, becomes

(~σ · ~p)2

2m
ψ(~x, t) = i~

∂ψ

∂t
, (5)

that, generalized to an arbitrary spin ~s, gives (for a dimensionally correct equation, we must operate
the substitution ~σ → ~s/~) 4

(~s · ~p)2

2~2m
ψ(~x, t) = i~

∂ψ

∂t
. (6)

The expression (6) is the Schrödinger equation for a free quantum particle with spin ~s. Naturally,
for s = 0 � being ~s = (0, 0, 0) � we are not able to write an equation of motion, since in such a
case we simply have the time-independent wave function ψ(~x, t) = Aψ(~x), where A is an arbitrary
constant. Therefore, the particles having s = 0 are described by a stationary wave function in the
non-relativistic framework.
The equation (6) is important, because it will allow us, in the next pages, to write correctly the

relativistic equation for particles with arbitrary spin. About that, notice for obtaining a relativistic
equation for a free quantum particle, we must �nd an equation of the type

Hψ(~x, t) = i~
∂ψ

∂t
, (7)

where H is the relativistic Hamiltonian of the generic particle that we want to study. Now the
problem is as H has to be written. Since in the non-relativistic equation (6) the Hamiltonian is
proportional to (~s · ~p)2, it is natural trying a relativistic Hamiltonian which is its four-dimensional
generalization. Therefore, as relativistic Hamiltonian we should have an expression proportional
to the scalar product between spin and momentum. Obviously, since our H is needed to have a
relativistic form, this scalar product must be made in the Minkowski space, i.e. it will be a product
between four-vectors. Hence, we must have

4Of course, the vector ~s has like components the three generators of LieSU(2) for any s ∈ N/2.
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H ∝ sµp
µ, (8)

where pµ is the four-momentum given by 5

pµ = (mc, ~p). (9)

What is instead the spin four-vector sµ? With regard to its spatial part, it is easy to understand
it is enough to take just the vectorial operator ~s and so the problem arises from its temporal part,
which is unknown. However, when such an operator is indicated by s0, nothing prevents us to leave
it as unknown and to determine its form later on. Therefore, we can write 6

sµ = (s0, ~s). (10)

Naturally, since we want to write an equation for particles having arbitrary spin, namely with s
variable as we like, it is clear that we do not consider the simple operatorial form of spin, but its
matrix representation. Therefore, in order to simplify the calculations, since the matrix represen-
tations of the spin operator are expressed in ~ units, we divide these representations by ~, i.e. we
place

δ̃ ≡ 1

~
s0 (11)

~ε ≡ 1

~
~s, (12)

by which, we can thus de�ne the (covariant) spin four-vector

sµ ≡ (δ̃, ~ε) ⇒ sµ = (δ̃,−~ε), (13)

that, for being precise, represents a matrix four-vector, whose elements have dimension
(2s+ 1)× (2s+ 1). From what we said, it can be written

H ∝ sµp
µ = s0p

0 + sip
i = δ̃mc+ ~ε · ~p. (14)

5Of course pµ = (mc,−~p).
6In principle, we could use other components for sµ, as an example the higher-dimensional gamma matrices, but

this choice does not seem to be the physical one respecting the equation (6) philosophy.
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Obviously the expression (14) has not the correct dimension of an energy. We can put this
expression in a right and compact fashion, if we de�ne the �energy four-vector�

Eµ ≡ cpµ = (mc2, ~pc), (15)

which enables us to write 7

H = sµE
µ = csµp

µ = δ̃mc2 + ~ε · ~pc. (16)

As we can see, this Hamiltonian, with the substitutions

δ̃ → β (17)

~ε→ ~α, (18)

is perfectly identical to the Dirac one. Nevertheless, it is a more power expression, because, while
Dirac wrote ad hoc its relation, by trying to linearize the relativistic energy (p2c2 +m2c4)

1/2 , such
an Hamiltonian was born spontaneously, like generalization of that for a non-relativistic quantum
particle previously studied. Furthermore, it does not introduce unphysical elements like the Dirac
matrices ~α and β, but only physical characteristics of a free quantum particle, such as spin four-
vector and �four-energy� (i.e. four-momentum multiplied by c), simply coupled through their scalar
product. The intrinsically physical character is, therefore, the force of this Hamiltonian, which is
much better than the Dirac one from an epistemological point of view. Arriving at this point, we
can write the quantum relativistic equation (to the �rst order) for a particle with arbitrary spin. It
is

sµE
µψ(~x, t) = i~

∂ψ

∂t
(~x, t), (19)

and, making clear the scalar product, one obtains

(δ̃mc2 + ~ε · ~pc)ψ(~x, t) = i~
∂ψ

∂t
(~x, t). (20)

Now, by remembering that

7Such an Hamiltonian can be de�ned also independently from the Pauli equation, reasoning only on the intrinsic
properties of a free quantum particle, which are spin and momentum (or better the spin and energy four-vectors).
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pi → −i~ ∂

∂xi
, (21)

we have

i~
∂ψ

∂t
(~x, t) = −i~c~ε · ~∇ψ +mc2δ̃ψ. (22)

The (22) represents the quantum relativistic di�erential equation (to the �rst order) for a particle
having arbitrary spin. Therefore, it should be able to describe bosons as well as fermions. We call
the (22) �Mα equation� to the �rst order.
It must be emphasized what amazing result we have just obtained. In fact, one quickly observes

such an equation is identical, in form, to the Dirac one

i~
∂ψ

∂t
(~x, t) = −i~c~α · ~∇ψ +mc2βψ. (23)

Let us identify the di�erences between these two equations:

• The Dirac equation is �xed to a four-dimensional matrix representation, which, moreover, has
no immediate physical meaning.

• The Dirac equation contains the matrices ~α and β, that have no physical meaning.

• The Mα equation changes with the spin s of particles. Then sµ, less ~, just represents the
spin four-vector of the generic particle that one wants to study. Therefore, all the quantities
of Mα equation have physical meaning.

• The Mα equation admits four-dimensional representations too.

We promptly see that, formally, it is possible to pass from the Mα equation to the Dirac one and
vice-versa, through the substitutions

~α⇔ ~ε (24)

β ⇔ δ̃ (25)

and this could explain the huge success of the Dirac equation. In fact, it is nothing more than a
special case of theMα equation, in which the matrices δ̃ and ~ε are arbitrarily replaced with β and ~α.
There is still a problem in the Mα equation to the �rst order and it is, obviously, the unknown

matrix δ̃, which varies with s. How can we �nd the general form of such a matrix? The simpler
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thing getting in mind is to compare the Mα equation with a well-known one, thus to characterize
δ̃. What equation can we take? Of course, one cannot use

i~
∂ψ

∂t
(~x, t) =

(~s · ~p)2

2~2m
ψ(~x, t), (26)

because, as previously seen, such an equation is non-relativistic. For that, being theMα a relativistic
equation, it is natural trying to confront it with another relativistic equation. Since it wants to
replace itself with the Dirac equation (of which it is proposed to be the generalization), obviously
we cannot use this last equation (i.e. the Dirac one). What is the equation left with us? The choice
must go necessarily on the Klein-Gordon equation, that as we know is written out through the
Schrödinger equation by inserting in place of H the relativistic energy E = (p2c2 +m2c4)

1/2. But
the Klein-Gordon equation has a scalar form and not a matrix one, like the Mα equation, and so
we have to reduce this last equation to a scalar expression, which can be obtained for s = 0 only,
because such a point, as it is well known from the Lie algebra of the group SU(2), is the only one to
characterize the scalar representation. Therefore, a way of �nding δ̃ is to confront the Mα equation
in s = 0 with the Klein-Gordon one. However, it needs to do an observation on the form which Mα

must have for s = 0 and this concerns the circumstance that the equation we are constructing is
given by the scalar product of sµ with pµ and so, by remembering for s = 0 one has ~s = (0, 0, 0),
we cannot simply equalize the Mα equation in s = 0 with the ordinary Klein-Gordon one, because
in general only the time derivative has to be saved (in fact, the space derivatives must be null for
s = 0, based on the product sµEµ). For that reason, the equation reasonably has to be compared
with the Mα one is

( 1

c2

∂2

∂t2
+
m2c2

~2

)
ψ(~x, t) = 0, (27)

which is the Klein-Gordon equation of a particle moving along the t-axis. It is obvious that, the
Mα equation

i~
∂ψ

∂t
= −i~c~ε · ~∇ψ +mc2δ̃ψ, (28)

not being to the second order, will not be able to realize this wish. Therefore, it is necessary to �nd
the Mα equation to the second order. For writing it, we can see that, given a partial di�erential
equation of type

Aψ(~x, t) = Bψ(~x, t), (29)

with A, B di�erential operators, in order to transform it to second order, we may consider

7



A2ψ(~x, t) = B2ψ(~x, t), (30)

but also 8

|A|2ψ(~x, t) = |B|2ψ(~x, t), (31)

but also

(A−B)2ψ(~x, t) = 0, (32)

but also 9

|A−B|2ψ(~x, t) = 0. (33)

Hence, we understand that, while a di�erential equation to the �rst order (with partial derivatives
and not) is well-de�ned, its square (or better the second order di�erential equation we can derive
by it) is not only one. This does not mean it is physically impossible to obtain a second order
di�erential equation knowing the �rst order one, but it advises the physicist so that he or she
understand as the Nature wants to square the �rst order equation, or better, what is the more
suitable second order equation for the explanation of the natural phenomena. For example, Klein
and Gordon, in order to �nd their equation, decided it had to be

A2ψ(~x, t) = B2ψ(~x, t), (34)

with

A = i~
∂

∂t
, B = (p2c2 +m2c4)1/2. (35)

Since they wanted to eliminate the square root, these equations

(A−B)2ψ(~x, t) = 0, |A−B|2ψ(~x, t) = 0 (36)

8|A| ≡ (A†A)1/2, |B| ≡ (B†B)1/2.
9|A−B| ≡ [(A−B)†(A−B)]1/2.
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were rightly discarded (it can be mistrusted this was made intentionally). But what result they
would have obtained if the form |A|2ψ = |B|2ψ had been used? In their case, having the squared
operator p already under root, they would have had simply to consider the equation

A†︷ ︸︸ ︷(
− i~ ∂

∂t

) A︷ ︸︸ ︷(
i~
∂

∂t

)
ψ = (p†pc2 +m2c4)ψ, (37)

by which, remembering that

~p→ −i~~∇, (38)

to write

~2 ∂
2

∂t2
ψ = (c2~2∇2 +m2c4)ψ ⇒

( 1

c2

∂2

∂t2
−∇2 − m2c2

~2

)
ψ(~x, t) = 0, (39)

whose four-dimensional form is

(
∂µ∂

µ − m2c2

~2

)
ψ(~x, t) = 0. (40)

We see the obtained equation is identical to the Klein-Gordon one, apart from the sign of the
constant term. What is describing this equation? Leaving out for the moment this question, thus
increasing the reader suspense, we want to �nd the Mα equation to the second order starting from
the �rst order one and we make it using the following way of doing the squares

A†Aψ(~x, t) = B†Bψ(~x, t), (41)

where, in our case, we take

A = i~
∂

∂t
, B = −i~c~ε · ~∇+mc2δ̃. (42)

Obviously, this choice is re�ected also in the equation to which our expression, for s = 0, must be
reduced, that will no longer be

( 1

c2

∂2

∂t2
+
m2c2

~2

)
ψ(~x, t) = 0, (43)
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but rather

( 1

c2

∂2

∂t2
− m2c2

~2

)
ψ(~x, t) = 0 ⇔

(
− ~2 ∂

2

∂t2
+m2c4

)
ψ(~x, t) = 0. (44)

From (41) and (42), with a few calculations, we get

[
− ~2 ∂

2

∂t2
+ ~2c2εiεk∂i∂k − i~mc3(δ̃†εi − εiδ̃)∂i +m2c4δ̃†δ̃

]
ψ(~x, t) = 0, (45)

representing the Mα equation to the second order (according to the chosen method for raising of
one order our initial equation). Now we see if a matrix representation δ̃, which is able to reduce the
just found equation to the previous (44), for s = 0, exists. First of all we notice that, for s = 0, the
Mα equation to the second order is quickly written 10

[
− ~2 ∂

2

∂t2
+m2c4δ̃∗0 δ̃0

]
ψ(~x, t) = 0, (46)

where, with δ̃0, we indicated the matrix δ̃ for s = 0, which obviously must be a scalar. Can a value
of δ̃0 exist that reduces the (46) to (44)? It is straightforward to verify this happens, in general, for
δ̃0 = +i and δ̃0 = −i, i.e. when δ̃0 has two values.11 Since

δ̃∗0 = −δ̃0, δ̃2
0 = −1, (47)

it is natural requiring in general 12

δ̃† = −δ̃, δ̃2 = −1s. (48)

Such conditions are satis�ed from the diagonal matrices having for elements the alternating sequence
of −i and +i, namely 13

10Hence, unlike the non-relativistic case, the relativistic equation for a particle having s = 0 can be written out.
This means the relativistic particle description is deeper than the non-relativistic one.

11Note that such a result could be achieved with an inverse reasoning too, i.e. by observing the chosen values of
δ̃0 are the only ones (with the other solution δ̃0 = ±1) able to reduce the (46) to a well-known equation, which, in
this case, just coincides with the (44) one, in total agreement with the fact that ~s = (0, 0, 0) for s = 0.

12The subindex s is not the matrix dimension, but the spin index.
13Really, there is � for the (46) � the solution δ̃0 = ±1 too, from which it can be obtained δ̃∗0 = δ̃0, δ̃

2
0 = 1 and so

δ̃† = δ̃, δ̃2 = 1s. These last conditions are satis�ed from the diagonal matrices having for elements the alternating
sequence of +1 and −1 (or vice-versa). But this solution, as we will explain in the footnote 21, has been discarded
because it does not allow to have the same �particle nature� for theMα equation to the �rst and to the second order.
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for s = 1
2

(
−i 0

0 i

)
(49)

for s = 1

 −i 0 0
0 i 0
0 0 −i

 (50)

for s = 3
2


−i 0 0 0

0 i 0 0
0 0 −i 0
0 0 0 i

 (51)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc . . . . . . etc . . . . . .

This allows to de�ne the representations of the operator δ̃ for any s ∈ N/2.
It is important to notate that, being the operator ~ε hermitian, it is better to work with a time

component of spin four-vector which is hermitian too. The fact δ̃ is anti-hermitian makes no
problem. In fact, de�ning 14

δ̃ ≡ iδ, (52)

we can consider δ in place of δ̃. If into equations (28) and (45) we carry out the substitution δ̃ = iδ,
it can be obtained 15

~
∂ψ

∂t
= −~c~ε · ~∇ψ +mc2δψ (53)[

− ~2 ∂
2

∂t2
+ ~2c2εiεk∂i∂k − ~mc3(εiδ + δεi)∂i +m2c41s

]
ψ(~x, t) = 0, (54)

which represent theMα equation to the �rst and to the second order one written through hermitian
matrices. We see now the representations of the operator δ consist of all diagonal matrices having

14Naturally, δ† = δ, δ2 = 1s. In compact form, one has (δ)sm,m′ = (−1)s−mδm,m′ ∀s ∈ N/2− {0}, where we must
not mix up the Kronecker function with the symbol delta used for our matrices.

15δ, unlike δ̃, realizes an unitary and hermitian representation.
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for elements the alternating sequence of +1 and −1. Before studying the equations (53) and (54)
and their Lagrangian theories very well, we must observe two things. Firstly, one has to note that
the adopted representation is not the only one which allows to reduce, for s = 0, the Mα equation
to the second order in the form

(
− ~2 ∂

2

∂t2
+m2c4

)
ψ(~x, t) = 0. (55)

In fact, if we take as δ the diagonal matrices having for elements the alternating sequence of −1 and
+1 (for δ0 we obviously take the couple ±1 always, because it is the scalar representation), we can
obtain the same results.16 We indicate therefore, with obvious symbolic meaning, δ±1 as the �rst
representation and δ∓1 as the second one. These representations lead, like already explained, to the
same form of the Mα equation to the �rst and to the second order one, but, as we will see later on,
they originate some important physical di�erences. For now, we work with the representation δ±1,
by indicating it simply with δ. The second thing to remark concerns the wave function ψ. Since
the Mα equation to the �rst order and to the second order one depend on the spin s, in their inside
will be matrices of a (2s + 1)-dimensional space and so it is clear that ψ will have to be a matrix
column of the same dimension. Hence, it is right to add a subindex s to ψ, namely to place ψs in
our equations, that correctly must be written 17

~
∂ψs
∂t

= −~c~ε · ~∇ψs + µc2δψs (56)

~2∂
2ψs
∂t2

= ~2c2εiεk
∂2ψs
∂xi∂xk

− ~µc3(εiδ + δεi)
∂ψs
∂xi

+ µ2c4ψs. (57)

We now calculate the probability densities of our equations. Concerning the Mα equation to the
�rst order, we have 18

∂(ψ†sψs)

∂t
= −~∇ · (cψ†s~εψs) +

2µc2

~
ψ†sδψs, (58)

from which, if we put {
ρ(~x, t) ≡ ψ†sψs ≡ |ψs|2
~j(~x, t) ≡ cψ†s~εψs,

(59)

16In this case, we have (δ)sm,m′ = (−1)s−m±1δm,m′ ∀s ∈ N/2−{0}. Note that such a representation corresponds to

δ̃ having for diagonal elements the alternating sequence of i and −i, which is the other choice based on the conditions
(48).

17Rename also the mass m in µ for reasons which will be clear in the next pages.
18For obtaining the (58), we proceed as the Dirac equation, but, unlike it, we consider the sum and not the

di�erence of the equations calculated by the hermitian conjugate of the (56).
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we get the non-continuity equation

∂ρ

∂t
+ ~∇ ·~j =

2µc2

~
(ψ†sδψs), (60)

which becomes a continuity equation for massless particles only (µ = 0). The (60) is a true tragedy
for the Mα equation to the �rst order. In fact, if we interpret it as an equation for single-particle,
we will have that ρ is a probability density which does not conserve itself, while, if we interpret it
as a �eld equation, we will have ρ is a charge density that also does not conserve itself. Therefore,
we must sadly admit that theMα equation to the �rst order does not describe elementary particles.
Now we see if at least the Mα equation to the second order admits a continuity equation. We can
show it has the following non-continuity equation too

∂ρ

∂t
+ ~∇ ·~j =

µc3

~

[
∂ψ†s
∂xi

(εiδ + δεi)ψs − ψ†s(εiδ + δεi)
∂ψs
∂xi

]
, (61)

where we have de�ned ρ(~x, t) ≡ (ψ†sψ̇s − ψ̇†sψs)

~j(~x, t) ≡ c2
(
∂ψ†s
∂xk

εk~εψs − ψ†s~εεk
∂ψs
∂xk

)
.

(62)

Also the (61) becomes a continuity equation in a massless regime only (µ = 0). Hence, the Mα

equation to the second order, like the �rst order one, does not describe elementary particles, but
rather objects that work in a strange way. In order to discover some other information on these
curious objects, we study the energetic spectrum of the �rst and second order Mα equation. To do
this, let us set in the classical limit (v � c), thanks to which we can simplify our equations in such
a way (if v � c will be cpi � mc2, c2pipk � m2c4)

~
∂ψs
∂t

= µc2δψs (63)

~2∂
2ψs
∂t2

= µ2c4ψs . (64)

By replacing in the above equations the generic plane-wave solution 19

ψs(~x, t) = ei(
~k·~x−ωt)us(k), (65)

19Naturally, us(k) is a column vector.
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we have, with s varying, the following energetic spectra:

1. First Order Mα Equation

for s = 0 E = ±iµc2 ⇒ Es=0
1 = iµc2, Es=0

2 = −iµc2.
(66)

for s = 1
2

(
E 0
0 E

)
=

(
iµc2 0

0 −iµc2

)
⇒ E

s=1/2
1 = iµc2, E

s=1/2
2 = −iµc2.

(67)

for s = 1

 E 0 0
0 E 0
0 0 E

 =

 iµc2 0 0
0 −iµc2 0
0 0 iµc2

⇒ Es=1
1 = iµc2, Es=1

2 = −iµc2, Es=1
3 = iµc2.

(68)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc . . . . . . etc . . . . . .

2. Second Order Mα Equation

for s = 0 E2 = −µ2c4 ⇒ Es=0
1 = iµc2, Es=0

2 = −iµc2.
(69)

for s = 1
2

(
E2 0
0 E2

)
=

(
−µ2c4 0

0 −µ2c4

)
and so
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E
s=1/2
1 = iµc2, E

s=1/2
2 = −iµc2, E

s=1/2
3 = iµc2, E

s=1/2
4 = −iµc2. (70)

for s = 1

 E2 0 0
0 E2 0
0 0 E2

 =

 −µ2c4 0 0
0 −µ2c4 0
0 0 −µ2c4

 and so

Es=1
1 = iµc2, Es=1

2 = −iµc2, Es=1
3 = iµc2, Es=1

4 = −iµc2, Es=1
5 = iµc2, Es=1

6 = −iµc2. (71)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc . . . . . . etc . . . . . .

Therefore, the Mα equation, to the �rst as well as to the second order, does not describe real
particles, but with imaginary mass ones, i.e. it always describes tachyons. It is important to realize
that, for every s, there are tachyons with positive and negative (imaginary) energy, just like it
happens for bradyonic particles. Nevertheless, the distribution of such tachyonic solutions introduces
a substantial di�erence between the �rst and second order Mα equation. In fact, regarding the �rst
order equation we have that, for s = 0 and half-integer spins, the states with positive and negative
(imaginary) energy are perfectly symmetric, while, for s integer, an asymmetry is recorded, in the
sense the solutions with positive (imaginary) energy are greater than negative (imaginary) energy
ones.20 On the contrary, concerning the second orderMα equation, we have a perfect symmetry, for
every s, between positive and negative (imaginary) energy solutions, namely we always have 2s+ 1
positive and 2s+ 1 negative solutions.21

20This is true for the representation δ±1. It is straightforward to prove that for the representation δ∓1 is exactly
the opposite.

21All that happens since we chose in (46) the solution δ̃0 = ±i. If we choose δ̃0 = δ0 = ±1 and so δ̃† = δ† = δ,
δ̃2 = δ2 = 1s, we have the equations

i~
∂ψs
∂t

= −i~c~ε · ~∇ψs + µc2δψs

~2
∂2ψs
∂t2

= ~2c2εiεk
∂2ψs
∂xi∂xk

− i~µc3(δεi − εiδ)
∂ψs
∂xi

+ µ2c4ψs.

As it simply to prove, in the classical limit the �rst describes bradyons, while the second one describes tachyons and

so the �particle nature� of our equations is not conserved.
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The question now we ask ourselves is what physical usefulness these equations have. The idea
they could describe real particles with arbitrary spin was powerful and fascinating. Must we leave
this dream, or the found equations are giving precious informations we have to discover and analyze?
Thinking this is the just road to follow for any logical-deductive theory, we want to explore more
closely the meaning of our equations, by trying to describe in the best way the stage which they
show us.

1.3 The tachyonic universe

From the �rst and second order Mα equation emerged that the universe described by them is
made of strange objects with imaginary energetic spectrum. The special Relativity tells us this
characteristic belongs to a space-time region made of events connected from space-like intervals (the
absolute elsewhere cone), that is, in terms of particles, from the region of superluminal particles,
called tachyons. Therefore, our equations describe the tachyonic universe, since they describe the
particles faster-than-light and whose speed cannot be inferior to c. But this vision is in direct
contrast with the method in which we have found the energetic spectra of the equations (56) and
(57), because these spectra have been found in the classical limit, i.e. in the range of speeds much
smaller than c. And this is evidently an abuse, if we deal with particles whose minimal speed must
be c. This brings to following �tachyonic paradox� (TP)

TP: The �rst and second orderMα equation, if put in the v � c limit, describe tachyons,
namely particles with v > c. But this breaks the hypothesis to consider particles having
v � c only, since them naturally cannot be tachyons.

The tachyonic paradox reaches what in philosophical speak is called �vicious circle.� How can we
resolve the tachyonic paradox? It is the special Relativity (SR) which can help us, since we can
note within it there is a double vision on the tachyonic world. In fact, as it is well known the energy
concerning a bradyon with (real) mass m is

EB =
mc2

(1− v2

c2
)1/2

,

where it needs to impose v < c for EB ∈ R. If v > c, the above expression becomes 22

mc2

∓i(v2
c2
− 1)1/2

. (72)

22Naturally, one can choose the plus or minus sign only, but we have a more general discussion with the double
sign.
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Only through the correspondence

m→ ∓iµ (73)

a real energy is still obtained. It is given by

ET =
µc2

(v
2

c2
− 1)1/2

, (74)

representing the energy of a tachyon with (real) mass µ. This viewpoint leads us to think that the
tachyon is a particle having v > c and E2 > 0 (real energy). It is against our results leading to the
tachyonic paradox (TP).
Nevertheless, the TP suggests us another way in order to characterize a tachyon, being always in

agreement with the SR. In fact, starting from the expression 23

ET =
µc2

(v
2

c2
− 1)1/2

,

and supposing now v < c, we have

ET =
µc2

∓i(1− v2

c2
)1/2

,

from which, multiplying up and down by ±i, we obtain

ET =
±iµc2

(1− v2

c2
)1/2

, (75)

i.e., since µ ∈ R, the energy ET must be imaginary and so the tachyonic universe is characterized
from E2 < 0, on this view. This trait of tachyonic universe resolves the TP, because now the
tachyons are not seen like particles having speed v (in module) higher than the speed of light c,
but simply as particles having a negative square energy. It must be said that the expression (75)
establishes a duality between the tachyonic universe and the bradyonic one. In fact, based on the
correspondence

µ→ ∓im,
23It is straightforward to note that, if we operate in the expression of EB the correspondence m→ ∓iµ, the (74) is

obtained, and this without imposing v > c for a tachyon. So it can be retained the ET is the most general expression
of the energy concerning a tachyon, independently from its speed value.
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we can get into the bradyonic universe, characterized by

EB =
mc2

(1− v2

c2
)1/2

.

Therefore, the correspondence

m→ ±iµ (76)

allows to go from the bradyonic universe to the tachyonic one, while its inverse

µ→ ∓im (77)

lets pass through the tachyonic universe to the bradyonic one. Therefore, it is possible to transform
a bradyon with mass m into a tachyon with mass µ simply by using the imaginary unit i.
Either way, it is well to emphasize that the tachyonic paradox can be resolved only if the speed of

the generic tachyon is smaller than c. Therefore, thanks to the TP we can detect a new vision within
the special Relativity, which is in total agreement with the principle of invariant light speed,24 since
it implies the tachyons really are particles with v < c and E2 < 0.
This suggests a review concerning the scienti�c terminology on these particles. In fact, the generic

particle having v < c and E2 < 0 would not have to be called any more tachyon, but �iep� (acronym
for imaginary energy particle), while the generic particle having v < c and E2 > 0 would have to be
called �rep� (acronym for real energy particle). It goes without saying that the tachyonic universe
would have to be named �IEP universe,� while the bradyonic one would have to be named �REP
universe.�
From what we saw, it can be understood that in special Relativity a dual way for describing the

tachyons exists: the �rst one through a real energy with positive square and v > c, the second one
through an imaginary energy with negative square and v < c. This last case justi�es the result
found for the �rst and second orderMα equation for v � c and it suggests us a deeper interpretation
of the tachyonic universe, that resolves the paradox earlier enunciated. This alternative vision leads
to conclude that the speed of light c is a universal limit, beyond which one does not approach to a
universe with particles faster than c, but one goes into a universe where the energy has a di�erent
form than the one we know, in the sense that from our point of view it is expressed in an imaginary
unit. As already shown, this vision does not change the SR results and it allows to elegantly resolve
the tachyonic paradox, thus giving sense to the equations (56) and (57).

24Remember that, in the Einstein formulation of the special Relativity, the speed of light c cannot be overtaken,
in fact the hypothetical existence of particles having speed faster-than-light was born from late speculations [11].

18



1.4 Four-dimensional form of tachyonic equations and their Lagrangian
densities

In this section, we want to write the four-dimensional expressions of the (56) and (57) and also to
determine their Lagrangian densities. We start by the equation

~
∂ψs
∂t

= −~c~ε · ~∇ψs + µc2δψs ⇔
∂ψs
∂t

= −c~ε · ~∇ψs +
µc2

~
δψs, (78)

and multiply its both sides by δ/c

δ

c

∂ψs
∂t

= −δ~ε · ~∇ψs +
µc

~
δ2ψs ⇒

(
δ

∂

∂(ct)
+ δ~ε · ~∇

)
ψs =

µc

~
ψs ⇔

(
δ∂0 + δεi∂i

)
ψs =

µc

~
ψs. (79)

At this point, if we de�ne the (matrix) four-vector

χµ ≡ (δ, δ~ε), (80)

one quickly sees the (79) can be written

χµ∂µψs =
µc

~
ψs, (81)

which is equivalent to (
χµ∂µ −

µc

~
1s

)
ψs(x) = 0. (82)

The (82) represents the �rst order Mα equation in the four-dimensional form. In order to �nd
the second order Mα equation in the four-dimensional form, we start from the vectorial expression

~2∂
2ψs
∂t2

= ~2c2εiεk
∂2ψs
∂xi∂xk

− ~µc3(εiδ + δεi)
∂ψs
∂xi

+ µ2c4ψs. (83)

Now the scalar products must be consider in the Minkowski space and so we raise all the indices
based on the four-dimensional notation.25Making it, the (83) can be put in the following equivalent

25Remember that the scalar product of two vectors ~A and ~B in the Euclidean space R3 is de�ned as ~A · ~B ≡ AiBi,
while in the Minkowski space is de�ned as ~A · ~B ≡ AiBi within the scalar product of two four-vectors Aµ and Bµ,
where i ∈ {1, 2, 3} in both cases.
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expressions [
−~21s

∂2

∂t2
+ ~2c2εiεk∇i∇k − ~µc3(εiδ + δεi)∇i + µ2c41s

]
ψs(~x, t) = 0⇒[

−δ
2

c2

∂2

∂t2
+ εiεk∇i∇k − µc

~
(εiδ + δεi)∇i +

µ2c2

~2
1s

]
ψs(~x, t) = 0⇒[

−δ
2

c2

∂2

∂t2
+ εiεk∇i∇k − 1

~
(εiδ + δεi)p0∇i +

µ2c2

~2
1s

]
ψs(~x, t) = 0⇒[

δ2

c2

∂2

∂t2
− εiεk∇i∇k +

1

~
(εiδ + δεi)p0∇i − µ2c2

~2
1s

]
ψs(~x, t) = 0⇒[

δ2

c2

∂2

∂t2
− εiεk∇i∇k + i(εiδ + δεi)∂0∇i − µ2c2

~2
1s

]
ψs(~x, t) = 0⇒[

δ2∂0∂0 − εiεk∂i∂k + i(εiδ + δεi)∂0∂i −
µ2c2

~2
1s

]
ψs(~x, t) = 0,

(84)

where we have used the relations 26

∂µ =

(
1

c

∂

∂t
,−~∇

)
, p0 = µc, p0 → i

~
c

∂

∂t
= i~∂0. (85)

Now, by de�ning the (matrix) four-vector

ξµ ≡ (δ, i~ε), (86)

the (84) can immediately be written

[
(ξµ)2∂µ∂µ +

∑
µ>ν

µ6=ν

(ξµξν + ξνξµ)∂µ∂ν −
µ2c2

~2
1s

]
ψs(x) = 0, (87)

that, naturally, is equivalent to (
ξµξν∂µ∂ν −

µ2c2

~2
1s

)
ψs(x) = 0. (88)

26It could be objected that, having the tachyons an imaginary energy, the right relation to replace would be
p0 = iµc and, therefore, the obtained result is wrong. But ultimately, if we make such a reasoning, we must also
notice that the correspondence (p0)tachyon = i

cE
bradyon → −~

c
∂
∂t is valid and so our result does not change.
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The (88) represents the second orderMα equation in the four-dimensional form. Therefore, we have
found that the (56) and (57) in the four-dimensional form can be written(

χµ∂µ −
µc

~
1s

)
ψs(x) = 0 (89)

(
ξµξν∂µ∂ν −

µ2c2

~2
1s

)
ψs(x) = 0. (90)

These equations, as we already saw, describe particles with imaginary energy (ieps) or, using the
old terminology, they describe tachyons. Let us notice χµ and ξµ satisfy the relations 27

χ†µ = χ0χµχ0, (χµ)† = χ0χµχ0, ξ†µ = ξµ, (ξνξµ)† = ξµξν . (91)

Now it is useful to make the following observations:

• The �rst and second order Mα equation, whether in vectorial form or four-dimensional one,
are not two equivalent ways to describe tachyons, since the �rst order Mα equation describes
tachyons with asymmetric energetic states, while the second order Mα equation describes
tachyons with symmetric energetic states.

• While the second order Mα equation in vectorial form follows from the �rst order one (always
in vectorial form), only if we isolate the spatial derivative and the term not risen from the
time one, with the request to take the square norm of the operators (42) rather than their
simple square, it is impossible to derive the second orderMα equation in the four-dimensional
form by the �rst order Mα equation in four-dimensional form, and this because in the space-
time formalism the time derivative and the spatial one are merged in the four-dimensional
derivative ∂µ.28

The �rst point tells us that only one between the equations (89) and (90) can correctly describe
the �tachyons� (more precisely we would say the �ieps�) and this depending on such particles have
asymmetric or symmetric energetic states. How can we do then to establish what is the correct
equation for the ieps? The only way would be developing both formalisms and seeing what of the
two is better adapted to the experimental data. Nevertheless, since a tachyon physics does not
exist, we have to study both equations. The second point tells us the reason for which the �rst
orderMα in the four-dimensional form is expressed through the matrices χµ, while the second order
Mα equation in the four-dimensional form is expressed through the matrices ξµ, i.e. why the (89)
and (90) are not expressed through the same matrix four-vectors.
At this point, having reached this stage, we could ask about usefulness of the found equations,

27Note that χµ and ξµ coincide for s = 0 only.
28The Mα equation to the second order in four-dimensional form can be derived to the �rst order one for s = 0

only, since in this case χµ and ξµ coincide.
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since they do not describe reps but ieps. In the next pages, we will see that the equations (89) and
(90) are fundamental for writing the equations concerning the bradyonic particles with arbitrary
spin.
Now let us continue the tachyonic universe review, by studying the Lagrangian densities charac-

terizing the equations (89) and (90). For such a purpose, if we de�ne

ψ†sχ
0 ≡ ψ̄s, (92)

it is straightforward to see the (89) and (90) are obtained by the Lagrangian densities

LM1 = ψ̄sχ
µ∂µψs −

µc

~
ψ̄sψs (93)

LM2 = (∂µψ
†
s)ξ

µξν(∂νψs) +
µ2c2

~2
ψ†sψs. (94)

For construction, the Lagrangian density LM1 describes the tachyonic universe (IEP universe) when
the energetic spectrum of its particles is asymmetric, while LM2 describes the IEP universe when
the energetic spectrum of its constituent particles is symmetric. Thus, it comes that, through
LM1 and LM2, we can identify two quantum �eld theories by which studying conserved amounts,
symmetries, etc. It is simple to understand not being tachyons (or better ieps) particles with real
energy, namely particles with positive square energy, such studies would be useless, above all if
inserted in the context of a ground-breaking work like this. What we will study, instead, through
LM1 and LM2, is the spontaneous symmetry breaking of the tachyonic universe and we will make it
because this discussion will incredibly put us in contact with our universe, that is with the universe
of the particles having positive square energy (REP universe).29

29It is important to underline that, if we chose A2ψ = B2ψ for �nding the Mα equation to the second order,
one should obtain bradyonic equations to the �rst and second order only (such equations will be written out in the
section 2.3), without ever knowing the fundamental idea on the great spontaneous symmetry breaking explained in
the next chapter.
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2 The Big-Break Genesis and New Equations for

Elementary Particles

Having elaborated the theory of tachyonic universe, now it is interesting to verify if this admits
spontaneous symmetry breaking (SSB). This chapter starts with the analysis of the SSB on the
theories LM1 and LM2. However, our study will not be useless, because it will take us to unexpected
cosmological considerations. In fact, it will be possible to assume that for the instability of tachyonic
universe, due to its negative square energy (referring to the particles that constitute it), there was
a great phase transition, which brought the tachyonic universe to condense into a universe with
positive square energy (bradyonic universe). Therefore, the theory we have elaborated puts in
relation the tachyonic universe with our universe, leaving to mean that really this last one is nothing
more than the tachyonic universe condensed as result of a big process of spontaneous symmetry
breaking. Moreover, we will see the transition from tachyonic to bradyonic universe concurs to
transform the tachyonic equations in bradyonic ones, i.e. able to describe the elementary particles
with arbitrary spin. The �rst order partial di�erential equation will take to asymmetric quantum
states, while the second order one will take to symmetric quantum states. This could induce an
examination on the asymmetry between matter and anti-matter, which is a characteristic of our
universe (REP universe). Lastly, about the proposed equations, we will treat their probability
densities, general solutions and Lorentz covariance.

2.1 Spontaneous symmetry breaking of the theories LM1 and LM2

We start by describing the process of spontaneous symmetry breaking of the tachyonic theory
characterized by the Lagrangian density (93). From the literature, we know the �eld connected to
the SSB is a scalar �eld φ4, namely a Klein-Gordon �eld to which we add a potential term 30

−λ|φ|4, (95)

and this means that, in order to study the SSB of the theory characterized by LM1, we must put
us in the case s = 0 and add in LM1 the potential term −λ(ψ̄s=0ψs=0)2, i.e.

LSSB
M1 = ψ̄s=0χ

µ
s=0∂µψs=0 −

µc

~
ψ̄s=0ψs=0 − λ(ψ̄s=0ψs=0)2, (96)

and, making clear the scalar products, we obtain the two Lagrangian densities (both right) 31

30In this case λ ∈ R.
31For simplicity, we put ψs=0 = ψ and ψ∗s=0 = ψ∗.
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L
SSB,1
M1 =

1

c
ψ∗
∂ψ

∂t
+
µc

~
ψ∗ψ − λ(ψ∗ψ)2 (97)

L
SSB,2
M2 =

1

c
ψ∗
∂ψ

∂t
− µc

~
ψ∗ψ − λ(ψ∗ψ)2. (98)

As it is known, for studying the SSB of our system we have to analyze the potentials of the
Lagrangian densities (97) and (98). They are, respectively, given byV1(ψ∗ψ) = λ(ψ∗ψ)2 − µc

~ ψ
∗ψ

V2(ψ∗ψ) = λ(ψ∗ψ)2 + µc
~ ψ
∗ψ.

(99)

Naturally, the study of their sign has to be at the same time, since the (97) and (98) must be
both right. Making it, we easily see the system admits SSB, i.e. the theory have a maximum in
0 and two relative minimums in µc/2~λ and −µc/2~λ. As the careful reader already noticed, in
contrast to the scalar �elds which one studies in literature (−λ|φ|4 + Klein-Gordon �eld), it is not
necessary distinguishing the two cases µ > 0 and µ < 0, since SSB happens for both and this tells
us the studied system surely admits SSB and so it is an �unstable system.� For having a clearer
physical situation as soon as mathematically described, we consider the diagram of the potential V
(in this case V = λ|ψ|4∓ µc

~ |ψ|
2) in the V − |ψ|2 plan drawn in �g. 1. The plot of potential V (|ψ|2)

shows a depression, which existing makes the system unstable. As it is straightforward seen, this
depression can be put in relation with the typical negative square energy of the IEP universe.32 In
fact, indicated with

−µ2c4 = E2
T (100)

the square energy of a �tachyonic� particle (varying µ), it is immediate to write the points of V (|ψ|2)
correspondent to 0 and −µ2c2/4~2λ, according to this negative energy. We have

0 = −(µ = 0)2c4

4~2c2λ
=

(E2
T )0

4~2c2λ
; − µ

2c2

4~2λ
= − µ2c4

4~2c2λ
=

E2
T

4~2c2λ
, (101)

i.e. the depression of V (|ψ|2), which corresponds to the instability of the system, occurs for those
potential values such that

V (|ψ|2) ∝ E2
T . (102)

32In particular, it is the rest energy of a �tachyon.�
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Figure 1: The potential of LSSBM1 shows a typical form to �sombrero,� which characterizes the unstable systems.

Thanks to this result, we can suppose the SSB is not only due to the fact the vacuum of the system
is into a state di�erent from zero, but also to the circumstance that the system is characterized by
a negative square energy. Going beyond, one can think the system is into a vacuum state di�erent
from zero just because the system has a negative square energy. We will see this vision will lead
to important results which will reveal the depth of the SSB process, that should not be interpreted
as a property of the some physical systems only, but rather as a �universal characteristic� of the
elementary particle physics, i.e. of our universe.
In order to try further indications, we want now to study the SSB of the theory characterized by

the Lagrangian density

LM2 = (∂µψ
†
s)ξ

µξν(∂νψs) +
µ2c2

~2
ψ†sψs. (103)

As we have previously seen, for obtaining a coherent SSB model, we must put us in the case s = 0
and add to the Lagrangian density, thus obtained, the term −λ(ψ∗ψ)2. Making it, we have

LSSB
M2 = (∂µψ

∗)ξµξν(∂νψ) +
µ2c2

~2
(ψ∗ψ)− λ(ψ∗ψ)2, (104)

by which, making clear all the terms, we get
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LSSB
M2 =

1

c2

∂ψ∗

∂t

∂ψ

∂t
+
µ2c2

~2
(ψ∗ψ)− λ(ψ∗ψ)2. (105)

We note that, unlike the (96), the (105) is only one, and, therefore, we have the only potential

V (ψ∗ψ) = −µ
2c2

~2
(ψ∗ψ) + λ(ψ∗ψ)2. (106)

By studying the sign of this potential, we can distinguish the two cases

1. µ2 > 0:
The system has maximum in 0 and minimum in µ2c2/2~2λ and so it shows SSB.

2. µ2 < 0:
The system has maximum in µ2c2/2~2λ and minimum in 0 and so it does not show SSB.

If we trace the diagram of the potential (106) into V (|ψ|)− |ψ| plan, we have the plot of �g. 2.

Figure 2: The potential of LSSBM2 in the case µ2 > 0, for which the system is unstable and admits spontaneous
symmetry breaking (SSB).

Therefore, also for the theory characterized by the (103), we have a depression of potential V in
correspondence of the energetic interval
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[
E2
T , 0
]
, (107)

that is for negative square energies (�tachyonic� energies). Therefore, also in such a case we can
believe the instability of our system depends on the (negative) square energy of the particles consti-
tuting it. So, we found for our theory an already famous result, consisting in the fact that negative
square energy of a system causes instability. By the diagrams of potentials, we can see indicatively
one arrives to a stability condition (minimum in 0 and disappearance of depression), passing from
negative square energies to positive ones

E2
T → E2

B, (108)

where with E2
B we indicated the positive square energy of the particles, which we call bradyons

(they are the particles of our universe, before already called reps). Saying µ the mass of a generic
tachyon and m the mass of a generic bradyon,33 we can thus rewrite the above correspondence 34

−µ2c4 → m2c4, (109)

which is equivalent to

−µ2 → m2, (110)

i.e., extracting the square root 35

±iµ→ ±m, (111)

we have the only correspondence 36

iµ→ m, (112)

that can also be written
33From what we earlier said, we do not mean with tachyon a superluminal particle and with bradyon a sub-luminal

particle, but a particle with negative square energy (iep) and a particle with positive square energy (rep), respectively.
This is their di�erence, because both have speeds lower or like c within our theory.

34Of course µ,m ∈ R.
35The + sign is for particles, while the − sign is for anti-particles.
36In fact, if we consider particles or anti-particles, the result does not change.
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µ→ −im. (113)

The (113) is the correspondence which has to be done on our systems (the one described by LSSB
M1

and the one described by LSSB
M2 ) for making them stable, namely for eliminating the SSB. Naturally,

such an argument is provisional and serves only to understand what happens at the system when
it places itself in a stability condition. Formally, we know that the system, in order to put itself
in a stability condition, will have to shift in a state whose minimum is zero. Therefore, also
for the theories described by LM1 and LM2, the SSB can be studied in the same way and with
analogous results to those well known. In particular, it can be demonstrated that a translation
of the system to a vacuum state equal to zero materializes massive and massless �elds, thus as
the Goldstone theorem prescribes [41, 42]. Moreover, rendering the (gauge) global symmetry a
local one, i.e. making the �minimal coupling� in LSSB

M1 and LSSB
M2 , it can be observed the Goldstone

�elds are coupled to the gauge �elds becoming massive, thus arising the famous Higgs mechanism,
fundamental for the Glashow-Weinberg-Salam electroweak theory. What is the massive �elds sign?
It can be demonstrated the massive �elds have opposite sign towards the one of the particle �elds
before the transition to a state of minimum (vacuum) equal to zero (notice that the number of such
�elds will always depend on the group of symmetry we consider).
At this point we ask ourselves two questions

• Does the opposite sign of the massive �elds, deriving from the translation of the system to a
state of minimum (vacuum) equal to zero, depend e�ectively on a passage at positive square
energy for our particles?

• What happens to the theories described from LM1 and LM2 when we make the substitution
µ→ −im?

If, as supposed, the second question gives us the answer: �we obtain theories describing exclusively
particles with positive square energy (namely bradyons or reps),� we will have that a relationship
between SSB and bradyonic universe exists, i.e. the SSB can be seen like a fundamental principle
for the creation of our universe, beginning from an unstable universe as the tachyonic one. There-
fore, based on this reasoning, the spontaneous symmetry breaking (SSB) could not have been a
phenomenon regarding the scalar �elds (s = 0) only, but also all the other �elds (arbitrary spin)
staying in the tachyonic universe.

2.2 From tachyonic (IEP) to bradyonic (REP) universe

If we apply the correspondence µ → −im in the equations of motion characterizing the tachyonic
universe, i.e. into �rst and second order Mα equation given by 37

37Remember that each of these equations identi�es a speci�c tachyonic theory: one with asymmetric energetic
states and other one with symmetric energetic states, for every s.
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(
χµ∂µ −

µc

~
1s

)
ψs(x) = 0 (114)

(
ξµξν∂µ∂ν −

µ2c2

~2
1s

)
ψs(x) = 0, (115)

we obtain the equations 38

(i~χµ∂µ −mc1s)ψs(x) = 0 (116)

(
ξµξν∂µ∂ν +

m2c2

~2
1s

)
ψs(x) = 0, (117)

from which we note

• The equation (116) is identical to the four-dimensional Dirac equation, apart from the sub-
stitutions 39

ψs(x)→ ψs=3/2(x)

χµ → γµ

1s → 1s=3/2.

• The equation (117) is identical to the four-dimensional Klein-Gordon equation, apart from
the substitutions

ψs(x)→ ψs=0(x)

ξµξν∂µ∂ν → ∂µ∂
µ ≡ �

1s → 1.

38Such equations, for s = 0, become

(
i~
∂

∂t
∓mc2

)
ψs=0(x) = 0

(
∂2

∂t2
+
m2c4

~2

)
ψs=0(x) = 0,

where, for both, we have δ0 = ±1.
39Note that we have a four-dimensional �eld ψ(x) and a (4 × 4) unit matrix 1, if we consider the tensor product

of two �elds with spin 1/2 too. However, we will treat this argument in the next chapter.
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With the promise of making further considerations in the next pages, we want now to estimate
the energetic spectrum concerning the equations (116) and (117), respectively. For this purpose, by
replacing in our equations the generic plane-wave solution

ψs(x) = e−ik·xus(x), (118)

and putting us in the classical limit, we obtain, for the (116), the relation

E1s = mc2δ, (119)

from which, by taking the representation δ±1, we have the following energetic spectrum

for s = 0 E = ±mc2 ⇒ Es=0
1 = mc2, Es=0

2 = −mc2.
(120)

for s = 1
2

(
E 0
0 E

)
=

(
mc2 0

0 −mc2

)
⇒ E

s=1/2
1 = mc2, E

s=1/2
2 = −mc2.

