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Abstract

The purpose of this paper is to develop a single solution to both the Klein-Gordon &
Dirac equations that expresses both the QM and the classical aspects of particles. It is
found that this can be done, but only in the context of a system that has an initial event
(T = 0) and is expanding at c, thus it is consistent with a big bang representation of the
universe. The equations are defined in geometric algebraic, and the KGD equation will
be considered a single equation factorable into linear products of the two linear Dirac
expressions, with a solution defined analogously to path integrals. The solution has botha
Gaussian shaped amplitude, (classical), and phase, (QM) components satisfying the
quadratic KG equation, and the linear Dirac expression. The equation differentials are
not restricted to representing the normal QM operator replacement of p and E, applicable
to the linear equation, but have a broader context in operating on the more complex
function with amplitude and phase factors. The solutions represent the particle at a single
event, thus the standard view of the solution being a probability amplitude field over
spacetime is not applicable, but an alternate observational field is illustrated that
demonstrates the connection of the solutions to the observed wave characteristics. The
phase factors are as usual cyclic, but the amplitude factors exist only in the context of the
entire interval. The amplitude factor of the solution is proportional to mass and thus
should offer insight into particle mass ratios.
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INTRODUCTION

The purpose of this work is to develop a single point particle solution the KGD that
defines the phase, quantum mechanical as well as the classical particle-particle dynamics
and the electromagnetic interactions of particles. Instead of regarding the Klein-Gordon,
and Dirac equations as analogs of the classical equations with the momentum and energy
replaced by differential operators, the equations are treated as differentials operating on
complex particle function.

p m v i  (1)
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The coordinates in this development are the end event coordinates of a particle solution,
and not field variables of the function.

The particle solution will be formulated as the end point of a propagator, with function
exponents that are the square of the sum of the action of the canonical momentum, over a
classical fourspace interval from the initial, (Big Bang), to the current event. The end
point function will be designated as the Systemfunction.

Section I, forms an analogy with the path integral approach, and proposes a particle
solution that is the propagator, with an action that is the square of the fourspace bivector
action of a particle from the Big Bang to its current position. The square of the complex
bivector has both first and second order terms which are both real and imaginary. The
gauge field is evaluated at the action endpoint making the solution a point function, and
an eigensolution for the particle.

Section II separates a point Systemfunction into amplitude and phase functions. The
complete Systemfunction is a solution to the KG expression, and also a solution to the
Dirac expression.

Section III Shows that the phase factor of the point Systemfunction is equivalent to the
Dirac solution for the first order equation, and develops the function properties.

Section IV defines an observational field associated with a point particle, having features
similar to the Dirac probability amplitude field. The observational field illustrates planar
deBroglie waves, and spherical Compton waves with a phase velocity of c.

Section V illustrates the point Systemfunction is a solutions to the classical KG equation,
showing the relativistic mechanical properties, and the classical electromagnetic particle-
particle interactions.

Preliminaries

A. Reviewing the standard QM relations

Free KG:

2 2 2 2
2
02 2 2 2 m

x y z t
    
            

(2)
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or in Feynman slash notation:

 2 2
0m 0    

   (3)

The mass 0m is the invariant rest mass, and  is the one component KG field.

Dirac:
i  0m 0   (4)

Dirac with potential operator:

i  Q A 0m 0   (5)

The wavefunction,  in this case is the Dirac spinor field, and A is the electromagnetic
gauge field in which the charge is immersed.

Schrödinger free particle:

 2
0 0

k
k 2im 0      (6)

The notation is such that the rest mass is the reciprocal of the Compton radius
0 0 01 / m c / m   , and he units are the natural units c 1  , except for

clarification at section ends. (For general conventions, and notation, see Appendix I)

The point solutions in this paper will be designated as single component scalar,
Systemfunction  , to distinguish from standard wavefunctions, and it is presumed to be a
solution to:

 2 2
0m 0   (7)

If the Systemfunction is factored into a real amplitude  R and phase  I functions

such that:

R I      (8)
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Separation

Using the standard geometrical algebra factoring of the KG operator using the Clifford-
Dirac gamma matrix Eq.(7), is:

i  0m i  0m 0   ,

(9)
It is easy to show by the chain rule that I cannot be a solution of:

i  0 Im 0   (10)

Unless any amplitude factor is a solution of:

 R 0  (11)

See Note 2.