(121)

for s = 1

 E 0 0
0 E 0
0 0 E

 =

 mc2 0 0
0 −mc2 0
0 0 mc2

⇒ Es=1
1 = mc2, Es=1

2 = −mc2, Es=1
3 = mc2.

(122)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sequence of mc2 according to the matrices of δ±1.

Instead, for the representation δ∓1, we have

for s = 0 Es=0
1 = −mc2, Es=0

2 = mc2.
(123)
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for s = 1
2

E
s=1/2
1 = −mc2, E

s=1/2
2 = mc2.

(124)

for s = 1 Es=1
1 = −mc2, Es=1

2 = mc2, Es=1
3 = −mc2.

(125)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sequence of mc2 according to the matrices of δ∓1.

With the same argumentation, referring now to the equation (117) in the classical limit, we obtain
the relation 40

E21s = m2c41s, (126)

from which, it follows the energetic spectrum

for s = 0 mc2,−mc2.
(127)

for s = 1
2

mc2,−mc2,mc2,−mc2.
(128)

40In such a case, it is not important if we are in the representation δ±1 or δ∓1.
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for s = 1 mc2,−mc2,mc2,−mc2,mc2,−mc2.
(129)

. . . . . . . . . . . . (2s+ 1) solutions with positive energy and (2s+ 1) solutions with negative energy.

Based on the found result, we can assert the equation obtained from the (114) through the corre-
spondence µ→ −im describes particles with real energy (positive and negative) only, i.e. describes
bradyons (or reps). It is important to remark that the energetic states with s = 0 and s half-integer
are symmetric, while those with s integer are asymmetric, displaced from the part of positive and
negative energy depending on the choice of representation δ±1 or δ∓1. Instead, regarding the equa-
tion obtained from the (115), always thanks to correspondence µ→ −im, it also describes bradyons
with positive and negative real energy, but, unlike the (116), the energetic states of such particles
are perfectly symmetric for any value of s.
Therefore, we proved that the equations deriving from the (114) and (115), through the corre-

spondence µ → −im, describe particles with positive square energy, that is the particles of our
universe. The important thing which we must underline is that the substitution µ→ −im has not
been operated in an arbitrary way, but it is gushed from a reasoning about the instability of the
tachyonic system earlier to the SSB process. In particular, we are now in a position to respond
to the second question we made in the former pages, with regard to the result which should have
to produce the already cited correspondence on the tachyonic theories described by LM1 and LM2.
Well, as we just predicted, the answer is that we get theories exclusively describing particles with
positive square energy. Then, having ascertained the correspondence µ→ −im changes the sign of
the mass term of equations (114) and (115) and having proved the change of such a sign generates a
passage from particles with negative square energy to particles with positive square energy, we can
also answer the �rst question and assert that the translation of the system to a state of minimum
(vacuum) equal to zero, involving a change of sign in the mass term, leads to particles with positive
square energy. It goes without saying that this observation implies the subsistence of a relationship
between tachyonic SSB and bradyonic universe, in the sense that is right to think the two bradyonic
equations (116) and (117) really derive from the two tachyonic ones (114) and (115), respectively
(obviously, as we will explain later, only one of these equations could be the good equation for our
elementary particles), through a big process of spontaneous symmetry breaking. If this is correct,
the correspondence µ→ −im practically expresses the �reconversion� or the �tachyon condensation�
[11, 12, 13], expression of the �phase transition� of the system from a condition of instability (IEP) to
a stability one (REP). This drives us to guess the cosmological scenario sketched in �g. 3. According
to which, after Big-Bang (the initial singularity), there was a distribution of matter characterized
by the negative value of the square energy of any constituent particle (tachyonic or IEP universe).
That is why this distribution of matter, revealing itself extremely unstable, received a great phase
transition (SSB + tachyonic condensation), which we can call �Big-Break,� that took it to a stable
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condition, characterized by a positive square energy for any constituent particle (bradyonic or REP
universe). The just described picture is extremely fascinating and represents an exhaustive logical-
deductive background which addressing the experimental and theoretical researches to. However,
for now it is only a hypothesis, based on what emerges from the theory exposed in these pages.
In particular, we understand that, in order to con�rm such a conjecture from the merely theoret-
ical point of view, it is absolutely necessary to generalize the SSB concept. In fact, while on the
basis of the current model the spontaneous symmetry breaking is a peculiarity of the scalar �elds
with potential |φ|4 only, the vision proposed in these pages predicts a great spontaneous symme-
try breaking (Big-Break), that touched all the tachyonic particles, which condensed in bradyonic
particles (otherwise the correspondence µ → −im would not lead to equations with positive en-
ergy solutions). At present, a Big-Break model, in the terms that we described, does not exist,
but if one of the two proposed equations will be revealed valid for the explanation of experimental
data, it will be necessary to construct such a model. Of course, joined to the de�nition of a wider
group of gauge transformations, it could lead to the e�ective uni�cation of the four physics fun-
damental forces (gravitational, electromagnetic, strong, weak), going complete the work begun by
Glashow-Weinberg-Salam.

Figure 3: The α-Theory scenario. The Big-Break event is fundamental for the birth of the bradyonic universe.

So just to �nalize, we can see that the correspondence

µ→ −im,
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which previously has been deducted through considerations concerning the transition from a neg-
ative square energy to a positive one of a system subject to SSB, can be considered in SR too.
In fact, as we have seen in the section 1.3, thanks to the TP there are two equivalent ways for
describing the energy of the bradyons and tachyons, depending on whether it is assumed these last
have speed v (in module) smaller or higher than the speed of light c. They are 41

1. EB = mc2

(1− v2
c2

)1/2
; ET = µc2

( v
2

c2
−1)1/2

, if vt > c.

2. EB = mc2

(1− v2
c2

)1/2
; ET = iµc2

(1− v2
c2

)1/2
, if vt < c.

where, with EB, we indicated the energy of the generic bradyon and, with ET , the energy of the
generic tachyon. It is straightforward to see that the substitution

m→ iµ

and its inverse 42

µ→ −im,

allow in 2 � under the hypothesis that the tachyonic speed is smaller in module than c � to pass from
EB to ET and vice-versa, i.e. of being able to pass from the bradyonic universe to the tachyonic
one and from the tachyonic universe to the bradyonic one without problems, letting mean these two
universes are interchangeable. Therefore, the tachyonic paradox, arisen from the theory exposed in
this work, allowed to give us an alternative vision on the tachyonic universe within the SR. Such a
viewpoint is in line with the principle of invariant light speed, since it considers the tachyons not as
superluminal particles, but like those having speed smaller than c and E2 < 0 (ieps). However, ac-
cording to this new framework on the special Relativity, the tachyonic universe (IEP universe) and
the bradyonic one (REP universe) are interchangeable, because through the substitutions m→ iµ
and µ→ −im, one can go by one to the other, and vice-versa. Hence, the imaginary energy, within
the SR, has not a physical meaning, but it seems to be a mathematical characteristic having the
only goal to avoid that the particles of the (absolute) elsewhere are able to have v > c. Instead, the
theory exposed in this work shows that this characteristic leads to instability, and so it has a speci�c
physical implication. This allows to �nd a well-known result, consisting to think the tachyons are
not particles with v > c, but strongly unstable particles with imaginary energy [13, 34, 35, 41− 45].
But there is more because � joined to the hypothesis that the SSB was a global physical phe-

nomenon for tachyonic particles � our theory gives to the correspondence µ → −im a primary
meaning, establishing practically an arrow of conversion between the tachyonic universe and the

41Note that vt is the velocity of the generic tachyon.
42Remember that such correspondences are with double sign in SR. We choose here only one, for confronting them

with the correspondence µ→ −im arisen from our model.
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bradyonic one, allowing the �rst one to transform itself in the second, but the second one to not
transform itself in the �rst, namely it establishes the irreversibility of the correspondence µ→ −im
(m9 iµ).43 Therefore, into the SR the imaginary energy is a �ctitious e�ect, while for our theory
it is a real e�ect, caused by the instability of the tachyonic universe (IEP universe). It is because
of this instability that such a universe condensed in a stable universe having real energy (REP
universe). This suggests us that the theoretical model we are constructing exceeds and improves
the special Relativity background.

2.3 Quantum states and asymmetric universe

In the last section, we proved that the equations

(i~χµ∂µ −mc1s)ψs(x) = 0 (130)

(
ξµξν∂µ∂ν +

m2c2

~2
1s

)
ψs(x) = 0 (131)

can be applied to our universe, and they give us, respectively, solutions with positive and negative
energy distributed in asymmetric and symmetric way. The energetic spectrum of such solutions
has been computed in the classical limit, namely in the inertial frame in which the particles taken
under investigation are practically at rest (for this it is usually called �rest frame�). We understand
this condition describes the elementary states of a quantum particle, i.e. describes the stationary
quantum states. We can, therefore, claim that the energetic analysis made on equations (130) and
(131) established that the �rst one admits symmetric quantum states for particles with spin 0 or
half-integer, and asymmetric quantum states for particles with integer spin,44 while the second one
admits symmetric quantum states for any spin value (democratic equation). We also know our uni-
verse is asymmetric, because the matter composing it is overall higher than the anti-matter. Does
a relationship exist between the quantum states of equations (130) and (131) and the asymmetry
of our universe? It could apparently be asserted such an asymmetry is due to the fact that the
elementary particles are described just from equation (130) in the representation δ±1, i.e. the asym-
metry of the universe is due to the fact that the equation describing elementary particles admits
an asymmetry in the fundamental quantum states. This explanation, although completely practi-
cable, does not distinguish between micro and macro, simply thinking the cosmological e�ects are
a direct result of the in�nitesimally small world processes. But the opposite could be true, and so
the asymmetry of the universe could be the product of collective events on large-scale, such as the
Big-Break, whose formal description must be done as soon as possible. Then, we understand that,
in order to answer these questions, and for �nding many others, it is necessary to establish what

43It is well to underline that our theory, unlike the SR, �xes the sign on the correspondence µ → −im too, i.e.
there is not the possibility of double sign existing in the special Relativity.

44These states are shifted from the part of the solutions of positive or negative energy, depending on whether one
chooses the representation δ±1 or δ∓1: obviously such an option depends from the Nature.
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between equations (130) and (131) correctly describes the elementary particles. Therefore, we have
to understand what between the two found equations has a better predictive power from theoretical
and experimental point of view. For this reason, in the next, we will limit ourselves in describing
the properties of both equations, with the aim to facilitate later studies on their physical character.
One of the things to be well emphasized is that, while the equation

(i~χµ∂µ −mc1s)ψs(x) = 0,

in principle, can also be obtained without calling for the tachyon condensation, i.e. making less of
correspondence µ→ −im, the equation(

ξµξν∂µ∂ν +
m2c2

~2
1s

)
ψs(x) = 0

does not exist without the substitution µ→ −im, since it derives, necessarily, from a global process
of spontaneous symmetry breaking (so good for any s), that leads to the tachyon condensation. In
fact, it is possible to demonstrate that, considering the equation (30) (and not the (31)), where there
is the square of the di�erential operators A and B, one arrives to the following vectorial equations45

i~
∂ψs
∂t

+ i~cεi∂iψs = mc2δψs(~x, t) (132)

~2∂
2ψs
∂t2

= ~2c2εiεk
∂2ψs
∂xi∂xk

+ i~mc3(εiδ + δεi)
∂ψs
∂xi
−m2c4ψs(~x, t), (133)

of which the (132) can be put in the four-dimensional form and it coincides with the (130), while
the (133) cannot be put in four-dimensional form and it is, however, di�erent from the (131) in
vectorial form which is

~2∂
2ψs
∂t2

= ~2c2εiεk
∂2ψs
∂xi∂xk

− ~mc3(εiδ + δεi)
∂ψs
∂xi
−m2c4ψs(~x, t). (134)

This makes us understand that, if we will prove the equation (130) is the more appropriate for
describing the elementary particles, we will have the big process of spontaneous symmetry breaking
� which gives birth to the tachyon condensation � could not �nd full justi�cation, while, if the (131)
will attest of being the right equation for the elementary particles with arbitrary spin, this will be
a sure test our universe was born from an universe with negative square energy after a Big-Break.
Therefore, it will be fundamental, in future, to understand if and what between the (130) and the
(131) is able to describe the quantum physics.
Before continuing with the study of these two equations, we call the (130) �Asymmetric α-

45In this case, we simply place δ̃ = δ, without specifying if it is δ±1 or δ∓1.
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Equation� (AαE) and the (131) �Symmetric α-Equation� (SαE). Since these equations are charac-
terized by di�erent wave functions, one prefers in the next to indicate, with ψs, the wave function
of the AαE and, with ψs, the wave function of the SαE.

2.4 Probability densities of the AαE and SαE

In this section, we want to calculate the probability densities of the asymmetric and symmetric
α-equation. We begin from the �rst of them, that in vector components can be written

i~
∂ψs
∂t

= −i~cεi∂iψs +mc2δψs. (135)

The hermitian conjugate of such an equation is

−i~∂ψ
†
s

∂t
= i~c∂iψ†sεi +mc2ψ†sδ, (136)

where it has been taken account that ε†i = εi, δ
† = δ. Now, if we multiply the (135) on the left-side

by ψ†s and the (136) to right-side by ψs, we obtain the two expressions

i~ψ†s
∂ψs
∂t

= −i~cψ†sεi∂iψs +mc2ψ†sδψs (137)

−i~∂ψ
†
s

∂t
ψs = i~c∂iψ†sεiψs +mc2ψ†sδψs, (138)

from which, by considering (137)− (138), we have

(ψ†s
∂ψs
∂t

+
∂ψ†s
∂t
ψs) = −c(ψ†sεi∂iψs + ∂iψ

†
sεiψs), (139)

which is not other but a continuity equation of the type

∂ρAα
∂t

+ ~∇ ·~jAα = 0, (140)

where it is placed
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ρAα(~x, t) ≡ ψ†sψs ≡ |ψs|2

~jAα(~x, t) ≡ cψ†s~εψs.
(141)

If ψs(~x, t) is the wave function associated to a generic particle with spin s, we can identify
ρAα(~x, t) and ~jAα(~x, t), respectively, like the probability density and the probability current density
associated to AαE. From this, it is immediate to realize that the ρAα(~x, t) is positive-de�nite just
like it happens for the Dirac equation. On re�ection, the ρAα(~x, t) and ~jAα(~x, t) are identical to
those of the Dirac equation, on condition the Dirac wave function is replaced with ψs(~x, t) and the
matrices εi with the matrices αi. This is an ulterior proof of the fact the AαE can be seen like the
generalization of the Dirac equation.
By proceeding to the same way for the symmetric α-equation, we obtain the following continuity

equation

∂ρSα
∂t

+ ~∇ ·~jSα = 0, (142)

where we have ρSα(~x, t) ≡ (ψ†sψ̇s − ψ̇†sψs)

~jSα(~x, t) ≡ c2
(
∂ψ†s
∂xk

εk~εψs − ψ†s~εεk
∂ψs
∂xk

)
+ mc3

~ ψ†s (δεi + εiδ)ψs.
(143)

This means � like the expression of ρSα(~x, t) suggests � that the SαE has a not positive-de�nite
probability density. Therefore, as the Klein-Gordon equation, whose SαE can be considered like a
generalization, also the symmetric α-equation su�ers of a not positive-de�nite probability density.
At �rst sight, this could let us discard such an equation to advantage of AαE. Really, for the SαE
and AαE, the same considerations made for the Klein-Gordon and Dirac equations are worth, i.e.
the densities ρAα(~x, t) and ρSα(~x, t) have not to be interpreted like probability densities, but rather
as charge densities. This can be made only if AαE and SαE do not represent equations for single-
particle, but �eld equations. This interpretation is further justi�ed, for both the AαE and SαE,
by the study of the spectrum solutions made in section 2.2, already showing these equations, for
any s, introduce more solutions, and therefore, necessarily, ψs(~x, t) and ψs(~x, t) cannot be seen like
single-particle wave functions, but, more properly, as ��eld functions.�

2.5 Lorentz covariance of the AαE and SαE

We want now to prove the relativistic covariance of the AαE and SαE. To be precise, we want to
establish the conditions which such equations must satisfy for having the same form in any inertial
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frame of reference and that, based on the principle of relativity, are joined to the validity of the
following two requests

• A law must exist according to which, given the ψs(x) (or ψs(x)) in an inertial reference frame
S, an observer placed into another inertial frame S ′ must be in a position to calculate the
function ψ′s(x

′) (or ψ′s(x
′)), which describes in S ′ the physical state correspondent to the ψs(x)

(or ψs(x)) in S.

• In agreement with the principle of relativity, the ψ′s(x
′) (or ψ′s(x

′)), namely the particle �eld
we want to study in S ′, must be solution of an equation which in the inertial frame S ′ has the
same form of AαE (or SαE), i.e.

(
i~χ̃µ∂′µ −mc1s

)
ψ′s(x

′) = 0

[
or

(
ξ̃µξ̃ν∂′µ∂

′
ν +

m2c2

~2
1s

)
ψ′s(x

′) = 0

]
,

where, in general terms, the matrices χ̃µ (or ξ̃µ) are not said to be identical to the matrices
χµ (or ξµ) de�ned in S, but they must have the same properties, i.e. must be

(χ̃µ)† = χ̃0χ̃µχ̃0
(
or ξ̃†µ = ξ̃µ

)
. (144)

For this reason, we understand that, in order to �nd the conditions for which the AαE and SαE
are covariant quantities, we must search those conditions for which the (144) are equivalent to the
(91). First of all, we notice that, being the matrices χµ and ξµ independent from x ∈M (where M
is the Minkowski space), we are free to think they do not change from an inertial frame to another,
if not for a unitary transformation U operated between S and S ′ so that

χ̃µ = UχµU−1 = UχµU † (145)

ξ̃µ = UξµU−1 = UξµU †. (146)

Therefore, apart from a unitary transformation, the sets of matrices χ̃µ and ξ̃µ are equal to the sets
of matrices χµ and ξµ and, therefore, the above equations can be so written

(
i~χµ∂′µ −mc1s

)
ψ′s(x

′) = 0 (147)

(
ξµξν∂′µ∂

′
ν +

m2c2

~2
1s

)
ψ′s(x

′) = 0. (148)
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In order to �nd the conditions allowing such equations to coincide with those in S, so that AαE
and SαE are relativistically invariant quantities, one must proceed in the same way made with the
Dirac equation. Hence, it is useless to repeat all the considerations and calculations we can �nd in
any physics textbook. For this reason, we directly write these conditions, which for the (147) are

ψ′s(x
′) = S(Λ)ψs(x)

S(Λ−1) = S−1(Λ)

Λµ
νχ

ν = S−1(Λ)χµS(Λ),

(149)

while for the (148) are 46


ψ′s(x

′) = S̃(Λ)ψs(x)

S̃(Λ−1) = S̃−1(Λ)

ηµνΛα
µΛβ

ν = S̃−1(Λ)ηαβS̃(Λ),

(150)

where, with S(Λ) and S̃(Λ), we indicated two generic representations of the Lorentz group L↑+.
From the Group Theory, it is known such a Lie group is not compact, and this makes the study
of its representations problematic. However, this problem resolves by the fact that the Lie algebra
of the group L↑+ is isomorphic to the Lie algebra of the compact group SO(4), and, therefore, the
representations of L↑+ are equivalent to the representations of SO(4). The representations of SO(4)
are characterized by the couple of indices (l,m), each of which characterizes the representations of
the group SU(2), on strength of the isomorphism

LieSO(4) ∼ Lie [SU(2)⊗ SU(2)] .

The generic element of the representation of SO(4) can be indicated with 47

Dl,m(R),

from that, as soon as asserted, it is understood that Dl,m(R) characterizes a matrix of dimension
(2l+1)(2m+1). Thence, it quickly follows that the representation (0, 0) gives a scalar, the inequiva-
lent representations (1

2
, 0) and (0, 1

2
) give two-dimensional matrices, the representation (1

2
, 0)⊕(0, 1

2
)

gives a four-dimensional matrix and so on. Since the representations of L↑+ and SO(4) are equivalent,
we have 48

46We place ησρ ≡ ξσξρ.
47R ∈ SO(4).
48Λ ∈ L↑+.
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S(Λ) = Dl,m(R) = Dl,m(Λ) (151)

S̃(Λ) = D̃l,m(R) = D̃l,m(Λ), (152)

where, in the last step, we have replaced R with Λ for obvious reasons. We notice, in particular,
bearing in mind what has been said so far, that the transformed �elds concerning the equations
(147) and (148) are

ψ′s(x
′) = S(Λ)ψs(x) = Dl,m(Λ)ψs(x) (153)

ψ′s(x
′) = S̃(Λ)ψs(x) = D̃l,m(Λ)ψs(x). (154)

For the respect of the matrix product, Dl,m(Λ) and D̃l,m(Λ) have to be square matrices of dimension

(2l + 1)(2m+ 1) = 2s+ 1.

It can be demonstrated the explicit form of S(Λ) and S̃(Λ) is

S(Λ) = Dl,m(Λ) = e
i
2
ωµν(Mµν)l,m (155)

S̃(Λ) = D̃l,m(Λ) = e
i
2
ωµν(Iµν)l,m , (156)

where the ωµν are anti-symmetric coe�cients, while (Mµν)l,m and (Iµν)l,m are matrices of dimension
(2l + 1)(2m+ 1), which represent the generators of L↑+. The Lie algebra of these generators is

[
(Mλτ )l,m, (Mρσ)l,m

]
= −i

[
gλσ(Mτρ)l,m + gτρ(Mλσ)l,m − gλρ(Mτσ)l,m − gτσ(Mλρ)l,m

]
(157)

[
(Iµν)l,m, (Iρσ)l,m

]
= −i

[
gµσ(Iνρ)l,m + gνρ(Iµσ)l,m − gµρ(Iνσ)l,m − gνσ(Iµρ)l,m

]
. (158)

It is easy to prove that the commutation relations between the generators (Mµν)l,m and (Iµν)l,m

and the matrices χµ and ξµ are given by

[
(Mαβ)l,m, χν

]
= −2i

(
gναχβ − gνβχα

)
(159)

[
(Iµν)l,m, ηαβ

]
= −i

(
gναηµβ + gνβηαµ − gµαηνβ − gµβηαν

)
. (160)

41



The commutation rules as soon as written say as the generators (Mµν)l,m and (Iµν)l,m must be made
so that the AαE and SαE are covariant quantities. It is clear that, due to the condition

(2l + 1)(2m+ 1) = 2s+ 1,

the generators (Mµν)l,m and (Iµν)l,m have to be of the same dimension of the matrices χµ and ξµ

for any �xed s. More generally they must respect the matrix product towards χµ and ξµ.
In order to conclude the search of the conditions for which the AαE and SαE are relativistically

invariant quantities, it is fundamental to ask that they give rise to two four-currents which are
transformed, moving from S to S ′, like four-vectors. Namely, by considering the four-currents 49

jνs = cψ̄sχ
νψs (161)

jνs = i
[
(∂µψ

†
s)ξ

µξνψs − ψ†sξνξµ(∂µψs)
]
, (162)

one must �nd the conditions for which is

j′
µ
s = Λµ

ν j
ν
s (163)

j′µs = Λµ
νj

ν
s . (164)

It can be demonstrated this happens if the generators (Mµν)l,m and (Iµν)l,m satisfy the following
conditions

χ0
[
(Mµν)l,m

]†
χ0 = (Mµν)l,m (165)

[
(Iµν)l,m

]†
= (Iµν)l,m. (166)

This is the end of the research for the conditions about which the AαE and SαE are invariant
quantities regarding L↑+. To sum up, we can therefore assert the asymmetric α-equation is covariant
when the following conditions are veri�ed 50

49These expressions can be deduced by (141) and (143).
50S(Λ) = e

i
2ωµν(M

µν)l,m .
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

ψ′s(x
′) = S(Λ)ψs(x)

S(Λ−1) = S−1(Λ)

Λµ
νχ

ν = S−1(Λ)χµS(Λ)[
(Mαβ)l,m, χν

]
= −2i

(
gναχβ − gνβχα

)
χ0
[
(Mµν)l,m

]†
χ0 = (Mµν)l,m,

(167)

while the symmetric α-equation is covariant when the following conditions are veri�ed 51



ψ′s(x
′) = S̃(Λ)ψs(x)

S̃(Λ−1) = S̃−1(Λ)

ηµνΛα
µΛβ

ν = S̃−1(Λ)ηαβS̃(Λ)[
(Iµν)l,m, ηαβ

]
= −i

(
gναηµβ + gνβηαµ − gµαηνβ − gµβηαν

)
[
(Iµν)l,m

]†
= (Iµν)l,m.

(168)

Hence, the covariance of our equations, like the Dirac equation, is not automatic (as it happens for
the Klein-Gordon equation), but it is bounded by the existence of a special type of transformations
of the Lorentz group L↑+.

2.6 Solutions of the AαE and SαE for a free particle

In this section, we want to �nd the more general solutions of the equations

(i~χµ∂µ −mc1s)ψs(x) = 0 (169)

(
ξµξν∂µ∂ν +

m2c2

~2
1s

)
ψs(x) = 0. (170)

For such a purpose, we notice that a solution of these equations is given by the plane-wave 52

e−ik·xus(k), (171)

51S̃(Λ) = e
i
2ωµν(I

µν)l,m , ησρ ≡ ξσξρ.
52kµ ≡ (ωc ,

~k).
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where us(k) is a column vector depending on k only. But it is not the only plane-wave solution of
the AαE and SαE, since there is also

eik·xvs(k), (172)

which, instead, gives rise to a spectrum of opposite sign for the (169) and to a spectrum equal
to that obtained from the (171) for the equation (170).53 Therefore, we can assert that the two
(particular) solutions of the asymmetric and symmetric α-equation are

e−ik·xus(k) and eik·xvs(k). (173)

In order to study the free particle solutions of the AαE and SαE, one must replace within them
the relations (173). Making it and starting from the AαE, we get(~χµkµ −mc1s)us(k) = 0

(~χµkµ +mc1s) vs(k) = 0
(174)

and, for simplifying the calculations, we put ourselves in the �rest frame�(~χµkµ −mc1s)us(ωc ,~0) = 0

(~χµkµ +mc1s) vs(
ω
c
,~0) = 0,

(175)

from which, making clear the scalar products, by multiplying both sides by c and remembering that
E = mc2 and χ0 = δ±1, we obtainδ±1us(

ω
c
,~0) = 1sus(

ω
c
,~0)

δ±1vs(
ω
c
,~0) = −1svs(ωc ,~0).

(176)

Now we must distinguish several cases 54

u0

(ω
c
,~0
)

= 1, v0

(ω
c
,~0
)

= 1 for s = 0 (177)

53Really, the plane-waves (171) and (172) allow to pass from the representation δ±1 to the representation δ∓1 and
vice-versa in the equation (169).

54These solutions are all the independent ones. In the speci�c cases of s = 0 and s = 1/2, the �rst one identi�es a
state with positive energy, while the second one identi�es a state with negative energy. Naturally, if we choose the
representation δ∓1 they have to be the opposite, in the sense that the us solutions must be exchanged with the vs
solutions.
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u
(1)
1/2

(ω
c
,~0
)

=

(
1
0

)
, v

(1)
1/2

(ω
c
,~0
)

=

(
0
1

)
for s = 1

2
(178)

u
(1)
1

(ω
c
,~0
)

=

 1
0
0

 , u
(2)
1

(ω
c
,~0
)

=

 0
0
1

 , v
(1)
1

(ω
c
,~0
)

=

 0
1
0

 for s = 1 (179)

of which, the �rst two identify states with positive energy, while the third one identi�es a state with
negative energy.

u
(1)
3/2

(ω
c
,~0
)

=


1
0
0
0

 , u
(2)
3/2

(ω
c
,~0
)

=


0
0
1
0



v
(1)
3/2

(ω
c
,~0
)

=


0
1
0
0

 , v
(2)
3/2

(ω
c
,~0
)

=


0
0
0
1

 for s = 3
2

(180)

of which, the �rst two identify states with positive energy, while the third and fourth ones identify
states with negative energy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc . . . . . . etc . . . . . . . . . . . . . . . . . .

Therefore, the us(k) are linked to the states with positive energy, while the vs(k) are linked to those
with negative energy. In particular, as just seen, it emerges that the asymmetric α-equation has,
for s = 0, a solution with positive energy and a solution with negative energy, for s half-integer,
(2s + 1)/2 solutions with positive energy and (2s + 1)/2 solutions with negative energy, while for
s integer, (s + 1) solutions with positive energy and s solutions with negative energy (for δ∓1 the
situation is reversed with s solutions having positive energy and (s + 1) solutions having negative
energy). This con�rms existing, for s integer, an asymmetry in the set of the solutions with positive
and negative energy for the AαE. Thanks to these considerations, we can say that in the rest frame
one has

for s = 0 :

ψ
(+)
s=0(x0,~0) = e−iEt/~

ψ
(−)
s=0(x0,~0) = eiEt/~

(181)
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for s half-integer :


ψ

(α)
s,+(x0,~0) = e−iEt/~u

(α)
s

(
ω
c
,~0
)

ψ
(α)
s,−(x0,~0) = eiEt/~v

(α)
s

(
ω
c
,~0
) (182)

with α ∈ K̃ =
{

1, . . . , 2s+1
2

}
.

for s integer :


ψ

(α)
s,+(x0,~0) = e−iEt/~u

(α)
s

(
ω
c
,~0
)

ψ
(β)
s,−(x0,~0) = eiEt/~v

(β)
s

(
ω
c
,~0
) (183)

with α ∈M = {1, . . . , s+ 1} and β ∈ N = {1, . . . , s}.

The expressions obtained for the particular solutions with positive and negative energy of the
AαE are those of the rest frame. In order to obtain the generic solutions, we have to consider 55


u

(γ)
s (k) = S(Λ)u

(γ)
s

(
ω
c
,~0
)

v
(δ)
s (k) = S(Λ)v

(δ)
s

(
ω
c
,~0
)
,

(184)

from which easily follows 56

ψ
(γ)
s,+(x) = e−ik·xu

(γ)
s (k)

ψ
(δ)
s,−(x) = eik·xv

(δ)
s (k).

(185)

It is not di�cult to demonstrate that the particular solutions previously studied satisfy the following
�orthonormality relations�

for s = 0 :


ψ̄

(+)
s=0(x)ψ

(+)
s=0(x) = 1

ψ̄
(−)
s=0(x)ψ

(−)
s=0(x) = −1

ψ̄
(+)
s=0(x)ψ

(−)
s=0(x) = 0 = ψ̄

(−)
s=0(x)ψ

(+)
s=0(x)

(186)

55S(Λ) ∈ L↑+.
56Naturally, the indices γ, δ run on the same sets before de�ned for the rest frame solutions.
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for s half-integer :


ψ̄

(α)
s,+(x)ψ

(β)
s,+(x) = δαβ

ψ̄
(α)
s,−(x)ψ

(β)
s,−(x) = −δαβ

ψ̄
(α)
s,+(x)ψ

(β)
s,−(x) = 0 = ψ̄

(α)
s,−(x)ψ

(β)
s,+(x)

(187)

where α, β ∈ K̃ =
{

1, . . . , 2s+1
2

}
.

for s integer :


ψ̄

(α)
s,+(x)ψ

(β)
s,+(x) = δαβ

ψ̄
(γ)
s,−(x)ψ

(ε)
s,−(x) = −δγε

ψ̄
(α)
s,+(x)ψ

(γ)
s,−(x) = 0 = ψ̄

(ε)
s,−(x)ψ

(β)
s,+(x)

(188)

where α, β ∈M = {1, . . . , s+ 1} and γ, ε ∈ N = {1, . . . , s}.

Moreover, the particular solutions with positive and negative energy of the AαE respect also the
following �completeness relations�

1

2

[
ψ

(+)
s=0(x)ψ̄

(+)
s=0 −ψ

(−)
s=0(x)ψ̄

(−)
s=0

]
= 1, for s = 0 (189)

∑
α∈M,N,K̃

[
ψ

(α)
s,+(x)ψ̄

(α)
s,+ −ψ

(α)
s,−(x)ψ̄

(α)
s,−

]
= 1s, ∀s ∈ N/2− {0}. (190)

After the description on form and properties of the (particular) solutions with positive and nega-
tive energy of the AαE, we are now in a position to write the general solution of this equation. First
of all, we remember that from literature it is known the general solution of a di�erential equation
is given by the sum of all the particular (independent) solutions of such an equation. Therefore, in
our case, grouping in ψ(+)

s (x) all the particular solutions concerning the states with positive energy,
and in ψ(−)

s (x) those with negative energy, we have that the general solution of the asymmetric
α-equation is

ψs(x) = ψ(+)
s (x) +ψ(−)

s (x). (191)
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In order to resolve our problem, we must, therefore, make clear ψ(+)
s (x) and ψ(−)

s (x). It can be
demonstrated that

ψ(+)
s (x) =

1

(2π~)2

∫
K3

d3k

2|λ|ω̃k

∑
α

e−ik·xbα(k)u(α)
s (k) (192)

ψ(−)
s (x) =

1

(2π~)2

∫
K3

d3k

2|λ|ω̃k

∑
β

eik·xd∗β(k)v(β)
s (k), (193)

where, with bα(k) and d∗β(k), we have indicated the Fourier coe�cients of the integral decomposition.

We still notice that the obtained expressions for ψ(+)
s (x) and ψ(−)

s (x) are Lorentz-invariant quan-
tities. In fact, u(α)

s (k) and v
(β)
s (k) are so for construction, and also the measure d3k/2|λ|ω̃k is a

Lorentz-invariant quantity, since it derives by d4k, δ[λ(k2 − m2c2/~2)] and θ(k0), which are all
Lorentz-invariant quantities. In view of this, we have that the general solution of the AαE is

ψs(x) =
1

(2π~)2

∫
K3

d3k

2|λ|ω̃k

[∑
α

e−ik·xbα(k)u(α)
s (k) +

∑
β

eik·xd∗β(k)v(β)
s (k)

]
, (194)

which, obviously, is invariant under the Lorentz group.

It is straightforward to see that, due to the equivalence ψ̄s(x) = ψ†s(x)χ0, we have

ψ̄s(x) =
1

(2π~)2

∫
K3

d3k

2|λ|ω̃k

[∑
α

b∗α(k)ū(α)
s (k)eik·x +

∑
β

dβ(k)v̄(β)
s (k)e−ik·x

]
. (195)

Let us specialize now the above expressions to the several labels s:

for s = 0 :

ψs=0(x) = 1
(2π~)2

∫
K3

d3k
2|λ|ω̃k

[
b(k)e−ik·x + d∗(k)eik·x

]
ψ†s=0(x) = 1

(2π~)2

∫
K3

d3k
2|λ|ω̃k

[
d(k)e−ik·x + b∗(k)eik·x

]
.

(196)

The careful reader cannot avoid to see the expressions (196) are identical with the general solution
of the complex Klein-Gordon equation and its conjugate. In fact, the only di�erence is into invariant
measure, but it can be seen that the form of this measure depends on the constant λ with which
the condition of mass-shell can be generalized in the following way
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λk2 = λ
(mc

~

)2

. (197)

Hence, if we take λ = 2π and put ourselves in natural units, one obtains 57

ψs=0(x) =

∫
K3

d3k

(2π)32ωk

[
b(k)e−ik·x + d∗(k)eik·x

]
(198)

ψ†s=0(x) =

∫
K3

d3k

(2π)32ωk

[
d(k)e−ik·x + b∗(k)eik·x

]
, (199)

that just are the solution of the complex Klein-Gordon equation and its conjugate.

for s half-integer : 58


ψs(x) = 1

(2π~)2

∫
K3

d3k
2|λ|ω̃k

∑
α∈K̃

[
bα(k)u

(α)
s (k)e−ik·x + d∗α(k)v

(α)
s (k)eik·x

]
ψ̄s(x) = 1

(2π~)2

∫
K3

d3k
2|λ|ω̃k

∑
α∈K̃

[
dα(k)v̄

(α)
s (k)e−ik·x + b∗α(k)ū

(α)
s (k)eik·x

]
,

(200)

for s integer : 59


ψs(x) = 1

(2π~)2

∫
K3

d3k
2|λ|ω̃k

[∑
α∈M bα(k)u

(α)
s (k)e−ik·x +

∑
β∈N d

∗
β(k)v

(β)
s (k)eik·x

]
ψ̄s(x) = 1

(2π~)2

∫
K3

d3k
2|λ|ω̃k

[∑
β∈N dβ(k)v̄

(β)
s (k)e−ik·x +

∑
α∈M b∗α(k)ū

(α)
s (k)eik·x

]
.

(201)

At this point, having characterized ψs(x) and ψ̄s(x) for any s ∈ N/2, we have concluded the
introductory discussion on the general solution of the AαE. The last thing we want to point out
regards the coe�cients bα(k) and dβ(k) and their complex conjugates b∗α(k) and d∗β(k). Within
a classical theory, they are not other but the amplitudes of the (integral) Fourier decomposition
(�normal modes� of the decomposition), while in a quantum theory they represent the operators
of the particles constituting the �eld.60 From this point of view, they must satisfy the following
canonical commutation or anti-commutation relations (CCR or CAR), depending on whether the
studied �eld is made of bosons or fermions:

57In natural units ωk = E/c = ω̃k.
58K̃ =

{
1, . . . , 2s+1

2

}
.

59M = {1, . . . , s+ 1} and N = {1, . . . , s}. If δ = δ∓1 these sets are reversed.
60In particular, b∗α(k) and d∗β(k), indicated with b†α(k) and d†α(k), are the creation operators, while bα(k) and dα(k)

are the annihilation ones.
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bosons :


[bα(k), b†β(k′)] = [dα(k), d†β(k′)] = 2|λ|ω̃k(2π~)2δ3(~k − ~k′)δαβ
[bα(k), bβ(k′)] = [b†α(k), b†β(k′)] = 0

[dα(k), dβ(k′)] = [d†α(k), d†β(k′)] = 0

(202)

fermions :


{bα(k), b†β(k′)} = {dα(k), d†β(k′)} = 2|λ|ω̃k(2π~)2δ3(~k − ~k′)δαβ
{bα(k), bβ(k′)} = {b†α(k), b†β(k′)} = 0

{dα(k), dβ(k′)} = {d†α(k), d†β(k′)} = 0.

(203)

The usage of such commutation or anti-commutation relations, thus as the use of bα(k) and dβ(k)
like creation and annihilation operators in the limits of the theory studied in this work, will be the
matter of the second quantization of our systems, which will be dealt ahead.
In order to complete our study, we want now to �nd the general solution of the symmetric

α-equation (
ξµξν∂µ∂ν +

m2c2

~2
1s

)
ψs(x) = 0. (204)

The procedure we will utilize is similar to that previously seen and so we will try, as far as possible,
to avoid arguments and calculations already met. Also for the SαE we want the particular plane-
wave solutions which are given by the (173), however, unlike the AαE, if we replace these solutions
in the (204), we obtain the equations

(
ξµξνkµkν − m2c2

~2 1s

)
us(k) = 0(

ξµξνkµkν − m2c2

~2 1s

)
vs(k) = 0,

(205)

which, substantially, say that us(k) and vs(k) are solutions of the same equation. Therefore, in order
to avoid confusion, taking account that us(k) and vs(k) are practically the same column vector, one
de�nes

zs(k) ≡ us(k) = vs(k), (206)

from which, it easily follows
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ψ
(+)
s (x) = e−ik·xzs(k)

ψ
(−)
s (x) = eik·xzs(k).

(207)

This means that ψ(+)
s (x) and ψ(−)

s (x) do not describe, like for the AαE, states with positive and neg-
ative energy respectively, but �progressive� (traveling from left to right) and �regressive� (traveling
from right to left) waves only. Naturally, zs(k) satis�es the equation(

ξµξνkµkν −
m2c2

~2
1s

)
zs(k) = 0. (208)

We want now to study the form of zs(k), putting us � for reasons of simplicity � in the rest frame.
By developing the calculations, we obtain

(
~2ω21s −m2c41s

)
zs

(ω
c
,~0
)

= 0 (209)

and, remembering that E2 = ~2ω2, E2 = m2c4 (square energy of the rest frame), we have the
identity

1szs

(ω
c
,~0
)

= 1szs

(ω
c
,~0
)
, (210)

that gives

z0

(ω
c
,~0
)

= 1 for s = 0 (211)

z
(1)
1/2

(ω
c
,~0
)

=

(
1
0

)
, z

(2)
1/2

(ω
c
,~0
)

=

(
0
1

)
for s = 1

2
(212)

z
(1)
1

(ω
c
,~0
)

=

 1
0
0

 , z
(2)
1

(ω
c
,~0
)

=

 0
1
0

 , z
(3)
1

(ω
c
,~0
)

=

 0
0
1

 for s = 1 (213)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc . . . . . . etc . . . . . .
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namely there are (2s + 1) �polarizations� zs
(
ω
c
,~0
)
for any s ∈ N/2. Hence, for the symmetric

α-equation there is not a clean distinction between states with positive and negative energy, like
it happens for the asymmetric α-equation, and this depends on the fact that, containing the SαE
square energies, the polarization states read such energies only, and they are not able to distinguish
between states with positive and negative energy. This must not worry, because the same structure
of the SαE demands it, i.e. it follows why every solution contains within itself states with positive
and negative energy, without showing them explicitly. We want now to establish the normalization
conditions for these solutions. Being ψ†sψs a Lorentz-invariant quantity speci�cally, it is natural to
consider the normalization concerning this product. We estimate, for this purpose, the amount

z†(α)
s

(ω
c
,~0
)
z(β)
s

(ω
c
,~0
)
, (214)

that banally is equal to δαβ for any s ∈ N/2, where α, β ∈ {1, ..., 2s+ 1}.

For calculating ψ†sψs, it is important to remember that

ψs(x) = e±ik·xzs(k), (215)

from which follows

ψ†s(x)ψs(x) = z†s(k)zs(k). (216)

From the (216), it is clear we need zs(k) in order to estimate the normalization condition of the
�eld ψs(x). Since 61

z(α)
s (k) = S(Λ)z(α)

s

(ω
c
,~0
)
, (217)

it follows

z†(α)
s (k)z(β)

s (k) = δαβ (218)

and therefore

ψ†s(x)ψs(x) = δαβ, (219)

61Of course, S(Λ) ∈ L↑+. It is underlined we consider the unitary representations of Lorentz group L↑+, based on
the argumentations of section 2.5.
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which is the normalization condition concerning a particular solution (of single particle: for any
s ∈ N/2) for the SαE. It is also straightforward to try that is worth

2s+1∑
α=1

[
ψ(α)
s (x)ψ†(α)

s (x)
]

= 1s, (220)

representing the completeness relation of the SαE. To this point, we can proceed with the writing
of the general solution of the symmetric α-equation. Being no di�erence between the solutions
with positive and negative energy, the wanted solution will be simply given by the following Fourier
integral

1

(2π~)2

∫
K4

d4k
2s+1∑
α=1

aα(k)z(α)
s (k)e±ik·x, (221)

where aα(k) represent the Fourier coe�cients of the integral decomposition. Through some consid-
erations, regarding: the use of the generalized mass-shell condition previously seen, the introduction
of the function θ(k0),62 the substitution of a∗α(k) with the new Fourier coe�cients bα(k),63 it may
be demonstrated that the (221) can be placed in the following form

ψs(x) =
1

(2π~)2

∫
K3

d3k

2ω̃k|λ|

2s+1∑
α=1

z(α)
s (k)

[
aα(k)e±ik·x + bα(k)e∓ik·x

]
, (222)

which represents the (covariant) solution of the symmetric α-equation. From that, it is immediate
to �nd the conjugate solution (adjoint �eld)

ψ†s(x) =
1

(2π~)2

∫
K3

d3k

2ω̃k|λ|

2s+1∑
α=1

z†(α)
s (k)

[
a∗α(k)e∓ik·x + b∗α(k)e±ik·x

]
. (223)

In order to confront the general solution of the SαE with that one found for AαE, we choose as
exponential signs the sequence − + and, rather than bα(k), we take b∗α(k). With such expedients
the general solution of the SαE and its conjugate become

ψs(x) = 1
(2π~)2

∫
K3

d3k
2ω̃k|λ|

∑2s+1
α=1 z

(α)
s (k)

[
aα(k)e−ik·x + b∗α(k)eik·x

]
ψ†s(x) = 1

(2π~)2

∫
K3

d3k
2ω̃k|λ|

∑2s+1
α=1 z

†(α)
s (k)

[
a∗α(k)eik·x + bα(k)e−ik·x

]
.

(224)

62In this case, unlike the AαE, it has not to be imposed k0 > 0, because it is not possible to distinguish between
solutions with positive and negative energy.

63In fact, we have not aα(−k) 6= a∗α(k), since the general solution of the SαE is not real.
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We promptly notice that, unlike the solution of the AαE, the above ψs(x) has an ultra-compact
form, in the sense that is right for any s ∈ N/2. Hence, the general solution of the SαE does not
su�er of the destructuring of the general solution of the AαE, which is symptom of the asymmetry
of the particular solutions of such an equation. Therefore, the expression of ψs(x) is �exible to be
dealt with and it is beautiful from the theoretical point of view. The analogy between the general
solution of the SαE and the general solution of the Maxwell equations in covariant form will not
certainly escape to the scrupulous reader. From this point of view, the z(α)

s (k) play the role of
polarization vectors for the quantum particles with arbitrary spin. The number of the polarization
states, in this case, grows with the spin s, and, in general terms, it is equal to (2s+1). In particular,
for s = 0, we have

ψs=0(x) =
1

(2π~)2

∫
K3

d3k

2ω̃k|λ|
[
a(k)e−ik·x + b∗(k)eik·x

]
, (225)

i.e. the particles with s = 0 have only a direction of polarization. We see that, if in the expression
as soon as written we choose λ = 2π + natural units, we have

ψs=0(x) =

∫
K3

d3k

(2π)32ωk

[
a(k)e−ik·x + b∗(k)eik·x

]
, (226)

which is just the general solution of the complex Klein-Gordon equation.

In conclusion, we want also to point out here the role of the Fourier coe�cients aα(k) and bα(k)
and their complex conjugates a∗α(k) and b∗α(k), that, based on the quantum description (second quan-
tization), become operators.64 They can satisfy the following commutation or anti-commutation
relations, depending on whether the described particles are bosons or fermions

bosons :


[aα(k), a†β(k′)] = [bα(k), b†β(k′)] = 2|λ|ω̃k(2π~)2δ3(~k − ~k′)δαβ
[aα(k), aβ(k′)] = [a†α(k), a†β(k′)] = 0

[bα(k), bβ(k′)] = [b†α(k), b†β(k′)] = 0

(227)

fermions :


{aα(k), a†β(k′)} = {bα(k), b†β(k′)} = 2|λ|ω̃k(2π~)2δ3(~k − ~k′)δαβ
{aα(k), aβ(k′)} = {a†α(k), a†β(k′)} = 0

{bα(k), bβ(k′)} = {b†α(k), b†β(k′)} = 0.

(228)

64In particular, a∗α(k) and b∗α(k), indicated with a†α(k) and b†α(k), are the creation operators, while aα(k) and bα(k)
are the annihilation ones.
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3 Equations for Left- and Right-Handed Particles

Dynamics of left- and right-handed particles, which into Standard Model are identi�ed with the
neutrinos and anti-neutrinos respectively, represents a fundamental argument, because it has not
been still possible to construct a theory able to expect all the properties of these escaping particles,
such as the parity violation, the nonzero mass and resultant oscillations. In particular, the Weyl
and Majorana theories, that currently describe the left- and right-handed �elds, cannot explain
these characteristics in a useful way. It is very likely this is caused by the inadequacy of the Dirac
theory from which Weyl and Majorana models come out [14, 52]. Therefore, it is natural to try
of developing a theory for left- and right-handed �elds through the spin four-vector sµ, de�ned in
previous chapters. We will see this method will lead to some issues and so we will understand that
dynamics of left- and right-handed particles can be alternatively obtained just from the AαE and
SαE, only through mathematical considerations and without ad hoc hypothesis. Unexpectedly, we
will derivate new equations for left- and right-handed particles, able to explain the neutrinos and
anti-neutrinos properties and more.

3.1 Weyl theory revisited with the spin four-vector sµ

The so far developed formalism, and, particularly, the introduction of the (matrix) four-vector of
spin sµ, which for bradyonic particles is given by (δ,−εi),65 easily allows to �nd the equations
of the motion for the right- and left-handed �elds, being those which transform according to the
inequivalent representations (1

2
, 0) and (0, 1

2
) of the group L↑+, respectively. What we will practically

make is to rewrite the Weyl equations (left- and right-handed �elds with m = 0), in order to obtain
a more rigorous instrument for the study of the particles following the dynamics of the left- and
right-handed �elds, like the neutrinos and anti-neutrinos. We start, therefore, from the de�nition
of the �eld φR(x) and φL(x), that are transformed in the following way [48]{

φ′R(x′) = DRφR(x)

φ′L(x′) = DLφL(x),
(229)

where {
DR = e

i
2
~σ·(~θ−i~φ)

DL = e
i
2
~σ·(~θ+i~φ).

(230)

65Really, it is sµ ≡ (δ̃,−εi) = (iδ,−εi), but, in this case, we will obtain anti-hermitian quantities in our equations.
So we place δ̃ = δ, for having hermitian quantities only. Naturally, as it will be seen, this position will not change
the general result of this chapter.
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As it is well-known the Weyl equations are obtained from the Dirac equation using the chiral repre-
sentation of the matrices γµ and putting m = 0. Nevertheless, the Weyl equations can be generated
thanks to Lorentz-invariant quantities too. This method is the most suitable for constructing the
equations of motion of the right- and left-handed �elds through the spin four-vector sµ without the
Dirac equation and so this is the line we will follow in the next pages. For such a purpose, we
construct now the two bilinear covariants

φ†R(Lorentz-invariant)φR; φ†L(Lorentz-invariant)φL, (231)

that must be, respectively, invariant regarding the transformations DR and DL of the group L↑+.
For the Weyl theory it can be chosen as Lorentz-invariant quantity concerning the �eld φR the
scalar product σµpµ and as Lorentz-invariant quantity concerning the �eld φL the scalar product
σ̃µpµ, where 66

σµ ≡ (12, ~σ), σ̃µ ≡ (12,−~σ). (232)

Basically, for obtaining the Weyl framework, one can construct a kind of spin four-vector for de�ning
some Lorentz-invariant quantities able to give the equations of motion of right- and left-handed
�elds. As we have seen in this work, then, it seems more correct to replace σµ and σ̃µ with just the
spin four-vectors concerning the �elds with spin 1/2 (φR and φL are exactly of this type), i.e. with
the four-vectors

s̃µ1/2 = (δ1/2, ~ε1/2), sµ1/2 = (δ1/2,−~ε1/2) (233)

namely, remembering ~ε1/2 = 1/2~σ, we have 67

s̃µ1/2 =

(
δ1/2,

1

2
~σ

)
, sµ1/2 =

(
δ1/2,−

1

2
~σ

)
. (234)

Therefore, as Lorentz-invariant quantities we can take

s̃µ1/2pµ, sµ1/2pµ (235)

from which to de�ne the bilinear forms
66Note that in this case with subindex 2 we indicate the dimension of the unit matrix and not the spin value.
67We are into representation δ = δ±1, even if the representation δ = δ∓1 gives equivalent results.

56



φ
†
R(s̃µ1/2pµ)φR = φ†R

(
δ1/2p0 − 1

2
~σ · ~p

)
φR

φ†L(sµ1/2pµ)φL = φ†L
(
δ1/2p0 + 1

2
~σ · ~p

)
φL.

(236)

It can be promptly observed the previous quantities are hermitian. Then, it can be proved that
under DR and DL the (236) are transformed in the following way

φ′†R(s̃µ1/2pµ)′φ′R = φ†R(s̃µ1/2pµ)φR (237)

φ′†L(sµ1/2pµ)′φ′L = φ†L(sµ1/2pµ)φL, (238)

i.e. they are unchanged under the inequivalent representations (1
2
, 0) and (0, 1

2
) of the group L↑+.

At this point, in order to �nd the equations of the motion for the �elds φR and φR, it is enough to
de�ne the Lagrangian densities LR and LL through the Lorentz-invariant quantities (235), operating
in them the substitution 68

pµ → i∂µ, (239)

thanks to which, we can thus de�ne the following Lagrangian densitiesLR ≡ φ†R(s̃µ1/2pµ)φR = iφ†R(s̃µ1/2∂µ)φR

LL ≡ φ†L(sµ1/2pµ)φL = iφ†L(sµ1/2∂µ)φL.
(240)

As smoothly it is observed, LR and LL are not hermitian. In order to obviate this problem, it is
su�cient to take 69


LR ≡ iφ†R(s̃µ1/2

←→
∂µ )φR = i

2

[
φ†R(s̃µ1/2∂µ)φR − (∂µφ

†
R)s̃µ1/2φR

]
LL ≡ iφ†L(sµ1/2

←→
∂µ )φL = i

2

[
φ†L(sµ1/2∂µ)φL − (∂µφ

†
L)sµ1/2φL

]
,

(241)

68Such a substitution is important for the construction of the kinetic term: for simplicity, we put us in natural
units.

69In general, we have

A
←→
∂µB ≡

1

2

[
A(∂µB)− (∂µA)B

]
,

where, in our case, we place A = iφ†Rs̃
µ
1/2, B = φR and A = iφ†Ls

µ
1/2, B = φL, respectively.
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which, instead, as it is banal to verify, are hermitian. We now calculate the equations of the motion
for the �elds φR and φL. The Euler-Lagrange equations for such �elds give

is̃µ1/2∂µφR = 0 (242)

isµ1/2∂µφL = 0. (243)

Therefore, the equations of the motion for the �elds φR and φL, written in the explicit form, are(
δ1/2∂0 +

1

2
~σ · ~∇

)
φR(~x, t) = 0 (244)(

δ1/2∂0 −
1

2
~σ · ~∇

)
φL(~x, t) = 0. (245)

In the momentum space, the (242) and (243) become instead

s̃µ1/2pµφR = 0 (246)

sµ1/2pµφL = 0, (247)

from which, it immediately follows(
δ1/2p0 −

1

2
~σ · ~p

)
φR(~x, t) = 0 (248)(

δ1/2p0 +
1

2
~σ · ~p

)
φL(~x, t) = 0. (249)

Matrix equations (248) and (249) can be put in the following form 70


1
2

(
~σ·~p
p0

)
φR(~x, t) = δ1/2φR(~x, t)

1
2

(
~σ·~p
p0

)
φL(~x, t) = −δ1/2φL(~x, t).

(250)

We now de�ne the �generalized helicity operator� in the following way

λs ≡
~s · ~p
p0

. (251)

70Note that δ1/2 = σ3.
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In the case of s = 1/2, it becomes

λ1/2 =
~s1/2 · ~p
p0

=
1

2

(
~σ · ~p
p0

)
, (252)

from which, the equations (250) can be so writtenλ1/2φR(~x, t) = δ1/2φR(~x, t)

λ1/2φL(~x, t) = −δ1/2φL(~x, t),
(253)

i.e. φR(x) is the eigenstate of the scalar operator λ1/2 with eigenvalue δ1/2, while φL(x) is the
eigenstate of the scalar operator λ1/2 with eigenvalue −δ1/2. It is clear that as soon as asserted
is not rigorous, since δ1/2 is not a scalar, but a two-dimensional matrix. However, if we are well
thinking, the same misuse is made in the ordinary Weyl theory, when one asserts that φR and
φL are eigenstates of the operator ~σ · ~p/p0, with eigenvalues 1 and −1, respectively. In fact, the
operator ~σ ·~p/p0 is represented by a two-dimensional matrix and so the right-hand sides of the Weyl
equations are not really 1 and −1, but rather 12 and −12. But this is not the only problem of the
Weyl equations, since the operator ~σ ·~p/p0 present in them, is not the helicity, that, like we know, is
de�ned as the projection of the spin on the direction of the motion, because ~σ is not the spin vector,
but the vector built with the three Pauli matrices. Instead, in the previous equations, there is the
correct helicity for the particles of spin 1/2, which is the projection in the direction of the motion
of the spin ~σ/2 (in natural units). Moreover, the obtained equations, like the Weyl ones, are not
invariant under the action of the parity operator. All of this takes to understand the Weyl method
� applied not to the (matrix) four-vectors σµ and σ̃µ, but to s̃µ1/2 and s

µ
1/2 � gives equations that are

similar and perhaps better than those commonly known in literature for the study of dynamics of
right- and left-handed particles (massless).
Let us now derivate the equations for the right- and left-handed �elds with mass m 6= 0. The road

to follow is to de�ne a Lagrangian density having for kinetic terms the sum of LR and LL and for
potential term the amount (it is said �Dirac mass term�: note its invariance under DR, DL ⊂ L↑+)

m(φ†RφL + φ†LφR). (254)

Therefore, the Lagrangian density of the theory we are constructing is given by

L = LR+LL−m(φ†RφL+φ†LφR) = i
[
φ†R(s̃µ1/2

←→
∂µ )φR + φ†L(sµ1/2

←→
∂µ )φL

]
−m(φ†RφL+φ†LφR), (255)

from which, the equations of the motion for the �elds φR and φL are
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i(s̃µ1/2∂µ)φR = mφL ⇔ i

(
δ1/2∂0 +

1

2
~σ · ~∇

)
φR = mφL (256)

i(sµ1/2∂µ)φL = mφR ⇔ i

(
δ1/2∂0 −

1

2
~σ · ~∇

)
φL = mφR. (257)

The equations (256) and (257) mix right- and left-handed �elds. In order to obtain the equations
for the single �elds φR and φL (that is for no coupled �elds), it is su�cient to multiply the �rst

by i
(
δ1/2∂0 − 1

2
~σ · ~∇

)
and the second one by i

(
δ1/2∂0 + 1

2
~σ · ~∇

)
, both members on the left-hand

sides. At the end, it is not di�cult to get[
12∂

2
0 + δ1/2(σ1∇1 + σ2∇2)∂0 −

12

2
∇2

]
φR = −m2φR (258)

[
12∂

2
0 − δ1/2(σ1∇1 + σ2∇2)∂0 −

12

2
∇2

]
φL = −m2φL. (259)

The expressions (258) and (259) represent the equations of the right- and left-handed �elds in
the case m 6= 0. They are more complex than those of the ordinary Dirac theory in the chiral
representation, which says the �elds φR and φL satisfy both the two-dimensional Klein-Gordon
equation, i.e. component for component. In the momentum space, we have(s̃µ1/2pµ)φR = mφL ⇔

(
δ1/2p0 − 1

2
~σ · ~p

)
φR = mφL

(sµ1/2pµ)φL = mφR ⇔
(
δ1/2p0 + 1

2
~σ · ~p

)
φL = mφR.

(260)

From which, proceeding as before, it is not di�cult to �nd the no coupled equations for the right-
and left-handed �elds

(
δ1/2p0 + 1

2
~σ · ~p

) (
δ1/2p0 − 1

2
~σ · ~p

)
φR = m

(
δ1/2p0 + 1

2
~σ · ~p

)
φL = m2φR(

δ1/2p0 − 1
2
~σ · ~p

) (
δ1/2p0 + 1

2
~σ · ~p

)
φL = m

(
δ1/2p0 − 1

2
~σ · ~p

)
φR = m2φL,

(261)

that, in the explicit form, are
[
12p

2
0 − p0δ1/2(σ1p1 + σ2p2)− 12

2
|~p|2
]
φR = m2φR[

12p
2
0 + p0δ1/2(σ1p1 + σ2p2)− 12

2
|~p|2
]
φL = m2φL.

(262)
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3.2 The equations for the right- and left-handed �elds via AαE and SαE

It is immediate to verify that the equations (262), thus like the (250), are not invariant under
parity,71 and so they can be used in all the theories violating the parity. It also must be emphasized
that the equations of the motion for the �elds φR and φL, with m = 0 or m 6= 0, earlier achieved,
are based on the completely arbitrary choice of the Lorentz-invariant quantities s̃µ1/2pµ and sµ1/2pµ
inserted between the �elds φR and φL and their conjugates. Obviously, it is possible to choose
other invariant quantities as

s̃µ1/2s̃
ν
1/2pµpν and sµ1/2s

ν
1/2pµpν , (263)

that should generate other equations of the motion for the right- and left-handed �elds with m = 0
or m 6= 0. The question is, then, what are the right Lorentz-invariant quantities to choose, i.e.
what are the good equations for the right- and left-handed �elds. The problem is really wrong at
the beginning, because the previously found equations are nothing but an alternative version of the
Weyl equations, based practically on the substitutions

σµ = (12, ~σ)→ s̃µ1/2 =

(
δ1/2,

1

2
~σ

)
=

(
σ3,

1

2
~σ

)
(264)

σ̃µ = (12,−~σ)→ sµ1/2 =

(
δ1/2,−

1

2
~σ

)
=

(
σ3,−

1

2
~σ

)
. (265)

Therefore, the problems of our equations can be synthesized in the following points:

• Arbitrariness of the de�nition of bilinear φ†R/L(Lorentz scalar)φR/L like kinetic term of the
theory.

• Arbitrariness in coupling the four-vector s̃µ1/2 (or σµ) to the right-handed �eld and the four-
vector sµ1/2 (or σ̃µ) to the left-handed �eld.

From this reason, it is understood a more rigorous discussion of the problem is necessary, by proving
to achieve the equations for the right- and left-handed �elds by a general theory, which should be
able to make visible the dynamics of such �elds, without using ad hoc hypothesis. It is easy to see
that the theory dealt in this work, based on the asymmetric and symmetric α-equation, describing
in wide terms the particles with arbitrary spin, is the natural candidate for the extrapolation of the
equations for the right- and left-handed �elds. Hence, what now we want to make is to �nd the
equations of the motion for the right- and left-handed �elds concerning the AαE and SαE, which,
for simplicity, we write in natural units

71In particular, such equations are inverted under parity, in the sense that the �rst is transformed in the second
and vice-versa.
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(iχµ∂µ −m1s)ψs(x) = 0 (266)

(
ξµξν∂µ∂ν +m21s

)
ψs(x) = 0. (267)

How can we do it? How, at the same way, can we conform the (266) and (267) to the inequivalent
representations (1

2
, 0) and (0, 1

2
) of the Lorentz group L↑+? We intuitively understand that, being the

right- and left-handed �elds two-dimensional, one must work with four-dimensional representations
of the (266) and (267), with the aim to obtain a two-dimensional decomposition for the right-
and left-handed �elds, respectively. However, we know the (266) and (267) both admit a four-
dimensional representation for s = 3/2, which contrasts with the fact that the right- and left-handed
�elds describe particles having spin 1/2. This lets us conclude it has not to shrink the (266) and
(267) to s = 3/2, but to the tensor product (also called �Kronecker product�) of two �elds with spin
1/2. Therefore, de�ned

ψ⊗(x) ≡ ϕ1/2 ⊗ ζ1/2 ≡
(
x̃1

x̃2

)
⊗
(
ỹ1

ỹ2

)
≡


x̃1ỹ1

x̃1ỹ2

x̃2ỹ1

x̃2ỹ2

 ≡

ψ1
R

ψ2
R

ψ1
L

ψ2
L

 ≡ ( ψR
ψL

)
(268)

ψ⊗(x) ≡ ϕ1/2 ⊗ ζ1/2 ≡
(
x1

x2

)
⊗
(
y1

y2

)
≡


x1y1

x1y2

x2y1

x2y2

 ≡


ψ1
R

ψ2
R

ψ1
L

ψ2
L

 ≡ ( ψR
ψL

)
, (269)

we can write the AαE and SαE in the following way 72

(iχµ⊗∂µ −m14)ψ⊗(x) = 0 (270)

(
ξµ⊗ξ

ν
⊗∂µ∂ν +m214

)
ψ⊗(x) = 0. (271)

In order to calculate the equations of the motion for the right- and left-handed �elds, the above
expressions must be made clear. For this reason, we must calculate the matrices χµ⊗ and ξµ⊗, that,
in such a case, are given by the tensor product of the respective matrices for s = 1/2, i.e.

χ0
⊗ = χ0

1/2 ⊗ χ0
1/2 =

(
δ1/2 O2

O2 −δ1/2

)
(272)

72In such a case, the subindex of 1 is the dimension of this matrix and not the spin value.
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χ1
⊗ = χ1

1/2 ⊗ χ1
1/2 =

1

4

(
O2 iσ2

−iσ2 O2

)
(273)

χ2
⊗ = χ2

1/2 ⊗ χ2
1/2 =

1

4

(
O2 −σ1

−σ1 O2

)
(274)

χ3
⊗ = χ3

1/2 ⊗ χ3
1/2 =

1

4

(
12 O2

O2 12

)
(275)

ξ0
⊗ = ξ0

1/2 ⊗ ξ0
1/2 =

(
δ1/2 O2

O2 −δ1/2

)
(276)

ξ1
⊗ = ξ1

1/2 ⊗ ξ1
1/2 =

1

4

(
O2 −σ1

−σ1 O2

)
(277)

ξ2
⊗ = ξ2

1/2 ⊗ ξ2
1/2 =

1

4

(
O2 iσ2

−iσ2 O2

)
(278)

ξ3
⊗ = ξ3

1/2 ⊗ ξ3
1/2 =

1

4

(
−σ3 O2

O2 σ3

)
. (279)

It is straightforward to verify the substitution of the matrices (272)-(275) into (270) gives the two
spinorial equations

(
iδ1/2

∂
∂t

+ 12
i
4
∂
∂z
−m12

)
ψR(~x, t) = 1

4

(
σ2

∂
∂x

+ iσ1
∂
∂y

)
ψL(~x, t)(

iδ1/2
∂
∂t
− 12

i
4
∂
∂z

+m12

)
ψL(~x, t) = 1

4

(
σ2

∂
∂x
− iσ1

∂
∂y

)
ψR(~x, t).

(280)
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For decoupling these equations, it is necessary to do some mathematical arti�ces. With a small
amount of calculations, one can arrive to the following equations for the right- and left-handed
�elds 73


(
12
16

∂2

∂x2
+ 12

16
∂2

∂y2
− 12

16
∂2

∂z2
− 12

∂2

∂t2
+ iσ1σ2

8
∂2

∂x∂y
− δ1/2

2
∂2

∂t∂z
− mi

2
12

∂
∂z
− 2miδ1/2

∂
∂t

+m212

)
ψR(~x, t) = 0(

12
16

∂2

∂x2
+ 12

16
∂2

∂y2
− 12

16
∂2

∂z2
− 12

∂2

∂t2
− iσ1σ2

8
∂2

∂x∂y
+

δ1/2
2

∂2

∂t∂z
− mi

2
12

∂
∂z

+ 2miδ1/2
∂
∂t

+m212

)
ψL(~x, t) = 0.

(281)

It is immediately noticed, passing to the momentum space, that the equations as soon as written
are not invariant under parity.
Let us estimate now the equations of the motion for the right- and left-handed �elds starting

from

(
ξµ⊗ξ

ν
⊗∂µ∂ν +m214

)
ψ⊗(x) = 0. (282)

Also in such a case, by replacing the previous matrices (276)-(279) into (282), with a little of
calculations one arrives to the spinorial equations

(
12
∂2

∂t2
+
12

16

∂2

∂x2
+
12

16

∂2

∂y2
+
12

16

∂2

∂z2
− σ3

8

∂2

∂x∂y
− 12

2

∂2

∂t∂z
+ 12m

2

)
ψR(~x, t) =

1

2

(
1

4
σ1

∂2

∂y∂z
− i

4
σ2

∂2

∂x∂z
− σ1

∂2

∂t∂y
+ iσ2

∂2

∂t∂x

)
ψL(~x, t) (283)

(
12
∂2

∂t2
+
12

16

∂2

∂x2
+
12

16

∂2

∂y2
+
12

16

∂2

∂z2
+
σ3

8

∂2

∂x∂y
− 12

2

∂2

∂t∂z
+ 12m

2

)
ψL(~x, t) =

1

2

(
1

4
σ1

∂2

∂y∂z
+
i

4
σ2

∂2

∂x∂z
− σ1

∂2

∂t∂y
− iσ2

∂2

∂t∂x

)
ψR(~x, t), (284)

which, as it can be observed, have the defect to mix right- and left-handed �elds. For decoupling
them, it is necessary to proceed as for the (280). However, this road is not very fruitful in order
to obtain the correct equations for the �elds ψR and ψL. In fact, a common insight suggests we

73The �rst step is to multiply, on the left-hand sides, both members of the equations (280) by 1
4

(
σ2

∂
∂x − iσ1

∂
∂y

)
and 1

4

(
σ2

∂
∂x + iσ1

∂
∂y

)
, respectively.
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will obtain partial di�erential equations of the fourth order, which, aside from operative di�culty
that can involve during explicit calculations, have a double di�erential order compared to the initial
equation, as it happened for the equations (281) calculated from the (270). This suggests we made
a conceptual mistake, and not a calculation one. How can we �nd such an error?
As it often happens, the problem is simpler than it seems and can be solved with a very used

formula in physics, consisting in the change of reference. Therefore, for obtaining by the AαE
and SαE the equations for the right- and left-handed �elds of their same order, we must select
an opportune reference that grants our wish. To vary reference, when we work with matrices, is
equivalent to operate a change of basis, that is an invertible transformation which allows to express
these matrices in a more manageable form. Who chews a little only of linear algebra knows the
more comfortable matrix representations are the diagonal ones. From the previous pages, we see
the not diagonal matrices, concerning the studied problem, are: χ1

⊗, χ
2
⊗, ξ

1
⊗, ξ

2
⊗. We can choose,

therefore, to put us in the reference in which one of these matrices has a diagonal form. What
matrix can we choose? We note quickly that, being

χ1
⊗ = ξ2

⊗; χ2
⊗ = ξ1

⊗, (285)

doing diagonal a matrix, we automatically have also another and the matrices χµ⊗ and ξµ⊗ will
be all expressed in the same coordinate system. Practically, what we want to make with the
change of basis, by the point of view of the representation theory (of the transformation groups),
is to decompose the tensor product of two representations with dimension equal to 2 in the direct
sum of the irreducible representations (1

2
, 0) and (0, 1

2
), which are nothing but the inequivalent

representations DR and DL of the group L↑+, thanks to which the right- and left-handed �elds are
transformed for de�nition. That e�ectively the change of basis (or of representation) allows to
obtain (

1

2
, 0

)
⊕
(

0,
1

2

)
(286)

is based on the representation theory and it depends on circumstance that a representation can
be reduced in the direct sum of irreducible representations if its block matrix (or equally if all
the matrices composing the representation) can be put in a diagonal form. Hence, in our speci�c
case, we are able to reach the direct sum of the irreducible representations (1

2
, 0) and (0, 1

2
), only if

the generic representation � obtained from the tensor product of two-dimensional representations �
which we may indicate with D⊗, can be written in the following form

D⊗ =

(
D1 O2

O2 D2

)
, (287)

where D1 and D2 are two representations of dimension 2, i.e. they are matrices 2 × 2. Therefore,
we must verify that the coordinate system making χ1

⊗ or χ2
⊗ in a diagonal form (and so also ξ2

⊗ and
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ξ1
⊗, respectively) is really the one about all our matrices are diagonal. Before continuing, it is well
to emphasize that we will perform the diagonalization for both χ1

⊗ and χ2
⊗ (and not for only one),

because it is not true that the matrices χ̃µ⊗ and ξ̃µ⊗, deriving from such diagonalizations, lead to the
same equations for the right- and left-handed �elds.
Firstly, we proceed to the diagonalization of χ1

⊗. It is easy to gain, by the characteristic polynomial
of this matrix, that it admits eigenvalues λ1 = −1/4 and λ2 = 1/4, both with algebraic multiplicity
equal to 2. In order to complete the diagonalization process regarding χ1

⊗, it is necessary to �nd the
matrix of change of basis P and its inverse P−1. But this, although from the mathematical point
of view is quite simple, places some problems from the physical one. For understanding what just
asserted, we characterize the eigenspaces of the eigenvalues λ1 and λ2. They are

V−1/4 =
{

(−w, z, z, w) : z, w ∈ R
}

(288)

V1/4 =
{

(w,−z, z, w) : z, w ∈ R
}
. (289)

Since z and w can assume every real value, there are in principle ∞2 matrices P and P−1 that
resolves our problem and we do not know if all these matrices produce the same equations for right-
and left-handed �elds (in any case this would have to be demonstrated and this is impossible).
Therefore, we have run into a troublesome problem, which puts our purpose to �nd good equations
for right- and left-handed �elds, using AαE and SαE, at risk. How can we exceed this apparently
great obstacle?
As usual, we can use the smartness and beauty of the Group Theory. In fact, according to it,
we know that the representations of Lie algebras and subalgebras can be visualized through the
so-called �weight diagrams.� Since we want to obtain the representation

(
1

2
, 0

)
⊕
(

0,
1

2

)
, (290)

we should try to shrink the choice of z and w between the fundamental weights of such a represen-
tation. What is the form of the weight diagram about

(
1
2
, 0
)
⊕
(
0, 1

2

)
? From the literature, we know

this is the representation of the Lorentz group L↑+ given by the direct sum of the two irreducible
representations

(
1
2
, 0
)
and

(
0, 1

2

)
, which are said �spinorial representations.� Since the irreducible

representations of L↑+ having �nite dimension are equivalent to the SU(2)l ⊗ SU(2)m ones,74 they
can be characterized by the couple (l,m), where l and m are integer and half-integer numbers such
that l(l+1) and m(m+1) are the eigenvalues of the Casimir operators belonging to the Lie algebra

74Remember that such groups are not isomorphic, because L↑+ ' SO(3, 1) � unlike SU(2)l ⊗ SU(2)m � is not a
compact group.
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of SU(2)l and SU(2)m, respectively. Thence, the LieSU(2)l⊗SU(2)m representations can be visu-
alized through the weight diagram obtained from A1 × A1,75 having l and m as maximum weights
and dimension (2l + 1)× (2m+ 1).76 From what said, we understand the weight diagram of

(
1
2
, 0
)

is that of �g. 4, while the weight diagram of
(
0, 1

2

)
is drawn in �g. 5. As we can see such diagrams

are identical unless the change of the l-axis with m-axis and vice-versa. This is not banal, since it
will allow us to resolve our problem elegantly.

Figure 4: The weight diagram of the irreducible representation
(
1
2 , 0
)
.

Figure 5: The weight diagram of the irreducible representation
(
0, 12
)
.

75SU(2) is classi�ed with A1 into Lie algebras theory.
76By and large the weights are l, l − 1, . . . ,−l and m,m− 1, . . . ,−m.
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Therefore, the weight diagram of
(

1
2
, 0
)
⊕
(
0, 1

2

)
is given by the superimposition of the two previous

�gures, as shown in �g. 6. The weight diagram concerning the representation
(

1
2
, 0
)
⊕
(
0, 1

2

)
resolves

our problem, because, as we know, it is isomorphic to the Euclidean plane R2, whose axes can be
chosen coinciding with z and w. This means we can take the points (z, w), which are able to resolve
our problem, just equal to the weights of the representation

(
1
2
, 0
)
⊕
(
0, 1

2

)
, according to the diagram

of �g. 7, where

A ≡ (1/2, 0), B ≡ (0, 1/2), C ≡ (−1/2, 0), D ≡ (0,−1/2). (291)

Figure 6: The weight diagram of the representation
(
1
2 , 0
)
⊕
(
0, 12
)
.

Figure 7: The square in the z − w plane: each vertex coincides with the weight of the reducible representation(
1
2 , 0
)
⊕
(
0, 12
)
.

To restrict the choice of z and w, between the points representing the weights of
(

1
2
, 0
)
⊕
(
0, 1

2

)
,
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allowed to transform a problem with in�nite solutions to a problem having a �nite number of
solutions. In order to obtain the matrix of the change of basis P by the eigenspaces V−1/4 and V1/4,
we need two di�erent points on the diagram of �g. 7, through which it will be possible to construct
a basis for such vector spaces. All the possible ordered couple of points, two by two di�erent, which
can be considered by the diagram of �g. 7, are

AB, BC, CD, DA, CA, DB, BD, BA, CB, DC, AD, AC. (292)

Therefore, in general, there are twelve matrices of the change of basis (i.e. there are twelve coordinate
systems), which are able to resolve our problem. Really, it is easy to prove that AC, CA, DB and
BD give singular matrices P , since their determinants are null (and so, for them, it is impossible
to diagonalize our system of matrices). Moreover, the matrices P deriving from AD, DA, DC,
CD are of opposite sign with respect to those which are obtained from AB, BA, BC, CB and, for
this, they lead to the same coordinate systems in which the matrices χµ⊗ and ξµ⊗ are diagonal. For
that reason, the only independent and invertible matrices of the change of basis are those which are
obtained by the ordered couple of points

AB, BC, CB, BA. (293)

This fact, from a �gurative point of view, corresponds to cover the angle ÂBC before counter-
clockwise and then clockwise, as shown in �g. 8.77

Figure 8: The magic angle: the two only independent representations for χµ⊗ and ξµ⊗ can be obtained covering

ÂBC in the double-verse of the arrows.

77Otherwise, if it is preferred, before covering the triangle ABC counter-clockwise and then clockwise, where the
contribution of the sides CA and AC does not count, since it gives singular matrices P .
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It is straightforward to verify that, in our speci�c case, the sides AB, BC, CB, BA give, respec-
tively, the following matrices of change of basis and their inverses

P1 =
1

2

(
−iσ2 iσ2

12 12

)
, P−1

1 =

(
iσ2 12

−iσ2 12

)
(294)

P2 =
1

2

(
−12 12

−iσ2 −iσ2

)
, P−1

2 =

(
−12 iσ2

12 iσ2

)
(295)

P3 =
1

2

(
−σ3 σ3

σ1 σ1

)
, P−1

3 =

(
−σ3 σ1

σ3 σ1

)
(296)

P4 =
1

2

(
−σ1 σ1

−σ3 −σ3

)
, P−1

4 =

(
−σ1 −σ3

σ1 −σ3

)
. (297)

With a little of calculations, it is simple to understand that (296) and (297) lead to the same
coordinate systems of the (295) and (294), respectively. Hence, only the (294) and (295) get to two
di�erent representations of χµ⊗ and ξµ⊗. In the case of (294), we have 78

χ̃0
⊗ =

(
−σ3 O2

O2 −σ3

)
ξ̃0
⊗ =

(
−σ3 O2

O2 −σ3

)
(298)

χ̃1
⊗ =

1

4

(
−12 O2

O2 12

)
ξ̃1
⊗ =

1

4

(
−σ3 O2

O2 σ3

)
(299)

χ̃2
⊗ =

1

4

(
−σ3 O2

O2 σ3

)
ξ̃2
⊗ =

1

4

(
−12 O2

O2 12

)
(300)

χ̃3
⊗ =

1

4

(
12 O2

O2 12

)
ξ̃3
⊗ =

1

4

(
σ3 O2

O2 σ3

)
, (301)

78It is underlined χ̃µ⊗ ≡ P−1i χµ⊗Pi and ξ̃
µ
⊗ ≡ P−1i ξµ⊗Pi, where i ∈ {1, 2} in the studied case.
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while, in the case of (295), we have 79

χ̃0
⊗ =

(
σ3 O2

O2 σ3

)
ξ̃0
⊗ =

(
σ3 O2

O2 σ3

)
(302)

χ̃1
⊗ =

1

4

(
−12 O2

O2 12

)
ξ̃1
⊗ =

1

4

(
σ3 O2

O2 −σ3

)
(303)

χ̃2
⊗ =

1

4

(
σ3 O2

O2 −σ3

)
ξ̃2
⊗ =

1

4

(
−12 O2

O2 12

)
(304)

χ̃3
⊗ =

1

4

(
12 O2

O2 12

)
ξ̃3
⊗ =

1

4

(
−σ3 O2

O2 −σ3

)
. (305)

As it is quickly seen, the representations obtained from (294) and (295) are the same, apart from
the substitution

σ3 → −σ3. (306)

This is not banal, because it will a�ect the equations for the right- and left-handed �elds.
Therefore, we obtained the diagonal representations of the matrices χµ⊗ and ξµ⊗ and, thanks to

the use of the weight diagram belonging to the speci�c representation of the group of Lorentz L↑+
with regard to which we are working, it has been possible to transform our problem with in�nite
solutions in a problem with a �nite number of solutions. From that reason, we understand the
equations for the right- and left-handed �elds � obtained in the previous pages by the AαE and
SαE � have not the same order of these last, because the representation of the matrices χµ⊗ and ξµ⊗,
on which we worked, was not the right one, i.e. suitable for the representation(

1

2
, 0

)
⊕
(

0,
1

2

)
. (307)

At this point, we re-calculate the equations for the right- and left-handed �elds from the (270)
and (271), by using the new representations. With the representation obtained from the (294), we
have

79If one controls the characters of the representations obtained from (294) and (295), it is observed these are equal
to the characters of the representations χµ⊗ and ξµ⊗ and so they are equivalent.
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(iχ̃µ⊗∂µ −m14)ψ⊗(x) =

[
i

(
χ̃0
⊗
∂

∂t
+ ~̃χ⊗ · ~∇

)
−m14

]
ψ⊗(x) = 0, (308)

from which, the spinorial equations for the no coupled right- and left-handed �elds are
i
[
12
4

(
∂
∂x
− ∂

∂z

)
+ σ3

(
∂
∂t

+ 1
4
∂
∂y

)]
ψR(~x, t) = −mψR(~x, t)

i
[
12
4

(
∂
∂x

+ ∂
∂z

)
− σ3

(
∂
∂t
− 1

4
∂
∂y

)]
ψL(~x, t) = mψL(~x, t).

(309)

We, thus, obtained two distinct equations for the right- and left-handed �elds of the same order
of the AαE. Such equations, like the Weyl ones, are not invariant under the parity operator, but
they include a nonzero mass. The equations deduced from the (309), by placing m = 0, are always
distinct and not invariant under parity.80

Regarding the SαE, by using the representation ξ̃µ⊗ derived from the (294), we have(
ξ̃µ⊗ξ̃

ν
⊗∂µ∂ν +m214

)
ψ⊗(x) = 0, (310)

from which, making out all the matrix sums and products, the following two equations are obtained

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− 1

8

[
12

∂2

∂x∂z
− σ3

(
∂2

∂x∂y
− ∂2

∂y∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
− ∂2

∂t∂x

)
− σ3

∂2

∂t∂y

]}
ψR(~x, t) = −m2ψR(~x, t) (311)

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+

1

8

[
12

∂2

∂x∂z
+ σ3

(
∂2

∂x∂y
+

∂2

∂y∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
+

∂2

∂t∂x

)
+ σ3

∂2

∂t∂y

]}
ψL(~x, t) = −m2ψL(~x, t), (312)

80It must be noticed the equations (309) have an imaginary coe�cient. They become homogeneous di�erential
equations with real coe�cients for m = 0 only. For eliminating the imaginary unit, we simply can multiply the

�rst equation by i
[
12

4

(
∂
∂x −

∂
∂z

)
+ σ3

(
∂
∂t + 1

4
∂
∂y

)]
and the second one by i

[
12

4

(
∂
∂x + ∂

∂z

)
− σ3

(
∂
∂t −

1
4
∂
∂y

)]
, both

members on the left-hand sides. In such a manner we obtain equations without imaginary unit, but having a di�erent
order compared to the AαE. For that reason, we prefer using the expressions (309). It is better to note that if we used
the tachyonic equation (114), in order to obtain equations for right- and left-handed �elds, we would have achieved
the same equations (309), but without the imaginary unit i. Shall we give a physical sense to these equations?
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which are of the same order of the SαE.
As it is immediate to state, they are not invariant under the parity operator and have a nonzero

mass. If one places m = 0, they always remain distinct and not invariant under parity. What result
we obtain if the representation derived from the (295) is used? By making for the AαE the same
line of reasoning which led us to the equations as soon as written, we have

i
[
12
4

(
∂
∂x
− ∂

∂z

)
− σ3

(
∂
∂t

+ 1
4
∂
∂y

)]
ψR(~x, t) = −mψR(~x, t)

i
[
12
4

(
∂
∂x

+ ∂
∂z

)
+ σ3

(
∂
∂t
− 1

4
∂
∂y

)]
ψL(~x, t) = mψL(~x, t)

(313)

and, for the SαE, we have

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− 1

8

[
12

∂2

∂x∂z
+ σ3

(
∂2

∂x∂y
− ∂2

∂y∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
− ∂2

∂t∂x

)
+ σ3

∂2

∂t∂y

]}
ψR(~x, t) = −m2ψR(~x, t) (314)

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+

1

8

[
12

∂2

∂x∂z
− σ3

(
∂2

∂x∂y
+

∂2

∂y∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
+

∂2

∂t∂x

)
− σ3

∂2

∂t∂y

]}
ψL(~x, t) = −m2ψL(~x, t). (315)

As it could be expected, these equations are identical with those deduced by the representation
deriving from the (294), unless the substitution

σ3 → −σ3. (316)

This means the equations for the right- and left-handed �elds su�er of direction of the third spin
component, depending on whether it is �up� or �down.� Therefore, matching the results of the
representations deriving from the (294) and (295) through the diagonalization of χ1

⊗, we have that
the equations for the right- and left-handed �elds gotten by the AαE are

i
[
12
4

(
∂
∂x
− ∂

∂z

)
± σ3

(
∂
∂t

+ 1
4
∂
∂y

)]
ψR(~x, t) = −mψR(~x, t)

i
[
12
4

(
∂
∂x

+ ∂
∂z

)
∓ σ3

(
∂
∂t
− 1

4
∂
∂y

)]
ψL(~x, t) = mψL(~x, t),

(317)
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while the equations for the right- and left-handed �elds, obtained by the SαE, are

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− 1

8

[
12

∂2

∂x∂z
∓ σ3

(
∂2

∂x∂y
− ∂2

∂y∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
− ∂2

∂t∂x

)
∓ σ3

∂2

∂t∂y

]}
ψR(~x, t) = −m2ψR(~x, t) (318)

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+

1

8

[
12

∂2

∂x∂z
± σ3

(
∂2

∂x∂y
+

∂2

∂y∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
+

∂2

∂t∂x

)
± σ3

∂2

∂t∂y

]}
ψL(~x, t) = −m2ψL(~x, t). (319)

They, as already said, are not invariant under parity and have nonzero mass. Moreover, we can
see that if the third spin component of the right-handed �eld is �down� that one of the left-handed
�eld is always �up� and vice-versa: this means the right- and left-handed �elds su�er from the
direction of σ3 concerning the particles of which they are constituted. We still notice that, if we
had considered the points obtained from the fundamental weights multiplied simply by a generic
k ∈ R, we would have the same representations χ̃µ⊗ and ξ̃µ⊗. This can be banally seen for the (294),
which, in such a case, are transformed in

P1 =
k

2

(
−iσ2 iσ2

12 12

)
, P−1

1 =
1

k

(
iσ2 12

−iσ2 12

)
(320)

which, naturally, does not change either P−1
1 χµ⊗P1 nor P−1

1 ξµ⊗P1. This means the fundamental
weights of the Lie algebra representation, that we are studying, characterize the �elementary cell�
of all the geometric structures which they can generate through the multiplication by an arbitrary
real constant, i.e. considering the frame of �g. 9, all the in�nite representations, which can be
constructed by the points of such a diagram, are equivalent to those which can be deduced by the
elementary cell.
In order to conclude the study about the right- and left-handed �elds, through the use of the

AαE and SαE, we have to diagonalize the matrix χ2
⊗. In this case, the eigenspaces, thanks to which

calculating the matrices of the change of basis and their inverses, are

V−1/4 =
{

(w, z, z, w) : z, w ∈ R
}

(321)

V1/4 =
{

(−w,−z, z, w) : z, w ∈ R
}
, (322)
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Figure 9: The in�nite geometric structure generated by the �elementary cell� of
(
1
2 , 0
)
⊕
(
0, 12
)
.

from which, making the same reasoning used for χ1
⊗ and by taking the angle of �g. 8, we have

P̃1 =
1

2

(
σ1 −σ1

12 12

)
, P̃−1

1 =

(
σ1 12

−σ1 12

)
(323)

P̃2 =
1

2

(
σ3 −σ3

−iσ2 −iσ2

)
, P̃−1

2 =

(
σ3 iσ2

−σ3 iσ2

)
(324)

P̃3 =
1

2

(
−iσ2 iσ2

σ3 σ3

)
, P̃−1

3 =

(
iσ2 σ3

−iσ2 σ3

)
(325)

P̃4 =
1

2

(
12 −12

σ1 σ1

)
, P̃−1

4 =

(
12 σ1

−12 σ1

)
. (326)
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Also in such a case, the (325) and (326) lead to the same coordinate system of the (323) and (324),
respectively. Hence, like χ1

⊗, also χ
2
⊗ has two only representations for the χµ⊗ and ξµ⊗, which can be

derived from the (323) and (324). With regards to the (323), we have

χ̃0
⊗ =

(
−σ3 O2

O2 −σ3

)
ξ̃0
⊗ =

(
−σ3 O2

O2 −σ3

)
(327)

χ̃1
⊗ =

1

4

(
−σ3 O2

O2 σ3

)
ξ̃1
⊗ =

1

4

(
−12 O2

O2 12

)
(328)

χ̃2
⊗ =

1

4

(
−12 O2

O2 12

)
ξ̃2
⊗ =

1

4

(
−σ3 O2

O2 σ3

)
(329)

χ̃3
⊗ =

1

4

(
12 O2

O2 12

)
ξ̃3
⊗ =

1

4

(
σ3 O2

O2 σ3

)
, (330)

while, for the (324), we have 81

χ̃0
⊗ =

(
σ3 O2

O2 σ3

)
ξ̃0
⊗ =

(
σ3 O2

O2 σ3

)
(331)

χ̃1
⊗ =

1

4

(
σ3 O2

O2 −σ3

)
ξ̃1
⊗ =

1

4

(
−12 O2

O2 12

)
(332)

χ̃2
⊗ =

1

4

(
−12 O2

O2 12

)
ξ̃2
⊗ =

1

4

(
σ3 O2

O2 −σ3

)
(333)

χ̃3
⊗ =

1

4

(
12 O2

O2 12

)
ξ̃3
⊗ =

1

4

(
−σ3 O2

O2 −σ3

)
. (334)

81Also in this case the representations obtained from (323) and (324) are equivalent to χµ⊗ and ξµ⊗, since their
characters coincide.
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It is immediate to notice that the representations derived by the (323) and (324) are equal, apart
from the substitution

σ3 → −σ3. (335)

Really, if we confront such representations with those obtained by the diagonalization of χ1
⊗, we see

they are exactly the same, unless the exchanges

χ̃1
⊗ → χ̃2

⊗, ξ̃1
⊗ → ξ̃2

⊗. (336)

What do such exchanges in the equations of the motion for the right- and left-handed �elds entail?
For seeing it, we compute such equations from the (270) and (271), joining together those obtained
by the representations deriving from the (323) and (324), like already made in the case of χ1

⊗. By
making it, we have, for the AαE, the following equations for the right- and left-handed �elds

i
[
12
4

(
∂
∂y
− ∂

∂z

)
± σ3

(
∂
∂t

+ 1
4
∂
∂x

)]
ψR(~x, t) = −mψR(~x, t)

i
[
12
4

(
∂
∂y

+ ∂
∂z

)
∓ σ3

(
∂
∂t
− 1

4
∂
∂x

)]
ψL(~x, t) = mψL(~x, t),

(337)

while, for the SαE, we have

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− 1

8

[
12

∂2

∂y∂z
∓ σ3

(
∂2

∂x∂y
− ∂2

∂x∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
− ∂2

∂t∂y

)
∓ σ3

∂2

∂t∂x

]}
ψR(~x, t) = −m2ψR(~x, t) (338)

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+

1

8

[
12

∂2

∂y∂z
± σ3

(
∂2

∂x∂y
+

∂2

∂x∂z

)]
−

1

2

[
12

(
∂2

∂t∂z
+

∂2

∂t∂y

)
± σ3

∂2

∂t∂x

]}
ψL(~x, t) = −m2ψL(~x, t). (339)

Also in such a case, our equations have m 6= 0 and are not invariant under parity. Moreover, if the
third spin component of the equation for the right-handed �eld is �down� that for the left-handed
�eld is �up� and vice-versa. But the most evident thing is these equations are perfectly identical to
the (317), (318) and (319), apart from the substitution
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x→ y. (340)

This means that to choose if diagonalizing χ1
⊗ or χ2

⊗ is equivalent to exchange the x-axis with the
y-axis (or vice-versa), in the coordinate system in which we study the motion of the right- and
left-handed �elds. Since the equations of the motion su�er of such an exchange, we may conclude
such �elds are subject to a kind of �polarization.�
Finally, by summarizing the results of this section, we can assert the equations for the right- and

left-handed �elds derived by the AαE are 82


i
[
12
4

(
∂
∂xi
− ∂

∂x3

)
± σ3

(
∂
∂t

+ 1
4
∂
∂xj

)]
ψR(~x, t) = −mψR(~x, t)

i
[
12
4

(
∂
∂xi

+ ∂
∂x3

)
∓ σ3

(
∂
∂t
− 1

4
∂
∂xj

)]
ψL(~x, t) = mψL(~x, t),

(341)

while the equations for the right- and left-handed �elds derived from SαE are

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
− 1

8

[
12

∂2

∂xi∂x3

∓ σ3

(
∂2

∂x1∂x2

− ∂2

∂xj∂x3

)]
−

1

2

[
12

(
∂2

∂t∂x3

− ∂2

∂t∂xi

)
∓ σ3

∂2

∂t∂xj

]}
ψR(~x, t) = −m2ψR(~x, t) (342)

{
12
∂2

∂t2
+
12

16

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
+

1

8

[
12

∂2

∂xi∂x3

± σ3

(
∂2

∂x1∂x2

+
∂2

∂xj∂x3

)]
−

1

2

[
12

(
∂2

∂t∂x3

+
∂2

∂t∂xi

)
± σ3

∂2

∂t∂xj

]}
ψL(~x, t) = −m2ψL(~x, t), (343)

where, for all the previous equations, we have{
i = 1, j = 2 if we diagonalize χ1

⊗

i = 2, j = 1 if we diagonalize χ2
⊗.

(344)

We, thus, found a couple of distinct equations for the right- and left-handed �elds of the same order
of the AαE and SαE, respectively. Naturally, the equations for the right- and left-handed �elds
derived by the SαE are more complex than those obtained from the AαE. Nevertheless, in this last

82In this case, we place ~x ≡ (x1, x2, x3).
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case, the signs of the mass concerning the right- and left-handed �elds are contrary and this places
the found equations on a di�erent level, in the sense that, as already explained in previous chapter,
they derive by two di�erent theories and cannot be simply seen like one the square of the other.
If we identify the left-handed particles with neutrinos and the right-handed particles with anti-

neutrinos, we can assert the found equations show the following properties

1. Neutrinos and anti-neutrinos have mass m 6= 0.83

2. Neutrinos and anti-neutrinos do not conserve the parity.

3. Since neutrinos and anti-neutrinos have di�erent equations of motion, they are di�erent par-
ticles.

4. If the third spin component of neutrinos is �up� that one of anti-neutrinos must be �down�
and vice-versa.

5. The neutrinos and anti-neutrinos equations su�er from the spin of the particles they describe,
in the sense that it is fundamental to specify if the third spin component is �up� or �down�:
this means the sign of the third spin component enters into dynamics of such particles.

6. Except if the Nature did not choose a privileged direction for neutrinos and anti-neutrinos
(which is equivalent to decide if to diagonalize χ1

⊗ or χ2
⊗), such particles show a sort of

polarization, which leaves �xed the z-direction, but can change the x with the y and vice-
versa.84

It is well to notice such properties can be deducted from the equations (270) and (271), which have
been derived by the AαE and SαE, without using ad hoc hypothesis. What between these two
couples of equations better describes neutrinos and anti-neutrinos, it depends on which between
the AαE and SαE is the most adapted to describe elementary particles and this needs ulterior
studies on the theory exposed in this work. It is very important to stop on the predictive power of
the found equations. In fact, they describe right- and left-handed �elds with nonzero mass, with
distinct equations which are not invariant under parity. These, as we know, are all characteristics
characterizing the neutrinos and anti-neutrinos based on current knowledges (the neutrino and anti-
neutrino �elds are just identi�ed with left- and right-handed �elds, respectively). And these results,
as it should be well emphasized, have spontaneously emerged from the AαE and SαE, without
some further physical hypothesis. Precisely, our couples of equations are always distinct, contain
nonzero masses and violate the parity, all properties that the Weyl and Majorana theories do not
predict at the same time. In particular, the Majorana equation predicts that particles are their
own anti-particles and so neutrinos are equivalent to anti-neutrinos [14, 98]. Up till now, all the
experiments on �double-beta decay� have discouraged such forecasts [15]. But, there is yet another
issue, perhaps more important. In fact, as it is known the Weyl theory is nothing but a special case
of the Dirac theory placed in the chiral representation and with m = 0. What from this follows
is: the Dirac theory cannot predict the parity violation of right- and left-handed particles and they

83This could have caused the ��avour oscillations� experimentally observed.
84Depending on how our coordinate system is chosen.

79



have m 6= 0 together. Then, as the points 4, 5 and 6 show, ulterior properties of neutrino and
anti-neutrino, which could be experimentally tested, arise from our equations.
At the end of this long discussion on the left- and right-handed equations concerning the theory

introduced in this work, it is important to notice the association between the right-handed �eld
and ψR (or ψR) and the left-handed �eld and ψL (or ψL) is a pure convention. In fact, the same
results we have obtained in these pages are valid exchanging the �eld ψR (or ψR) with ψL (or ψL)
too. Really, this have not to demoralize us, because it is not fundamental naming our �elds in a
precise way, but rather the quality of the equations (341), (342) and (343), which are not invariant
under parity and with m 6= 0. After all, if we think about it, associating neutrino to the left-
handed �eld and anti-neutrino to the right-handed �eld depends exclusively on the Weyl equations,
which, making clear the helicity operator, conducted the physicists to do such a distinction between
these two elementary particles. As an example, this does not happen into Majorana theory, since
the characteristic equation of this model shows neutrino and anti-neutrino are the same particle.
Instead, the (270) and (271) tell us that, by studying the equations of motion contracted to the
representation

(
1
2
, 0
)
⊕
(
0, 1

2

)
of the Lorentz group L↑+, we get distinct equations having the above

enunciated properties. Can our equations actually describe neutrinos and anti-neutrinos? Is the
neutrino phenomenology more suitable to the equation of ψR (or ψR) or to that of ψL (or ψL)?
Hence, we understand that the complexity of the found equations demands a deeper analysis on
the physical behavior of neutrinos and anti-neutrinos. What, however, relieves us is that all the
obtained results have come out simply by the mathematics of AαE and SαE and so they objectively
let us re�ect and invite to further inquire.

80



4 The α-Theory and External Gauge Fields

The AαE and SαE, developed in previous chapters, characterize two theories, which are pro-
posed to explain the elementary particle physics and as our universe was born. Concerning what
we said, only one of them could represent the new theory for elementary particles. In this chapter,
the Lagrangian densities of the AαE and SαE will be obtained, and the conserved quantities aris-
ing from their invariance under the space-time translation group will be calculated, based on the
Noether theorem. Successively, the coupling between these theories with an external electromag-
netic �eld and, more in general, with a Yang-Mills �eld will be studied. This will concur to write
the Lagrangian density of the strong interaction for both these theories (α-QCD). In addition, we
will �nd the free propagators of the AαE and SαE, waiting for the development of a more correct
perturbative model.

4.1 Lagrangian formalism of the α-Theory: invariance and conservation
laws

We want now to construct the physical theory identi�ed by the AαE and SαE. Of this theory,
then, we will calculate the relative conserved amounts, deriving from the eventual invariance under
space-time translations. The transition to the Lagrangian formalism is required by the fundamental
circumstance that the found equations, like the Dirac and Klein-Gordon ones, do not describe single
particles, but particle �elds. This will allow us, as we will see, to apply the powerful formalism of
the QFT to the theory developed in this work.
What name do we give to this theory? Since it conducts to AαE or SαE, which are proposed

to explain the transition from the tachyonic (post Big-Bang background) to the bradyonic universe
(actual background), thanks to a big process of spontaneous symmetry breaking that we called
Big-Break, it seems natural to name it �α-Theory,� i.e. the �beginning theory.� The writer hopes
someday this theory, if veri�ed, will improve the Standard Model of elementary particles and, thus,
will render it a complete theoretical model (uni�cation of all interactions of Nature). From this
point of view, the α-Theory should be really the theory beyond the Standard Model.
Another thing which one must emphasize is that the AαE and SαE identify two di�erent theories.

Therefore, we call �Asymmetric α-Theory� (AαT) the theory characterized by the AαE, while
�Symmetric α-Theory� (SαT) that one characterized by the SαE. When it will be settled down if
and what between these two theories is the most suitable for describing elementary particles, then
we will call such a theory simply α-Theory. We indicate the Lagrangian density of the �Asymmetric
α-Theory� with LAα, while the one concerning the �Symmetric α-Theory� with LSα. We now
explicitly calculate these Lagrangian densities. For making it, we have to perform the substitution
µ → −im in the densities LM1 and LM2 written in the previous pages for characterizing the
tachyonic universe, which depends on whether this universe was described by the �rst order Mα

equation or to the second order one. We, therefore, have
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LM1
µ→−im−→ LAα = ψ̄s(x) (i~χµ∂µ −mc1s)ψs(x) (345)

LM2
µ→−im−→ LSα = (∂µψ

†
s)ξ

µξν(∂νψs)−
m2c2

~2
ψ†s(x)ψs(x). (346)

It promptly can be noticed that LAα has the same structure of the Dirac Lagrangian density

LDirac = ψ̄(x) (i~γµ∂µ −mc)ψ(x), (347)

while LSα remembers the Klein-Gordon Lagrangian density for a n-dimensional complex �eld 85

LK−G = (∂µψ
†)(∂µψ)− m2c2

~2
ψ†(x)ψ(x). (348)

This makes us understand the α-Theory, describing the elementary particles in a uni�ed way (ar-
bitrary spin), is really hidden in the Dirac and Klein-Gordon theories.
Now we can study the behavior of the theories characterized by LAα and LSα under space-time

translations. In order to slim the calculations, we work in natural units (~ = c = 1), in which our
Lagrangian densities are written

LAα = ψ̄s(x) (iχµ∂µ −m1s)ψs(x) (349)

LSα = (∂µψ
†
s)ξ

µξν(∂νψs)−m2ψ†s(x)ψs(x). (350)

We want to begin from the LAα. After a space-time translation

x′µ = xµ + aµ,

it becomes (the χµ obviously remain unchanged because independent from x)

L′Aα = ψ̄′s(x
′)
(
iχµ∂′µ −m1s

)
ψ′s(x

′). (351)

85Note that

ψ(x) ≡


ψ1

ψ2

ψ3

ψ4

 , ψi ∈ C ∀i ∈ {1, 2, 3, 4}; ψ(x) ≡

 ψ1

...
ψn

 , ψi ∈ C ∀i ∈ {1, . . . , n}.
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Since ∂′µ = ∂µ and due to the homogeneity of space-time, it is immediate to prove that

L′Aα = LAα ⇒ δLAα = (L′Aα − LAα) = 0. (352)

Thence, the system described by LAα is invariant under space-time translations. Based on the
Noether theorem, this gives conserved charges and four-current of the following form 86

jµνs = −iψ̄sχµ∂νψs

Q0
s =

∫
R3 d

3x
(
iψ†s

∂ψs
∂t

)
, Qi

s =
∫
R3 d

3x
(
iψ†s

∂ψs
∂xi

)
.

(353)

We now try to understand what these charges represent. For making it, we calculate the Hamiltonian
density concerning our theory. We have

HAα = πs(x)ψ̇s(x)− LAα, (354)

where, with πs(x), we indicated the (canonical) momentum of the �eld ψs(x) given by

πs(x) ≡ ∂LAα

∂ψ̇s
. (355)

From the explicit calculation of HAα and πs(x), we getHAα = iψ†s
∂ψs
∂t

πs(x) = iψ†s(x)
(356)

and so we can thus write the conserved chargesQ0
s =

∫
R3 d

3x
(
iψ†s

∂ψs
∂t

)
=
∫
R3 d

3xHAα = HAα

Qi
s =

∫
R3 d

3x
(
iψ†s∂

iψs
)

=
∫
R3 d

3x (πs∂
iψs) .

(357)

Therefore, the charge Q0
s is the Hamiltonian of the system described by LAα, while Qi

s are the
components of the momentum transported by the �eld ψs(x). Hence, we demonstrated that the

86The conserved charges, thus like the tensor four-current, are really s, that is, for each �eld characterized by a
�xed spin value, there are precise conserved charges and four-current.
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Lagrangian density is invariant under space-time translations (i.e. under the group of the four-
dimensional translations) and this invariance gives, in agreement with the Noether theorem, four
conserved charges, namely the energy and the three components of the momentum transported by
the �eld ψs(x), respectively (of course, this happens for any �xed s ∈ N/2).
We now study the behavior of the Lagrangian density LSα under space-time translations

x′µ = xµ + aµ.

Naturally, we have

L′Sα = (∂′µψ
′†
s )ξµξν(∂′νψ

′
s)−m2ψ′†s (x′)ψ′s(x

′), (358)

and by remarking that 
∂′µ = ∂µ
ψ′s(x

′) = ψs(x)

ψ′†s (x′) = ψ†s(x)

(359)

we can write

L′Sα = (∂µψ
†
s)ξ

µξν(∂νψs)−m2ψ†s(x)ψs(x), (360)

from which

L′Sα = LSα ⇒ δLSα = (L′Sα − LSα) = 0. (361)

Therefore, also the system described by LSα is invariant under space-time translations and so, from
the Noether theorem, we have the following conserved charges and four-currentsj

µν
s = −T µν

Q0
s =

∫
R3 d

3xT 00, Qi
s =

∫
R3 d

3xT 0i,
(362)

where


T µν = (∂αψ

†
s)ξ

αξµ(∂νψs) + (∂νψ†s)ξ
µξα(∂αψs)− (∂αψ

†
s)ξ

αξβ(∂βψs)g
µν +m2ψ†sψsg

µν

T 00 = (∂αψ
†
s)ξ

αξ0(∂0ψs) + (∂0ψ†s)ξ
0ξα(∂αψs)− (∂αψ

†
s)ξ

αξβ(∂βψs) +m2ψ†sψs

T 0i = (∂αψ
†
s)ξ

αξ0(∂iψs) + (∂iψ†s)ξ
0ξα(∂αψs).

(363)
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In order to know the physical meaning of the previous charges, we calculate the Hamiltonian
density HSα, whose explicit form is

HSα = πψ(x)ψ̇s(x) + ψ̇†s(x)πψ†(x)− LSα, (364)

where, with πψ(x) and πψ†(x), we indicated the momentum of the �eld ψs(x) and the momentum
of the �eld ψ†s(x) given, respectively, byπψ(x) ≡ ∂LSα

∂ψ̇s
= (∂αψ

†
s)ξ

αξ0

πψ†(x) ≡ ∂LSα
∂ψ̇†s

= ξ0ξα(∂αψs),
(365)

from which immediately follows

HSα = (∂αψ
†
s)ξ

αξ0(∂0ψs) + (∂0ψ†s)ξ
0ξα(∂αψs)− (∂αψ

†
s)ξ

αξβ(∂βψs) +m2ψ†sψs. (366)

By comparing the (365) and (366) with Q0
s and Q

i
s, we can promptly writeQ

0
s =

∫
R3 d

3xHSα = HSα

Qi
s =

∫
R3 d

3x
[
πψ∂

iψs + ∂iψ†sπψ†
]

=
∫
R3 d

3xπψ∂
iψs +

∫
R3 d

3x∂iψ†sπψ† .
(367)

Thence, the charge Q0
s is not other but the Hamiltonian of the system described by LSα, while Qi

s

is the sum of each one of the components concerning the momentum transported by the �eld ψs(x)
and the momentum transported by the �eld ψ†s(x) and this naturally for any s ∈ N/2.
Therefore, we demonstrated the Lagrangian density LSα is invariant under any space-time trans-

lation and this invariance gives, in agreement with the Noether theorem, four conserved charges,
being the energy HSα and the sum of each one of the components concerning the momentum trans-
ported by the �elds ψs(x) and ψ†s(x), respectively.

4.2 The α-Theory and electromagnetic interaction

Now we want to study the α-Theory in presence of an external electromagnetic �eld Aµ(x). Ob-
viously, this implies the discussion of the AαT and SαT both in interaction with an external
electromagnetic �eld. It is good to underline that the approach we will follow is inverse to the one
usually used for studying the Dirac or the Klein-Gordon theories coupled with an electromagnetic
�eld, which is founded on the �Gauge Principle,� i.e. on the acknowledge that in the transition from
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global phase (gauge) transformations to local ones, in order to maintain the invariance of the start
Lagrangian density, it is necessary to introduce a four-dimensional �eld coupled to the initial matter
�eld, more the kinetic term of this new �eld, just coinciding with the electromagnetic �eld Aµ(x).
At the end of this process, it is observed, through the introduction of the covariant derivative,
that the Lagrangian density of the theory, we dealt in interaction with the electromagnetic �eld, is
nothing but the initial theory to which the kinetic term of the electromagnetic �eld is added and to
which the ordinary four-dimensional derivative is replaced with the covariant derivative. This type
of substitution is said �minimal substitution� (sometimes also called �minimal coupled�). And it
is just from the minimal substitution we will start, by showing the Lagrangian densities, obtained
in this way from LAα and LSα, are invariant quantities under local phase transformations. Given,
therefore, the Lagrangian density

LAα = ψ̄s(x) (iχµ∂µ −m1s)ψs(x), (368)

unchanged under global phase transformations (banally, we can verify it){
ψ′s(x) = eiθψs(x)

ψ̄′s(x) = e−iθψ̄s(x),
(369)

we want to prove that the Lagrangian density, obtained by LAα through the minimal substitution
(∂µ → Dµ + Lcin

em = −1
4
FµνF

µν), and given by 87

L̃Aα = ψ̄s(x) (iχµDµ −m1s)ψs(x)− 1

4
FµνF

µν , (370)

is invariant under local phase transformations
ψ′s(x) = eiθ(x)ψs(x)

ψ̄′s(x) = e−iθ(x)ψ̄s(x)

A′µ(x) = Aµ(x) + 1
e
∂µθ(x).

(371)

We have

L̃Aα = ψ̄s [iχµ(∂µ − ieAµ)−m1s]ψs −
1

4
FµνF

µν =

ψ̄s(iχ
µ∂µ −m1s)ψs + eψ̄s(χ

µAµ)ψs −
1

4
FµνF

µν , (372)

87Dµ ≡ (∂µ − ieAµ).
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where the second term of the last expression represents the interaction between the particle �eld
and electromagnetic �eld, with coupling constant equal to the electric charge e. By replacing the
local phase transformations in the (372), it is easy to verify that it is invariant under such trans-
formations.
Since this Lagrangian density describes the interaction of the particle �eld having arbitrary spin

(varying s) and its conjugate with the electromagnetic �eld, we can assert it represents the La-
grangian density of the �Asymmetric α-QED� and so to write

L
QED
Aα = ψ̄s(x) (iχµDµ −m1s)ψs(x)− 1

4
FµνF

µν , (373)

from which, it is straightforward to calculate the equations of the motion for the �elds ψs(x) and
Aµ(x), through the use of the Euler-Lagrange equations about these �elds. They are 88

(iχµD
µ −m1s)ψs(x) = 0 (374)

∂µF
µν = ejνs . (375)

The (374) represents the asymmetric α-equation for the �eld ψs(x) coupled to the electromagnetic
�eld Aµ(x), while the (375) gives the inhomogeneous Maxwell's equations with four-current jνs .
Now we want to prove that the four-current, de�ned as above, is just the four-current of the �eld

ψs(x) associated to the invariance of LAα under global phase transformations (369). In fact, thanks
to this invariance, we have

δLAα = (L′Aα − LAα) = 0, (376)

i.e., based on the Noether theorem, we have the following conserved charge and four-currentjνs = ∂LAα

∂(∂νψs)
δ̄ψs + δ̄ψ̄s

∂LAα

∂(∂ν ψ̄s)
+ LAαδ̄x

ν

Qs(t) =
∫
R3 d

3xj0s(~x, t)
(377)

and since 
δ̄ψs = iψs(x)

δ̄ψ̄s = −iψ̄s(x)

δ̄xν = 0,

(378)

88jνs ≡ −(ψ̄sχ
νψs).
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we can write

jνs = −(ψ̄sχ
νψs), (379)

which is just the four-current we found like constant term of the previous inhomogeneous Maxwell's
equations. Regarding the conserved charge Qs(t), for making it positive, we note that, based on the
continuity equation

∂ν j
ν
s = 0, (380)

we can also take

jνs = (ψ̄sχ
νψs), (381)

from which easily follows

Qs(t) =

∫
R3

d3x(ψ̄sχ
0ψs) =

∫
R3

d3x(ψ†sψs). (382)

Therefore, the invariance of LAα under global gauge transformations givesjνs = (ψ̄sχ
νψs)

Qs(t) =
∫
R3 d

3x(ψ†sψs).
(383)

It can be noted that if we had considered the local phase transformations
ψ′s(x) = e−iθ(x)ψs(x)

ψ̄′s(x) = eiθ(x)ψ̄s(x)

A′µ(x) = Aµ(x) + 1
e
∂µθ(x),

(384)

in order to obtain the invariance of LAα under such transformations, we always would have to make
the minimal substitution, but the covariant derivative would have to be de�ned with the plus sign,
namely

Dµ ≡ (∂µ + ieAµ). (385)
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The equations of the motion always would have been the (374) and (375), with the only di�erence
that the four-current jνs would have been with the plus sign, i.e.

jνs = (ψ̄sχ
νψs). (386)

This four-current is the right conserved current of LAα under global phase transformationsψ
′
s(x) = e−iθψs(x)

ψ̄′s(x) = eiθψ̄s(x).
(387)

What we saw teaches us that the theory derived by LAα, such as the Dirac theory, su�ers from a
duplicity in the de�nition of the covariant derivative and in the consequent sign of the electromag-
netic four-current,89 tied to the type of global gauge transformation that is chosen.
We now study the symmetric α-Theory in interaction with an external electromagnetic �eld

Aµ(x). Proceeding as in the previous pages, we want to show that, given

LSα = (∂µψ
†
s)ξ

µξν(∂νψs)−m2ψ†sψs, (388)

invariant under global phase transformations (we banally can verify it)ψ
′
s(x) = eiθψs(x)

ψ′†s (x) = e−iθψ†s(x),
(389)

the Lagrangian density

L̃Sα = (Dµψs)
†ξµξν(Dνψs)−m2ψ†sψs −

1

4
FµνF

µν , (390)

obtained by LSα through the minimal substitution, with the position

Dµ ≡ (∂µ − ieAµ), (391)

is invariant under local phase transformations

89However, such a sign can be adjusted thanks to the continuity equation (380).
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
ψ′s(x) = eiθ(x)ψs(x)

ψ′†s (x) = e−iθ(x)ψ†s(x)

A′µ(x) = Aµ(x) + 1
e
∂µθ(x).

(392)

Making clear in (390) the covariant derivative and making all the products, it is easy to obtain

L̃Sα = (∂µψ
†
s)ξ

µξν(∂νψs)−m2ψ†sψs + ieAµ(ψ†sξ
µξν∂νψs − ∂νψ†sξνξµψs)+

e2AµAνψ
†
s(ξ

µξν)ψs −
1

4
FµνF

µν , (393)

where the third and fourth term represent the interaction between the particle �eld (with arbitrary
spin s) and the electromagnetic �eld, of �rst and second order, respectively, in the coupling con-
stant e. With some tedious calculation, it is not di�cult to prove that L̃Sα is invariant under local
gauge transformations (392). Such a Lagrangian density, describing the connection between the
�eld ψs and the �eld Aµ, represents the Lagrangian density of the �Symmetric α-QED.� Hence, we
can write

L
QED
Sα = (Dµψs)

†ξµξν(Dνψs)−m2ψ†sψs −
1

4
FµνF

µν , (394)

which gives, for the �elds ψs(x) and Aµ(x), the following equations of the motion 90

(ξµξνDµDν +m21s)ψs(x) = 0 (395)

∂µF
µν = eIνs . (396)

The (395) represents the symmetric α-equation of the �eld ψs(x) coupled with the electromagnetic
�eld Aµ(x), while the (396) gives the inhomogeneous Maxwell's equations with four-current Iνs .
It can be veri�ed such a four-current is just the Noether current deriving from the invariance of

L
QED
Sα under local gauge transformations (392). In fact, in virtue of this invariance one has

Ĩνs =
∂LQEDSα

∂(∂νψs)
δ̄ψs + δ̄ψ†s

∂LQEDSα

∂(∂νψ
†
s)

+
∂LQEDSα

∂(∂νAµ)
δ̄Aµ + L

QED
Sα δ̄xν

Q̃s(t) =
∫
R3 d

3xĨ0
s(~x, t)

(397)

90Iνs ≡ i
[
(Dµψs)

†ξµξνψs − ψ†sξνξµ(Dµψs)
]
.
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and since


δ̄ψs = iψs(x)

δ̄ψ†s = −iψ†s(x)

δ̄Aµ = 0

δ̄xν = 0,

(398)

we can write

Ĩνs = i(∂µψ
†
sξ
µξνψs − ψ†sξνξµ∂µψs)− eAµ(ψ†sξ

µξνψs + ψ†sξ
νξµψs), (399)

which just coincides with the four-current Iνs . With concern to the conserved charge Q̃s(t), we have

Ĩ0
s = I0

s = i(∂µψ
†
sξ
µξ0ψs − ψ†sξ0ξµ∂µψs)− eAµ(ψ†sξ

µξ0ψs + ψ†sξ
0ξµψs), (400)

from which it follows

Q̃s(t) =

∫
R3

d3x
[
i(∂µψ

†
sξ
µξ0ψs − ψ†sξ0ξµ∂µψs)− eAµ(ψ†sξ

µξ0ψs + ψ†sξ
0ξµψs)

]
. (401)

We note that being the Noether current equal to that of the equation of motion (396), this should be
a result of enormous importance, because it concurs to characterize a theoretical superiority of the
SαT towards AαT. In order to understand what just said, we have to calculate the Noether current of
the Lagrangian density L

QED
Aα associated with the invariance under the local gauge transformations

(371) and the Noether current of the Lagrangian density LSα associated with the invariance under
the global gauge transformations (389) (it is banal to show LSα is unchanged under these last
transformations). Calling j̃νs and j

ν
s such currents respectively, with some small calculations, we get j̃νs = −(ψ̄sχ

νψs) = jνs

jνs = i
[
(∂µψ

†
s)ξ

µξνψs − ψ†sξνξµ(∂µψs)
]
.

(402)

This result says that, in reference to the asymmetric α-equation, in the same way that happens
for the Dirac equation, the Noether current, concerning the invariance of LAα under global phase
transformations, and that one, deriving from the invariance of LQED

Aα under local phase transforma-
tions, are identical. On the contrary, the Noether current, concerning the invariance of LSα under
global phase transformations, and that one, linked with the invariance of LQED

Sα under local phase
transformations, are di�erent.
Strictly speaking, this diversity could be the indication that symmetric α-equation works better
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than asymmetric α-equation. In fact, the circumstance the AαT have j̃νs equal to jνs means that:

1. While the equation of the motion for the particle �eld su�ers from the presence of the electro-
magnetic �eld through an e�ective connection between ψs and Aµ, the equation of the motion
of the electromagnetic �eld does not su�er from the particle �eld at all, being this last only
present in the explicit expression of the four-current jνs or j̃

ν
s .

2. The Gauge Principle, of which the minimal substitution is a directed consequence, is not
completely respected by the theory LAα. In fact, while the L

QED
Aα and the equation for ψs

in presence of electromagnetic �eld are obtained by LAα and asymmetric α-equation simply
replacing the ordinary derivative with the covariant derivative, the equation of the electro-
magnetic �eld does not su�er from this substitution, neither in the current term in which the
�eld ψs is.

The issues 1 and 2, as it is immediately noticed, are resolved by the symmetric α-Theory (banally
we can see that Iνs can be obtained from jνs simply by minimal substitution) and this seems to sug-
gest this theory is more complete than the one characterized by LAα. It must also be emphasized
that problems 1 and 2 also plague the Dirac equation, but not the Klein-Gordon one. However,
the fact these last equations and relative theories were constructed for di�erent types of particles
never allowed the overcoming of such an inconsistency. In short, the asymmetric α-Theory, being
the generalization of the Dirac theory, inevitably su�ers from the problems 1 and 2 too. Instead,
the symmetric α-Theory, being the generalization of the Klein-Gordon theory, exceeds these prob-
lems, determining an e�ective connection between particle �eld and electromagnetic �eld, which is
physically desirable in an interaction theory.
In order to conclude this section, we note that if we had considered the local phase transformations

ψ′s(x) = e−iθ(x)ψs(x)

ψ′†s (x) = eiθ(x)ψ†s(x)

A′µ(x) = Aµ(x) + 1
e
∂µθ(x),

(403)

for obtaining the invariance of LSα under such transformations, we would have had to perform the
minimal substitution with the covariant derivative thus de�ned

Dµ ≡ (∂µ + ieAµ). (404)

The equations of motion (395) and (396) would have been the same ones, except for the four-current
Iνs , which, in this case, is

Iνs ≡ −i
[
(Dµψs)

†ξµξνψs − ψ†sξνξµ(Dµψs)
]

= i(ψ†sξ
νξµ∂µψs − ∂µψ†sξµξνψs)−

eAµ(ψ†sξ
µξνψs + ψ†sξ

νξµψs), (405)

92



i.e. formally with opposite sign with regard to the four-current found with the covariant derivative
having minus sign. Explicitly, it introduces a term of the particle �eld with changed sign and a term
of connection between particle �eld and electromagnetic �eld that is unchanged. This means that
the di�erence of sign in the de�nition of the covariant derivative does not change the interaction
term concerning the interaction of the radiation with the �eld ψs. At level of L

QED
Sα , this is translated

in a di�erence of sign in the linear term of Aµ and a constancy of sign in the quadratic term of Aµ,
as it straightforward can be seen by making clear the covariant derivative Dµ = (∂µ + ieAµ) in the
expression

L
QED
Sα = (Dµψs)

†ξµξν(Dνψs)−m2ψ†sψs −
1

4
FµνF

µν . (406)

4.3 Free propagators and Yang-Mills theory within the α-Theory

The writing of the Lagrangian density of the α-Theory (asymmetric or symmetric), in interaction
with an external electromagnetic �eld, concurs to use the formalism of the scattering matrix S or
the Feynman integral for the study of the physical processes relative to the α-QED. However, such
a study involves a more complex analysis of the perturbation theory applied to the α-Theory, that
is outside the aims of the present work. Hoping, therefore, in an exhaustive review of this argument
in another place, we want to deal, in this section, with the calculation of the propagators regarding
the asymmetric and symmetric α-Theory, and the possibility to extend the Yang-Mills theory to
the α-Theory. It should be clear this is made for pure academic spirit, because like it has been
shown in the previous pages, the α-Theory, asymmetric or symmetric, was born from Big-Break.
This inexorably drives to conclude that all the interactions known in Nature were born by a great
process of SSB (for the time unknown), whose aspect developed into the Glashow-Weinberg-Salam
model could be the simpler one. It goes without saying that the Big-Break study, most probably,
will carry to a radical rede�nition of the gauge theories and, hence, the Lagrangian density of
the electromagnetic interaction, written in the last section, and the one concerning the Yang-Mills
theory, which we will see in the next pages, are not really de�nitive ones and so we must handle
them with great care.
We proceed now to the calculation of the free propagator of the asymmetric α-Theory. From the

study of the QFT, we know the propagator of a certain physical �eld is given by the Green's function
associated with the equation of the motion of such a �eld in absence of interaction. Therefore, in
order to get the free propagator of the AαT, it is enough to calculate the Green's function of the
equation 91

91Really 0 ≡ 0d×1, where d ≡ (2s + 1). In this case, the subindex s should be indicated with d (or d × 1 for ψs)
too, but we leave it intact for a slimmer notation.
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(iχµ∂µ −m1s)ψs(x) = 0. (407)

The Green equation associated with the (407) is

(iχµ∂µ −m1s)Gs(x− y) = δ4
d×1(x− y) ≡ δ4(x− y)1d×1, (408)

where, we placed

1d×1 ≡


1
...
1
...

 . (409)

For resolving the Green equation (408), we use the Fourier integral transformations of Gs(x − y)
and δ4(x− y), which are Gs(x− y) = 1

(2π)4

∫
P4 e

−ip·(x−y)G̃s(p)d
4p

δ4(x− y) = 1
(2π)4

∫
P4 e

−ip·(x−y)d4p.
(410)

According with them, our Green equation becomes

(iχµ∂µ −m1s)
[

1

(2π)4

∫
P4

e−ip·(x−y)G̃s(p)d
4p

]
=

1

(2π)4

[∫
P4

e−ip·(x−y)d4p

]
1d×1 (411)

and since

iχµ∂µe
−ip·(x−y) = χµpµe

−ip·(x−y), (412)

we can still write

1

(2π)4

∫
P4

e−ip·(x−y)
[
(χµpµ −m1s)G̃s(p)− 1d×1

]
d4p = 0, (413)

from which, it banally follows
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(χµpµ −m1s)G̃s(p) = 1d×1 ⇒ G̃s(p) =
1d×1

(χµpµ −m1s)
(414)

and we immediately have

Gs(x− y) =
1

(2π)4

∫
P4

e−ip·(x−y) 1d×1

(χµpµ −m1s)
d4p. (415)

This integral is divergent, because the integrand has a pole in χµpµ = m1s. Such a problem is easily
resolved using the Feynman's iε prescription, i.e. by adding iε to the denominator, namely writing

Gs(x− y) =
1

(2π)4

∫
P4

e−ip·(x−y)

(
1d×1

χµpµ −m1s + iε

)
d4p, (416)

where it is implied that iε is multiplied by the matrix 92

1d×d ≡


1 1 . . . 1 . . .
1 1 . . . 1 . . .
...

...
. . .

... . . .
1 1 . . . 1 . . .
...

...
. . .

... . . .

 . (417)

The Green's function as soon as calculated represents the free propagator of the asymmetric α-
Theory in the position space. By indicating this propagator with ∆Aα

s (x− y), we can write

∆Aα
s (x− y) =

1

(2π)4

∫
P4

e−ip·(x−y)

(
1d×1

χ · p−m1s + iε

)
d4p. (418)

Instead, the propagator in the momentum space, which we indicate with ∆Aα
s (p), is just the Green's

function G̃s(p). Hence

∆Aα
s (p) =

1d×1

χ · p−m1s
. (419)

We note these propagators really are column vectors, thus as every Green equation concerning a
column �eld, like ψs(x), demands. This means the (419) must be read in such a way

∆Aα
s (p) =

1d×1

χ · p−m1s
= (χ · p−m1s)−11d×1, (420)

92Obviously this matrix has (2s+ 1)-rows and (2s+ 1)-columns.
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in the total respect of the matrix multiplication. We also understand that the existence of ∆Aα
s (x−y)

and ∆Aα
s (p) depends on the invertibility of the matrix (χ · p−m1s), i.e. of the fact that

det(χ · p−m1s) 6= 0. (421)

If there were a s ∈ N/2 for which this determinant is null for that precise s, a free propagator could
not be de�ned and, therefore, the perturbation theory, for this s, would not be applicable. For little
s it is easy to see, with some small calculations, that this does not happen unless to place ~p = ~0.
Note that, for s = 0, we have∆Aα

s=0(x− y) = 1
(2π)4

∫
P4 e

−ip·(x−y)
(

1
±m−m+iε

)
d4p

∆Aα
s=0(p) = 1

±m−m ,
(422)

i.e., by separating the case δ0 = 1 from that one δ0 = −1, we have 93

δ0 = 1 :

∆Aα
δ=1(x− y) = 1

(2π)4

∫
P4 e

−ip·(x−y)
(

1
iε

)
d4p

∆Aα
δ=1(p) = −1

0
≡ ∞

(423)

δ0 = −1 :

∆Aα
δ=−1(x− y) = 1

(2π)4

∫
P4 e

−ip·(x−y)
(

1
−2m+iε

)
d4p

∆Aα
δ=−1(p) = − 1

2m
.

(424)

Since, for δ0 = 1, the propagator ∆Aα
δ=1(p) is in�nite, we suppose the free propagators concerning

the position and momentum spaces, when s = 0, are

∆Aα
s=0(x− y) = 1

(2π)4

∫
P4 e

−ip·(x−y)
(

1
(χ·p)0−m+iε

)
d4p

∆Aα
s=0(p) = 1

(χ·p)0−m ,
(425)

where, with (χ · p)0, we indicated the average of the scalar product χ · p calculated for s = 0 when
δ0 = ±1, namely

(χ · p)0 ≡
1

2
[(χ · p)δ0=1 + (χ · p)δ0=−1] . (426)

93Remember that, for s = 0, δ can be 1 and −1.
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Since χµ = (δ, δεi), for s = 0 we have χµ0 = (±1, 0, 0, 0) and so (χ · p)δ0=1 = m, (χ · p)δ0=−1 = −m,
that is

(χ · p)0 = 0, (427)

from which it follows ∆Aα
s=0(x− y) = 1

(2π)4

∫
P4 e

−ip·(x−y)
(

1
iε−m

)
d4p

∆Aα
s=0(p) = − 1

m
= − 1

p0
.

(428)

Naturally, for δ∓1, the result does not change, because the sign sequence of scalar 1 cannot certainly
alter the average scalar product previously de�ned.
At this point, it is worth remembering that, by the theory of the Green's functions, a general

solution of the AαE can be written in the following way

ψs(x) = ∆Aα
s (x) + ψ̃s(x) ∀x ∈M − {0}, (429)

where ψ̃s(x) is an arbitrary function, �xed by the initial conditions (�initial value problem�).
In order to conclude the discussion on the free propagator of the AαT, we observe an alternative

form existing for the just studied propagator, which can be banally obtained multiplying ∆Aα
s (p)

up and down on the left by (χνpν +m1s). It is given by

∆Aα
s (p) =

(χνpν +m1s)1d×1

χµχνpµpν −m21s
, (430)

from which it follows

∆Aα
s (x− y) =

1

(2π)4

∫
P4

e−ip·(x−y)

[
(χνpν +m1s)1d×1

χµχνpµpν −m21s + iε

]
d4p. (431)

We now calculate the free propagator of the symmetric α-Theory.
Given the symmetric α-equation

(
ξµξν∂µ∂ν +m21s

)
ψs(x) = 0, (432)

we have that its associated Green equation is
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(
ξµξν∂µ∂ν +m21s

)
Gs(x− y) = δ4(x− y)1d×1. (433)

In order to resolve it, we use the usual integral transformationsGs(x− y) = 1
(2π)4

∫
K4 e

−ik·(x−y)G̃s(k)d4k

δ4(x− y) = 1
(2π)4

∫
K4 e

−ik·(x−y)d4k,
(434)

which, replaced in the (433), with some little calculations, give

(
m21s − ξµξνkµkν

)
G̃s(k) = 1d×1 ⇒ G̃s(k) =

1d×1

m21s − ξµξνkµkν
, (435)

from which banally

Gs(x− y) =
1

(2π)4

∫
K4

e−ik·(x−y)

(
1d×1

m21s − ξµξνkµkν + iε

)
d4k, (436)

where we have used the Feynman's iε prescription (remember that in the studied cases iε ≡ iε1d×d),
since the integral (436) is divergent in the pole ξµξνkµkν = m21s. The Green's function we have
calculated represents the free propagator of the symmetric α-Theory in the position space. By
indicating such a propagator with ∆Sα

s (x− y), we can write

∆Sα
s (x− y) =

1

(2π)4

∫
K4

e−ik·(x−y)

(
1d×1

m21s − ξµξνkµkν + iε

)
d4k. (437)

Instead, the propagator in the momentum space, that we indicate with ∆Sα
s (k), is just the Green's

function G̃s(k). Therefore

∆Sα
s (k) =

1d×1

m21s − ξµξνkµkν
. (438)

Obviously, also for these propagators the same discussion made about AαT is true, that is their
existence depends on the invertibility of the matrix (m21s − ξµξνkµkν), i.e. on the condition

det
(
m21s − ξµξνkµkν

)
6= 0. (439)

Naturally, if a s ∈ N/2 were supposed to exist, for which such a determinant is null, for this s the
perturbation theory could not be applied. For little values of s, it is easy to see that the propagators
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∆Sα
s (x− y) and ∆Sα

s (k) exist, unless to take ~k = ~0.
Let us now calculate the free propagator of the symmetric α-Theory for s = 0. Since we expect

such a propagator to be equal to the Klein-Gordon one, concerning a particle that moves on t-axis,
we calculate before this propagator, starting from the equation 94

(
1

c2

∂2

∂t2
+
m2c2

~2

)
ψ(x) = 0. (440)

As it is observed, we have written the Klein-Gordon equation relative to the t-axis, not in natural
units. This choice, as we will see in the next page, will concur to completely con�rm the hypothesis
previously made about the propagator for s = 0. The Green equation associated to the (440) is(

1

c2

∂2

∂t2
+
m2c2

~2

)
G(x− y) = δ4(x− y), (441)

from which, by replacing the usual integral transformations of G(x− y) and δ4(x− y), at the end
one obtains

∆K−G
t (k) =

1

m2c2
(

1
~2 − 1

) . (442)

We now calculate the propagator of the symmetric α-Theory in the momentum space for s = 0
and confront it with ∆K−G

t (k). The propagator (438) previously calculated is expressed in natural
units, since it is referred to the SαE written in such units. For obtaining the propagator in explicit
form, it is su�cient to consider the equation(

ξµξν∂µ∂ν +
m2c2

~2
1s

)
ψs(x) = 0, (443)

from which, it is easy to have

∆Sα
s (k) =

1d×1

m2c2

~2 1s − ξµξνkµkν
. (444)

We now estimate this propagator for s = 0. As for the AαT, we suppose that
∆Sα
s=0(x− y) = 1

(2π)4

∫
K4 e

−ik·(x−y)

(
1

m2c2

~2 −(ξµξνkµkν)0+iε

)
d4k

∆Sα
s (k) = 1

m2c2

~2 −(ξµξνkµkν)0
,

(445)

94Since we stay in the bradyonic (REP) universe, it is necessary to use such an equation and not the (44) one.
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where

(ξµξνkµkν)0 ≡
1

2
[(ξµξνkµkν)δ0=1 + (ξµξνkµkν)δ0=−1] . (446)

Since ξµ = (δ, iεi), for s = 0 we have ξµ0 = (±1, 0, 0, 0), and so

(ξµξνkµkν)s=0 = m2c2, (447)

from which, it follows

(ξµξνkµkν)0 = m2c2. (448)

Therefore 95

∆Sα
s=0(x− y) =

1

(2π)4

∫
K4

e−ik·(x−y)

(
1

m2c2

~2 −m2c2 + iε

)
d4k (449)

∆Sα
s=0(k) =

1
m2c2

~2 −m2c2
=

1

m2c2
(

1
~2 − 1

) . (450)

We notice (450) is equal to the free propagator in the momentum space of the Klein-Gordon equation
for a particle moving on the t-axis. This means the ansatz to consider the average of the cases δ0 = 1
and δ0 = −1 of the products χ ·p and ξµξνkµkν , when s = 0, inside the free propagators of the AαT
and SαT, is correct, because, as it should be, it allows to ∆Sα

s=0(k) and ∆K−G
t (k) of coinciding.96

In order to conclude the discussion on the free propagator of the symmetric α-Theory, we note
that a general solution of the SαE is given by

ψs(x) = ∆Sα
s (x) + ψ̃s(x) ∀x ∈M − {0}, (451)

where ψ̃s(x) is an arbitrary function, �xed by the initial conditions.

Now we want to deal shortly � after having studied in the previous section the electromagnetic
interaction within the α-Theory � with the Yang-Mills theory applied to the α-Theory, asymmetric
or symmetric, succeeding also to write the Lagrangian density of the QCD in terms of AαT and

95Obviously, for the representation δ∓1, we would have had the same result.
96The same thing is, obviously, true for ∆Sα

s=0(x− y) and ∆K−G
t (x− y).
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SαT. Naturally, as already explained at the top of this section, this is provisional, waiting for a
global theory on the SSB. First of all, we start writing the most general Yang-Mills theory of the
particle �eld ψs described by AαT and, then, we specialize it to the group SU(3) of colour. For
this aim, we consider the Lagrangian density

LAα = ψ̄s(x)(iχµ∂µ −m1s)ψs(x), (452)

unchanged under global phase transformations (we can banally verify it)ψ
′
s(x) = e−iTaθaψs(x)

ψ̄′s(x) = eiTaθaψ̄s(x),
(453)

where, with e±iTaθa , we indicated an element of a generic non-abelian Lie group G having n complex
parameters θa, and, with Ta, the generators of such a group in a unitary representation of dimension
n, satisfying the Lie algebra

[T a, T b] = itabcT c, (454)

where the tabc, anti-symmetric in the indices, are the structure constants of the group G.
It can be easily demonstrated that the Lagrangian density LAα, when the group G is locally

shrunk (i.e. one goes from G to Gx), does not remain invariant under the non-abelian local gauge
transformations ψ

′
s(x) = e−iTaθa(x)ψs(x)

ψ̄′s(x) = eiTaθa(x)ψ̄s(x).
(455)

In order to maintain the invariance, as seen for the abelian local phase transformations, a covariant
derivative must be introduced

Dµ ≡ (∂µ + igÃµ), (456)

and to apply at LAα the minimal substitution. Before making this, we note that in the covariant
derivative expression we indicated with Ãµ the �gauge �eld� (also called �Yang-Mills �eld�) given by

Ãµ(x) ≡ T aÃaµ(x), (457)
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and, with g, the coupling constant of the generic theory characterized by the Lagrangian density
obtained from the initial one through minimal substitution. In our case, the Lagrangian density is

LY−M
Aα = ψ̄s(x)(iχµDµ −m1s)ψs(x)− 1

2g2
Tr(F̃µνF̃

µν), (458)

where the last term represents the kinetic term of the Yang-Mills �eld Ãµ. The tensor F̃µν , gener-
alization of the tensor Fµν of the electromagnetic �eld, is called the �Yang-Mills tensor� and it is
thus de�ned 97

F̃µν ≡ (∂µÃν − ∂νÃµ) + ig[Ãµ, Ãν ]. (459)

It is straightforward to try it satis�es the relation

[Dµ, Dν ] = igF̃µν . (460)

It can be proved that the Lagrangian density (458) is invariant under the non-abelian local gauge
transformations 98


ψ′s(x) = e−iTaθa(x)ψs(x)

ψ̄′s(x) = eiTaθa(x)ψ̄s(x)

Ã′µ(x) = U(x)Ãµ(x)U−1(x) + i
g
(∂µU(x))U−1(x),

(461)

where the last expression gives the transformation law of the �eld Ãµ.
Now we want to write the equations of the motion for the �eld ψs and for the Yang-Mills �eld

Ãµ. From the Euler-Lagrange equations relative to these �elds, one obtains 99

(iχµDµ −m1s)ψs(x) = 0 (462)

∂µF̃
µν − ig[Ãµ, F̃

µν ] = gjνs . (463)

The (462) represents the asymmetric α-equation of the �eld ψs coupled with the Yang-Mills �eld
Ãµ, while the (463) gives the equation of the motion for the gauge �eld Ãµ (or for the components
Ãaµ, if we express the (463) in terms of its components). It can be noted that the four-current jνs
� in contrast to the electromagnetic case (G = U(1)) � is not conserved, i.e. it is not the Noether

97If the covariant derivative is de�ned with the minus sign also the sign of g changes in the de�nition of F̃µν .
98U(x) ≡ e−iTaθa(x) ∈ Gx.
99jνs ≡ (ψ̄sχ

νψs).
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current deriving from the invariance of LY−M
Aα under non-abelian local gauge transformations. The

right Noether current is given, instead, by

Jνs ≡ i[Ãµ, F̃
µν ] + (ψ̄sχ

νψs), (464)

which is nothing but the total Noether current of LY−M
Aα under non-abelian local gauge transfor-

mations given by the sum of the current i[Ãµ, F̃ µν ] concerning the Yang-Mills �eld and the current
(ψ̄sχ

νψs) of the particle �eld ψs (this last four-current is the Noether current associated to the
invariance of LAα under non-abelian global phase transformations). The fact the total current Jνs
is conserved means that, similarly to what happens for the Dirac theory coupled with a Yang-Mills
interaction, also for the asymmetric α-Theory in interaction with a gauge �eld Ãµ results that the
charge g can �ow from the �eld ψs to the �eld Ãµ (or to its components Ãaµ) for any s ∈ N/2. Due
to the Noether current Jνs , the equation (463) can be written in the following compact form

∂µF̃
µν = gJνs , (465)

which is nothing but the generalization of the inhomogeneous Maxwell's equation in covariant
form.100 Naturally, according to what was said, we can see the conserved charge of the theory is

Q̃s(t) =

∫
R3

d3xJ0
s =

∫
R3

d3x
{
i[Ãµ, F̃

µ0] + (ψ̄sχ
0ψs)

}
. (466)

We described, therefore, in broad outline, the Yang-Mills theory concerning the �eld ψs of the
asymmetric α-Theory. As usual, we obtained results formally consistent with the Dirac �eld. In
particular, in our case too, the strange circumstance the four-current Jνs is composed by two terms,
describing independent �elds, can be noted. Since ψs and Ãµ interact, it would have been more
logical to expect their interaction was shown also within the structure of Jνs . We will see such an
anomaly � already present in the electromagnetic case � will be neatly exceeded by the Yang-Mills
theory of the �eld ψs concerning the symmetric α-Theory.
At this point, we are in a position to write the Lagrangian density of the �Asymmetric α-QCD.�

Practically, we can obtain it from LY−M
Aα , specializing the generic Lie group G to SU(3)c. Before

making it, we must remember that the QCD is the theory explaining the strong interaction through
the quarks and gluons. The quarks are the particles of spin 1/2 which compose the hadrons, while
the gluons are the gauge bosons able to mediate the interaction. Inside LY−M

Aα , the �elds ψs and
ψ̄s will have, then, to be replaced by the quark and anti-quark �elds. Since quarks and anti-quarks
have spin 1/2, they will be represented by two-dimensional column and row vectors, respectively.
This means each of them will have two components. Moreover, every quark and anti-quark will have
to be characterized by a ��avour� index f and by �colour� and �anti-colour� indices, respectively

100If G = U(1), one always obtains the equation (465), with the only di�erence that Jνs , F̃
µν and g, are reduced to

jνs , F
µν and e, respectively.
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(we remember the colours are R, G, B and the anti-colours are R̄, Ḡ, B̄). This means one must
make to LY−M

Aα such substitutions

ψs(x) −→ qf,jβ (x), β ∈ {1, 2}, f = �avour index, j ∈ {R,G,B}

ψ̄s(x) −→ q̄f,iα (x), α ∈ {1, 2}, f = �avour index, i ∈ {R̄, Ḡ, B̄}

m −→ mf , f = �avour index.

With regard to gluons, in this model, they are described by the components Ãaµ of the gauge �eld
concerning SU(3)c. Since the generators of this group, given by 101

T a =
λa

2
, (467)

are eight, we will have these massless bosons are eight too. It is good to underline that the generic
structure constants tabc must formally be replaced with the structure constants fabc (always anti-
symmetric in the indices) of the group SU(3)c. This prerequisite concurs to immediately write the
Lagrangian density of the �Asymmetric α-QCD� for a �xed �avour 102

L
QCD
Aα = q̄f,iα (x)

(
iχµ1/2Dµ −mf11/2

)
qf,jβ (x)− 1

2g2
QCD

Tr(F̃µνF̃
µν), (468)

where

Dµ = (∂µ + igQCDÃµ); Ãµ(x) =
1

2
λaÃaµ(x); [λa, λb] = ifabcλc

F̃µν = (∂µÃν − ∂νÃµ) + igQCD[Ãµ, Ãν ].

The expert reader will have certainly noticed that, into expression of L
QCD
Aα , the terms of the

ghost �elds and �gauge-�xing,� usually found in literature, have been omitted. Obviously, this is
intentional, and it is due to the fact these terms derive by the quantization of the Yang-Mills theory
and the use of the functional formalism. Since in this work, like announced, neither the perturbation
theory, constructed through the matrix S, nor the Feynman integral, are dealt, and the general form
of the second quantization will be studied in the next chapter, it should have been wrong to add in
L
QCD
Aα terms whose right expression we do not know within the framework of the theory we built

here.
At this point, we want to write the Lagrangian density of the �Symmetric α-QCD.� In order

101λa = Gell-Mann matrices, a ∈ {1, 2, 3, . . . , 8}.
102If we want to consider all the �avours, it is needed

∑
f .
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to make it, we must before write the Lagrangian density of the most general Yang-Mills theory
concerning the �eld ψs described by LSα and, then, specialize it to the group SU(3)c. It is immediate
to see the Lagrangian density

LSα = (∂µψ
†
s)ξ

µξν(∂νψs)−m2ψ†sψs, (469)

is unchanged under the non-abelian global phase transformationsψ
′
s(x) = e−iTaθaψs(x)

ψ′†s (x) = eiTaθaψ†s(x),
(470)

with Noether current

jνs = i
[
ψ†sξ

νξµ(∂µψs)− (∂µψ
†
s)ξ

µξνψs
]
. (471)

If one contracts G to Gx, the above LSα will not be more invariant under the non-abelian gauge
transformations, which became now of local phase. In order to re-establish the invariance, we must
introduce a gauge �eld

Ãµ(x) = T aÃaµ, (472)

which, under U(x) ∈ Gx, transforms in the following way

Ã′µ(x) = U(x)Ãµ(x)U−1(x) +
i

g
(∂µU(x))U−1(x), (473)

and a covariant derivative 103

Dµ ≡ (∂µ + igÃµ), (474)

and, then, apply to LSα the principle of minimal substitution, by remarking that the kinetic term
of the Yang-Mills �eld Ãµ is given, like already previously seen, by

LY−M
cin = − 1

2g2
Tr(F̃µνF̃

µν), (475)

103It can be observed that if it is de�ned with the minus sign all the signs of g would change.
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where

F̃µν ≡ (∂µÃν − ∂νÃµ) + ig[Ãµ, Ãν ]. (476)

Hence, the Lagrangian density, obtained from LSα through the minimal substitution, and invariant
under the non-abelian gauge transformations of local phase 104


ψ′s(x) = e−iTaθa(x)ψs(x)

ψ′†s (x) = eiTaθa(x)ψ†s(x)

Ã′µ(x) = U(x)Ãµ(x)U−1(x) + i
g
(∂µU(x))U−1(x),

(477)

is given by

LY−M
Sα = (Dµψs)

†ξµξν(Dνψs)−m2ψ†sψs −
1

2g2
Tr(F̃µνF̃

µν). (478)

The equations of motion for ψs and Ãµ, deriving from such a Lagrangian density, are 105

(
ξµξνDµDν +m21s

)
ψs(x) = 0 (479)

∂µF̃
µν − ig[Ãµ, F̃

µν ] = gYνs . (480)

The (479) represents the symmetric α-equation of the �eld ψs coupled with the Yang-Mills �eld Ãµ,
while the (480) gives the equation of the motion for the gauge �eld Ãµ (or for the componentsÃaµ, if
we express the (480) in terms of components). Also in this case, it can be demonstrated that Yνs is not
the Noether current deriving from the invariance of LY−M

Sα under non-abelian gauge transformations
of local phase. The right Noether current, instead, is

Γνs ≡ i[Ãµ, F̃
µν ] + i

[
ψ†sξ

νξµ(Dµψs)− (Dµψs)
†ξµξνψs

]
, (481)

which is nothing but the total Noether current of LY−M
Sα under non-abelian gauge transformations

of local phase, obtained by the sum of the current i[Ãµ, F̃ µν ] concerning the Yang-Mills �eld and of
the current i

[
ψ†sξ

νξµ(Dµψs)− (Dµψs)
†ξµξνψs

]
of the �eld ψs. Thanks to the four-current Γνs , the

equation (480) can immediately be written in the more compact form

104U(x) ≡ e−iTaθa(x) ∈ Gx.
105Yνs ≡ i

[
ψ†sξ

νξµ(Dµψs)− (Dµψs)
†ξµξνψs

]
.
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∂µF̃
µν = gΓνs , (482)

which is not more than the generalization of the inhomogeneous Maxwell's equation in covariant
form.106 Obviously, the conserved charge of the theory is

Qs(t) =

∫
R3

d3xΓ0
s =

∫
R3

d3x
{
i[Ãµ, F̃

µ0] + i
[
ψ†sξ

0ξµ(Dµψs)− (Dµψs)
†ξµξ0ψs

]}
. (483)

All that as soon as discussed represents, in broad terms, the Yang-Mills theory concerning the �eld
ψs of the symmetric α-Theory. We notice from such a discussion that some characteristics, already
found in the Yang-Mills theory of the �eld ψs belonging to the asymmetric α-Theory, raise, but,
above all, there are many improvements. For instance, also in such a theory the form of Γνs says
that the charge g can �ow from the �eld ψs to the gauge �eld Ãµ, for any s ∈ N/2. Nevertheless,
the form of Γνs , with in particular the four-current of the �eld ψs, states that an interaction between
the particle �eld ψs and the gauge �eld Ãµ exists too, thus as logically one expects. This fact, from
the theoretical point of view, places the SαT on a higher step regarding the AαT.
At this point, we are ready to write the Lagrangian density of the �Symmetric α-QCD.�

Based on the substitutions

ψs(x) −→ qf,jβ (x), β ∈ {1, 2}, f = �avour index, j ∈ {R,G,B}

ψ†s(x) −→ q†f,iα (x), α ∈ {1, 2}, f = �avour index, i ∈ {R̄, Ḡ, B̄}

m −→ mf , f = �avour index

and by remembering the gluons are described by the components Ãaµ of the gauge �eld relative to
SU(3)c, having the generators given by

T a =
λa

2
, (484)

such that

[λa, λb] = ifabcλc, (485)

we have for a �xed �avour 107

106If G = U(1), one always obtains the equation (482), with the only di�erence that Γνs , F̃
µν and g, are reduced to

Iνs , F
µν and e, respectively

107Naturally, it is needed
∑
f for all the �avours.
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L
QCD
Sα = (Dµq

f,i
α )†ξµ1/2ξ

ν
1/2(Dνq

f,j
β )−m2

fq
†f,i
α qf,jβ −

1

2g2
QCD

Tr(F̃µνF̃
µν), (486)

where

Dµ = (∂µ + igQCDÃµ); Ãµ(x) =
1

2
λaÃaµ(x)

F̃µν = (∂µÃν − ∂νÃµ) + igQCD[Ãµ, Ãν ].

Also in this case, we, intentionally, omitted the ghost �elds and the �gauge-�xing� term, by waiting
that the perturbation theory and functional integral will be suitably studied and developed for the
α-Theory.
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5 Quantization and Statistics

This chapter is concerned about the second quantization of the α-Theory and the study of statis-
tics which the particles it describes are subject to. We will see this will take us to the important
generalization of the Pauli principle, through which it will be possible to widen the concept of Dirac
sea, which we could apply to all the elementary particles (except the gauge bosons), thus reaching a
more general idea of vacuum. Then, the generalized Pauli principle will be in a position to charac-
terize new types of statistics for the particles of matter, according to their spins (multi-statistics).
This will allow to assume the existence of clusters (s-matter), consisting of particles with s 6= 1/2,
which could be the true sources of the lacking mass of our universe (Dark Matter).

5.1 The second quantization of the α-Theory

In this section, we want to deal with the second quantization of the theories characterized by LAα

and LSα (as already explained the α-Theory is only one of the two: the one which will be better in
agreement with the experiments). We will see this will give indications about the type of statistics
that the particles described by ψs or ψs should satisfy.
In general terms, the process of the second quantization of a classical �eld consists of the following

points

1. All the variables of the examined system become operators.

2. The �eld operator must be written according to creation and annihilation operators.

3. One establishes the statistics of particles constituting the �eld, for �xing the algebra of creation
and annihilation operators.

4. One applies to the observables of the system the process of �Normal Ordering,� in order to
avoid divergences on their vacuum expectation value.

5. One assumes the existence of the vacuum state de�ned by

f(αn) |0〉 ≡ 0

and such that 108

|α1, . . . , αj, . . .〉 ≡ f †(α1) · · · f †(αj) · · · |0〉 ,
108Such a system of vectors characterizes the Fock space of the system.
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where with αn, f(αn) and f †(αn) we de�ned the generic nth occupation number, annihilation
and creation operators, respectively.

We promptly notice the points 1, 2, 4, can be applied without particular problems to LAα and LSα,
while the points 3 and 5 need to know the elementary particles statistics, which for such theories
we did not �x a priori. In particular, regarding point 3, we could also omit it, because, thanks to
the appendix A, we established no relationship between CCR (or CAR) and statistics exists.
Now we want singularly to deal with the second quantization of LAα and LSα, just starting from

the asymmetric α-Theory. Based on points 1 and 2, by putting us in natural units, we have (the
hat ∧ indicates the written quantities are operators) 109


LAα = (ψ̂s(x), ˆ̄ψs(x)) = ˆ̄ψs(iχ

µ∂µ −m1s)ψ̂s
π̂s(x) = iψ̂†s(x)

HAα(π̂s(x), ψ̂s(x)) = iψ̂†s
∂ψ̂s
∂t

= π̂s
∂ψ̂s
∂t

(487)


ψ̂s=0(x) = 1

(2π)2

∫
K3

d3k
2|λ|ωk

[
b̂(k)e−ik·x + d̂†(k)eik·x

]
ψ̂†s=0(x) = 1

(2π)2

∫
K3

d3k
2|λ|ωk

[
d̂(k)e−ik·x + b̂†(k)eik·x

] (488)

for s half-integer :


ψ̂s(x) = 1

(2π)2

∫
K3

d3k
2|λ|ωk

∑
α∈K̃

[
b̂α(k)û

(α)
s (k)e−ik·x + d̂†α(k)v̂

(α)
s (k)eik·x

]
ˆ̄ψs(x) = 1

(2π)2

∫
K3

d3k
2|λ|ωk

∑
α∈K̃

[
d̂α(k)ˆ̄v

(α)
s (k)e−ik·x + b̂†α(k)ˆ̄u

(α)
s (k)eik·x

]
(489)

for s integer :


ψ̂s(x) = 1

(2π)2

∫
K3

d3k
2|λ|ωk

[∑
α∈M b̂α(k)û

(α)
s (k)e−ik·x +

∑
β∈N d̂

†
β(k)v̂

(β)
s (k)eik·x

]
ˆ̄ψs(x) = 1

(2π)2

∫
K3

d3k
2|λ|ωk

[∑
β∈N d̂β(k)ˆ̄v

(β)
s (k)e−ik·x +

∑
α∈M b̂†α(k)ˆ̄u

(α)
s (k)eik·x

]
.

(490)

From all these expressions, we see the old coe�cients dα and bα now have become creation and
annihilation operators. In particular, the operators b̂α, multiplying in the several ψ̂s the solutions
with positive energy, represent the annihilation operators, while the d̂†α, multiplying the solutions

109Remember that: K̃ = {1, . . . , 2s+1
2 }; M = {1, . . . , s+ 1} and N = {1, . . . , s}.
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with negative energy, represent the creation operators. Since more types of solutions for the asym-
metric α-Theory exist, we understand that making quantitative evaluations for this theory will be
more boring than not for the symmetric one, which, as we know, has a single expression of ψs and
ψ†s, for any s ∈ N/2. We begin our study calculating the energy HAα. In particular, we write it
in terms of creation and annihilation operators d̂†α and b̂α. For such a purpose, we remember that
(henceforth, for convenience, we omit the hat ∧)

HAα =

∫
R3

d3xHAα, HAα = iψ†s
∂ψs
∂t
. (491)

Since the expression of ψs is not equal for all s ∈ N/2, we have to distinguish three cases:

1. s = 0

2. s half-integer

3. s integer,

from which three di�erent expressions of HAα will follow. We begin to estimate the energy for s = 0
and to this aim we calculate i∂ψs=0/∂t. We have

i
∂ψs=0

∂t
=

1

(2π)2

∫
K3

d3k

2|λ|ωk
[
k0b(k)e−ik·x − k0d

†(k)eik·x
]
. (492)

Now we can estimate Hs=0
Aα . By using the properties of the Dirac delta function and the mass-shell

condition, it can be obtained, with some calculation, the expression 110

Hs=0
Aα =

∫
K3

d3k

(2π)3ωk

[
b†(k)b(k)− d(k)d†(k)

]
, (493)

which represents the energy of the particles having s = 0 described through LAα. Before making
any consideration on its form, we write the energy of the particles with s integer and half-integer,
respectively. Proceeding like Hs=0

Aα , it can be demonstrated that

Hs half−integer
Aα =

∫
K3

d3k

(2π)3ωk

∑
α∈K̃

[
b†α(k)bα(k)− dα(k)d†α(k)

]
(494)

Hs integer
Aα =

∫
K3

d3k

(2π)3ωk

[∑
α∈M

b†α(k)bα(k)−
∑
β∈N

dβ(k)d†β(k)

]
. (495)

110In this case, we choose λ = π.
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How it was easy to anticipate, the energies concerning the asymmetric α-Theory have a structure
similar to the Dirac theory one, of which the AαT is a particular generalization. Therefore, for our
theory, we can make the same argumentation which works for the energy of the Dirac theory, that
means giving to creation and annihilation operators canonical commutation or anti-commutation
relations allowing to make it positive. Since

b†(k)b(k) ≡ |b(k)|2; b†α(k)bα(k) ≡ |bα(k)|2, (496)

the only way for having in the expressions of the energies, concerning several s, a positive term is
to impose the following anti-commutation rules

d(k)d†(k) = −d†(k)d(k) + κ = −|d(k)|2 + κ (497)

dα(k)d†α(k) = −d†α(k)dα(k) + κ = −|dα(k)|2 + κ (498)

and so to obtain positive-de�nite energies of the form 111

Hs=0
Aα =

∫
K3

d3k

(2π)3ωk

[
|b(k)|2 + |d(k)|2

]
(499)

Hs half−integer
Aα =

∫
K3

d3k

(2π)3ωk

∑
α∈K̃

[
|bα(k)|2 + |dα(k)|2

]
(500)

Hs integer
Aα =

∫
K3

d3k

(2π)3ωk

[∑
α∈M

|bα(k)|2 +
∑
β∈N

|dβ(k)|2
]
. (501)

From these considerations, it emerges that creation and annihilation operators of the particles with
arbitrary spin, described by the asymmetric α-Theory, must respect canonical anti-commutation
relations (CAR), i.e. (we are always in natural units) 112

111The constant κ is omitted in the Hamiltonians, since it plays the same role of �the energy of the Dirac sea�
within them.
112In such a case κ = (2π)3ωkδ

3(~k − ~k′)δαβ .
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
{bα(k), b†β(k′)} = {dα(k), d†β(k′)} = (2π)3ωkδ

3(~k − ~k′)δαβ
{bα(k), bβ(k′)} = {b†α(k), b†β(k′)} = 0

{dα(k), dβ(k′)} = {d†α(k), d†β(k′)} = 0.

(502)

These CAR, naturally, are valid for any s ∈ N/2. It is interesting to notice that, for s = 0, they
take to

{ψs=0(x),ψ†s=0(y)} =

∫
K3

d3k

4π3ωk
ei
~k·(~x−~y) cos ko(x0 − y0) (503)

{ψs=0(x),ψs=0(y)} = {ψ†s=0(x),ψ†s=0(y)} = 0. (504)

Before commenting in detail the result obtained for the AαT, it is better to quantize the symmetric
α-Theory too, thus being able to make a general discussion for both our theories, by also using the
results found in the appendix A.
Let us look now to quantize the symmetric α-Theory. We understood the fundamental point

in order to apply the rules of the second quantization � seen at the beginning of this section �
it is to �nd the algebra concerning the creation and annihilation operators of the system. This,
like previously explained, can be just made through the study of the energy concerning the system
described by LSα, according to creation and annihilation operators. Unfortunately, the energy
of LSα has a more complex form than LAα one and this renders our goal complicated enough.
Therefore, what �rstly we must do is to put HSα in a simpler form to deal with. To this purpose,
we rewrite the expression of HSα seen in the previous chapter

HSα =

∫
R3

d3xHSα =

∫
R3

d3x
[
(∂αψ

†
s)ξ

αξ0(∂0ψs) + (∂0ψ
†
s)ξ

0ξα(∂αψs)−

(∂αψ
†
s)ξ

αξβ(∂βψs) +m2ψ†sψs

]
, (505)

and we try to place the term in the square bracket in a more manageable form. It is simple to see
that

(∂αψ
†
s)ξ

αξ0(∂0ψs) + (∂0ψ
†
s)ξ

0ξα(∂αψs)− (∂αψ
†
s)ξ

αξβ(∂βψs) +m2ψ†sψs =

ψ̇†sψ̇s − (∂iψ
†
s)ξ

iξj(∂jψs) +m2ψ†sψs, (506)

where we have taken advantage of the fact that ξ0 = δ and δ2 = 1s. Therefore, we have
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HSα = |ψ̇s|2 − (∇iψ†s)ξ
iξj(∇jψs) +m2|ψs|2. (507)

But the above expression can be further simpli�ed by remembering that in general ξi = iεi, from
which promptly follows 113

HSα = |ψ̇s|2 + (∇iψ
†
s)εiεj(∇jψs) +m2|ψs|2, (508)

which is nothing but the generalization of the Hamiltonian density of a n-dimensional complex
Klein-Gordon �eld φ given by

HK−G = |φ̇|2 + |~∇φ|2 +m2|φ|2 (509)

and that can also be written

HK−G = |φ̇|2 + (∇iφ
†)δij(∇jφ) +m2|φ|2. (510)

Hence, HSα and HK−G are equal, apart from the substitutions

φ(x)→ ψs(x)

(∇iφ
†)δij(∇jφ)→ (∇iψ

†
s)εiεj(∇jψs).

What we must make now is to express HSα in function of creation and annihilation operators of
the symmetric α-Theory, thus to characterize their algebra. This happens by replacing in the (508)
the �elds (they are expressed always in natural units)

ψs(x) =
1

(2π)2

∫
K3

d3k

2|λ|ωk

2s+1∑
α=1

z(α)
s (k)

[
aα(k)e−ik·x + b†α(k)eik·x

]
(511)

ψ†s(x) =
1

(2π)2

∫
K3

d3k

2|λ|ωk

2s+1∑
α=1

z†(α)
s (k)

[
a†α(k)eik·x + bα(k)e−ik·x

]
, (512)

where, with aα(k) and b†α(k), we indicated, respectively, the annihilation and creation operators of
our theory. From ψs and ψ†s, one easily �nds

113We put the lower indices only, since HSα is now expressed in vectorial form.
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ψ̇s =
1

(2π)2

∫
K3

d3k

2|λ|ωk

2s+1∑
α=1

z(α)
s (k)

[
−ik0aα(k)e−ik·x + ik0b

†
α(k)eik·x

]
(513)

ψ̇†s =
1

(2π)2

∫
K3

d3k

2|λ|ωk

2s+1∑
α=1

z†(α)
s (k)

[
ik0a

†
α(k)eik·x − ik0bα(k)e−ik·x

]
(514)

∇jψs =
1

(2π)2

∫
K3

d3k

2|λ|ωk

2s+1∑
α=1

z(α)
s (k)

[
ikjaα(k)e−ik·x − ikjb†α(k)eik·x

]
(515)

∇iψ
†
s =

1

(2π)2

∫
K3

d3k

2|λ|ωk

2s+1∑
α=1

z†(α)
s (k)

[
−ikia†α(k)eik·x + ikibα(k)e−ik·x

]
, (516)

from which it is possible to derivate, using the Dirac delta function and the �generalized mass-shell
condition� 114

k2
01s − kikjεiεj = m21s, (517)

the following expression of the energy about the theory characterized by LSα
115

HSα =

∫
K3

d3k

(2π)3ωk
ωk

2s+1∑
α=1

[
a†α(k)aα(k) + bα(k)b†α(k)

]
. (518)

We observe that the above expression is positive-de�nite only if bα(k)b†α(k) can be replaced with

b†α(k)bα(k) ≡ |bα(k)|2, (519)

and this can only happen if creation and annihilation operators of the elementary particles described
by LSα satisfy the commutation relations

[aα(k), a†β(k′)] = [bα(k), b†β(k′)] = 2ωk(2π)3δ3(~k − ~k′)δαβ
[aα(k), aβ(k′)] = [a†α(k), a†β(k′)] = 0

[bα(k), bβ(k′)] = [b†α(k), b†β(k′)] = 0,

(520)

114The (517) is nothing but a constraint derived from the relation (in natural units):

ξµξνkµkν = k201s − kikjεiεj − i(δεi + εiδ)k0ki = m21s,

which the imaginary part is removed to, since it obviously cannot enter in the reckoning of a bradyonic energy.
115In this case, we choose λ = 2π.
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which are valid for any s ∈ N/2. It is interesting to notice that based on them, for s = 0, one has

[ψs=0(x), ψ†s=0(y)] = −i
∫
K3

d3k

(2π)3ωk
ei
~k·(~x−~y) sin ko(x0 − y0) (521)

[ψs=0(x), ψs=0(y)] = [ψ†s=0(x), ψ†s=0(y)] = 0. (522)

Therefore, we demonstrated that the theory characterized by LAα admits CAR for creation and
annihilation operators and for the particle �elds, while the theory characterized by LSα admits
CCR for creation and annihilation operators and for the particle �elds. Does this mean that LAα

describes fermions for any s ∈ N/2, while LSα describes bosons only? It is not really thus, because a
proof on the existence of a direct relationship between CCR (or CAR) and statistics does not exist,
as we can see in the appendix A. This wrong conception was born from the analysis of the Dirac and
Klein-Gordon theories. In such a case, starting by the hypothesis that the Dirac theory describes the
fermions and Klein-Gordon one the bosons, and stating that, in order to render positive the energy
of the �rst, CAR must be imposed, while, in order to render positive the energy of the second, CCR
must be imposed, it has been arbitrarily believed that the CAR are reserved to fermions and the
CCR are reserved to bosons. Instead, as it can be observed in the appendix A, there is no proof
that anti-commutation rules are related to the Fermi-Dirac statistics and commutation rules to the
Bose-Einstein statistics. Hence, in the case of the theories described by LAα and LSα, we could
assume, without problems, that the particle �elds which they describe satisfy the algebraic relations
previously found (CAR for LAα and CCR for LSα).
Thereupon, a problem rises: if the commutation and anti-commutation relations are not direct

consequence of the statistics of particles, what is the statistics of particles described by LAα and
LSα? The next section just proposes to clear this point, thus completing the speech on the second
quantization of the α-Theory.

5.2 Statistics of the α-Theory: generalized Pauli principle and Dirac sea
extension

We want now, thanks to the previous results and precious appendix A, to establish the statistics of
the asymmetric and symmetric α-Theory. According to what we saw in the already cited appendix
A, a good particle theory would have to be in a position to predict � varying the spin s � the structure
of the single quantum state or, equally, the maximum occupation number of the elementary quantum
state of a particle with arbitrary spin s. Of course, a theory able to make this must also predict
that the elementary quantum state for s = 1/2 has maximum occupation number equal to 1, i.e.
the Pauli exclusion principle must naturally emerge.
Does the asymmetric and symmetric α-Theory satisfy this request?

116



From the study of the energetic spectra of the AαE and SαE, made in the section (2.2), one sees,
regarding the particles, the following energetic distribution 116

Energetic Distribution
Spin AαE SαE
0 mc2 mc2

1
2

mc2 mc2, mc2

1 mc2, mc2 mc2, mc2, mc2

3
2

mc2, mc2 mc2, mc2, mc2, mc2

2 mc2, mc2, mc2 mc2, mc2, mc2, mc2, mc2

. . . . . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . .. . .. . .. . . . . . . . .

Where, in general terms, the AαE admits (s+1) particles for s integer (zero included) and (2s+1)/2
particles for s half-integer, while the SαE admits (2s+ 1) particles for any s ∈ N/2.117
What now we want to make is to extrapolate the Pauli exclusion principle from the above spec-

tra of particles, producing a one-to-one correspondence between such spectra and the elementary
quantum states. The fact that AαE and SαE describe �eld theories (number of particles tending
to in�nite), while their spectra identify, for any s, a �nite number of particles (or anti-particles),
already suggests a relationship existing between these spectra and the elementary quantum states,
i.e. among number of particles and occupation numbers. From the above table, we can see the
Pauli principle comes out in a natural way from the AαE (and so from the asymmetric α-Theory).
In fact, if we associate the energetic distribution of our theory to the elementary quantum states,
the AαE, having for s = 1/2 one particle with energy mc2, satis�es the Pauli principle concerning
the maximum occupation number, which must be equal to 1. This does not happen for the SαE,
that, for s = 1/2, admits two particles having energy mc2 and so the elementary quantum state, in
such a case, has maximum occupation number equal to 2, against the Pauli principle. Nevertheless,
before de�nitely rejecting the SαE and thus the symmetric α-Theory, we need to consider that the
own properties of the quantum states and their �lling (i.e. occupation numbers) could be more deep
and complex than we think, namely the generic maximum occupation number of a quantum state
could not exactly coincide with the energetic distribution, respecting clearly the Pauli principle as
the AαE one. Based on this consideration, we want to understand if a simple relation between
maximum occupation number and spin exists, such that also the symmetric α-Theory is able to
satisfy the Pauli principle for s = 1/2. It is easy to verify that, de�ned for the AαE

maxαs ≡
sθs + 1

θs
, θs ≡

{
1 if s is an integer, included s = 0

2 if s is a half-integer.
(523)

116Regarding the anti-particles see the next pages.
117On the contrary, regarding the anti-particles, the AαE admits (s+δ0s) anti-particles for s integer (zero included)

and (2s+ 1)/2 anti-particles for s half-integer, while the SαE has � perfectly balanced with the particles � (2s+ 1)
anti-particles for any s ∈ N/2.
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and for the SαE 118

maxαs ≡
2s+ 1

θs
, θs ≡

{
1 if s is an integer, included s = 0

2 if s is a half-integer.
(524)

the Pauli principle is satis�ed for both equations, i.e. it is valid for the asymmetric and symmetric
α-Theory. But relations (523) and (524) do not only concur to �nd maxαs = 1 at s = 1/2 for
both theories, but they establish a correspondence between occupation numbers and spin of the
elementary particles. In fact, by bearing in mind

αs = 0, 1, 2, . . . ,maxαs (525)

we have that, while the particles having s = 0 and s = 1/2 satisfy the Pauli principle, those with
higher spin continue to respect an exclusion principle, but more general.
What has just been said can be immediately visualized by making clear the occupation numbers

of our theories, based on (523) and (524), varying s:

Occupation Number Distribution
αs AαT SαT
αs=0 0, 1 0, 1
αs=1/2 0, 1 0, 1
αs=1 0, 1, 2 0, 1, 2, 3
αs=3/2 0, 1, 2 0, 1, 2
αs=2 0, 1, 2, 3 0, 1, 2, 3, 4, 5
αs=5/2 0, 1, 2, 3 0, 1, 2, 3
. . . . . . . . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . .. . .. . .. . .

This allows to enunciate the following �generalized Pauli principle�:

Depending on that the elementary particles are described by the asymmetric or sym-

metric α-Theory, the maximum occupation number of their fundamental quantum

state is given, respectively, by

118This expression reduces the maximum �lling of the energetic distribution on the half-integer spins, without
changing the one on the integer spins.
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• maxαs ≡ sθs+1
θs

.

• maxαs ≡ 2s+1
θs

.

The scrupulous reader can also notice the similarities between the number θs, de�ned in (523) and
(524), and the gyromagnetic ratio of the electrons, which is, as is well-known, equal to 2. Can θs
be the generalization of the gyromagnetic ratio concerning the elementary particles? If this were
true, named gs the �generalized gyromagnetic ratio,� one could place

gs = θs ≡

{
1 if s is an integer, included s = 0.

2 if s is a half-integer.
(526)

and so to have quantities with intrinsic physical meaning inside of our expressions.
The just enunciated generalized Pauli principle is able to consider the eventuality that in our uni-

verse there is another type of �matter,� made by clusters having particles with spin di�erent from
1/2. In fact, like the ordinary matter � constituted by atoms � exists because the electrons into
atomic orbitals are subject to the Pauli principle, thus it can be assumed also the other particles
with s 6= 1/2, having a di�erent �lling for their fundamental quantum state, can form a type of
matter which is not the known one, i.e. that of which we are made. This means the matter too
depends in some way on the spin s of the elementary particles, just thanks to the generalized Pauli
principle. From this point of view, it would be more correct to speak about �s-matter,� intended
as that cluster which, depending on spin of the elementary particles constituting it, originates a
certain �condensate.� Therefore, we can assert that we are made of �1/2-matter� and the other
matter we are not able to directly observe � but that however exists � it is nothing but a strati�ca-
tion of others s-matters raising after the Big-Break. Hence, what we called �Dark Matter� could be
nothing more than such s-matters, i.e. that type of matter in which the particles having s 6= 1/2
are clustered, in virtue of the generalized Pauli principle (naturally this could include more complex
form of interactions, maybe di�erent from the four commonly known).
Furthermore, this principle concurs to take in consideration the extension of another key concept

of the elementary particle physics too, namely the �Dirac sea.� As we know, this idea was intro-
duced by Dirac, in order to justify the solutions with negative energy, which at the dawn of the
relativistic quantum theories were considered like formulation errors. For obviating this problem,
Dirac thought to consider the vacuum not like the state lacking in matter, but as �sea� of particles
with negative energy (according to Dirac the vacuum has, therefore, energy tending to −∞). Hence,
the particles with positive energy are stable, because the elementary quantum states of the sea are
all occupied thanks to the validity of the Pauli exclusion principle, which does not allow to have
occupation number greater than 1 for the elementary quantum states (so the particles with positive
energy cannot fall in the sea, otherwise the states with occupation number equal to 2 should be).
Nevertheless, one can consider cases in which a particle with negative energy, after an energetic
absorption, jumps in a state with positive energy, thus leaving a hole in the sea. If the considered
�elds are constituted by electrons, the hole represents a positron, particle e�ectively observed. The
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possibility about creation of holes in the Dirac sea is called, in the case of electron �elds, �electron-
positron pair production.� Another possibility, expected from the Dirac sea, is that a particle with
positive energy falls in a hole, emitting radiation. This phenomenon, experimentally observed, is
said �annihilation.� Thanks to experimental con�rmation of these theoretical predictions, the Dirac
sea has had great success in the elementary particle physics. However, like already pointed out, it
was constructed for electrons or � more general � for particles with s = 1/2, i.e. for those particles
described by the Dirac equation only. With the birth of the α-Theory, in the light of what explained
in these pages, and, in particular, thanks to the generalized Pauli principle, we can think to extend
the idea of the Dirac sea to all elementary particles having arbitrary spin. What involves to intro-
duce the concept of �generalized Dirac sea�? Firstly, it concurs to have an idea of vacuum which is
homogeneous for all elementary particles, in the sense that generalized Dirac sea could just be the
�vacuum state� of the s-matter. This means we can imagine this vacuum like a strati�cation of all
the particles with negative energy, that interact with the correspondent particles having positive
energy, due to the generalized Pauli principle. But now the question is: can the generalized Pauli
principle, expressed through the (523) and (524), be applied to the anti-particles? Concerning the
SαT, the answer is a�rmative, since we have an equal number of particles and anti-particles for
any s ∈ N/2. On the contrary, for the AαT, it is not so, because we have (s+ δ0s) anti-particles for
integer spins and (2s + 1)/2 anti-particles for half-integer spins. This means the generalized Pauli
principle, for the anti-particles described by the AαT, must be de�ned in such a way

maxαs ≡
sθs + δsθs,2s

θs
. (527)

Instead, regarding the anti-particles described from the SαT, we always have

maxαs ≡
2s+ 1

θs
. (528)

Naturally, this does not change the ordinary Dirac sea, since for particles as well as anti-particles
with spin s = 0, 1/2, being the elementary quantum states characterized by an occupation number
equal to 0 or 1, we always have phenomena of particle-antiparticle pair creation and annihilation
of particles. Instead, for the elementary particles and anti-particles having higher spin, being for
them an increase of s with the occupation number, not only the above-mentioned phenomena will
occur, but there could be �multiple annihilations� and �particle-antiparticles multiplets� too. The
generalized Dirac sea does not concur to heal the philosophical problems of the original Dirac sea
only, but it allows to have a concept of vacuum more in line with the modern cosmological theories,
based on the �vacuum energy� and Dark Matter. Naturally, the expressions (527) and (528) are
referred to the occupation numbers concerning the quantum states of the generalized Dirac sea and
so they inform as the vacuum is made. For the AαT, such a vacuum has a di�erent generalized Pauli
principle than the one of the particles, while, for the SαT, it is, as we easily could expect, perfectly
symmetric. In any case, we can see that, for s = 1/2, the Pauli principle is always respected, and
so the original Dirac idea about the �sea� does not change for s = 1/2.
Now we are in a position to construct the statistics of the asymmetric and symmetric α-Theory.
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Based on (523), we saw in the previous pages that AαT presents an increasing occupation number
with the spin. More precisely, the particles characterized by s integer and (s + 1/2) half-integer
have equal occupation numbers and so there is a degeneracy phenomenon. The situation is analogue
for the SαT but much more interesting, because it presents increasing and decreasing maximum
occupation numbers with the rise of s. In particular, it is easy to see the particles with integer
spin (s = 0 included) have maximum occupation number following the run of the odd numbers,
while the particles with half-integer spin have maximum occupation number following the run of
the natural numbers.119 Therefore, like the AαT, the SαT does not present equal �lling only for
s = 0 and s = 1/2, but also for other spins (as an example s = 1 and s = 5/2, s = 2 and s = 9/2).
Generally, it is straightforward to see that within this theory the �elds with integer spin (s = 0
included) and �elds with half-integer spin equal to 120

4s∗ + 1

2
(529)

have equal �lling for the elementary quantum state.
Now we can proceed to the individuation of the statistics concerning the AαT and SαT. This

can be easily made thanks to the general relation

Ωk = −kT ln
∑
αk

[
eβ(µ−Ek)

]αk
,



k ≡ Boltzmann constant

T ≡ absolute temperature

µ ≡ chemical potential

Ek ≡ energy of a single particle into a generic k-state

β ≡ kT.

(530)

which connects the thermodynamic potential Ωk to the occupation numbers αk, by taking the
de�nition

ᾱk ≡ −
∂Ωk

∂µ
, (531)

where ᾱk is the average occupation number of the generic quantum state k, that basically represents
the statistical distribution function of a gas of particles characterized by elementary quantum states
having, singularly, occupation number αk.
As an example, it is easy to �nd for a gas of particles which satisfy the Pauli exclusion principle

(αk = 0, 1), the following statistical distribution

ᾱk =
1

eβ(Ek−µ) + 1
, (532)

119This is a very interesting aspect, because we could give a de�nition of odd and natural numbers based on physics.
120With s∗, we intended any integer spin.
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which is the well-known Fermi-Dirac distribution.
On the contrary, for a gas of particles having unlimited occupation numbers (αk = 0, 1, 2, 3, . . . ,→
∞), under the hypothesis eβ(µ−Ek) < 1, it is banal to have

ᾱk =
1

eβ(Ek−µ) − 1
, (533)

which represents the universally renowned Bose-Einstein distribution.
We promptly understand that, in order to �nd the statistics of the AαT and SαT, it must be

considered that each �eld with arbitrary spin s has an own occupation number and, therefore, a
general statistical distribution must be found, giving, case by case, the statistics of the �eld with s
�xed. From this point of view, it should be more corrected to speak about �multi-statistics,� because
each �eld with �xed spin s, described by the AαT or SαT, has an own statistical distribution (except
the cases of degeneracy previously described). For resolving this problem, we can start from the
expression (530) and then to impose

αk = 0, 1, 2, . . . , n− 1 (534)

from which, we have

Ωk = −kT ln

{
n−1∑

αk=0,1,...,

[
eβ(µ−Ek)

]αk}
= −kT ln

[
1− enβ(µ−Ek)

1− eβ(µ−Ek)

]
∀n ∈ N− {0}, (535)

where n is the number of the ordered terms appearing in the sum: for example n = 1 refers to the
�rst term of the sum and so on. Naturally, for construction, we have

maxαk = n− 1 ⇒ n = maxαk + 1. (536)

To sum up, we found that, regarding the AαT and SαT, the right thermodynamic potential is

Ωk = −kT ln

[
1− enβ(µ−Ek)

1− eβ(µ−Ek)

]
= kT ln

[
1− eβ(µ−Ek)

1− enβ(µ−Ek)

]
, (537)

from which it follows that the statistical distribution of a generic gas of particles with maximum
occupation number (maxαk) is

ᾱk ≡ −
∂Ωk

∂µ
=

1

eβ(Ek−µ) − 1
− n

enβ(Ek−µ) − 1
. (538)
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For testing the adequacy of the obtained result, one must verify the (538) gives as result the
famous Fermi-Dirac and Bose-Einstein distributions. We begin to notice that, for n = 1 (i.e. for
maxαk = 0), one has

ᾱk =
1

eβ(Ek−µ) − 1
− 1

eβ(Ek−µ) − 1
= 0, (539)

which, correctly, is the result expected for αk = 0. Instead, for n = 2 (precisely for maxαk = 1, i.e.
αk = 0, 1), we have

ᾱk =
1

eβ(Ek−µ) − 1
− 2

e2β(Ek−µ) − 1
=

1

eβ(Ek−µ) + 1
, (540)

just corresponding to the Fermi-Dirac distribution.
What happens if n→∞ (αk = 0, 1, 2, 3, . . . ,→∞) and eβ(µ−Ek) < 1? In this case, since enβ(Ek−µ)

approaches ∞ faster than n, we have

ᾱk = lim
n→∞

[
1

eβ(Ek−µ) − 1
− n

enβ(Ek−µ) − 1

]
=

1

eβ(Ek−µ) − 1
, (541)

which is the Bose-Einstein distribution.
Therefore, the general expression (538) is correct, because it shows a perfect agreement with the

known results of the Statistical Mechanics. It can be noted that, having to be n = maxαk + 1, we
can also write

ᾱk =
1

eβ(Ek−µ) − 1
− maxαk + 1

eβ(maxαk+1)(Ek−µ) − 1
, (542)

and this, inextricably, links the statistical distribution of a particle �eld with arbitrary spin s to
the maximum occupation number of the elementary quantum state of this �eld. But there is more,
because from the relations

maxαs ≡
sθs + 1

θs
(AαT)

maxαs ≡
2s+ 1

θs
, (SαT)

we can write (the use of double index k, s is obvious)
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ᾱk,s =
1

eβ(Ek−µ) − 1
− 1 + θs(1 + s)

θs

[
e
β[1+θs(1+s)](Ek−µ)

θs − 1
] (543)

ᾱk,s =
1

eβ(Ek−µ) − 1
− 2s+ θs + 1

θs

[
e
β(2s+θs+1)(Ek−µ)

θs − 1
] , (544)

where the (543) represents the statistical distribution concerning a gas of particles with �xed spin
s described by the AαT, while the (544) represents the statistical distribution concerning a gas of
particles with �xed spin s described by the SαT. The wonderful thing is the fact these distributions
determine an e�ective relation between spin of the particle �elds which we want to study and the
statistics which such �elds are subject to. This means the two found distributions allow to establish
a �spin-statistics relation,� which remembers the one shown by Pauli in his theorem, even if it is
completely di�erent. In fact, while Pauli established (incorrectly) the existence of only two types of
statistics for the elementary particles, i.e. the Bose-Einstein, for particles with integer spin (bosons),
and the Fermi-Dirac, for particles with half-integer spin (fermions), the α-Theory, asymmetric or
symmetric, proves each particle (�eld) with �xed spin s follows a type of statistics di�erent from that
concerning other particles with not equal spin (excluding the degeneration cases, that we previously
described), and so the α-Theory opens the doors to the new concept of �s-matter� and �multi-
statistics,� which de�ne a wholly di�erent relation between spin and statistics, compared with the
one used in QFT. As already said, this could induce to consider other �clusters� (s-matter), which
could be what we called Dark Matter.
Before continuing, it is good to focus us on the nature of particles described by the α-Theory

(asymmetric or symmetric). We established such particles follow di�erent types of statistics varying
the spin s (multi-statistics). The Fermi-Dirac statistics is obtained for particles having s = 0 or
s = 1/2, while only for n → ∞ we have the Bose-Einstein one. This induces to think the gauge
bosons (such as the photons) are not really described by the AαE or SαE, but they could be
somewhat a product of Big-Break, which, in some way, generated these new particles, that �
unlike the �particles of matter,� born from Big-Bang and described by the α-Theory (asymmetric
or symmetric) � could have an own dynamics, which only the accurate study of Big-Break will be
able to highlight. This means two classes of bosons could exist: those with integer spins born from
Big-Bang and described by the α-Theory (matter bosons) and those born from Big-Break, having
the task to mediate the fundamental interactions (gauge bosons). What is the spin value of such
bosons? The physicists tend to assign them s = 1 (s = 2 for the hypothetical gravitons), even if
in view of the theory dealt in this work it is suitable to leave this issue under discussion, before
the full explanation of the Big-Break. In fact, only then we will be able to have answers about the
dynamics these particles follow, their spin value and statistics which they are subjected to. It is
clear, however, that their existence is direct consequence of the Big-Break and so their study cannot
leave aside the α-Theory.
In order to conclude the discussion on the second quantization of the α-Theory, we must perform

the point 5 of the previous section and i.e. to de�ne the vacuum state |0〉, that, practically, is
equivalent to characterize the Fock space of our system. Naturally, the asymmetric and symmetric
α-Theory have a peculiar vacuum state (each s its own vacuum) and, therefore, distinguished Fock
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spaces. However, the Fock spaces of the AαT and SαT, in turn, decompose them in multi-spaces
for each �eld with �xed spin, in virtue of the existing relationship between spin and maximum
occupation number, which we largely treated in this section. Now we begin to de�ne the vacuum
state of the AαT, using the speci�c properties of the creation and annihilation operators of such a
theory. Since, in this case, the creation and annihilation operators have three di�erent well-de�ned
sets, we have to distinguish many subsets. Therefore, we have

1. s = 0:

Since b(k) |0〉1=0, d(k)|0〉2=0, we can de�ne the vacuum state in this way

|0〉s=0 ≡ |0〉1 ⊗ |0〉2 = |0, 0, 0, . . . , 0, 0, . . .〉. (545)

The generic (normalized) vector of this Fock space, having |0〉s=0 as vacuum state, is given by
the tensor product of the following vectors

|−∞← . . . , αb−k, . . . , αbk, . . .→+∞〉 =
1√

· · ·αb−k! · · ·αbk! · · ·
· · ·
(
b†(−k)

)αb−k · · · (b†(k)
)αbk · · · |0〉s=0

(546)

|−∞← . . . , αd−k, . . . , αdk, . . .→+∞〉 =
1√

· · ·αd−k! · · ·αdk! · · ·
· · ·
(
d†(−k)

)αd−k · · · (d†(k)
)αdk · · · |0〉s=0,

(547)

that is

|−∞← . . . , α−k, . . . , αk, . . .→+∞〉 = |−∞← . . . , αb−k, . . . , αbk, . . .→+∞〉 ⊗ |−∞← . . . , αd−k, . . . , αdk, . . .→+∞〉.
(548)

Having to be, in this case, the occupation numbers equal to 0 or 1, and, by remembering
0! = 1! = 1, we get

1√
· · ·αb−k! · · ·αbk! · · ·

=
1√

· · ·αd−k! · · ·αdk! · · ·
= 1. (549)
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2. s half-integer:

Since

{
bγ(k)|0〉γ = 0

dγ(k)|0〉γ+ 2s+1
2

= 0 ∀γ ∈ K̃ =
{

1, . . . , 2s+1
2

}
,

(550)

we have (2s + 1) types of vacuum and, therefore, we can thus write the vacuum state of our
system

|0〉s half-integer ≡ |0〉1 ⊗ |0〉2 . . .⊗ |0〉2s+1 = |0, 0, 0, . . . , 0, 0, . . .〉. (551)

The generic (normalized) vector of such a Fock space, having |0〉s half-integer like vacuum state,
is given by the tensor product of the following vectors

|−∞← . . . , αbγ−k, . . . , α
bγ
k , . . .

→+∞〉 =
1√

· · ·αbγ−k! · · ·α
bγ
k ! · · ·

· · ·
(
bγ
†(−k)

)αbγ−k · · ·(bγ†(k)
)αbγk · · · |0〉s half-integer

(552)

|−∞← . . . , αdγ−k, . . . , α
dγ
k , . . .

→+∞〉 =
1√

· · ·αdγ−k! · · ·α
dγ
k ! · · ·

· · ·
(
dγ
†(−k)

)αdγ−k · · ·(dγ†(k)
)αdγk · · · |0〉s half-integer

(553)

namely

|−∞← . . . , α−k, . . . , αk, . . .→+∞〉 = |−∞← . . . , αbγ−k, . . . , α
bγ
k , . . .

→+∞〉 ⊗ |−∞← . . . , αdγ−k, . . . , α
dγ
k , . . .

→+∞〉.
(554)

For s = 1/2 (γ = 1), having to be the occupation numbers equal to 0 or 1, similarly to the
previous case of s = 0, one has

1√
· · ·αb1−k! · · ·α

b1
k ! · · ·

=
1√

· · ·αd1−k! · · ·α
d1
k ! · · ·

= 1. (555)
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3. s integer (s = 0 excluded):

Since

{
bγ(k)|0〉γ = 0

dβ(k)|0〉β+(s+1) = 0
;

{
γ ∈M = {1, . . . , s+ 1}
β ∈ N = {1, . . . , s},

(556)

also in such a case we have (2s+ 1) types of vacuum. The (total) vacuum state of this system
can, thus, be de�ned

|0〉s integer ≡ |0〉1 ⊗ |0〉2 . . .⊗ |0〉2s+1 = |0, 0, 0, . . . , 0, 0, . . .〉. (557)

The generic (normalized) vector of this Fock space, having |0〉s integer as vacuum state, is given
by the tensor product of the following vectors

|−∞← . . . , αbγ−k, . . . , α
bγ
k , . . .

→+∞〉 =
1√

· · ·αbγ−k! · · ·α
bγ
k ! · · ·

· · ·
(
bγ
†(−k)

)αbγ−k · · ·(bγ†(k)
)αbγk · · · |0〉s integer

(558)

|−∞← . . . , αdβ−k, . . . , α
dβ
k , . . .

→+∞〉 =
1√

· · ·αdβ−k! · · ·α
dβ
k ! · · ·

· · ·
(
dβ
†(−k)

)αdβ−k · · ·(dβ†(k)
)αdβk · · · |0〉s integer

(559)

that is

|−∞← . . . , α−k, . . . , αk, . . .→+∞〉 = |−∞← . . . , αbγ−k, . . . , α
bγ
k , . . .

→+∞〉 ⊗ |−∞← . . . , αdβ−k, . . . , α
dβ
k , . . .

→+∞〉.
(560)

For the three just studied cases, regarding the operators bε(k) and dε(k), the following CAR are
valid
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
{bε(k), b†ζ(k

′)} = {dε(k), d†ζ(k
′)} = (2π)3ωkδ

3(~k − ~k′)δεζ
{bε(k), bζ(k

′)} = {b†ε(k), b†ζ(k
′)} = 0

{dε(k), dζ(k
′)} = {d†ε(k), d†ζ(k

′)} = 0,

(561)

where the subindices ε and ζ run on the sets already de�ned, according to the value of s. It is good
to underline that, for all the introduced Fock spaces, we have 121

maxαs ≡
sθs + 1

θs
.

We now study the Fock space of the symmetric α-Theory. In such a case, being only a class
of creation and annihilation operators for each value of s ∈ N/2, our job will be less tedious
than the just discussed one. In fact, by remembering that, in general terms, aγ(k)|0〉γ = 0 and
bγ(k)|0〉γ+(2s+1) = 0 for any γ ∈ {1, 2, . . . , 2s + 1}, we have, in this case, (4s + 2) types of vacuum.
The (total) vacuum state of the SαT is

|0〉s ≡ |0〉1 ⊗ |0〉2 . . .⊗ |0〉4s+2 = |0, 0, 0, . . . , 0, 0, . . .〉. (562)

The generic (normalized) vector of this Fock space, having |0〉s as vacuum state, is given by the
tensor product of the following vectors

|−∞← . . . , αaγ−k, . . . , α
aγ
k , . . .

→+∞〉 =
1√

· · ·αaγ−k! · · ·α
aγ
k ! · · ·

· · ·
(
aγ
†(−k)

)αaγ−k · · · (aγ†(k)
)αaγk · · · |0〉s

(563)

|−∞← . . . , αbγ−k, . . . , α
bγ
k , . . .

→+∞〉 =
1√

· · ·αbγ−k! · · ·α
bγ
k ! · · ·

· · ·
(
bγ
†(−k)

)αbγ−k · · · (bγ†(k)
)αbγk · · · |0〉s,

(564)

121This is true for the particles. Regarding the anti-particles, we should have

maxαs =
sθs + δsθs,2s

θs
.

But this places a question: thinking the vacuum formed by anti-particles based on Dirac sea (or generalized Dirac
sea), does it make sense to de�ne a Fock space (or better several Fock spaces) for the anti-particles?
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namely

|−∞← . . . , α−k, . . . , αk, . . .→+∞〉 = |−∞← . . . , αaγ−k, . . . , α
aγ
k , . . .

→+∞〉⊗|−∞← . . . , αbγ−k, . . . , α
bγ
k , . . .

→+∞〉,
(565)

where the operators aε(k) and bε(k) satisfy the following CCR
[aε(k), a†ζ(k

′)] = [bε(k), b†ζ(k
′)] = 2ωk(2π)3δ3(~k − ~k′)δεζ

[aε(k), aζ(k
′)] = [a†ε(k), a†ζ(k

′)] = 0

[bε(k), bζ(k
′)] = [b†ε(k), b†ζ(k

′)] = 0,

(566)

which are valid for any s ∈ N/2.
In order to conclude, we remember that the relationship between spin and maximum occupation

number in the symmetric α-Theory on the introduced Fock spaces is

maxαs ≡
2s+ 1

θs
.

What seen in this section ends our discussion on the second quantization of the α-Theory (AαT or
SαT).
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6 Miscellaneous α-Theory

In this chapter, we consider two topics rising as a result of the α-Theory development. The
�rst one regards the gauge bosons, whose nature, based on the Big-Break model, could be more
complex than that presented by the gauge theories. In particular, we will analyze the possibility
that the global symmetry breaking is able to generate massive gauge bosons as mediators of the
four fundamental interactions. As it will be explained, this could concur to resolve one of the most
important open question of the modern mathematical physics, i.e. the existence of a Yang-Mills
theory on R4 having a positive �mass gap.� The second one, instead, is concerning why in our
universe there are no particles with too high spin, but only those having a relatively low spin value.
To such purpose, by assuming the energy of our universe distributed itself according to some group
representation, we will de�ne a simple selection rule, which will allow to connect the symmetry
groups with the spin value of the elementary particles. This will contribute to obtain, by and large,
the spins of the known particles, by making us to think a relationship between spin, energy and
symmetry groups e�ectively exists.

6.1 Big-Break and mass gap. An approach to the solution of the Yang-
Mills millennium prize problem

Like already pointed out in the previous section, the α-Theory, asymmetric or symmetric, if it
will be proved to be the right theory for elementary particles, demands a substantial change of
the interaction mechanisms, above all for what concerns the gauge theories. In fact, since the α-
Theory arises by a process of �tachyon condensation,� based on a phase transition from an unstable
universe (IEP universe) to a stable universe (REP universe), we have that the transition from an
unstable vacuum to a stable vacuum, shown in �g. 10, must be valid for the entire universe, i.e. all
the interactions are derived by a spontaneous symmetry breaking mechanism. Such a process is
not still known, but it could consist in a generalization of the �Higgs mechanism,� which uni�ed
electromagnetic and weak interactions. Of course this process, that we called Big-Break, could lead
to the uni�cation of all the forces of the Nature, making of the α-Theory a GUT. The Big-Break
could have generated and made massive all the gauge bosons and this could involve the existence
of more types of Higgs bosons, or also of a single type, but that spans all the interactions. In
particular, this global Higgs mechanism could have given mass to gluons, mediators of the strong
interaction, thus explaining the short-range of the strong force, which is clear by the con�nement
of the quarks, and this avoiding to introduce exotic elements as the glueballs.
The possibility of a mass gap within the QCD is expected by the scienti�c community, that o�ered

an high money prize for who will resolve the so-called �mass gap problem,� which has been inserted
in the millennium seven problems. However, as we can read in the speci�c description of the problem
made by Ja�e and Witten [16], one thinks the existence of a mass gap ∆ > 0 bound with a quantum
Yang-Mills theory, non-trivial, de�ned on R4 and that can be applied to any gauge group G, simple
and compact, depends on mathematical properties inherent in the Yang-Mills theory, which have
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not been still sounded. It is clear that, if the α-Theory will be right, its generalization through
the explanation of Big-Break could conduct to massive gauge �elds, resolving, in such a way, the
problem of the mass gap not from a mathematical point of view, but from a physical one. Hence,
the �mass gap,� supposed in QCD, could not be due to hidden mathematical properties, but to
the incompleteness of modern theories on the elementary particles. For this reason, one thinks the
study and veri�cation of the α-Theory represent a fundamental stage for the high energy physics.

Figure 10: The transition from unstable to stable vacuum within the Big-Break framework. This process could
have made massive all the gauge bosons.

6.2 Spins, gauge groups and energy. A simple selection rule

Arrived to this point, one may wonder why we observe in Nature particles with low spin values
only, while, in principle, the asymmetric or symmetric α-Theory allow to estimate the physics of
particles having arbitrary spin (e.g. also 10000001/2). We can answer this question by supposing
a relationship exists between spins, gauge groups and energy, that selections only lower values
of s. In particular, we can imagine that when our universe came into being, the great energy which
generated, distributed itself in a uniform way, according with the representations of the groups U(1),
SU(2), SU(3), etc., and so it makes sense to believe such representations have �xed the spin value of
the particles subjected to the interactions characterizing these symmetry groups. Therefore, given
a symmetry group G(n), a selection rule R could exist such that
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R [G(n)] = �nite set of s derived by n ∈ N. (567)

Naturally, if n = N, we must have

R [G(N)] = all the representations of SU(2). (568)

We now consider a selection rule R̃ such that, given the symmetry group G(n), one has

l =
n

2
,
n− 1

2
,
n− 2

2
, . . . ,−n

2
(569)

and, by de�ning

s ≡ |l|, (570)

the selection rule R̃ for the symmetry groups U(1), SU(2) and SU(3) gives

U(1) : l =
1

2
, 0,−1

2
⇒ s = 0,

1

2

SU(2) : l = 1,
1

2
, 0,−1

2
,−1 ⇒ s = 0,

1

2
, 1

SU(3) : l =
3

2
, 1,

1

2
, 0,−1

2
,−1,−3

2
⇒ s = 0,

1

2
, 1,

3

2

and in general, for G(N), we have

l =
Z
2
⇒ s =

N
2
, (571)

i.e. we get all the SU(2) representations, which proves that R̃ is a good selection rule. From this
simple selection rule, it can be seen that the spin of the elementary particles about the symmetry
groups of the subnuclear interactions are low, and this could explain, in broad outline, why quantum
stable particles have not high values of s. We need to say the spins found by applying the selection
rule R̃ to the groups U(1), SU(2), SU(3), do not cover the spin ranges of the particles existing
in Nature, because there are hadrons and resonances of higher spin. This could be due either to
the roughness of the chosen selection rule or to the fact that, in the particle accelerators, energies
greater than those which stabilized the present universe are reached.
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This point of view �nds con�rmation in the circumstance that the particles with spin higher
than those derived from the selection rule R̃ applied to the groups U(1), SU(2), SU(3) are very
unstable. This also suggests a larger symmetry group (big energy) existed, which spontaneously
broke, generating the interactions that we know, and of which the unstable particles are not but
a trace fossil. Then, the fact our selection rule always includes s = 0 could be the indication of
the existence of a scalar �eld (Higgs type), which, through the Big-Break, gave mass to the gauge
bosons. Among other things, a way for extending the selection rule R̃ to the case of larger groups,
given as an example to the tensor product of unitary groups, could be that to let correspond to the
tensor product the product of the natural numbers representing the order of groups (the product of
two or more natural numbers always gives a natural number and so this does not dilute the selection
rule R̃), namely

G(n1)⊗G(n2)⊗ · · · ⊗G(nk)⇒ n = n1n2 · · ·nk. (572)

Due to (572), the group

G1 = SU(2)⊗ SU(2) ' SO(4) (573)

gives n = 4, from which, by applying R̃, one has

s = 0,
1

2
, 1,

3

2
, 2 (574)

while the group

G2 = SU(3)⊗ SU(2)⊗ U(1) (575)

gives n = 6, from which, by applying R̃, it can be obtained

s = 0,
1

2
, 1,

3

2
, 2,

5

2
, 3 (576)

and so on.
We see this simple extension of R̃ allows to consider larger symmetry groups, whose spontaneous

breaking could have generated the set of elementary particles (with low spins) observed in our
universe.
If e�ectively only a limited number of particles with low spins exists, what is the necessity of

the α-Theory? In contrast to Klein-Gordon and Dirac theories, the α-Theory is a uni�ed theory
telling us, if con�rmed, that the elementary particles, independently from their spin value, satisfy
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in form the same equation, and this represents a triumph for the physical knowledge, that could,
as already said, lead to the uni�cation of all the interactions present in Nature. This is the power
and importance of the α-Theory.
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7 α-Theory and Twentieth Century Physics

In the previous chapters, we developed the α-Theory, which, independently from its asymmetric
or symmetric connotation, represents a new model for the physical description of quantum and
cosmological phenomena. Since the α-Theory proposes itself of being a GUT, it is natural to make
a comparison with the most well-known uni�ed models of the twentieth century. This chapter
wants just to do it, starting by the analysis of the second quantization and suggesting to replace
this process with a di�erent type of mathematical methodology, which does not look for quantizing
a classical �eld, but rather it makes to emerge the classical �elds from the quantum ones. This
could concur to devise an e�ective Quantum Gravity thanks to the use of the α-Theory. After this,
we will inquire on the relationship between In�ation Theory and α-Theory, proving that within this
last there is the in�ation phenomenon, so giving to it full justi�cation. It will be demonstrated that
in�ation is a characteristic of tachyonic (IEP) as well as bradyonic (REP) universe and this could
explain the acceleration of our universe, without using the �Dark Energy.� In the last two sections
of this chapter, we will compare, instead, Supersymmetry and String theory with the α-Theory,
showing it not only concurs to exceed the super-symmetrical models conceptually, but allows also
of de�ning two string actions, which could take to new developments of the research in this area.

7.1 α-Theory, Grand Uni�cation, classical �elds and Quantum Grav-
ity. The expanding Universe and Dark Energy: the double in�ation
mechanism

The α-Theory wants, unifying the elementary particle physics in absence of interactions, to be
a Grand Uni�ed Theory. Strictly speaking, the α-Theory is already a GUT, because it concurs
to put under a single formal equation all the particles of matter, which are subject to the four
fundamental interactions. But, for achieving the whole uni�cation, it is necessary to describe in
detail the general process of spontaneous symmetry breaking (Big-Break) expected by the α-Theory,
since only then we will know as the interactions of our universe (gauge bosons) were born. This
takes us to conclude the Big-Break represents a universal principle of the physics. Nevertheless, in
contrast to other principles, it is not built ad hoc, because it is not postulated and apodictic, but
�nds complete justi�cation in the instability of the tachyonic universe and in the phase transition
transforming this last in the bradyonic universe.122 It is very likely that this global breaking o�
relates to the symmetry group SU(5), which in literature is the most reasonable to generate the
strong, electromagnetic and weak interactions [17]. From this point of view, such a group could be
extended by using the general coordinate transformations, so making the space-time comes up by
a process of Higgs condensation [18, 19].

122When a coherent Big-Break model will be developed, this will no longer be a �Principle,� but rather a concrete
physical cosmological process.
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But all of this poses an important problem: what connection exists between the classical �elds
and the quantum ones? As is well known, in QFT for quantizing a classical �eld the so-called
�second quantization� is applied, which has been used also for quantizing the theory exposed in
this work. The second quantization is applied to the classical electromagnetic �eld for making it
a quantum �eld, but also to the Dirac and Klein-Gordon �elds, which are intrinsic quantum �elds
(precisely they are constructed for explaining some classes of elementary particles). Is it correct to
indiscriminately use the second quantization? Is it right to transform a classical �eld in a quantum
�eld by using a mathematical process and not a physical one? In order to focus this issue, we
consider the homogeneous Proca equations, used for describing particles having spin 1, but that
were developed for photons with nonzero mass

∂µF
µν +m2Aν(x) = 0, ∂µA

µ = 0. (577)

As can be seen, these equations contain the electromagnetic �eld tensor F µν (which has as matrix
elements the �elds ~E and ~B) and the four-potential Aν(x). Therefore, for describing massive
photons, i.e. quantum particles, classical �elds are used and successively they are transformed in
operator quantities, thanks to the second quantization. But this seems an abuse, because within
the expressions of quantum particles should not be classical �elds like ~E and ~B. This takes to make
an important consideration: can classical �elds be a macroscopic e�ect of quantum �elds? The
discussion is identical to the one existing between Thermodynamics and Statistical Mechanics and
which is based on the fact the thermodynamics state functions are macroscopic e�ects going out by
considering gases of interacting particles. From this point of view, the quantization of a classical
system is equivalent to assert the absolute temperature T , concerning a gas of atoms or molecules,
is given by the sum of all the temperatures ti of each atom or molecule, namely

T =
∑
i

ti. (578)

We know this is incorrect, because the absolute temperature T is, instead, proportional to the
average kinetic energy of all atoms or molecules of the gas, that is 123

T ' 〈Ec〉
k
. (579)

We can, therefore, think also within the QFT a similar thing happens, and that the classical �elds (as
the electromagnetic one) must emerge as macroscopic properties of the quantum �elds or as coupling
between quantum �elds. For this reason, a direct construction of the classical �elds components
by the quantum �elds components could be tried. But, doing this, it would be equivalent to
identify quantum components with classical components, and this seems to be an abuse. Hence,
it is desirable to �nd the law allowing, through the quantum �elds, to reproduce the macroscopic

123Naturally, k is the Boltzmann constant.
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properties today we identify with the classical �elds.
The same logic previously applied to the electromagnetic �eld and massive photons (but also with

m = 0) can be used for the gauge bosons of the gravitational interaction too. In order to explain
such a concept, we must remember from the literature, in the weak-�eld approximation (|hµν | � 1
and ηµν = Minkowski metric) and in the absence of sources (Tµν = 0), the Einstein equations

Rµν −
1

2
gµνR =

8πG

c4
Tµν (580)

become

�hµν = 0; hµν = hνµ, (581)

where we imposed the harmonic gauge conditions 124

∂νhµν =
1

2
∂µh. (582)

The (581) describe the undulating propagation of the ripples in the curvature of space-time. The
possibility to deal with gravitational waves has driven the physicists to relate electromagnetism
and gravitation, so that it has been natural trying to quantize the Einstein gravity for �nding the
space-time quanta and the mediators of the gravitational interaction, which are said �gravitons.�
Then, an analysis on the degrees of freedom of hµν (number of independent components) established
the helicity value of these hypothetical particles has to be ±2 and, therefore, the spin of gravitons
is �xed in 2. These considerations on the quantum nature of the space-time gave rise to a very
successful area of research called �Quantum Gravity.� So far, the attempts to quantize gravity with
the �canonical� approach or with the �covariant� one revealed unfruitful. In particular, the covariant
perturbative approach (Loop Quantum Gravity), wanting to deal gravity as a Yang-Mills �eld, it
is a non-renormalizable theory, already to two-loop. The renormalization of the gravity to one-loop
made to understand that a theory of gravity to the Planck era (high energies) must exist: the
Einstein gravity, then, should be the low-energy aspect (i.e. to one-loop) of such a general theory.
Until now, only the Supersymmetry and Superstring theory proposed to resolve the problem of
the gravity to high energies, with no satisfactory result. Actually, there is also the problem to
establish if the graviton (boson with spin 2 and m = 0) is really the mediator of the gravitational
interaction. Basically, the properties of this hypothetical particle have been derived in the weak-�eld
approximation, by using the gravitational waves. Nevertheless, it seems a hazard to use the ripples
in space-time derived by stellar collapses, supernova explosions or colliding black holes, in order to
�nd properties of particles whose dimension is comparable with the Planck length. Therefore, it
should be more reasonable to �nd a suitable quantum gravity (high energy gravity), which is capable
to beget at low energies the Einstein gravity, without using necessarily �elds with spin 2, but even

124h ≡ hαα.
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�elds with di�erent spins or sets of �elds with �xed spins. Practically, the α-Theory wants to tell us
that the quantization process of classical �elds must be neglected for the bene�t of a �classicization�
process of quantum �elds, which is able to give rise to the classical �elds like macroscopic properties
of quantum-dynamic processes happened in the after Big-Break. The α-Theory, therefore, requires
that the correspondence

classical �eld
second quantization−→ quantum �eld (583)

has to be replaced by the most probable and physically acceptable

quantum �eld(s)
classicization−→ classical �eld. (584)

How can a classical �eld emerge by a quantum �eld or by a set of quantum �elds? This is an
open answer, and the solution could be found in the development of new mathematical methods,
but, above all, in the formal explanation of the great process of spontaneous symmetry breaking
(Big-Break), which presents itself as the father of all physical interactions.
Another important aspect we want now to treat is the relationship existing between the α-Theory

and In�ation theory. In fact, this last model could just �nd full justi�cation in the α-Theory. In
order to understand it, we shortly recall the history and base concepts of the In�ation theory, that
was proposed in 1981 by A. H. Guth [20], in order to resolve the anomalies due to the initial con-
ditions of the Standard Hot Big-Bang model, which can be summarized in the horizon and �atness
problems. Guth found the way to resolve both these problems, by supposing the early universe
conducted itself to a supercooled state to temperatures 28 or more orders of magnitude below the
critical temperature Tc ' 1014 Gev, which is identi�ed with the phase transition temperature from
a universe with total symmetry SU(5) to a universe with symmetry SU(3)⊗SU(2)⊗U(1), accord-
ing with the GUT model proposed by Georgi-Glashow. This hypothesis implies two remarkable
consequences:

1. The pressure p of the early universe turns out negative and opposite to the matter density ρ,
namely

p = −ρ. (585)

This means the stress-energy tensor of the matter obeys to a covariant conservation equation,
which, in the Friedmann-Robertson-Walker metric

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (586)
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is reduced to

d

dt
(a3ρ) = −p d

dt
(a3). (587)

Such an equation implies the energy of the co-moving volume decreases with the time when
p > 0, while it grows with the time when p < 0. It is identically satis�ed for p = −ρ and
this coincides with the beginning of the in�ationary era, in which the negative pressure has
carried to a fast expansion of the early universe.

2. The expansion with negative pressure implies a scale factor that evolves in an exponential
way, according to the law

a(t) ≈ eχt, χ ≡
(

8πG
3
ρf
)
' 1010Gev. (588)

Such a scale factor can only exist if one supposes of being in a �at universe (k = 0). The
Friedmann-Robertson-Walker metric is reduced in this case to the de Sitter one

ds2 = −dt2 + a2(t)d~x2. (589)

Guth assumed the In�ation was caused by a phase transition (to the �rst order), that conducted the
early universe from a false vacuum to a true vacuum at temperatures below the critical temperature
Tc, to which the spontaneous symmetry breaking of the gauge group SU(5) occurred (anyway Guth
did not exclude di�erent symmetry groups). In order to explain this in�ationary model, it can be
supposed existing a like-Higgs scalar �eld φ(x) � called �in�aton� � with Lagrangian density

L =
1

2
∂µφ∂

µφ− V (φ). (590)

The phase transition, originating the in�ation, happens when the in�aton �eld passes from the false
vacuum to the true vacuum, based on the diagram of �g. 11.
The original theory of the in�ation (�Old In�ation�), although resolving the horizon and �atness

problems, gave light to various inconsistencies, of which one of the most serious is the �bubble
coalescence,� i.e. the creation of superdense bubbles in the early universe, of which we are not able
to explain the mutual energy exchange until thermal equilibrium (thermalization). In order to go
around this problematic, another version of the In�ation Theory � known with the name of �New
In�ation� (also called �Chaotic In�ation�) � was born, for which in the Lagrangian density of the
in�aton �eld are considered di�erent types of scalar potentials, like the Coleman-Weinberg one
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[21], having the characteristic to drive a slow phase transition (of the second order), called �slow
rollover transition,� regulated by random processes depending by the �uctuations of the scalar �eld.
Naturally, such an approach resolves the problem of �bubble coalescence.� The new (or chaotic)
In�ation theory, even if resolves many of the problems of the �Old In�ation,� introduces other ones.
In fact, because of the exponential expansion of the scalar �eld φ, there are complex �uctuations
of the vacuum, whose average amplitude is thus estimated 125

|δφ(x)| ≈ H

2π
. (591)

These oscillations are so strong that could have created an eternal process of self-reproduction of
the universe. What for this model practically occurs is that the quantum jumps, deriving from
the �uctuations of the scalar �eld during in�ation, can be divided into new in�nite domains, in
each of them there was a so devastating quantum jump to produce again in�ation and, hence,
a new universe, separated from all the others and with own physical laws. This model of self-
reproduced multi-universes is not accepted by the most of the physicists, since it is not supported
by any experimental evidence. Another issue, belonging to the old and new in�ationary model,
is of gnosiological type. How was the in�aton �eld born? When and why the period of in�ation
is �nished? For giving answer to these questions, the Superstring theory and Supersymmetry are
used, even if the current framework is very unclear and uneven [22, 23, 24].

Figure 11: The typical potential for the in�ationary universe: Tc is the critical temperature for a �rst-order phase
transition. (Adapted from S. K. Blau and A. H. Guth in 300 Years of Gravitation, 1987.)

125H ≡ ȧ/a.
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After having shortly exposed the In�ation theory, we want now to understand if the α-Theory
predicts in some way the presence of an exponential scale factor for the early universe, that, as seen,
resolves the horizon and �atness problems. Only thus, in fact, we can demonstrate the absolute
generality of the α-Theory, not only like elementary particle theory, but also like cosmological
theory at high energies. However, we will do a very rough discussion, because, until the Big-Break
mechanism will not be explained, we cannot make precise considerations on cosmological dynamics,
and, therefore, our examination is useful only to trace a guideline for future developments. As
previously seen, for having an in�ationary phase, the in�aton �eld must take to an equation of
state in which the pressure p of the cosmological soup has negative sign. Thence, it seems obvious
to consider the kinetic terms of the Lagrangian densities, derived from LAα and LSα, by adding an
appropriate potential V , namely

L1
Aα = iψ̄s(x)χµ∂µψs(x)− VAα(ψs, ψ̄s,m) (592)

L2
Sα = (∂µψ

†
s)ξ

µξν(∂νψs)− VSα(ψs, ψ
†
s,m), (593)

and to understand if one of these two theories takes to a negative pressure. For this purpose, we
calculate the energy density ρ and the pressure p by the stress-energy tensor T µν of L1

Aα and L2
Sα,

by supposing of being in an expanding universe, with metric

gµν ≡
(
1,−a2(t),−a2(t),−a2(t)

)
. (594)

In the hypothesis VAα and VSα do not depend by derivatives of the �elds ψs and ψs (naturally of
ψ̄s or ψ†s too), we have

T µν1 = iψ̄sχ
µ∂νψs − iψ̄sχα∂αψsgµν + VAαg

µν (595)

T µν2 = (∂αψ
†
s)ξ

αξµ(∂νψs) + (∂νψ†s)ξ
µξα(∂αψs)− (∂αψ

†
s)ξ

αξβ(∂βψs)g
µν + VSαg

µν . (596)

If ψs(ti) = constant and ψs(ti) = constant, it is straightforward to verify that for our theories the
following equations of state are obtained

p1 = −ρ1 (597)

p2 = −ρ2, (598)

which take to an in�ationary phase.
This is very important, because it proves that the α-Theory, asymmetric or symmetric, admits
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in�ation. It must also be noticed, moreover, that if we consider the tachyonic theories from which
the AαT and SαT are originated and we also add to their kinetic terms a potential V

LV
M1 = ψ̄sχ

µ∂µψs − V tach
1 (ψs, ψ̄s, µ) (599)

LV
M2 = (∂µψ

†
s)ξ

µξν(∂νψs)− V tach
2 (ψs, ψ

†
s, µ), (600)

we have for them, like for the Lagrangian densities L1
Aα and L2

Sα, negative pressures too. Therefore,
also the tachyonic universe admits an in�ationary phase. This result, although obtaining without
specifying the form of the potentials at stake, opens a very interesting cosmological scenario. In
fact, being also the tachyonic universe compatible with an in�ationary phase, we can conclude the
in�ation not only is gushed from Big-Bang characterizing the unstable tachyonic universe in virtue
of a negative pressure, but it continued, maybe in a more soft way, also in the bradyonic universe
thanks to Big-Break, which transformed the potentials V tach

1 or V tach
2 in VAα or VSα respectively,

according with the pattern

V tach
1

Big-Break−→ VAα (601)

V tach
2

Big-Break−→ VSα. (602)

Therefore, the α-Theory, asymmetric or symmetric, is compatible with a process of �double in�a-
tion� that, as it is easy to understand, could resolve many open problems of modern cosmology. In
fact, this hypothetical mechanism could not only synthesize the old and new in�ationary model,
but it could explain us the nature of the cosmological constant Λ and why the observed universe is
accelerated, and this without using exotic ideas like the �Dark Energy� one. In order to understand
what was just asserted, we want to draw a cosmological scenario coherent with the α-Theory and
with the double in�ation which it expects: after the hot Big-Bang a universe characterized by a
square negative energy is generated, which did not respect the principle of causality. This universe,
extremely unstable and chaotic, was characterized by a negative pressure, that produced an ex-
ponential pressure. At some temperature T (very high) and time t (very small), such a universe
is collapsed, producing a phase transition, which took it to a stability condition and generated
the separation of the fundamental interactions (Big-Break). In this context, the initial potential
transformed itself, passing from false to true vacuum. Nevertheless, the new universe was always
characterized by a negative pressure, which has given life to an accelerated phase.
The proposed scenario is an half-way between the old and new in�ation, because it could make

coexist both visions. This takes to think the �Tachyonic In�ation� (�IEP In�ation�) is able to resolve
the horizon problem (and perhaps also the �atness one), while the �Bradyonic In�ation� (�REP In-
�ation�) is able to resolve the problem of the accelerated universe (and/or perhaps also the �atness
one). Naturally, all the problems of the �Old In�ation,� like for example the �bubble coalescence,�
are not in a chaotic universe as the tachyonic one.
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The scenario emerging by the double in�ation is charming, even if, for being completely demon-
strated, it will have to understand if all the particles have contributed to this process or only those
with spin s = 0 and, above all, appropriate potentials V must be de�ned and it has to be explained
the way in which these potentials are transformed thanks to the Big-Break. This is not only im-
portant for the elementary particle physics, because the Big-Break will reveal as the fundamental
interactions were created, but mostly for the understanding of our universe. In particular, like
already said, the secret of the cosmological constant could be explained through relations of the
type [69]

Λ = 8πGV. (603)

If the bradyonic in�ation will be able to explain the acceleration of our universe, this should be a
great result, because such an acceleration will not be derived by a phantom Dark Energy, but will
be simply a residue of the great in�ation within the tachyonic world (tachyonic in�ation), that our
universe has inherited from Big-Break.

7.2 α-Theory and Supersymmetry

The theory exposed in this work allows to describe the particle �elds with arbitrary spin and makes
it under the hypothesis that � after the hot Big-Bang � there was another catastrophic cosmological
event (Big-Break), from which our universe is generated. Like said in the previous section, this
could explain the birth of all the forces and unify them just thanks to the α-Theory, thus want-
ing to be a Grand Uni�ed Theory. Naturally, for having a complete and exhaustive framework,
the micro-macro problem should be resolved, explaining in detail as, from the quantum �elds, the
classical �elds (the gravitational and electromagnetic ones) came up, and to describe in a general
way the Big-Break, representing in this model the most important event of our universe. It is good
to underline we arrived to the development of the α-Theory, asymmetric or symmetric, and to the
above considerations, only making use of the speci�c technologies of the QFT, without using di�cult
transformations or multi-dimensional spaces. This becomes important when we want to compare
the α-Theory with the super-symmetric Theory, called simply �Supersymmetry� (often abbreviated
SUSY), which was developed around 1970s with the main purpose to describe in a unitary way
fermions and bosons (even then it seemed strange a theory describing such particles in the same
way did not exist).
The Supersymmetry, unlike α-Theory, proposes a uni�ed model that mixes fermions and bosons

through spinorial transformations based on dotted and undotted spinors, which satisfy the Grass-
mann algebra. The simplest super-symmetrical model is the Wess-Zumino (simpli�ed) one, whose
Lagrangian density is 126

126In this case, we de�ne
↔
∂≡
−→
∂ −

←−
∂ .
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LW−Z = (∂µφ)∗(∂µφ) +
i

4
ψ̄γµ

↔
∂µ ψ, (604)

where ψ is a Majorana spinorial �eld, while φ is a scalar �eld such that 127

φ(x) ≡ L(x)− iM(x)√
2

. (605)

Like we promptly see, the (604) characterizes a massless �eld theory. For obtaining a massive
super-symmetrical theory, we must consider

L̃W−Z = (∂µφ)∗(∂µφ) +
i

4
ψ̄γµ
←→
∂µψ−m2φ∗φ+

m

2
ψ̄ψ. (606)

The scalar �elds and the spinorial �eld ψ are connected by the following transformations (said of
supersymmetry) 

δL = ε̄ψ

δM = iε̄γ5ψ

δψ = −iγµε(∂µL) + γµγ5ε(∂µM)

δψ̄ = iε̄γµ(∂µL)− ε̄γ5γµ(∂µM),

(607)

where ε, the parameter allowing to pass from the scalar �elds to the spinorial �eld (i.e. that mixes
bosons and fermions), is a Majorana spinor. The Supersymmetry peculiarity, just deriving from the
super-symmetrical transformations, is that each boson with �xed rest mass has a supersymmetric
partner, characterized by a fermion with the same rest mass, and vice-versa. Moreover, the spin of
any supersymmetric particle will be |s − 1/2|, where s represents the spin of the particle of which
the supersymmetric partner has to be considered. This means the following illustrative outline is
valid

0←→ 1

2

1 −→ 1

2

2 −→ 3

2
. . . . . . . . .

127L(x),M(x) are scalar �elds.
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The short summary of the α-Theory and Supersymmetry tells us this two models cannot live
together, in the sense that if one is right the other is wrong. It is simply to admit that, from a
theoretical point of view, the α-Theory is better than Supersymmetry, for simplicity and elegance.
In the long run, a deeper analysis leads us to conclusion that the α-Theory is just the right super-
symmetrical Theory tried in the 1970s, because it realizes the dream to describe the elementary
particles of integer and half-integer spin with only an equation. Is it, therefore, necessary to neglect
the Supersymmetry? As all the theories based on the scienti�c method, SUSY has within it inter-
esting ideas too, which can also be used in other theories. For example, we can continue to study
those transformations sending bosons in fermions and vice-versa. However, these transformations
have no longer to be of the type 128

B −→ B′ = B + δB, δB = ε̄F (608)

F −→ F ′ = F + δF, δF = ε∂B, (609)

which are the canonical SUSY transformations, because, having the AαT and SαT a di�erent mass
dimensions for the �elds ψs and ψs, these two theories have a mass dimension of ε not equal to
M−1/2. In order to prove it, we note in a d-dimensional space one obtains

[ψs] = M
d−1
2 (610)

[ψs] = M
d−2
2 , (611)

i.e. the �eld ψs has the same mass dimension of the Dirac �eld, while the �eld ψs has the same mass
dimension of the Klein-Gordon �eld and this suggests that, in general terms, the mass dimension
of a �eld also depends on the order n of the (partial) di�erential equation which it is subject to.
Naturally, for d = 4, we have

[ψs] = M3/2 (612)

[ψs] = M. (613)

Thanks to these considerations, the transformations mixing boson �elds (integer spins) with fermion
�elds (half-integer spins) are written, for the AαT and SαT, in the following way 129

B −→ B′ = B + δB, δB = εF (614)

128Note that [ε] = M−1/2.
129In this case, [ε] = M0.
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F −→ F ′ = F + δF, δF = εB, (615)

where ε must be a dimensionless quantity, because, for the AαT and SαT, the �elds B and F have
equal dimension.
The problem at this point we have is to establish the nature (matrix or scalar) of parameter ε.

If, for example, B is a �eld with spin 1 and F a �eld with spin 1/2, we have that B is described by
a matrix 3 × 1, while F is described by a matrix 2 × 1. From this fact, it promptly follows that ε
must be a matrix of dimension 3× 2. Therefore, established the parameter ε is a matrix, we have
to consider also its conjugate transpose ε̄, which, in such a case, have dimension 2 × 3. For this
reason, the transformations (614) and (615) must correctly be written

B −→ B′ = B + δB, δB = εF (616)

F −→ F ′ = F + δF, δF = ε̄B. (617)

We understand this reasoning can be repeated not only for mixing the �elds with integer spin
(bosons) and the �elds with half-integer spin (fermions), but also the �elds with arbitrary spin (also
equals, and in such a case ε and ε̄ are square matrices). This means the AαT and SαT, in general,
admit the following transformations (for the �rst we have obviously φs = ψs, while for the second
φs = ψs. The spins s1 and s2 are �xed, and, naturally, it also can be s1 = s2)

φs1 −→ φ′s1 = φs1 + δφs1 , δφs1 = εφs2 (618)

φs2 −→ φ′s2 = φs2 + δφs2 , δφs2 = ε̄φs1 , (619)

where ε have to be a matrix of dimension (2s1 + 1) × (2s2 + 1) and ε̄ a matrix of dimension
(2s2 + 1)× (2s1 + 1).
Why have we to study the transformations between �elds with arbitrary spin? Beyond merely

mathematical reason, this could save and maybe extend the fundamental property of the Super-
symmetry, consisting in the fact that when local SUSY models are constructed, these models live
in a curved space-time, i.e. they include the gravitation (as macroscopic interaction). This aspect
is known as �Supergravity.� It can be argued such a property derives from the presence of the gra-
dient in the transformation (609) concerning the fermionic �eld (this creates a connection between
Supersymmetry and translations, namely between local SUSY transformations and (super)gravity),
while in the transformations above seen, having the �elds the same mass dimension (and hence
ε as dimensionless quantity), the gradient operator does not appear. But this is not a problem,
because it is clear that, within the α-Theory, the transformations (618) and (619) are not useful for
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constructing a supergravity model like the Einstein-Rarita-Schwinger one, given by the Lagrangian
density 130

LE−R−S =

(
− 1

2χ

√
−gR +

i

2
εµναβψ̄µγ5γν∇αψβ

)
, (620)

but rather of allowing to the same gravity to appear by a connection between �elds with di�erent
spins. In fact, in the previous section, we explained the α-Theory could concur to give life to a
quantum gravity based on a real �eld of particles, which does not su�er of the process of canon-
ical quantization commonly applied to the classical �elds. Then, we also said this involves some
problems about the number of degrees of freedom to really take into account, that, if it is bound
with the components of the particle �elds, it is equivalent to an uncertainty on the spin value of
the �eld which created the gravitational interaction. What should happen if such an interaction
was really due to a connection process between particle �elds (i.e. if the gravity depends at quan-
tum scale on various �elds)? This eventuality can be taken into consideration just studying those
models which are unchanged under the transformations (618) and (619) and which allow to make
visible macroscopic properties, according with the Einstein �eld. As an example, by considering
the degrees of freedom of the linearized Einstein �eld, we know the tensor hµν has 10 independent
components, which are reduced to 6 imposing the 4 conditions of the harmonic gauge. But, by
imposing other gauge conditions, these conditions are reduced to 2, corresponding to the degrees
of polarization that are thought to be the graviton ones. Beyond the fallacy of such a reasoning,
that � as said � does not distinguish between the peculiar properties of a classical and quantum
�eld (wrong relationship macro-micro and its reversibility), we can, however, try to construct some
models of coupling between particle �elds, having at least the same number of degrees of freedom
required by the linearized gravitational �eld. As an example, in order to have 6 independent �elds
(which, then, would be the independent components of hµν) could be considered the coupling of a
�eld with s = 2 (5 independent components) and a �eld with s = 0 (1 independent component).
Instead, if we want 2 freedom degrees, these could be obtained from the coupling of two scalar �elds.
Also in such a case, the scalar �elds seem to cover a primary role in the birth of the interactions.
If these coupling models between �elds with di�erent spins will able to construct the gravitational
interaction with the consequent curvature of the space-time, only future studies will be able to
establish.
What we want to emphasize is that the α-Theory, asymmetric or symmetric, concurs to study

complex models of uni�cation, bringing also those conceptual simpli�cations which are always
wished within the modeling of the Nature. Therefore, the α-Theory wants to be an e�ective al-
ternative to the Supersymmetry, by showing no small capacities.

130χ ≡ 8πG
c4 .
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7.3 String Theory and α-Theory

As we have shown in the previous section, the α-Theory represents a valid alternative to the
Supersymmetry. It goes without saying that in all the cases in which SUSY is used, or one wants
to use it, the α-Theory can be utilized. One of the most intensive use of the Supersymmetry is
within the String theory, which is the model that, by supposing to assimilate elementary particles
to vibrational modes of �liform objects (strings), wants to realize the desired uni�cation of the four
fundamental interactions of the Nature.
The supersymmetry transformations enter the string model when it is attempted to construct an

action describing vibrational modes of bosonic and fermionic type. In short, such an action is given
by 131

Ssuper = − 1

4πα′

∫
W⊂M

d2σ
{
∂aX

µ∂aXµ − iψ̄µρa∂aψµ
}
, (621)

where 2α′ is the square of the characteristic length of string, given by l ≡
√

2α′.
The action (621), for the reasons above explained, is the starting grid of all modern string the-

ories, or better of �superstring.� The weak point of Ssuper is that the use of SUSY transformations
for connecting Xµ and ψµ renders too complex the theoretical discussion on the Superstring theory,
taking it to results often farthest from the physical reality. The previous section showed the α-
Theory concurs to work without the disagreeable transformations of supersymmetry and, therefore,
a string theory founded on the α-Theory could not only describe all elementary particles at the
same time (without distinguishing between bosonic and fermionic strings), but it should render
the string model slimmer and more physically acceptable. Moreover, by using the α-Theory, the
String theory should not more su�er from the presence of the tachyons (this happens precisely in
the bosonic string theory), but, from this, it could draw new life too, because their materialization
should be a sign the strings were the �rst element of our universe, being present also in the unstable
tachyonic soup of the after Big-Bang. Naturally, in this section, we will not treat in a detailed
analysis the new String theory constructed through the α-Theory (�α-String theory�), since this
would involve an encyclopedic work, which is outside of our purposes. However, what we will make
is to lay the foundations of this new String theory, going to write its actions. We correctly used
the plural, because not knowing what between the AαT and SαT better physically describes the
elementary particles, we must necessarily introduce two di�erent string actions, of which only one
will be saved, when we will understand what between asymmetric and symmetric α-Theory is the
best to describe the quantum particles.
To write a string action by using the AαT or SαT is quite simple. Obviously, for future devel-

opments, it is opportune to avoid imposing some gauge or initial condition. As we just asserted,
the string actions based on the AαT and SαT, respectively, are easy to write, since they are not
other but a sort of holographic projection of the kinetic terms concerning the actions of these two
theories on the world-sheet W . Then, one has to consider the fact the world-sheet W is immersed

131The latin indices are those on the world-sheet W , while the greek ones are the Lorentz indices, therefore:
a ∈ {1, 2}; µ ∈ {0, 1, 2, 3}.
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in the Minkowski space-time M . Hence, it is not di�cult to understand the wanted actions are 132

SAα
string

= − i

4πα′

∫
W⊂M

d2σ
√
hgµνΦ̄

µ
s θ

a∂aΦ
ν
s (622)

SSα
string

= − 1

4πα′

∫
W⊂M

d2σ
√
hgµν(∂aΨ

µ
s )†πaπb(∂bΨ

ν
s), (623)

where gµν is the metric tensor of Minkowski space-time and h = −detab(hab), with hab metric tensor
of the world-sheet (the line element of W is so ds2

W = habdσ
adσb). The �elds Φµ

s and Ψµ
s totally

describe, in the case of SAα
string

and SSα
string

, respectively, the world-sheet dynamics and, therefore, the
string dynamics. In this case, with s we do not indicate the spin, but an intrinsic degree of freedom
on the string, which could be called �s-index.� A most deep consideration should make us to think
this intrinsic property, within the generic string, has really generated the spin of the elementary
particles. This could be an amazing result, because so the α-String theory would be able to explain
the spin origin, resolving in this way an open problem of the modern physics.
It remains to understand what is the explicit form of the matrices θa and πa. Let us drive

ourselves, for such an aim, to the fermionic string and in particular to the matrices ρa. According
to the Green-Schwarz-Witten notation [79], they are given by

ρ1 =

(
0 i
i 0

)
, ρ2 =

(
0 −1
1 0

)
(624)

namely they are two-dimensional. Moreover, since for the fermionic string

ψ̄µ ≡ ψµ†ρ0, (625)

it is also de�ned a two-dimensional matrix ρ0 in the following way

ρ0 =

(
0 −i
i 0

)
. (626)

We quickly notice

ρ1 = iσ1, ρ2 = −iσ2, ρ0 = σ2 (627)

132In principle, these actions can be de�ned with + sign too.
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i.e. the ρa are just equal to the �rst two Pauli matrices multiplied by i and −i. Therefore, by
remembering that χµ ≡ (δ, δεi) and ξµ ≡ (δ, iεi), we can de�ne{

θ1 ≡ iχ1 = iδε1

θ2 ≡ −iχ2 = −iδε2, hence θa ≡ (θ1, θ2) = (iχ1,−iχ2)
(628)

{
π1 ≡ iξ1 = −ε1

π2 ≡ iξ2 = ε2, hence πa ≡ (π1, π2) = (−ε1, ε2).
(629)

With regard to Φ̄µ
s , de�ned

Φ̄µ
s ≡ Φµ†

s θ
0, (630)

we can devise θ0 in two di�erent ways. By taking

θ0 ≡ δ or θ0 ≡ χ2 = δε2. (631)

It is clear the choice of the matrices θa and πa (comprised θ0) is only indicative, and it can change
by virtue of future necessities (for example these matrices could be de�ned also in this way: θ1 ≡ χ1,
θ2 ≡ −χ2, π1 ≡ ξ1, π2 ≡ −ξ2, i.e. without the imaginary unit i).
What we want to underline is the variability of the matrices θa and πa in contrast with the ρa. In

fact, although all these matrices represent world-sheet vectors, the matrices θa and πa have an own
dimension, dependent on the representations of LieSU(2), and they are not �xed in two dimensions
like the ρa. The mistake, indeed, is to believe that the matrix elements � being the components
of vectors de�ned on the world-sheet � must have two dimensions, just like the space where the
vectors live, whose components they are. But this is arbitrary, because one thing is the dimension
of the space in which the ρa represent a vector, and another thing is the dimension of the matrices
which are components of this vector, since their dimension could depend on additional degrees of
freedom, as the s-index. Therefore, the α-Theory introduces a new element in the String theory,
consisting in the fact to have a di�erent string action for any s ∈ N/2−{0}, although each of these
actions always has a common form de�ned on the world-sheet.133

We note that the two-dimensional representation for the θa and πa (comprised θ0) is obtained
when s = 1/2. In such a case, we have

133This is valid for any s ∈ N/2, unless s = 0. Naturally, it is possible to de�ne the matrices θa and πa so that
writing the string actions (622) and (623) when the s-index is equal to zero (s = 0) too. However, it is necessary to
understand if this is according to the physics of the early universe. Therefore, the question is: does exist a physical
reason for which we cannot write the SAα

string and S
Sα
string for s = 0?
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θ1 =
i

2

(
0 1
−1 0

)
, θ2 =

1

2

(
0 −1
−1 0

)
(632)

θ0 =

(
1 0
0 −1

)
or θ0 =

i

2

(
0 −1
−1 0

)
(633)

π1 =
1

2

(
0 −1
−1 0

)
, π2 =

i

2

(
0 −1
1 0

)
. (634)

Since the α-Theory is a GUT, what is the necessity to construct through it a string theory (α-
String theory), which is proposed of being a GUT too? The fact is that in physics an absolute
model of knowledge does not exist. The α-Theory wants to unify the elementary particle physics
and, when the Big-Break will be explained in detail, maybe this theory could realize the dream to
unify the fundamental interactions completely. However, it is not said that sometime, this complete
uni�cation achieved, a more still accurate models on the physical universe investigation could be
constructed, enabled to describe those phenomena seeming now, at our eyes, to be meta-physical.
The α-String theory, described in this section, could be one of these models. It is for such a reason
the development of the string model, based on the formalism of the α-Theory, is hopefully expected.
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8 The α-Theory Philosophically

In this chapter, we brie�y want to study the α-Theory from the philosophical point of view.
This type of discussion is necessary whenever one proposes a new model for the physical world
description. In fact, a theory cannot be made without worrying to establish its relationship with
the fundamental principles of the former theories and above all its predictive power, that becomes
manifest through the �falsi�ability� notion introduced by the philosopher Karl Popper. It is precisely
on these points this last chapter is based. In the �rst section, the foundations within the α-Theory
will be discussed and we will see that the two fundamental principles of the past century physics
� the uncertainty principle and constancy of the speed of light � come out in a natural way by
the same structure of the theory. Moreover, referring to the formalism developed in the appendix
A, we will give a matter for the resolution of those paradoxes and inconsistencies that plague the
quantum mechanics again. In the second and last section, we will discuss about the falsi�ability of
the α-Theory, based on the Popper vision. On that point, it will be attempted to generalize this
key concept, by introducing the �good theory� one.

8.1 Paradoxes and principles into a fundamental theory

The aim within any physical theory should be that to explain (and expect) the largest number of
phenomena, on the base of a little fundamental suppositions. Therefore, the �perfect theory� is the
one able to explain (and expect) all the physics, starting by an extremely small number of primary
properties, i.e. it should be animated by simplicity [86].
The α-Theory, described in this work, �ts neatly in this sort of thing, because it starts with few

assumptions and makes to gush out global characteristics of our universe, by showing a possible
uni�cation of the four interactions, if it will be suitably developed.
What are the main ingredients of the α-Theory? We obtained the equations of the theory by

reasoning on the Pauli equation and using the equation (44), in order to �nd the unknown value of
the matrix δ̃. Really, as we already explained in the footnote 7, the α-Theory can be developed � in
the hypothesis to know the constituent elements of the spin four-vector sµ � simply by the speci�c
properties of a quantum particle, which are the four-momentum pµ and spin four-vector sµ. The
�rst is related to the energy and momentum of a quantum particle and the second to its spontaneous
rotation. Therefore, the α-Theory basic ingredients are sµ and pµ, whose scalar product expresses
the indissoluble characteristic of such physical quantities into a quantum particle. The �bakeware�
in which these ingredients are cooked is the Schrödinger equation, in the general form

Hψ(~x, t) = i~
∂ψ

∂t
. (635)

Practically, the Schrödinger equation is the instrument which allows us to study dynamics of quan-
tum particles characterized by sµ and pµ. Therefore, it seems the α-Theory, being identi�ed by few
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primary elements, has the prerequisite for being a fundamental theory.
The characterization of a quantum particle through sµ and pµ does not indicate that the α-Theory

can be merely de�ned �fundamental theory,� but it could allow us to exceed some inconsistencies
of the quantum world and to explain the most important principles of the modern physics, like
the uncertainty principle and constancy of the speed of light. First of all, we notice that, having
coupled the spin four-vector sµ to the four-momentum pµ, has allowed us to construct a quantum
�eld theory with arbitrary spin and intrinsic degrees of freedom (the spin ones), which have not
changed the dimension of the physical space, but simply act on the number of components belonging
to any �eld of particles with �xed spin. Therefore, the Lorentz group L↑+ has not been expanded or
deformed, but simply �coupled� to the group SU(2) (or better to its Lie algebra representations).
The spin four-vector sµ, varying with the representations of LieSU(2), imposes the particle �elds
to be automatically column matrices inserted in matrix equations, i.e. they have to be operator
representations.134 This means within the α-Theory it seems useless to prescribe the second quan-
tization condition, which establishes the physical quantities must be operators.135 In fact, due to
the product sµpµ, the α-Theory is an intrinsically quantum model and this miracle appears to be
possible thanks to the spin four-vector. Therefore, such a core property of elementary particles is
the noumenon able to make them so di�erent from the classic ones. Hence, the spin of quantum
particles seems to impose a mechanical treatment avoiding the de�nition of postulates or principles.
And that is not all, because in the long run the simple energetic analysis on the studied systems is
able to conduct in a natural way into a non-commutative algebra and so to an uncertainty princi-
ple. In fact, we have seen the imposition of commutation and anti-commutation rules on creation
and annihilation operators was born by the request to obtain a positive-de�nite Hamiltonian for
particles having arbitrary spin (s = 0 included). Therefore, it seems to be this physical requirement
to lead us to the de�nition of non-commutative algebras and not the second quantization process.
Thence, we can also proceed without imposing by the beginning that normal modes of the �elds
are transformed in creation and annihilation operators. At the end of our process, by evading to
make any hypothesis on the nature of the particle �elds, it can be observed that, for having de�nite-
positive Hamiltonians, the most general condition the normal modes of such �elds must satisfy is
to be elements of a C∗-algebra. With regard to the AαT, such a C∗-algebra have to satisfy the
following anti-commutation rules 136


{bα(k), b

∗

β(k′)} = {dα(k), d
∗

β(k′)} = (2π)3ωkδ
3(~k − ~k′)δαβ

{bα(k), bβ(k′)} = {b∗α(k), b
∗

β(k′)} = 0

{dα(k), dβ(k′)} = {d∗α(k), d
∗

β(k′)} = 0,

(636)

while, for the SαT, the C∗-algebra of the normal modes must obey the following commutation
rules 137

134Only for s = 0 such a reasoning is not valid, since we have a scalar representation. But, as it will be explained,
this is not a problem, due to the energetic analysis on the Hamiltonians of the studied systems.
135Remember that, in general, we speak about operators, but, practically, we use representations of operator

algebras.
136The * indicates the involution. In such a case, we have: ||b∗α(k)bα(k)|| = ||bα(k)||2, ||d∗α(k)dα(k)|| = ||dα(k)||2.
137In this case, we have: ||a∗α(k)aα(k)|| = ||aα(k)||2, ||b∗α(k)bα(k)|| = ||bα(k)||2.
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
[aα(k), a

∗

β(k′)] = [bα(k), b
∗

β(k′)] = 2ωk(2π)3δ3(~k − ~k′)δαβ
[aα(k), aβ(k′)] = [a

∗
α(k), a

∗

β(k′)] = 0

[bα(k), bβ(k′)] = [b
∗
α(k), b

∗

β(k′)] = 0.

(637)

This includes, as already announced, the possibility of not using for our theory (asymmetric or
symmetric) the second quantization process, since it has an intrinsic quantum frame, namely a
non-commutative structure.138 This leads us to think the non-commutativity represents a basic
condition for the elementary particles and it is not a quid derived by measurement problems or
strange postulates. It is easy to understand this justi�es the Heisenberg uncertainty principle, since
it is a directed consequence of the non-commutativity [85]. Hence, the α-Theory is able to exceed
the dogmatic condition of the quantum physics, because it proposes to transform a principle in a
corollary.
What we said here and in the appendix A sheds new light on the interpretation and paradoxes

of the Quantum Mechanics (QM). The �rst point on which re�ecting concerns the circumstance
that the quantum particles, being relativistic particles, must be dealt with the formalism of the
QFT. Therefore, the non-relativistic quantum mechanics appears nothing but a toy model and
not a complete theory of elementary particles. If, instead, we think the α-Theory and formalism
developed into appendix A, based on the occupation numbers, are the most suitable way for dealing
with the physics of elementary particles, we could obtain a rationalization of the QM, which could
lead us to the resolution of its apparent paradoxes. Furthermore, by using the results of the α-
Theory and formalism of the occupation numbers, which is related to the concept of information
contained in a physical state more than on the localization of a single particle or a group of particles,
it is possible to propose a methodology in order to exceed the paradoxes of the quantum mechanics
and to make the particle physics a logical system, as the classic one. Naturally, what we said in
this section is only aimed to give bases for future physical and philosophical speculations.
Nevertheless, the α-Theory does not concur to introduce an acceptable formalism to the resolution

of the QM paradoxes and to justify the Heisenberg uncertainty principle only, but it says something
new also regarding the special Relativity (SR) and in particular about the constancy of the speed of
light. In fact, from the α-Theory turns out that the particles of our universe (REP universe) cannot
exceed the speed of light c, since such a universe was born through a great spontaneous symmetry
breaking � that we called Big-Break � from an unstable universe characterized by particles having
negative square energy (we called them �ieps�) and not v > c. Therefore, the α-Theory justi�es
also the principle of invariant light speed that, with the principle of relativity, is the basis for
the SR. But it goes further, because, unlike the special Relativity, it establishes an arrow for the
tachyon condensation, which overcomes the �interchangeability� between tachyons and bradyons
within the SR, which caused a lot of misunderstandings, by producing unrealistic science �ction
visions. Naturally, we have not to image other types of space for the α-Theory developments (in
particular for the gravity description), since the Minkowski space is completely able to describe the
high energy physics. In fact, as explained over this work, it is possible that � after Big-Break and
the rise of the interactions � the space-time of macroscopic phenomena has shown, at least locally,

138Such a reasoning � as said � is valid for s = 0 too, since the C∗-algebra has to be de�ned also in this point for
having positive-de�nite Hamiltonians.
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a non-vanishing curvature R 6= 0.139

Only the accurate study of the α-Theory and the construction of a reliable Big-Break model will
be able to clear these mysteries. What we want once again to emphasize is the power and importance
of the α-Theory. In fact, the goal of any fundamental theory is to justify those principles and/or
mathematical models at basis of the former theories. This means a fundamental theory must explain
why some hypotheses are right, without taking any further. The circumstance that the α-Theory
could justify the most important Quantum Mechanics and special Relativity principles has to make
us happy, since it is the proof this theory should create a bridge between the two speculative giants
of the past century physics, which many people believed to be totally incompatible. Everything
suggests that α-Theory is the theory which we all waited and for this we must work in order to
improve and comprise it in the best possible way. Maybe, making it, we will more fully know the
universe, our home.

8.2 Is the α-Theory a Popperian model?

According to the falsi�cationist conception of the philosopher Karl Popper, a scienti�c theory for
being signi�cant has not to be necessarily correct (expectations in perfect agreement with the ex-
periments), but it must be falsi�able, that is the scienti�c community must be able to verify, with
its instruments (theoretical and experimental ones), if the proposed theory is true or false. In any
case, this sort of theory in Popper's opinion is remarkable, because, if it is true, it allows a step
forward for the human knowledge, while, if it is false, supplies however important informations
about the inapplicability to the natural phenomena of certain theoretical speculations.
All the theories developed in the �rst part of the past century, to which obviously adding the

Newton's theory of Gravitation and Maxwell's theory of Electromagnetism, were falsi�able theo-
ries, because their characteristic equations allowed of subjecting them to direct tests, which could
con�rm or invalidate them. The second part of the 1900s saw, instead, the birth of not falsi�able
theories, such as the Supersymmetry and String theory.140 Why, then, whole generations of theo-
retical physicists are engaged in the development of these two theories? The answer is deep and it
goes to modify the Popperian idea of falsi�cation. In fact, a physical theory, in order to induce the
scienti�c community to take it into consideration, must be consistent, i.e. it should have an inner
coherence and it should aim at important results. The Supersymmetry and String theory satisfy
such requests, because they both have solid mathematical bases and are proposed with the scope
of unifying the physics laws, which represents the higher objective for any modern theory.
This consideration induces, therefore, to extend the Popper's concept of �critical rationalism� in

the following way:

Any physical Model, constructed through coherent mathematical methodologies, hav-

ing an inner consistency and wanting to extend or unify the pre-existing knowledge, if

it is falsi�able too, represents a �good theory.�

139Remember that Minkowski space is a pseudo-Riemannian manifold of signature (3, 1) having null curvature.
140Really, there is the Quantum Gravity too, since, for the moment, also this theory cannot be experimentally

tested.
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Now it must be speci�ed what is meant by �good theory.� A �good theory� is a model describing
the physical reality. The accuracy degree of this description is the index for understanding what,
between the theories candidates for modeling a certain phenomenon, is the one to take like reference.
But it must be admitted that other theories too, satisfying the previous postulate, may be good
theories. For example, the Newton's theory of Gravitation is a �good theory,� because it satis�es the
postulate previously enunciated. However, the Einstein's general Relativity is better, because the
accuracy it achieves, in order to describe the gravitational phenomena, is higher-up than Newton's
theory. This does not mean the Newton's theory of Gravitation must be to discard, like all the
students of the Analytical Mechanics course can testify. Therefore, a �good theory� is often a useful
theory, also when a more accurate one is developed (good theories, from this point of view, can be
considered like many matryoshka dolls, maybe in�nite). How can we consider the α-Theory? The
α-Theory is a QFT, in its asymmetric or symmetric connotation, i.e. it supplies equations which
are useful to qualitative and quantitative research through methodologies commonly used, as the
perturbation theory and the path integral formulation. In fact, the study of e�ective scattering
processes will be able certainly to put in relation the predictions of the α-Theory with experimen-
tal data. Therefore, the α-Theory represents a Popperian model, because its theoretical structure
concurs to legitimate or invalidate it. On this subject, one must advise who wants to undertake
the construction of the perturbation α-Theory that the coupling of the free �eld of such a theory,
asymmetric or symmetric, to a gauge �eld (interaction) is not banal, because, as already explained,
due to the supposed Big-Break, this coupling could reveal itself very di�erent from the one we have
for Dirac and Klein-Gordon �elds. In that sense, it should be proceeded before to the generalization
of the α-Theory (explanation of the big process of SSB and of the micro-macro problem) and, then,
to develop its perturbation theory. In any case, the α-Theory is falsi�able, and so, according to the
Popper de�nition, it is a model to take into consideration. But there is more, because the α-Theory
respects also the previous postulate of �good theory,� since it is not falsi�able only, but it has also
an inner consistency, based on the advanced mathematics of the QFT, and, above all, it uni�es the
physical description of elementary particles not subject to interaction (free particles), wanting to
be the fundamental element for the �Grand Uni�cation.� Therefore, the α-Theory, asymmetric or
symmetric, is a �good theory.� It remains to understand only its accuracy degree, namely if the
forecasts it puts on the plate are better than those of the Dirac and Klein-Gordon theories.
Strictly speaking, the α-Theory already supplies remarkable results, and who studied this work

knows there exists the freedom of choice on the theoretical wide range, which goes from the gen-
eralized Pauli principle to the double in�ation passing for the multi-statistics. But, probably, the
most amazing result of the α-Theory was seen when � through this model � dynamics of left- and
right-handed particles were studied. In this case, the α-Theory, without any theoretical forcing
or mathematical illusion game, has taken to two equations, for the AαT and SαT, respectively,
changing under parity and with nonzero mass. This means our theory predicted, in an elegant
way and without ad hoc hypothesis, the characteristic properties associating to the neutrinos and
anti-neutrinos, thing that neither the Weyl theory nor the Majorana one is able to make. For this,
the theoretical triumph could be declared.
Another fundamental issue will be to understand what, between the AαT and SαT, is the right

α-Theory. In the course of the following work, we tried to analyze not only the mathematical and
physical di�erences of these two theories, but, above all, their impact on the vision of the physical
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world, going from quantum mechanics to cosmology. In fact, it will be fundamental to deepen
the multi-statistics and double in�ation concepts, in order to �nd the form of potentials we have
de�ned in the section 7.1, which could give answer to fundamental issues, like the acceleration
and/or the missing mass of our universe. Moreover, the di�erent energetic distributions concerning
the AαT and SαT can solve other cosmological problems too, like the supremacy of matter on
anti-matter, which characterizes our universe (what happens if such an asymmetry were responsible
on large-scale for the gravitational force or vice-versa?). Nevertheless, as already explained, this
phenomenon could not imply AαT is better than SαT, but to depend on other causes of collective
nature, which are outside of the energetic states of elementary particles. In fact, it must be ad-
mitted the symmetry between particles and anti-particles, in the SαT, seems to be more in touch
with the logical hypothesis that in the in�nitely small there is a perfect equilibrium between matter
and anti-matter, probably failed on large-scale due to physical phenomena which for the moment
are unknown. Furthermore, it must be said that the AαT lets emerge in a simply way the Pauli
Principle just from the energetic distribution of its particles and this does not happen within the
SαT. Nevertheless, this last theory seems better than the AαT regarding the interaction with a
gauge �eld. In fact, the SαT, unlike the AαT, when it is coupled with an external gauge �eld, gives
a conserved four-current, in which there are the contribution of the particle �eld and the gauge one,
like rightly it should be for a theory in interaction with an external �eld. For that and many other
reasons, being aware that ulterior and deeper studies must be completed, I preferred to abstain
from imposing my opinion on the prominence concerning one of these theories, describing both and
waiting for future theoretical and experimental speculations.
This long journey is ended. It has shown us the physics can be improved with some revisions

concerning the foundations, which unfortunately are often neglected and undervalued, in the name
of an empty and alienating technicality. But a skyscraper cannot be built if the bases are wobbly:
inexorably it will fall. I hope the α-Theory can open the road to new and important physical devel-
opments, in brief that this theory has not been in vain. Only the force of this conviction supported
me in these years, between deprivations and snubs, so that the end of this section really can be a
beginning: the dawn of a new physics, illuminated by the α-Theory.
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A Occupation Numbers and Statistics. A New Way

Towards the α-Theory

In this appendix, we want to study the quantum states and their occupation numbers, intended
as the amount of particles characterizing them. This approach, based essentially on the concept
of information that any quantum state takes, will concur to place under a new light the idea of
symmetry and anti-symmetry of quantum states, and it will allow to establish the non-connection
between Pauli exclusion principle and anti-symmetry of the wave function under the application
of the exchange operator Pij (and more generally of the permutation operator P ), which sends
the generic i-particle in the j-particle and vice-versa. In particular, we will show that, if also a
Slater determinant for totally anti-symmetric states can be de�ned, this has no connection with
the exclusion principle. From that reason, a rede�nition of distinguishable and indistinguishable
quantum particles will follow, in tune with the Quantum Mechanics (QM) principles, which are
outside from the classical de�nition of (elementary) particle and that are, instead, based on the
information referring to the amount of particles a state possesses, which leads to the probability of
measuring or not a certain event. In the end, we will analyze the Pauli's article of 1940 about the
relationship between spin and statistics, which is known with the name of �spin-statistics theorem.�
The inadequacy of the Pauli's demonstration will be proved, from physical and mathematical point
of view, putting thus in crisis the idea that a relationship between the Bose-Einstein (or the Fermi-
Dirac) statistics and canonical commutation (or anti-commutation) relations, exists. However, our
examination will not be destructive, meaning it will not have the purpose to invalidate the spin-
statistics theorem, but, instead, to show the fallacy of the Pauli's demonstration and, therefore,
prompting the researchers to review those concepts which were believed to be correct up to now.
This should open the road to a rede�nition of the relationship between spin and statistics within
quantum systems. For this reason, it will be made to see that, although a relationship between spin
and statistics is uncertain, a relationship between occupation numbers of quantum states and the
two known types of statistics already exists. Such a connection should lead towards new horizons
for the study of the elementary particle physics.
In order to begin, we consider a generic quantum state |A〉 of an abstract Hilbert space H. We

have

|A〉 =
∞∑
n=1

an|en〉, (638)

where an ≡ 〈en|A〉, and {|en〉}∞n=1 is an orthonormal basis of vectors of H satisfying the relations〈en|em〉 = δnm∑∞
n=1 |en〉〈en| = I ∈ H.

(639)
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The existence of the state |A〉 ∈ H ensures (convergence of the series)

∞∑
n=1

|an|2 <∞. (640)

On the contrary, if the condition (640) is valid, based on the Riesz-Fischer theorem, the convergence
of the series

∑∞
n=1 an|en〉 to a generic element |A〉 ∈ H is ensured. The wave function associated to

the quantum state |A〉 of H, that we indicate with ψA(x), is de�ned in the following way

ψA(x) ≡ 〈x|A〉, x ∈ R. (641)

Practically, the wave function ψA(x) allows to the state |A〉, and to its amount of particles, to move
along the real line (or in any interval (a, b) ⊂ R). In virtue of the normalization condition∫

R
|ψA(x)|2dx = 1, (642)

deriving from the probability interpretation of ψA(x), we can assert our wave function belongs to
the space L2(R) of the square-integrable functions, characterized from the inner product

(f, g) ≡
∫
R
f ∗(x)g(x)dx ∀f, g ⊂ L2(R). (643)

Thanks to the relation (638) and by using the de�nition (641), we can write

ψA(x) ≡ 〈x|A〉 =
∞∑
n=1

an〈x|en〉, (644)

that is, de�ned 141

ψn(x) ≡ 〈x|en〉 ∀n ∈ [1, . . . ,∞), (645)

we have

ψA(x) =
∞∑
n=1

anψn(x), (646)

141They are the wave functions relative to the states of basis.
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and so |A〉 and ψA(x) are characterized by the same decomposition coe�cients an, which induce
therefore the isomorphism

|A〉 −→ ψA(x), (647)

which moreover is guaranteed, in general terms, by the isomorphism of H with L2(R). Of course,
also the correspondences exist

|e1〉 −→ ψ1(x)

|e2〉 −→ ψ2(x)

. . . . . . . . . . . . (648)

|en〉 −→ ψn(x)

. . . . . . . . . . . .

which say there is a one-to-one correspondence between any state of basis and elementary wave
functions (it is obvious that {ψn(x)}∞n=1 represents a basis of L2(R)).
The question now we want to deal with is: how many particles can contain, in principle, the

quantum state |A〉 (and so also its associated wave function ψA(x))? The answer is: in�nite, by and
large. These particles can go all in an elementary state |ei〉, or, block by block, in all the states of
the basis {|en〉}∞n=1. The number of particles that can be found in a generic state of basis is called
�occupation number� (or ��lling number�) αn. Hence, we have

|e1〉 −→ α1 = 0, 1, 2, . . . ,∞
|e2〉 −→ α2 = 0, 1, 2, . . . ,∞
. . . . . . . . . . . . . . . . . . . . . . . . (649)

|en〉 −→ αn = 0, 1, 2, . . . ,∞
. . . . . . . . . . . . . . . . . . . . . . . .

and so the generic state of basis |ei〉 can be indicated in a much better way, by writing

|ei〉αi ∀i ∈ [1, . . . ,∞), αi ∈ {0, 1, 2, . . . ,∞}. (650)

Therefore, the total number of particles into the state |A〉 is 142

142For a physical consistency, such a series should be convergent, i.e.

k =

∞∑
n=1

αn <∞.
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k =
∞∑
n=1

αn. (651)

The occupation numbers formalism concurs to better characterize the quantum states or the wave
functions of particle systems. In fact, we have

|A〉k =
∞∑
n=1

an|en〉αn (652)

ψkA(x) =
∞∑
n=1

anψ
αn
n (x). (653)

We notice that the wave function ψkA(x) causes the motion of the state |A〉k in L2(R) (and this
thanks to the probability interpretation of the wave function, otherwise ψkA(x) would have moved,
like already said previously, on the real line). In general terms, if we want to move |A〉k in L2(Rm),
we must consider

〈x1, . . . , xm|A〉k ≡ ψkA(x1, . . . , xm) =
∞∑
n=1

anψ
αn
n (x1, . . . , xm), (x1, . . . , xm) ⊂ Rm. (654)

Is there a relation between the m-tuple (x1, . . . , xm) and the generic occupation number of αl?
No, since the m-tuple says where is the generic state ψl in L2(Rm) (independently from how many
particles it contains), while αl says how many particles it contains. Therefore, expressions of the
type: �the particle a is in x1 and the particle b in x2,� or: �the wave function of two particles is
ψ(x1, x2)� are conceptually wrong.
We want now to express, in the formalism as soon as developed, the �indistinguishability principle�

of quantum particles. First of all, instead of simply writing

|A〉k and ψkA(x1, . . . , xm),

we make clear in these quantities the dependence from their occupation numbers, namely|A〉k ≡ |A;α1, . . . , αn, . . .〉k

ψkA(x1, . . . , xm) ≡ ψkA(x1, . . . , xm;α1, . . . , αn, . . .).
(655)

Practically, |A〉k and ψkA(x1, . . . , xm), with the above de�nitions, now directly depend on the amount
of particles existing into each of their elementary states (of basis). What happens when two particles
which are in the states i and j are exchanged? In order to answer this question, we need to
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concentrate on the distinguishability and indistinguishability concept of quantum particles. As it
is known, the quantum particles, according with the uncertainty principle, are indistinguishable,
i.e. for them is valid the �indistinguishability principle.� The formalism we are using contains this
principle in itself, being able to exceed it too. In fact, to de�ne an �indistinguishability principle�
for the quantum particles is really without sense, because this treats the particles as single objects
on which is asked if it is possible or not to consider their trajectory. But, in QM the same concept
of �particle� comes to fall, since the utilized physical quantity is the wave function, which does not
represent a particle or a group of particles, but the physical information which is derived from this
particle or group of particles. Therefore, to use a formalism based essentially on the amount of
particles, namely on the information resulting from such an amount, and not on the particles only,
seems to be in full agreement with the spirit of the Quantum Mechanics. Hence, speaking about
the indistinguishability of identical particles is incorrect, since it is a concept still connected with
the classical particle idea, which in the philosophy of quantum physics is meaningless.
This as soon as asserted makes us understand that wondering what succeeds when a i-particle is

exchanged with a j-particle is wrong. It is, instead, right to ask what happens when the amounts of
the elementary states i and j are exchanged, i.e. when αi is exchanged with αj. In order to answer
this question, we de�ne an exchange operator Pij such that

Pij|A;α1, . . . , αi, . . . , αj, . . .〉k = |A;α1, . . . , αj, . . . , αi, . . .〉k (656)

Pijψ
k
A(x1, . . . , xm;α1, . . . , αi, . . . , αj, . . .) = ψkA(x1, . . . , xm;α1, . . . , αj, . . . , αi, . . .). (657)

It is easy to see that, if we apply (on the left) once again the operator Pij to the previous equations,
we get

P 2
ij|A;α1, . . . , αi, . . . , αj, . . .〉k = Pij|A;α1, . . . , αj, . . . , αi, . . .〉k = |A;α1, . . . , αi, . . . , αj, . . .〉k (658)

P 2
ijψ

k
A(x1, . . . , xm;α1, . . . , αi, . . . , αj, . . .) = Pijψ

k
A(x1, . . . , xm;α1, . . . , αj, . . . , αi, . . .) =

ψkA(x1, . . . , xm;α1, . . . , αi, . . . , αj, . . .), (659)

and so P 2
ij = I, where with I we indicate the identity operator.

The above property is very important, because it allows us to identify the eigenvalues of the
operator Pij. In fact, if we consider

Pij|A;α1, . . . , αn, . . .〉k = λ|A;α1, . . . , αn, . . .〉k (660)

Pijψ
k
A(x1, . . . , xm;α1, . . . , αn, . . .) = λψkA(x1, . . . , xm;α1, . . . , αn, . . .), (661)
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by multiplying (on the left) both the members by Pij, we have

P 2
ij|A;α1, . . . , αn, . . .〉k = Pijλ|A;α1, . . . , αn, . . .〉k =

λPij|A;α1, . . . , αn, . . .〉k = λ2|A;α1, . . . , αn, . . .〉k (662)

P 2
ijψ

k
A(x1, . . . , xm;α1, . . . , αn, . . .) = Pijλψ

k
A(x1, . . . , xm;α1, . . . , αn, . . .) =

λPijψ
k
A(x1, . . . , xm;α1, . . . , αn, . . .) = λ2ψkA(x1, . . . , xm;α1, . . . , αn, . . .), (663)

from which, by remembering P 2
ij = I, it quickly follows λ2 = 1, that is

λ = ±1. (664)

Therefore

Pij|A;α1, . . . , αn, . . .〉k = ±|A;α1, . . . , αn, . . .〉k (665)

Pijψ
k
A(x1, . . . , xm;α1, . . . , αn, . . .) = ±ψkA(x1, . . . , xm;α1, . . . , αn, . . .). (666)

It is well to underline that the eigenstate |A;α1, . . . , αn, . . .〉k of Pij (thus like the wave function
ψkA(x1, . . . , xm;α1, . . . , αn, . . .)) is, of course, eigenstate of the Hamiltonian H of the system, thanks
to the indistinguishability principle of quantum particles. Hence

H|A;α1, . . . , αn, . . .〉k = E|A;α1, . . . , αn, . . .〉k (667)

HψkA(x1, . . . , xm;α1, . . . , αn, . . .) = EψkA(x1, . . . , xm;α1, . . . , αn, . . .). (668)

Since Pij and H are characterized by a common eigenstate, we can assert Pij is a constant of motion,
namely

[Pij, H] = 0. (669)
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Usually, the eigenstates of Pij with λ = 1 are said �symmetric,� while those with λ = −1 are said
�anti-symmetric.� Since the evolution of a physical state does not change the sign of λ, symmetry
and anti-symmetry of a quantum state (or wave function), about the exchange of αi with αj, are
conserved, respectively. Therefore, if a physical state is eigenstate of Pij, it is necessarily �symmetric
or anti-symmetric,� regarding the exchange of αi with αj. Since Pij|A〉k, thus like PijψkA, is eigenstate
of H belonging to the same eigenvalue E of |A〉k (or ψkA), there is a degeneration phenomenon
(exchange degeneracy), for which the totality of the states (or wave functions), deriving from all
the possible exchanges of the occupation numbers concerning the set (α1, . . . , αn, . . .), belong to the
same energy. This logic is not only valid for the exchange of two occupation numbers αi and αj,
but for any permutation P , even or odd, of the occupation numbers (α1, . . . , αn, . . .). However, we
must be quick-witted, because all the permutations do not commute and so a system of common
eigenvectors will not be. In reality, this problem is avoided by noticing any permutation P can be
expressed as the product of more exchange operations and, therefore, the common eigenvectors of
all the permutations P are just those relative to all the generic exchange operators Pij, always with
eigenvalues λ = ±1. Also in such a case, these states (or wave functions) are eigenstates of H with
eigenvalue E and so a degeneration phenomenon appears, for which NP states (or wave functions)
belong to the same energy.143 Therefore, we can write

P |A;α1, . . . , αn, . . .〉k = ±|A;α1, . . . , αn, . . .〉k (670)

PψkA(x1, . . . , xm;α1, . . . , αn, . . .) = ±ψkA(x1, . . . , xm;α1, . . . , αn, . . .). (671)

As said, the eigenvalues are always two, i.e.

λ1 = +1, λ2 = −1 (or conversely) (672)

and this independently by the fact P supports even or odd permutations. Also for the permutation
operator P , as for the exchange operator Pij, eigenstates belonging to the eigenvalue +1 are said
symmetric and those belonging to the eigenvalue −1 are said anti-symmetric and this speci�c feature
does not change with the evolution of the system.
Now we want to write the relations (670) and (671) in the following more compact form, which

will be useful in the next pages 144

P |A;α1, . . . , αn, . . .〉k = (λ1, λ2)P |A;α1, . . . , αn, . . .〉k (673)

PψkA(x1, . . . , xm;α1, . . . , αn, . . .) = (λ1, λ2)Pψ
k
A(x1, . . . , xm;α1, . . . , αn, . . .). (674)

143NP is the total number of the permutations that can be made on the set (α1, . . . , αn, . . .).
144Naturally, (λ1, λ2)P ≡ (λ1,P , λ2,P ).
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Does a physical reason exist why the eigenvalues of P (or Pij) just assume the values +1 and −1?
We have demonstrated this depends on the fact P 2 = I (or P 2

ij = I) and so it should derive only
by a mathematical property of the generic permutation (or exchange) operator. Nevertheless, we
can make some hypotheses with regard to. As an example, it could be thought this depends on the
type of permutation, even or odd, which works on the system, that is we can assume

λi ≡ (−1)P ∀i ∈ {1, 2}. (675)

If P is even then we have +1, while if it is odd we have −1. From what previously seen, we note
that the (675) is wrong, because P , independently from the fact it is even or odd, always must have
like eigenvalues +1 and −1 (and not only one!). Alternatively, we can suppose the eigenvalues λ1

and λ2 depend on the sum of the occupation numbers involved in the permutation P . However,
such a sum will be even or odd and, therefore, we have +1 or −1 only. But this is not a problem,
because it can be considered 145 ∑

α

P (α) and
∑
α

P (α) + 1, (676)

since the �rst summation is even when the second one is odd, and vice-versa. Therefore, we can
reasonably de�ne

λ1 ≡ (−1)
∑
α P (α), λ2 ≡ (−1)

∑
α P (α)+1. (677)

It is simple to notice that the (677) are well-de�ned, since they do not �x a priori the values +1
and −1, but make depend them on time after time by

∑
α P (α). Hence, in general, if we want by

necessity to give a physical meaning to λ1 and λ2, it is possible to use the de�nitions (677) in the
expressions (673) and (674).
Now we want to �nd the most general expression of |A;α1, . . . , αn, . . .〉k as a function of all the

possible permutations of the set (α1, . . . , αn, . . .). For making this, we must before analyze the
concept of symmetry and anti-symmetry of a quantum state (or wave function), that in literature
is misunderstood. As seen in the previous pages, the property of symmetry and anti-symmetry of
a quantum state consists of assigning to such a state, eigenstate of the operator P (or Pij), the
eigenvalue +1 or −1, respectively. And this happens all the time we apply a permutation P (or
an exchange Pij) on a quantum state. Therefore, we can assert the property of symmetry or anti-
symmetry of a quantum state depends on the exchange or permutation operated once only on the
system and not by the coupling (sum and/or di�erence) of all the possible exchanges or permutations
applied on the system. This means that, referring to a single exchange or a single permutation, it
makes sense to say a quantum state (or wave function) must be symmetric or anti-symmetric and
it must conserve this characteristic in the time, but it makes no sense to say that symmetry and
anti-symmetry, which in short depend on assigning the eigenvalue +1 and the eigenvalue −1 to the
eigenstate of a single permutation P (or exchange Pij), are an intrinsic property of a quantum state

145We indicate with P (α) the set of αi on which the permutation is done.
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(or wave function), when one wants to express this state like combination of all the exchanges or
permutations which we can make on the occupation numbers of the system (or on the particles,
if we use the old formalism). Thence, we understand the mistake � commonly committed � is to
impose that a typical property of a single permutation (or exchange) is conserved also when we
consider the sum of all the exchanges or permutations, that would reasonably give us a di�erent
result.
Therefore, what we want to treat is a new mathematical problem, which consists of expressing

the quantum state |A;α1, . . . , αn, . . .〉k (or the wave function ψkA) like a combination of all the
permutations we can do on the set (α1, . . . , αn, . . .). At the end, we will confront the obtained
result with the totally symmetric state and the totally anti-symmetric state that are possible to
construct taking the sum of all the eigenstates with eigenvalue +1 and the sum of all the eigenstates
with alternating eigenvalues (−1)P , where, with P , we indicate the even and odd permutations. In
order to resolve our problem, we notice by the (673) the following eigenvalue equations are valid

P1|A;α1, . . . , αn, . . .〉k = (λ1, λ2)P1|A;α1, . . . , αn, . . .〉k
P2|A;α1, . . . , αn, . . .〉k = (λ1, λ2)P2|A;α1, . . . , αn, . . .〉k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (678)

Pi|A;α1, . . . , αn, . . .〉k = (λ1, λ2)Pi |A;α1, . . . , αn, . . .〉k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From which, by multiplying both sides of the �rst expression by (λ1, λ2)P1 , both sides of the second
expression by (λ1, λ2)P2 , etc., we obtain

146

|A;α1, . . . , αn, . . .〉k = (λ1, λ2)P1P1|A;α1, . . . , αn, . . .〉k
|A;α1, . . . , αn, . . .〉k = (λ1, λ2)P2P2|A;α1, . . . , αn, . . .〉k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (679)

|A;α1, . . . , αn, . . .〉k = (λ1, λ2)PiPi|A;α1, . . . , αn, . . .〉k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to estimate the general expression of |A;α1, . . . , αn, . . .〉k in function of all the permuta-
tions operated on such a state, we must, obviously, add all the terms. At left-hand side certainly
will appear NP |A;α1, . . . , αn, . . .〉k, where with NP is indicated the total number of permutations
made on the set (α1, . . . , αn, . . .). On the contrary, to estimate the right-hand side is much more
complicated. In fact, it is not possible to consider the simple sum of the several terms, because all
the possible combinations between the λ1 and λ2 of any permutation must be considered.147 For

146It is banal to notice that, in general, (λ1, λ2)2Pl = 1 for any l ∈ N.
147Naturally, we can only couple the λ concerning to di�erent permutations, since the λ of a same permutation

cannot be added. In other words, we cannot consider the amount λ1,Pl + λ2,Pl , for any �xed l ∈ N.
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understanding this problem, we consider some simple cases of coupling. To such a purpose, we start
from the 2 couples

(+,−)1, (+,−)2 (680)

and matching all distinct elements in each couple, we have

++, +−, −+, −− . (681)

Therefore, from 2 couples it is possible to draw 4 elements. In the case of the 3 couples

(+,−)1, (+,−)2, (+,−)3 (682)

we have the combinations

+ + +, +−+, +−−, −+ +, −+−, −−−, + +−, −−+. (683)

Hence, from 3 couples it is possible to draw 8 elements. In the case of the 4 couples

(+,−)1, (+,−)2, (+,−)3, (+,−)4 (684)

we have the combinations

+ + ++, +−++, +−−+, +−−−, −+ ++, −−++, −−−+, −−−−,

−+−+, +−+−, + + +−, −−+−, −+−−, −+ +−, + +−+, + +−− . (685)

Hence, from 4 couples it is possible to draw 16 elements. In general terms, therefore, we have nq

elements, where n is the number of the elements of the couple (n = 2), while q is the number of
the couples (q = 2, 3, 4 ⇒ 22 = 4, 23 = 8, 24 = 16). This means that, in order to calculate all
the elements generated from the matching of the couples (λ1, λ2)Pi , we have to consider nothing
but the ordered selections with repetition, two by two di�erent within them, of class NP on the
set of the 2NP elements identi�ed by the previously written equations. At the end, the elements
of these ordered selections with repetition must be added between them and this gives the state
NP |A;α1, . . . , αn, . . .〉k. The total number concerning this type of states is 2NP .
In order to formalize that as soon as asserted, we develop a general formalism. For that reason,

we consider the following classes of elements
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C1 = {X1
1 , X

2
1 , . . . , X

n
1 }

C2 = {X1
2 , X

2
2 , . . . , X

n
2 }

. . . . . . . . . . . . . . . . . . . . . (686)

Cq = {X1
q , X

2
q , . . . , X

n
q }.

The set of the ordered selections with repetition, two by two di�erent, of all the n elements of the
classes C1, C2, . . . , Cq are given by

Dn,q(C1, . . . , Cq) =
{
D1
n,q(C1, . . . , Cq), . . . , D

nq

n,q(C1, . . . , Cq)
}
, (687)

i.e. it is constituted, like we expected, by nq di�erent ordered selections.
The problem now we want to resolve is that to �nd a writing able to express the sum of all

the elements which represent each one of the ordered selections of the set Dn,q(C1, . . . , Cq). The
expression

∑
C1,...,Cq

Dl
n,q(C1, . . . , Cq), ∀l ∈ {1, . . . , nq} (688)

seems to satisfy this wish.
We specialize such a formalism to the state NP |A;α1, . . . , αn, . . .〉k. Since 148

1. n = 2, q = NP

148It is possible to construct a more explicit and compact formalism than the above one. For doing it, we must
note that the (686) can be written in this fashion

Cj =
{
Xi
j

}n
i=1

∀j ∈ {1, . . . , q},

from which the (687) becomes

Dn,q

[{
Xi

1

}n
i=1

, . . . ,
{
Xi
q

}n
i=1

]
=
{
D1
n,q

[{
Xi

1

}n
i=1

, . . . ,
{
Xi
q

}n
i=1

]
, . . . , Dnq

n,q

[{
Xi

1

}n
i=1

, . . . ,
{
Xi
q

}n
i=1

]}
.

Now it is banal to see that the (688) can be so written

Dl
n,q

[{
Xi

1

}n
i=1

+ . . .+
{
Xi
q

}n
i=1

]
= Dl

n,q

 q∑
j=1

{
Xi
j

}n
i=1

 =

q∑
j=1

Dl
n,q

[{
Xi
j

}n
i=1

]
.
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2. C1 = (λ1, λ2)P1 , . . . , Ci = (λ1, λ2)Pi , . . .

3. (λ1, λ2)P1P1|A;α1, . . . , αn, . . .〉k + (λ1, λ2)P2P2|A;α1, . . . , αn, . . .〉k =
[δ1j(λ1, λ2)P1 + δ2j(λ1, λ2)P2 ]

∑2
r=1 δrjPj|A;α1, . . . , αn, . . .〉k,149

and, by using in place of
∑

C1,...,Cq
the writing

∑
λP
, for indicating the sum of all the λ of any

ordered selection without repetition, we can immediately write 150

NP |A;α1, . . . , αn, . . .〉k =

NP∑
r=1

∑
λP

Dl
2,NP

[δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPj|A;α1, . . . , αn, . . .〉k,

(689)

from which it follows 151

|A;α1, . . . , αn, . . .〉k =
1

NP

NP∑
r=1

∑
λP

Dl
2,NP

[δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPj|A;α1, . . . , αn, . . .〉k

(690)
∀l ∈ {1, . . . , 2NP }.

149Naturally, δ1jδ1j = 1, δ1jδ2j = 0 = δ2jδ1j , δ2jδ2j = 1.
150By using the formalism introduced in the footnote 148, we have

Dl
2,NP

NP∑
j=1

(λ1, λ2)Pj

 =

NP∑
j=1

Dl
2,NP

[
(λ1, λ2)Pj

]
,

and so the (689) can be written

NP |A;α1, . . . , αn, . . .〉k =

NP∑
r=1

NP∑
j=1

Dl
2,NP

[
δjm(λ1, λ2)Pj

]
δrmPm|A;α1, . . . , αn, . . .〉k.

151Or else

|A;α1, . . . , αn, . . .〉k =
1

NP

NP∑
r=1

NP∑
j=1

Dl
2,NP

[
δjm(λ1, λ2)Pj

]
δrmPm|A;α1, . . . , αn, . . .〉k,

∀l ∈ {1, . . . , 2NP }.
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Adding all these 2NP states, we obtain the super-state 152

|A;α1, . . . , αn, . . .〉k =
1

NP 2NP

2NP∑
l=1

NP∑
r=1

∑
λP

Dl
2,NP

[δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPj |A;α1, . . . , αn, . . .〉k,

(691)

which represents the most general eigenstate of H expressed through the eigenstates obtained
from all the permutations made on the set of occupation numbers (α1, . . . , αn, . . .). If we want
to normalize this eigenstate, it must be written 153

|A;α1, . . . , αn, . . .〉k =
1√

NP 2NP

2NP∑
l=1

NP∑
r=1

∑
λP

Dl
2,NP

[δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPj |A;α1, . . . , αn, . . .〉k.

(692)

Similarly, in terms of wave function 154

ψkA(x˜;α˜) =
1√

NP2NP

2NP∑
l=1

NP∑
r=1

∑
λP

Dl
2,NP

[δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPjψ
k
A(x˜;α˜), (693)

where, for convenience, one has de�ned

152Or else

|A;α1, . . . , αn, . . .〉k =
1

NP 2NP

2NP∑
l=1

NP∑
r=1

NP∑
j=1

Dl
2,NP

[
δjm(λ1, λ2)Pj

]
δrmPm|A;α1, . . . , αn, . . .〉k.

153Or else

|A;α1, . . . , αn, . . .〉k =
1√

NP 2NP

2NP∑
l=1

NP∑
r=1

NP∑
j=1

Dl
2,NP

[
δjm(λ1, λ2)Pj

]
δrmPm|A;α1, . . . , αn, . . .〉k.

154Or else

ψkA(x˜;α˜) =
1√

NP 2NP

2NP∑
l=1

NP∑
r=1

NP∑
j=1

Dl
2,NP

[
δjm(λ1, λ2)Pj

]
δrmPmψ

k
A(x˜;α˜).
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(x˜;α˜) ≡ (x1, . . . , xm;α1, . . . , αn, . . .). (694)

At this point, we consider the two states

|A;α1, . . . , αn, . . .〉k =
1√
NP

∑
P

P |A;α1, . . . , αn, . . .〉k (695)

|A;α1, . . . , αn, . . .〉k =
1√
NP

∑
P

(−1)PP |A;α1, . . . , αn, . . .〉k, (696)

where

(−1)P =

{
+1 for even permutations

−1 for odd permutations.
(697)

We want to know what relationship exists between the above two states and super-state (692).
The answer is: none, because in no way the states (695) and (696) can be derived from the super-
state (692). However, if we consider one of the l-states composing the (normalized) grand-state155

|A;α1, . . . , αn, . . .〉k =
1√
NP

NP∑
r=1

∑
λP

Dl
2,NP

[δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPj|A;α1, . . . , αn, . . .〉k,

(698)

we sure have within these 2NP states there are the states (695) and (696) too. This means that
(2NP − 2)�states di�erent from (695) and (696) exist. This fact is essential for trying to clarify the
role of the state (695), which is called �totally symmetric,� and the role of the state (696), which is
called �totally anti-symmetric,� within those quantum systems in which the generic state, eigenstate
of H, is expressed through the sum of the states obtained from this generic state by making all
the possible permutations on the set of occupation numbers (α1, . . . , αn, . . .). The result to which
we arrive is that the states (695) and (696) have no relation with the super-state (692) and, at
most, they can be considered two ordinary states within the 2NP states assembling the normalized
grand-state (698). This means it is absolutely wrong to think that the quantum state (or the wave
function) of a system of identical particles can be totally symmetric or anti-symmetric under the

155Or else

|A;α1, . . . , αn, . . .〉k =
1√
NP

NP∑
r=1

NP∑
j=1

Dl
2,NP

[
δjm(λ1, λ2)Pj

]
δrmPm|A;α1, . . . , αn, . . .〉k.
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exchanges or permutations that we can make on the occupation numbers of the set (α1, . . . , αn, . . .).
It could be objected this result has been obtained because, in contrast to what is made in liter-

ature, we have not reasoned on the permutation of (1, 2, 3, . . . , N) identical particles, but on the
occupation numbers of each elementary (quantum) state constituting the generic state |A〉. Al-
though, like already widely explained, to consider the set of (1, 2, 3, . . . , N) identical particles and
their permutations has not much sense in the quantum physics (among other things, all the particles
could be found in one of the in�nite elementary states of |A〉), we will show that also this (bad)
approach takes to analogous results like those obtained previously. With this aim, we consider the
system of eigenvalue equations

P1|A; 1, . . . , N〉 = ±|A; 1, . . . , N〉; [H,P1] = 0

P2|A; 1, . . . , N〉 = ±|A; 1, . . . , N〉; [H,P2] = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (699)

Pi|A; 1, . . . , N〉 = ±|A; 1, . . . , N〉; [H,Pi] = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which can also be written in such a way

P1|A; 1, . . . , N〉 = (λ1, λ2)P1|A; 1, . . . , N〉; [H,P1] = 0

P2|A; 1, . . . , N〉 = (λ1, λ2)P2|A; 1, . . . , N〉; [H,P2] = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (700)

Pi|A; 1, . . . , N〉 = (λ1, λ2)Pi |A; 1, . . . , N〉; [H,Pi] = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where we have de�ned

λ1 ≡ +1, λ2 ≡ −1. (701)

Now, by multiplying both sides of the �rst expression of the (700) by (λ1, λ2)P1 , both sides of the
second expression by (λ1, λ2)P2 , etc., we have

156

|A; 1, . . . , N〉 = (λ1, λ2)P1P1|A; 1, . . . , N〉

|A; 1, . . . , N〉 = (λ1, λ2)P2P2|A; 1, . . . , N〉
156Of course, in general, (λ1, λ2)2Pl = 1 for any l ∈ N.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (702)

|A; 1, . . . , N〉 = (λ1, λ2)PiPi|A; 1, . . . , N〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

from which, following the argumentations made in the previous pages and by remembering in such
a case NP = N ! (number of permutation of N particles), we get 157

|A; 1, . . . , N〉 =
1

N !

N !∑
r=1

∑
λP

Dl
2,N ! [δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPj|A; 1, . . . , N〉, (703)

and therefore, by making the sum on all the 2N ! states, we obtain the (normalized) super-state 158

|A; 1, . . . , N〉 =
1√
N !2N !

2N !∑
l=1

N !∑
r=1

∑
λP

Dl
2,N ! [δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPj|A; 1, . . . , N〉,

(704)

and in terms of wave function (always by supposing it depends on N particles) 159

ψA(1, . . . , N) =
1√
N !2N !

2N !∑
l=1

N !∑
r=1

∑
λP

Dl
2,N ! [δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPjψA(1, . . . , N).

(705)

157Or else

|A; 1, . . . , N〉 =
1

N !

N !∑
r=1

N !∑
j=1

Dl
2,N !

[
δjm(λ1, λ2)Pj

]
δrmPm|A; 1, . . . , N〉.

158Or else

|A; 1, . . . , N〉 =
1√

N !2N !

2N!∑
l=1

N !∑
r=1

N !∑
j=1

Dl
2,N !

[
δjm(λ1, λ2)Pj

]
δrmPm|A; 1, . . . , N〉.

159Or else

ψA(1, . . . , N) =
1√

N !2N !

2N!∑
l=1

N !∑
r=1

N !∑
j=1

Dl
2,N !

[
δjm(λ1, λ2)Pj

]
δrmPmψA(1, . . . , N).
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This proves that, by utilizing an (incorrect) formalism which does not use the occupation numbers,
but only the particles which a state hypothetically contains, we always arrive at the result that the
states

|A; 1, . . . , N〉S =
1√
N !

∑
P

P |A; 1, . . . , N〉 (706)

|A; 1, . . . , N〉A =
1√
N !

∑
P

(−1)PP |A; 1, . . . , N〉 (707)

are not the only ones (if we reason in terms of l-th states) and are incoherent from the theoretical
point of view too (if we reason in terms of super-state, which then is the more general state resolving
our problem). This irreparably damages the idea that the wave function of an identical system of
particles can have only two alternatives under the permutation of all its particles, i.e. the fact of
being totally symmetric or totally anti-symmetric.
What now we want to make is the study of the Pauli exclusion principle, in terms of the formalism

of the occupation numbers we introduced in these pages. In particular, we want to inquire on the
validity of the consequences of such a principle, in order to understand its real logical and physical
subsistence. The exclusion principle, formulated by Pauli in 1925, can be enunciated in the following
way:

An elementary quantum state, characterized in a unique way by the quantum numbers

(n, l,m, s), can maximum contain a single electron. Therefore, an elementary quantum

state can be empty or having one electron at the most.

Figuratively, this can be expressed in the following way:

� = elementary quantum state, · = electron

• � the state is empty.

• � the state contains one electron, i.e. the state is complete.

Thence, an elementary quantum state can be imagined like a box which no more than one electron
enters into.160 This means that, by using the formalism of the occupation numbers, given a system

160Pauli, rather than quantum state, spoke about �atomic orbital,� since its principle was born for just explaining
the disposition of electrons into energy levels of the periodic table elements.
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of electrons, or of particles subjected to the Pauli principle, the occupation numbers (α1, . . . , αn, . . .)
of this system can singularly assume value 0 or 1, namely

∀αi ∈ (α1, . . . , αn, . . .) ⇒ αi = 0, 1. (708)

Except this (not banal) di�erence, all the results obtained in the previous pages continue to be
valid. It is important to observe the Pauli principle gives physical coherence to the quantum
systems, because it shows the elementary quantum states must have a �nite capacity.
What now we want to do is to discuss some fundamental results following more or less directly

from the Pauli principle. They, in order, can thus be enumerated

1. Based on the Pauli exclusion principle, the wave function of a system of electrons (and more
in general of fermions) is anti-symmetric under the exchange of two particles of the system.

2. The Pauli principle is valid for all the fermions, namely also the particles with spin 3/2, 5/2,
7/2, etc., have elementary quantum state equal to the atomic one.

3. Particles with integer spin follow the Bose-Einstein statistics (bosons) and have totally sym-
metric wave function under any particle permutation, while particles with half-integer spin
follow the Fermi-Dirac statistics (fermions) and have totally anti-symmetric wave function
under any particle permutation.

4. The fermions (half-integer spins) are characterized by �eld operators following anti-commutation
rules, while the bosons (integer spins) are characterized by �eld operators following commu-
tation rules.

Let us discuss the point 1. The expression (693) 161

ψkA(x˜;α˜) =
1√

NP2NP

2NP∑
l=1

NP∑
r=1

∑
λP

Dl
2,NP

[δ1j(λ1, λ2)P1 , . . . , δij(λ1, λ2)Pi , . . .] δrjPjψ
k
A(x˜;α˜),

which is naturally valid even if the occupation numbers can assume values 0 or 1 (Pauli principle),
automatically excludes the possibility of anti-symmetric wave functions and, therefore, it impair the
point 1. Then, if we also consider the exchange Pij of any two electrons (or better of two occupation
numbers), a reason why the eigenvalue −1 must be assigned to such eigenstate does not exist, and
so the eigenvalue +1 cannot a priori be excluded (symmetric state). This takes to conclude the

161Or else

ψkA(x˜;α˜) =
1√

NP 2NP

2NP∑
l=1

NP∑
r=1

NP∑
j=1

Dl
2,NP

[
δjm(λ1, λ2)Pj

]
δrmPmψ

k
A(x˜;α˜).
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Pauli principle has nothing to do with the anti-symmetry of a wave function of a system of electrons
under the exchange of two particles of this system.
For giving ulterior credibility to such an assertion-result, we analyze the procedures that in lit-

erature lead to the alleged relationship between anti-symmetry and exclusion principle. For such a
purpose, we start from the so-called �Slater determinant,� which represents a kind of theorem that
proves (or would have to prove) the validity of the point 1. It can be de�ned by the most general
wave function (or quantum state) totally anti-symmetric for particle exchange, under the (weak) hy-
pothesis the particles of system do not interact between them. We try to construct this determinant
before applying the formalism of the occupation numbers and then the commonly used formalism,
in order to study the relationship with the Pauli principle. As already previously observed, this is
made for the sake of completeness, because, like demonstrated, it makes no sense to de�ne a totally
anti-symmetric (or symmetric) state. All this presupposes the theoretical groundlessness of the
Slater determinant and so its non-connection with the Pauli exclusion principle. Therefore, with
this in mind, we must emphasize that all what will be said below about the Slater determinant is
based on the ad absurdum assumption that totally anti-symmetric states exist. That said, let us
suppose existing the quantum state characterized by the wave function

ψkA(x˜;α˜) =
1√
NP

∑
P

(−1)PPψkA(x˜;α˜), (709)

where the (697) is valid. If we presume the following factorization be correct

ψkA(x˜;α˜) = φα1
1 (x˜)φα2

2 (x˜) · · ·φαnn (x˜) · · · , (710)

the formula (709) can be written through the following determinant, whose development just rep-
resents the right-hand side

ψkA(x˜;α˜) =
1√
NP

∣∣∣∣∣∣∣∣∣∣∣∣∣

φα1
1 (x˜) φα2

1 (x˜) . . . φαn1 (x˜) . . .

φα1
2 (x˜) φα2

2 (x˜) . . . φαn2 (x˜) . . .
...

...
. . .

... . . .
φα1
n (x˜) φα2

n (x˜) . . . φαnn (x˜) . . .
...

...
. . .

... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (711)

Based on the properties of determinants, the above expression is null if two rows or two columns
are equal, i.e. if

Rows:

{φαki }∞k=1 = {φαkj }∞k=1, ∀ �xed i, j ∈ N. (712)

176



Columns:

{φαki }∞i=1 = {φαli }∞i=1, ∀ �xed k, l ∈ N. (713)

Let us control if these conditions infringe the Pauli principle, i.e. if they give its indirect demon-
stration. Concerning the �rst condition, it practically tells us that two di�erent states (or wave
functions) cannot have the same occupation number. This really depends on the fact we constructed
these states associating in general to the i-th one the i-th number of occupation and so on, and
therefore the �rst condition is not but a mathematical requirement that is necessary to con�rm the
adopted formalism. Either way, this condition never violates the Pauli principle. For what concerns
the second condition (on the columns), it simply tells us that a �xed state (or wave function) cannot
have di�erent occupation numbers162 and this, like seen, must be true for construction. Therefore,
also the second condition is a pure formal requirement and it has nothing to do with the Pauli
principle. Thence, by using the formalism of the occupation numbers and by supposing ab absurdo
the existence of a totally anti-symmetric state (or wave function) by which is possible to de�ne a
Slater determinant, we demonstrated the conditions for which such a determinant is null have no
relationship with the Pauli principle and so the assumption according to which this principle is in
relation with the anti-symmetry of the wave function must be thought wrong.
It could be objected, as previously, this is true with the formalism of the occupation numbers,

while it is not so with the formalism commonly used in literature. Although we have shown such
a formalism is not correct and that however also for it totally symmetric or totally anti-symmetric
states do not exist, we now want to prove that, if also a Slater determinant can be de�ned, it is
false that the annihilation conditions thereby arising are in agreement with the Pauli principle. For
this aim, we consider

ψA(1, . . . , N) =
1√
N !

∑
P

(−1)PPψA(1, . . . , N), (714)

which, under the factorization hypothesis

ψA(1, . . . , N) ≡ φ1(1)φ2(2) · · ·φN(N), (715)

can be written
162Otherwise, if it is preferred, it tell us that di�erent occupation numbers cannot belong to the same state (or

wave function).
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ψA(1, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(1) φ1(2) . . . φ1(N)

φ2(1) φ2(2) . . . φ2(N)
...

...
. . .

...
φN(1) φN(2) . . . φN(N)

∣∣∣∣∣∣∣∣∣∣
. (716)

Such a determinant is null if

Rows:

{φi(k)}Nk=1 = {φj(k)}Nk=1, ∀ �xed i, j ∈ {1, . . . , N}. (717)

Columns:

{φi(k)}Ni=1 = {φi(l)}Ni=1, ∀ �xed k, l ∈ {1, . . . , N}. (718)

Let us verify, if also in this case, the above conditions infringe the Pauli principle and what are
their consequences. The condition on the rows tells us that two di�erent states (or wave functions)
cannot describe the same particle and this depends on the factorization condition (715), for which
in the state φ1 must be the particle 1, in the state φ2 the particle 2 and so on. Therefore, this
condition is not but a mathematical requirement needing to preserve the hypothesis (715), and
so it has nothing to do with the Pauli principle. Among other things, the fact that into di�erent
states cannot be the same particle absolutely does not represent an alternative de�nition of the
exclusion principle, since this last does not want to establish a correspondence between states and
particles, but it simple �xes the number of particles which can occupy an elementary quantum
state, according to the indistinguishability principle of the particles. With regards to the condition
on the columns, it tells us that di�erent particles cannot be described by the same state (or wave
function), and this is nearly another formal condition based on the hypothesis of the factorization
(715). Therefore, for the just explained reasons, also the condition on the columns has nothing
to do with the Pauli principle. Hence, also using the classic formalism and the idea that totally
anti-symmetric states exist, we arrive at the conclusion that the Slater determinant and, above all,
the conditions for which it is null have no relationship with the Pauli exclusion principle. Moreover,
it is better to underline the condition of factorization (715) evidently violates the indistinguisha-
bility principle of the quantum particles, because to suppose the particle 1 is in the state φ1, and
the particle 2 in the state φ2, etc., means to be in a position to distinguish (and to isolate) the
particles one without the other, against the principles of the Quantum Mechanics. Therefore, we
demonstrated that, also by using the formalism common in literature, it is not correct to associate
the Pauli principle to the anti-symmetry of the wave function (or of a generic quantum state |A〉),
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because at most it describes a particle system just subjected to such a principle. More precisely, the
exclusion principle only �xes the maximum occupation number of the generic elementary state of a
particle system (therefore all the other elementary quantum states must have the same maximum
occupation number) and it puts no veto on the symmetry or anti-symmetry of the system wave
function.163 All this invalidates the point 1.
Let us now discuss the point 2. It asserts the Pauli principle must be valid for all the particles

with half-integer spin (fermions), namely such particles have elementary quantum state equal to
the atomic one. Where is this property proved? The Pauli principle is a heuristic principle, in the
sense it was enunciated thanks to the study about the atomic orbitals of the chemical elements
in the periodic table. But this only concerns the electrons, which are the particles with spin 1/2.
For other particles having half-integer spin, like so for those with integer spin, any experimental
observation exists, neither a logical theory,164 which tells us as the elementary quantum states of
particles with half-integer spin (but also integer) di�erent from the electron are made. Therefore, to
assert for these particles (i.e. for fermions) the Pauli principle is valid, means that the elementary
quantum states associated with them can have occupation numbers equal to 0 and 1, and this is
completely arbitrary. Hence, without experimental tests or a logical theory proving the contrary,
also the point 2 is wrong.
Now it remains to discuss the points 3 and 4, that maybe are the most important, since they

represent one of the cornerstones of modern physics, and in particular of the QFT, which consists
of thinking the spin of particles inextricably is linked to one of two quantum statistics, that are
those of Fermi-Dirac and Bose-Einstein. One of the corollaries of this result sanctions that the
particles with integer spin can be only described by �eld operators following an algebra having
commutators as Lie brackets and the particles with half-integer spin can be only described by �eld
operators following an algebra having anti-commutators as Lie brackets (point 4). All these fun-
damental facts, summarized in the points 3 and 4, are derived from what in technical jargon is
called �spin-statistics theorem,� which Pauli demonstrated in a famous article of 1940. Thanks to
this Pauli's work and to the result as soon as mentioned, the physicists have divided the elemen-
tary particles, independently from the interaction which they are subjected to, in two great classes:
those with integer spin, linked to the Bose-Einstein statistics (bosons), and those with half-integer
spin, linked to Fermi-Dirac statistics (fermions). From what said, it is therefore obvious, in order to
correctly analyze the points 3 and 4, we must resume from the attic the original Pauli's article and
to pass it at the microscope, line by line. Only thus, in fact, it could be cleared what this article
has e�ectively demonstrated and what not. However, our examination has to be made with great
respect, but without complexes, otherwise one risks of being obfuscated by the excellence of the
signature, transforming the results of this article in pure dogmatic rules, rather than physical and
mathematical unequivocal facts.
Then, it is with this free spirit, without psychological conditioning, we want now to go through

the original Pauli's article with the title �The Connection Between Spin and Statistics,� published in
1940 by Physical Review [25]. For the complexity of the Pauli's work and for the several arguments
covered, our attempt will not be simple, and so we must elaborate an opportune strategy which

163Among other things, we demonstrated it is not correct, from the theoretical point of view, to consider totally
symmetric or totally anti-symmetric states under permutation of occupation numbers or particles.
164The α-Theory, dealt in this work, could resolve such a problem.
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concurs to analyze the Pauli's article in the most complete way. For this reason, it has been decided
to subdivide our analysis in di�erent points, in each of which, before we write a statement or result
cited or demonstrated by Pauli in its article (in cursive), and then we estimate its coherence and
validity. Let us begin:165

a) If we now want to determine the spin value of particles which belong to a given �eld it seems at
�rst that these are given by l = j + k. Phy.Rev.58 pag.717 column 2 lines 9-11

In Pauli's opinion, it seems reasonable to think that l = j + k, concerning the representations of
the subgroup SO(3) of L↑+, is equal to the spin of the particles on whose �elds such representations
act. In reality, we must remember the spin of the elementary particles just represents an intrinsic
property of particles and not a physical characteristic deriving from space-time transformations.
Then, we have not to forget that SU(2), whose Lie algebra is isomorphic to that of SO(3) ⊂ L↑+,
is not the reference group of the spin only, but also the group which the quantum angular momen-
tum is subjected to, which instead can be naturally interpreted in a space-time way. The Pauli
mistake is to use the properties of the Lorentz group at will, without considering the physics of
the quantum systems. This is as if someone assert �avour and colour of the quarks are the same
thing, just because both are adapted to the irreducible representations of the group SU(3). It is
worth emphasizing Pauli himself is not very satis�ed about his hypothesis, since in the next line he
admits: �Such a de�nition would, however, not correspond to the physical facts, for there then exists
no relation of the spin value with the number of independent plane waves, [. . .].� However, what is
disconcerting is the fact that Pauli constructs all his article on a hypothesis he himself judges to be
not physical.

b) The number of quantities U(j, k) which enter the theory is, however, in a general coordinate
system more complicated, since these quantities together with the vector ki have to satisfy several
conditions. Phy.Rev.58 pag.717 column 2 lines 38-42

What are the conditions that the quantities U(j, k) must satisfy in a general system of coordi-
nates? Pauli does not say it.

c) Particularly is this the case for the current vector si. To the transformation ki → −ki belongs for
arbitrary wave packets the transformation xi → −xi and it is remarkable that from the invariance of
Eq.(1) against the proper Lorentz group alone there follows an invariance property for the change of
sign of all the coordinates. In particular, the inde�nite character of the current density and the total
charge for even spin follows, since to every solution of the �eld equations belongs another solution
for which the components of sk change their sign. The de�nition of a de�nite particle density for

165The quantities de�ned by Pauli will remain with their original numeration.
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even spin which transforms like 4-component of a vector is therefore impossible.
Phy.Rev.58 pag.719 column 1 lines 11-25

Pauli associates physical quantities, such as the current vector si, the current density and the
total charge, to the tensors S and/or T , without a detailed proof. He seems to assume the trans-
formation (2) are right for si too, from that follows the inde�nite character of the current density
and the total charge for even spin. This fact, not supported by an accurate demonstration, seems
to be debatable. Lastly, Pauli speaks about �eld equations (for particles having even spin). What
are these equations? By any chance, are they the equations (1)? Therefore, shall we consider them
complete and correct?

d) In case of half-integral spin, therefore, a positive de�nite energy density, as well as a positive
de�nite total energy, is impossible. The latter follows from the fact, that, under the above substitu-
tion,166 the energy density in every space-time point changes its sign as a result of which the total
energy changes also its sign. Phy.Rev.58 pag.720 column 1 lines 5-11

What are in Pauli's opinion the general expressions of the energy density and the total energy
for particles having half-integral spin?

e) This method is especially convenient in the absence of interaction, where all �elds U (r) satisfy
the wave equation of the second order

�U (r) − k2U (r) = 0,

where

� ≡
4∑

k=1

∂2

∂x2
k

= ∆− ∂2

∂x2
0

and k is the rest mass of particles in units ~/c.
Phy.Rev.58 pag.720 column 2 lines 16-21

Pauli chooses to use the Klein-Gordon equation for the �elds U (r). But, since he wants to do a
reasoning for �elds describing particles with integer and half-integer spin, he had to use the Dirac
equation too, and this can be due to the fact that Pauli � as he asserts in a footnote of his article �
does not think the Dirac equation to be de�nitive, above all for what concerns its di�erential order,
that Pauli would have liked second rather than �rst. However, this does not justify his choice of
using the Klein-Gordon equation for describing particle �elds with integer and half-integer spin and

166T → −T , S → S.
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it makes misleading and woolly the whole demonstration.

f) This is also true for brackets with the + sign, since otherwise it would follow that gauge invariant
quantities, which are constructed bilinearly from the U (r), as for example the charge density, are
noncommutable in two points with a space-like distance. Phy.Rev.58 pag.721 column 2 lines 14-19

The issue is much more complex and deeper than the one described by Pauli. The Microcausality
condition, which he is referring to, is valid for the bosonic �elds but not for the fermionic ones,
which instead satisfy anti-commutation rules.167 This means, within the modern QFT, the fermionic
�elds are thought non-observable, although naturally the physical quantities, constructed through
them, continue to be observable, like for example the energy density, the charge density or the cross
sections. The problem is that Pauli seems to use the equation

�U (r) − k2U (r) = 0 (719)

for both �elds, with integer and half-integer spin, by hoping to generalize his discussion to theories
which, on the contrary, he does not know. Indeed, it is false to claim the above equation is valid for
�elds with arbitrary spin, like so it is false that its Green's function, which totally depends on the
associated di�erential equation, can be adapted to particles describing �elds with integer and half-
integer spin. The Pauli's mistake is, therefore, to expose physical and mathematical argumentations
with respect to unknown theories. Hence, his discussion seems only hypothetical, and so misleading.

g) We consider especially the bracket expression of a �eld component U (r) with its own complex
conjugate

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)].

We distinguish now the two cases of half-integral and integral spin. In the former case this expression
transforms according to (8) under Lorentz transformations as a tensor of odd rank. In the second
case, however, it transforms as a tensor of even rank. Hence we have for half-integral spin

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] = odd number of derivatives of the function D(x′ − x′′, x′0 − x′′0) (19a)

and similarly for integral spin

167Let us still use the terminology associating the commutators to the bosons and the anti-commutators to fermions,
in order to not anticipate the result of this appendix.
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[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] = even number of derivatives of the function D(x′ − x′′, x′0 − x′′0). (19b)

This must be understood in such a way that on the right-hand side there may occur a complicated
sum of expressions of the type indicated. Phy.Rev.58 pag.722 column 1 lines 1-14

This is a very delicate point to deal with, because it is one of the pillars of the Pauli's demon-
stration. It founds itself on the properties of transformation under the Lorentz group L↑+ of the
commutator

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)]. (720)

But one has to wonder: can a commutator (or anti-commutator) be transformed under the Lorentz
group? The question is not banal, since it seems reasonable the commutator (or anti-commutator)
of two physical quantities must be invariant under Lorentz transformations, otherwise if two quan-
tities commute (or anti-commute) in an inertial frame of reference, they could not commute (or
anti-commute) in another inertial frame of reference, at odds with the equivalence principle. After
all, this would have to be also a general principle of the Quantum Mechanics, since Wigner demon-
strated the states of two systems O and O′ are always connected by unitary transformations, which,
within an arbitrary phase factor, leave the observational results unchanged. What should happen
if the commutator of two physical quantities is not invariant under Lorentz? As an example, the
Microcausality condition

[O(x), O′(y)] = 0, where (x− y)2 < 0 (721)

would ruin, because an inertial frame of reference in which the above commutator is not null could
be found. This should involve that two observable quantities in an inertial frame of reference would
not be observable quantities in another inertial frame of reference and this is absurd. After all, the
same SR teaches us if an interval is space-like, time-like or light-like, it does not change its nature, in
the sense that it is never possible to �nd a Lorentz transformation transforming an interval of a type
into an interval of another type. This should con�rm the commutator of two physical quantities
is not transformed under L↑+. From the mathematical point of view, this could be tried based on
what is made in Classic Mechanics as far as the Poisson brackets is concerned. It is known, in fact,
the Poisson bracket { , } of two physical quantities is invariant under canonical transformations,
di�erential and invertible, such that the Jacobian matrix A of the change of basis (about the two
chosen frames of reference) is symplectic, i.e. such that

AT ĨA = Ĩ , with A ∈M(2l,R); Ĩ =

(
Ol 1l
−1l Ol

)
. (722)
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Therefore, by using the correspondence

{ , } −→ 1

i~
[ , ]± (723)

and constructing a symplectic group on the �eld of the complex numbers, it could be taken ad-
vantage of the fact that such a group, which usually it is indicated with Sp(2l,C), is isomorphic
to SL(2l,C) for l = 1.168 Hence, by remembering SL(2,C) is isomorphic to L↑+, the assertion
is obtained, and so the commutators (or anti-commutators) do not change under Lorentz group
transformations. Aside from this observation, that on its own could invalidate the (19a) and (19b),
another unclear thing of these relations is why (and Pauli does not demonstrate it) the even and
odd number of derivatives of the function D(x′− x′′, x′0− x′′0) depend on the rank of the (tensorial)
transformation operated on them. Therefore, the weakness of such a point is that the demonstra-
tion of (19a) and (19b) is not given, although these relations are necessary, in order to demonstrate
the relationship between spin and statistics. All these facts take only to ulteriorly weakening the
Pauli's demonstration.

h) We have therefore the result for integral spin

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] + [U (r)(x′′, x′′0), U∗(r)(x′, x′0)] = 0. (21)

Phy.Rev.58 pag.722 column 1 lines 25-26

If the above relation (21) is true, we would have

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] = −[U (r)(x′′, x′′0), U∗(r)(x′, x′0)] = [U∗(r)(x′, x′0), U (r)(x′′, x′′0)], (724)

from which follows 169

U (r) = U∗(r) ∀x ∈M, (725)

and so the particle �elds with integer spin must be always real �elds. The theory of the complex
Klein-Gordon �eld, fundamental for the characterization of the electric charge, demonstrates this

168In such a case, the symplectic condition (722) is veri�ed i� the determinant of A is equal to 1.
169M is the Minkowski space.
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is absurd.

i) So far we have not distinguished between the two cases of Bose statistics and the exclusion prin-
ciple. In the former case, one has the ordinary bracket with the − sign, in the latter case, according
to Jordan and Wigner, the bracket

[A,B]+ = AB +BA

with the + sign. Phy.Rev.58 pag.722 column 1 lines 27-30 column 2 lines 1-2

Pauli uses the conception for which the commutator is associable to the particle �elds subjected
to Bose-Einstein statistics, and the anti-commutator to the exclusion principle, i.e. to the particle
�elds subjected to Fermi-Dirac statistics. Nevertheless, no formal demonstration, proving it, exists
and indeed, by remembering that the exclusion principle � like seen in the previous pages � has
nothing to do with the anti-symmetry of the wave function (or with the �eld function associated to
particles) and, hence, with the anti-commutators, it seems such a conception be completely ground-
less.

j) On the other hand, it is formally possible to quantize the theory for half-integral spins according
to Einstein-Bose-statistics, but according to the general result of the preceding section the energy
of the system would not be positive. Since for physical reasons it is necessary to postulate this, we
must apply the exclusion principle in connection with Dirac's hole theory.
Phy.Rev.58 pag.722 column 2 lines 12-19

This statement is based on some misconceptions. The �rst one concerns the relationship between
commutator and Bose-Einstein statistics, exclusion principle (anti-commutator) and Fermi-Dirac
statistics. In the previous pages, we demonstrated such an association does not exist. Secondly,
Pauli introduces as general result the fact that, if a particle system with half-integer spin is quan-
tized through (canonical) commutation relations, one has an energy density not de�ned positive.
This is true for the Dirac theory. But such a theory is developed for particles with spin 1/2 and
not for all the particles having half-integer spin. Therefore, in the absence of a general theory for
particles with half-integer spin, this a�rmation seems faulty. From that fact, it appears the Pauli's
attempt of selling hypotheses like concrete facts.

k) In conclusion we wish to state, that according to our opinion the connection between spin and
statistics is one of the most important applications of the special relativity theory.
Phy.Rev.58 pag.722 column 2 lines 30-33
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Pauli makes this observation since he used the Lorentz group L↑+, even if it has been contracted
to SU(2), by using the �dangerous correlation�

j =spin of the �elds

Apart from that, the Pauli's work does not utilize directly the special Relativity and, therefore, this
last statement seems having the only goal to give credit to his demonstration.

The text analysis of the Pauli's work, which we have subdivided in the previous most remarkable
eleven points, shows us, in an absolutely clear way, that the Pauli's demonstration about the alleged
relationship between quantum statistics (Fermi-Dirac and Bose-Einstein) and the spin of elementary
particles leaks as a sieve. This should be enough to convince any researcher with a minimum of
intellectual honesty about the logical fallacy of the so-called �spin-statistics theorem.� However,
always a lot of supporters of the past ideas exist, even if groundless, and so we now in�ict the �nal
blow to the Pauli's demonstration, thus to dispel any doubt. This will not be made by criticizing
the modus operandi of Pauli, like in previous eleven points, but by supposing correct his result and
making to see this takes to a contradiction (reduction ad absurdum). We start, thence, from the
relations

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] = odd number of derivatives of the function D(x′ − x′′, x′0 − x′′0) (19a)

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] = even number of derivatives of the function D(x′ − x′′, x′0 − x′′0), (19b)

where the (19a) is valid for �elds with half-integer spin, while the (19b) is valid for �elds with integer
spin. By supposing (to absurdity) the (19a) and (19b) are true, we consider as Pauli the quantity

X = [U (r)(x′, x′0), U∗(r)(x′′, x′′0)]+[U (r)(x′′, x′′0), U∗(r)(x′, x′0)]. (20)

According to the Pauli's opinion, since the function D, given by

D(x, x0) =
1

(2π)3

∫
d3keik·x

sin k0x0

k0

, (11)
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is even in the space coordinates and odd in the time coordinate, it follows

X =even number of space-like times odd numbers of time-like derivatives of D(x′ − x
′′, x′0 − x′′0).

This Pauli's conclusion, he however does not prove, seems to depend on the (19a) and (19b) (by
supposing these relations are true, of course), i.e. by the fact [U (r)(x′, x′0), U∗(r)(x′′, x′′0)] is equal
to an even or odd number (and this, for Pauli, depends on the spin) of derivatives of the function
D(x′−x′′, x′0−x′′0), independently from the factD is even in the space coordinates and odd in the time
coordinate. Therefore, also X, which is de�ned through the sum of two commutators, would have to
be expressed through even derivatives of the functions D(x′−x′′, x′0−x′′0) and D(x′′−x′, x′′0−x′0) or
through odd derivatives of the same functions and this for whatever its symmetry relation (unless
it is not explicitly demonstrated, but Pauli does not make it). The shocking thing is that, the
conclusion

X =even number of space-like times odd numbers of time-like derivatives of D(x′ − x
′′, x′0 − x′′0),

seems, on the contrary, to derive by the fact D is an even function in the space coordinates and odd
in the time coordinate, as if the property of a function of being even or odd could be transformed in
an even or odd number of derivatives under appropriate operations (which Pauli does not demon-
strate). If this were correct the same (19a) and (19b) would be wrong and should be approximately
replaced with

A) half-integer spin:

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] = odd number of time derivatives of the function D(x′ − x′′, x′0 − x′′0).

B) integer spin:

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)]=even number of space derivatives of the function D(x′ − x′′, x′0 − x′′0).

Based on A) and B), the quantity X is always well-de�ned, making obviously attention to specify
if we are considering �elds with integer or half-integer spin. In the �rst case, there are only an even
number of space derivatives of the function D, while, in the second case, there are only an odd
number of time derivatives of the function D. Therefore, it is not true X = 0 for integer spin, and
so, by using the same Pauli's arguments, we proved his conclusion is wrong. But there is a still more
serious consequence in the expressions (19a) and (19b) postulated by Pauli. In fact, by supposing
(ad absurdum) the (19a) and (19b) are true, one must admit existing a law Fs, dependent by the
spin s, such that to the commutator
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a certain number of derivatives of the function D(x′ − x′′, x′0 − x′′0) correspond.170 Therefore, in
general terms, it can be written

[U (r)(x′, x′0), U∗(r)(x′′, x′′0)] = Fs [D(x′ − x′′, x′0 − x′′0)] , (726)

and, naturally, we also have

[U (r)(x′′, x′′0), U∗(r)(x′, x′0)] = Fs [D(x′′ − x′, x′′0 − x′0)] . (727)

By the de�nition of X, we obtain

X ≡ [U (r)(x′, x′0), U∗(r)(x′′, x′′0)] + [U (r)(x′′, x′′0), U∗(r)(x′, x′0)] =

Fs [D(x′ − x′′, x′0 − x′′0)] + Fs [D(x′′ − x′, x′′0 − x′0)] . (728)

Now, by remembering D is even in the space coordinates and odd in the time coordinate, we get

D(x′′ − x′, x′′0 − x′0) = D [−(x′ − x′′),−(x′0 − x′′0)] = −D(x′ − x′′, x′0 − x′′0), (729)

from which, it promptly follows

Fs [D(x′′ − x′, x′′0 − x′0)] = −Fs [D(x′ − x′′, x′0 − x′′0)] , (730)

where we have taken account that Fs, being a number of derivatives, does not absorb the sign of
the function on which it acts. From that reason, it is straightforward to see

X ≡ [U (r)(x′, x′0), U∗(r)(x′′, x′′0)] + [U (r)(x′′, x′′0), U∗(r)(x′, x′0)] =

Fs [D(x′ − x′′, x′0 − x′′0)] + Fs [D(x′′ − x′, x′′0 − x′0)] =

Fs [D(x′ − x′′, x′0 − x′′0)]− Fs [D(x′ − x′′, x′0 − x′′0)] = 0. (731)

170If s is integer, there is an even number of derivatives, while, if s is half-integer, there is an odd number of
derivatives.
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Hence, if the Pauli's considerations are true, the amount X, which he de�nes, would be identically
null for any spin value s and not for the integer spins only.171 Therefore, the �nal Pauli's thesis
have to be considered wrong. This involves that also the consequence deriving from such a mistake
� practically consisting in associating particles having integer spin to the Bose-Einstein statistics
(with commutation rules) and particles having half-integer spin to the Fermi-Dirac statistics (with
anti-commutation rules) � comes to fall, thus like all the Pauli's deductive castle.
In conclusion, we can assert the Pauli's demonstration about the relationship between spin and

statistics is groundless. This requires an upheaval in the actual theoretical background, which thinks
the spin-statistics theorem and its consequences be untouchable and unassailable bedrocks.
Before asking what can involve the sunset of the spin-statistics theorem and looking for possible

alternatives, we want to inquire on the reasons which pushed the scienti�c community to accept,
without reserve, the Pauli's demonstration of 1940. The �rst thing must be asked is: was Pauli aware
about the inadequacy of its demonstration? As we have seen, Pauli constructed a muddled and
unclear article, that through the distorted use of complex arguments wants to prove the relationship
between the quantum statistics and spin of particles. And, without a doubt, he succeeds in its
attempt, since everyone who reads for the �rst time his article is distracted from the lots of technical
he uses, by losing the cognition on the legitimacy or less of his task. Without wanting to encourage
libelous hypothesis regarding Pauli, it can be thought his approach is all grounded in the positivist
desire of the physics of those years, which collided with the uncertainty and distrust characterizing
the Second World War beginning. However, it has to be said Pauli simply gave a theoretical
justi�cation to what by time was thought to be a undoubted fact, and i.e. that the quantum statistics
were connected to the spin of elementary particles and to the commutators and anti-commutators of
the �elds describing such particles. The same Jordan, Wigner and Fierz [26] wrote articles oriented
towards this direction, also based on the wrong relationship between exclusion principle and anti-
commutators. Therefore, Pauli, with his article of 1940, made nothing but putting the icing on this
theoretical cake. However, it has not to charge to these actors too many blames, because their aim
was simply of �nding the laws for the elusive elementary particles, which represented something very
similar to magical than physical objects. The heavy responsibility belongs to those who came later,
that, instead of accepting these fundamental principles dogmatically, would have had to inquire
about their formal correctness. After all, to have also called �spin-statistics theorem� the Pauli's
result is completely misleading, since many times the author just speci�es lots of his assumptions
were only hypotheses and nothing more. Therefore, at most, the scienti�c community should have
called the Pauli's result �spin-statistics postulate� and, maybe, the things would be changed.
Have we, after all, to waive the old conception connecting quantum statistics with the spin of

elementary particles? As long as it will never be a correct and exhaustive demonstration about
this connection, of course it cannot be thought right. What should happen in the particle physics
if the relationship between spin and statistics would change? The more obvious thing is that the
association between the two great particle classes (i.e. the fermions and bosons) and quantum
statistics of Fermi-Dirac and Bose-Einstein would be lost. This would require a necessary review
of some underlying concepts, but neither the fundamental results achieved from the QFT nor its

171However, in such a case, we have seen in the point h) this leads to the absurd that the particle �elds, having
integer spin, must be real.
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mathematical formalism would change, at the end.
However, beyond further studies which on this argument have to be made, it is well to underline

physical science is in continuous evolution and the end of old concepts can open the way to new
and more exciting visions, which not are able to include the past ideas only, but, above all, to make
forecasts seeming impossible before. It could be objected the Bose-Einstein condensate, regarding
boson systems at temperatures very close to absolute zero, are a kind of proof of the �spin-statistics
theorem� and association between fermions and bosons to the two quantum statistics. But the Bose-
Einstein statistics could concern the gauge bosons only, as the photons just are. Moreover, recent
studies have put in evidence also fermionic systems can be subject to condensation phenomena
[39, 40]. This is not other but a hint on the possible blunders made in the statistical discussion
of elementary particles. For example, it is not said the Fermi-Dirac and Bose-Einstein statistics
are the only ones. If the spin-statistics theorem is not valid, it is possible to �nd a relationship
between occupation numbers and quantum statistics. Such a relation is well-known and, in fact,
the Fermi-Dirac and Bose-Einstein statistics can be both obtained by the thermodynamic potential

Ω` = −kT ln
∑
α`

(
e
µ−E`
kT

)α`
, (732)

putting once α` = 0, 1 and another time α` = 0, 1, 2, . . . ,∞, for any ` ∈ N. This does not only show
the importance of the occupation numbers, but also as they are e�ectively connected to quantum
statistics. Therefore, it could be de�ned, instead of the �spin-statistics theorem,� the �αn-statistics
postulate,� where the αn are the occupation numbers of the quantum states concerning the systems
we want to study. Hence, if a particle theory, able to characterize � for any spin � the occupation
number of the fundamental quantum state, were found, a relationship between spin and statistics
could be constructed again, still based on the concept of �occupation number.� This would lead
to multi-statistics, which could include also the Fermi-Dirac and Bose-Einstein ones, delivering
unexpected experimental predictions.172

Lastly, we shortly recall the results obtained in this appendix:

• Superiority of the occupation numbers formalism compared with the current one, also thanks
to the fact it intrinsically satis�es the �indistinguishability principle� of quantum particles.

• Non-existence of totally symmetric and totally anti-symmetric wave functions (or quantum
states), by using the formalism of the occupation numbers or the current one.

• Absence of a solid and demonstrable relationship between the exclusion principle and anti-
symmetry of the wave functions (or the quantum states) under particle permutations. Use-
lessness of the Slater determinant.

• Wrong extension of the exclusion principle to other particles with half-integer spin di�erent
from the electron.

• Inadequacy of the �spin-statistics theorem� constructed by Pauli in 1940.

172Look at the α-Theory dealt in this work. In particular, in the chapter 5.
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• Investigation on the relationship between occupation numbers and statistics, which a theory
for arbitrary spin should be able to make clear. Multi-statistics and new connection with the
spin, just through the occupation numbers.

I hope the facts dealt in this appendix not only will support the theory studied in this work, but
they should be an interesting matter for re�ection.
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173Eroe eccelso, vittima della ma�a e dello stato italiano che troppo spesso coincidono, esempio di cittadino che

ha difeso il valore della libertà, dell'equità e della partecipazione sociale solo in nome della verità e dell'encomiabile

senso civico. Tu adesso sei luce e resterai per sempre luce, i tuoi assassini sono ombre e resteranno per sempre

ombre.
174Vittima di quel potere giudiziario subdolo e tribale di cui non abbiamo bisogno, �accato da un vergognoso e

violento linciaggio mediatico ed in�ne ucciso dal male incurabile della falsità e dell'ipocrisia, mentre i suoi carne�ci,

glori�cati ed omaggiati, non hanno mai pagato per nulla. Tuo è il paradiso, loro è l'inferno.

193



References

[1] E. Majorana �Teoria relativistica di particelle con momento intrinseco arbitrario,� Nuovo Ci-
mento 9, pp. 335-344 (1932).

[2] G. Gentile �Sulle equazioni d'onda relativistiche di Dirac per le particelle con momento intrin-
seco qualsiasi,� Nuovo Cimento 17, pp. 5-12 (1940).

[3] R. Casalbuoni �Majorana and the In�nite Component Wave Equations,� arXiv:hep-th/0610252
(2006).

[4] W. Rarita and J. Schwinger �On a Theory of Particles with Half-Integral Spin,� Phys. Rev. 60,
61 (1941).

[5] P. P. Giardino, K. Kannike, M. Raidal and A. Strumia �Reconstructing Higgs boson properties
from the LHC and Tevatron data,� arXiv:hep-ph/1203.4254 (2012).

[6] P. P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia �The universal Higgs �t,�
arXiv:hep-ph/1303.3570 (2013).

[7] N. Christensen, T. Han and S. Su �MSSM Higgs bosons at the LHC,� Phys. Rev. D 85, 115018
(2012).

[8] W. Pauli �Zur Quantenmechanik des magnetischen Elektrons,� Z Physik 43, pp. 601-623 (1927).

[9] F. Schwabl, Quantum Mechanics, Springer Verlag, Berlin (2007).

[10] F. Schwabl, Advanced Quantum Mechanics, Springer Verlag, Berlin (2008).

[11] G. Feinberg �Possibility of Faster-Than-Light Particles,� Phys. Rev. 159, pp. 1089-1105 (1967).

[12] A. Sen �Tachyon condensation on the brane anti-brane system,� arXiv:hep-th/9805170 (1998).

[13] Y. Aharonov, A. Komar and L. Susskind �Superluminal Behavior, Causality, and Instability,�
Phys. Rev. 182, pp. 1400-1403 (1969).

[14] E. Majorana �Teoria simmetrica dell'elettrone e del positrone,� Nuovo Cimento 14, pp. 171-184
(1937).

[15] A. S. Barabash �Experiment double beta decay: Historical review of 75 years of research,�
Phys. Atom. Nucl. 74, pp. 603-613 (2011).

[16] A. Ja�e and E. Witten �Quantum Yang-Mills Theory,� in The Millennium Prize Problems,
Clay Mathematics Institute, Cambridge, Massachusetts, pp. 129-152 (2006).

[17] H. Georgi and S. L. Glashow �Unity of All Elementary Particle Forces,� Phys. Rev Lett. 32,
pp. 438-441 (1974).

194



[18] I. Kirsch �A Higgs Mechanism for Gravity,� Phys. Rev. D 72, 024001 (2005).

[19] N. Boulanger and I. Kirsch �A Higgs Mechanism for Gravity. Part II: Higher Spin Connections,�
Phys. Rev. D 73, 124023 (2006).

[20] A. H. Guth �The In�ationary Universe: A Possible Solution to the Horizon and Flatness
Problems,� Phys. Rev. D 23, pp. 347-356 (1981).

[21] S. Coleman and E. J. Weinberg �Radiative Corrections as the Origin of Spontaneous Symmetry
Breaking,� Phys. Rev. D 7, pp. 1888-1910 (1973).

[22] L. Randall �Supersymmetry and In�ation,� arXiv:hep-ph/9711471 (1997).

[23] R. Kallosh, A. Linde, K. A. Olive and T. Rube �Chaotic in�ation and supersymmetry breaking,�
arXiv: hep-th/1106.6025 (2011).

[24] S.-H. Henry Tye �Brane In�ation: String Theory viewed from the Cosmos,� arXiv:hep-
th/0610221 (2006).

[25] W. Pauli �The Connection Between Spin and Statistics,� Phys. Rev. 58, pp. 716-722 (1940).

[26] M. Fierz �Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin,� Helv.
Phys. Acta 12, pp. 3-17 (1939).

[27] P. A. M. Dirac �The Quantum Theory of the Electron,� Proc. R. Soc. Lond. A 117, pp. 610-624
(1928).

[28] P. A. M. Dirac �A Theory of Electrons and Protons,� Proc. R. Soc. Lond. A 126, pp. 360-365
(1930).

[29] P. A. M. Dirac, The Principle of Quantum Mechanics, Clarendon Press, Oxford (1958).

[30] O. Klein �Quantentheorie und fünfdimensionale Relativitätstheorie,� Z Physik 37, pp. 895-906
(1926).

[31] W. Gordon �Der Comptone�ekt nach der Schrödinger schen Theorie,� Z Physik 40, pp. 117-133
(1926).

[32] C. N. Yang and R. Mills �Conservation of Isotopic Spin and Isotopic Gauge Invariance,� Phys.
Rev. 96, pp. 191-195 (1954).

[33] J. Magueijo �New varying speed of light theories,� arXiv:astro-ph/0305457 (2003).

[34] P. W. Higgs �Broken symmetries, massless particles and gauge �elds,� Phys. Lett. 12, pp.
132-133 (1964).

[35] P. W. Higgs �Broken Symmetries and the Masses of Gauge Bosons,� Phys. Rev. Lett. 13, pp.
508-509 (1964).

195



[36] S. L. Glashow �Partial-symmetries of weak interactions,� Nucl. Phys. 22, pp. 579-588 (1961).

[37] S. Weinberg �A Model of Leptons,� Phys. Rev. Lett. 19, pp. 1264-1266 (1967).

[38] A. Salam �Weak and electromagnetic interactions,� in Svartholm: Elementary Particle Theory,
Proceedings of The Nobel Symposium held in 1968 at Lerum, Sweden, Stockholm, pp. 366-377
(1968).

[39] C. A. Regal, M. Greiner and D. S. Jin �Observation of Resonance Condensation of Fermionic
Atom Pairs,� Phys. Rev. Lett. 92, 040403 (2004).

[40] M. Greiner, C. A. Regal and D. S. Jin �Fermionic condensates,� AIP Conference Proceedings,
Atomic Physics 19: XIX International Conference on Atomic Physics 770, pp. 209-217 (2005).

[41] J. Goldstone �Field Theories with Superconductor Solutions,� Nuovo Cimento 19, pp. 154-164
(1961).

[42] J. Goldstone, A. Salam and S. Weinberg, �Broken Symmetries,� Phys. Rev. 127, pp. 965-970
(1962).

[43] A. Salam et al., �On Goldstone Fermion,� Phys. Lett. B 49, pp. 465-467 (1974).

[44] F. Strocchi, Symmetry Breaking, Springer Verlag, Berlin (2003).

[45] G. Felder, L. Kofman and A. Linde �Tachyonic Instability and Dynamics of Spontaneous Sym-
metry Breaking,� Phys. Rev. D 64, 123517 (2001).

[46] G. R. S. Farrar and M. E. Shaposhnikov �Baryon asymmetry of the universe in the minimal
standard model,� Phys. Rev. Lett. 70, pp. 2833-2836 (1993).

[47] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York (1964).

[48] L. H. Ryder, Quantum Field Theory, 2nd Ed. Cambridge University Press, Cambridge (1996).

[49] F. Mandl and G. Shaw, Quantum Field Theory, John Wiley & Sons, New York (1993).

[50] M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory, Westview Press,
Boulder (1995).

[51] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman, New York (1973).

[52] H. Weyl, �Elektron und Gravitation,� Z Physik 56, pp. 330-352 (1929).

[53] S. T. Ali and M. Engli² �Quantization Methods: A Guide for Physicists and Analysts,� Rev.
Math. Phys. 17, pp. 391-490 (2005).

[54] L. D. Landau and E. M. Lifshitz, Statistical Physics 5, 3nd Edition, Pergamon Press, Oxford
(1980).

[55] K. Huang, Statistical Mechanics, John Wiley & Sons, New York (1990).

196



[56] P. A. M. Dirac �Quantized Singularities In The Electromagnetic Fields,� Proc. R. Soc. Lond.
A 133, pp. 60-72 (1931).

[57] Y. Chen, A. Alexandru, S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu, N. Mathur
et al. �Glueball Spectrum and Matrix Elements on Anisotropic Lattices,� Phys. Rev. D 73,
014516 (2006).

[58] G. Bertone, D. Hooper and J. Silk �Particle dark matter: Evidence, candidates and constraints,�
Phys. Rep. 405, pp. 279-390 (2005).

[59] P. J. E. Peebles and B. Ratra �The cosmological constant and dark energy,� Rev. Mod. Phys.
75, pp. 559-606 (2003).

[60] E. P. Verlinde �On the Origin of Gravity and the Laws of Newton,� arXiv:hep-th/1001.0785
(2010).

[61] A. D. Sakharov �Vacuum Quantum Fluctuations In Curved Space And The Theory Of Gravi-
tation,� Soviet Physics�Doklady 12, pp. 1040-1041 (1968).

[62] M. Visser �Sakharov's induced gravity: a modern perspective,� Mod. Phys. Lett. A 17, pp.
977-992 (2002).

[63] A. Proca �Sur la théorie ondulatoire des électrons positifs et négatifs,� Journal de Physique et
Le Radium 7, pp. 347-353 (1936).

[64] A. Proca �Sur la théorie du positon,� Comptes rendus de l'Académie des Sciences 202, pp.
1366-1368 (1936).

[65] H. Yukawa �On the interaction of elementary particles,� JPSJ 17, pp. 48-57 (1935).

[66] G. Burdet and M. Perrin �Gravitational waves without gravitons,� Lett. Math. Phys. 25, pp.
39-45 (1992).

[67] S. N. Gupta �Quantum Theory of Gravitation,� in Recent Developments in General Relativity,
Pergamon Press, Oxford, pp. 251-258 (1962).

[68] M. H. Goro� and A. Sagnotti �Quantum gravity at two loops,� Phys. Lett. B 160, pp. 81-86
(1985).

[69] S. W. Hawking, S. Weinberg, R. Penrose et al., 300 Years of Gravitation, Cambridge University
Press, Cambridge (1987).

[70] C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge (2004).

[71] A. Linde �A new in�ationary universe scenario: A possible solution of the horizon, �atness,
homogeneity, isotropy and primordial monopole problems,� Phys. Lett. B 108, pp. 389-393
(1982).

[72] A. Linde �In�ationary Theory versus Ekpyrotic/Cyclic Scenario,� arXiv:hep-th/0205259 (2002).

197



[73] A. Vilenkin �Quantum Creation Of Universes,� Phys. Rev. D 30, pp. 509-511 (1984).

[74] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1950).

[75] J. Wess and B. Zumino �Supergauge transformations in four dimensions,� Nucl. Phys. B 70,
pp. 39-50 (1974).

[76] P. C. West, Introduction to Supersymmetry and Supergravity, World Scienti�c, Singapore
(1990).

[77] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton
(1992).
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