This implies that the gradient of the amplitude function is a constant, or is a null vector,
thus having a phase velocity of c. This restriction on R can be met in the context of
coordinate system originating at the initial event at x 0 , and t 0 , and traveling away
from that event at the speed of c (see later development).

The linear expression for the phase, excluding the amplitude, is obtained directly from
Eq.(9) with the condition of Eq.(11):

i  0m i   RI0 0m    
   (12)

Since Det AB Det A Det B  , the square brackets can be picked from Eq.(12), and
set as:

Det i  0 Im 0   (13)

The eigenvector equation for this expression is thus:

i  I 0 Im  a a  (14)
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The complete Systemfunction is a solution to equation Eq.(7), the amplitude is a solution
to Eq.(11), and the phase part of the Systemfunction is a solution to Eq.(14),

The factorization has also induced an expansion of the number of solutions to the
equation Eq.(7), by four. These extra solutions are for spin ½ particles, and the
expression is identical in form to the Dirac expression if I  a

B. Action & Wavefunctions

In this section a particle based solution, to Eq.(7), and Eq.(14), will be developed based
of the square of a classical path of action, over a Minkowski fourspace interval defined
over the life of the system of particles.

In the Path Integral formulation of QM, the amplitude of the probability for the m
particle to transition from one state to another is the integral over a scalar action between
the two states over all possible paths. The path integral depends on the final coordinate
and time in such a way that it obeys the Schrödinger equation, [2], thus heuristically for a
Schrödinger wavefunction:

         
L Si dt i

f f i i i i i iDx t Dx tx , t e x , t e x , tdx dx
          
   

     (15)

Where the propagator for the wavefunction going from an initial state i to a final state f
is:

   
Si

Dx tz t ; x t e  
f f i iK (16)

And S is the particle action.

Analogously this development will propose a point solution to the expressions for Eq.(7),
and Eq. (14), that represents a single particle, starting in the system at the Big Bang, (T =
0) and transitioning to the current event.

Observation of the wavefunction for a system of particles in the Schrodinger picture
from Eq.(15), suggests that for a system of particles coming into existence the initial
state at the big bang should be a constant  i ix ,T 0,0 .

 1i 1i ni n ix , t x , t cons tan t    (17)
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Thus the primary constituent of the wavefunction going from initial to the current state is
just the propagator. The path for the propagator considered here will be the classical path
which is sufficient to illustrate the concepts. Path integral summation would induce
refinements, but as in standard methodology the general picture would not be changed.

The Systemfunction would thus become:

   
S S

i i

i i iDx t e x , t Aedx
 

   
 

     (18)

C. Defining the Lagrangian

The action of Eq.(16), and, Eq.(18), for a particle is in general the time integral of the
path, and in the classical view the path taken minimizes this functional.

For the relativistic action of a particle it is presumed that a particle follows a path
through 4-space that minimizes the space-time interval. In curved space-time, this path
would be geodesic, but for our purposes, spacetime will be considered as flat, and the
Minkowski action is:

f

i

t
3

t

S Ldtd x  (19)

L is an invariant, t & x are the spacetime coordinates, and S is an invariant action
integrated over the spacetime interval. (Henceforth, 1 ).

For defining the Lagrangian, the spacetime vector four potential generated by a charged
particle is.

A  
v
r

 
  
 

(20)

Where v the four-velocity, r is the distance to the particle,  is the charge of the
particle, and  is the fine structure constant [1]. (This is slightly a nonstandard notation,
since it contains 2Q , but it is helpful this development.)
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From experimental observations of charged particles, there is a photon scattering sphere
at the classical electron radius,  which is also the radius at which the integral of the
electric energy equals the mass.

For a charged particle, it is proposed that the potential is actually a function of the
distance to the charge radius and not the central point. Instead of the potential prescribed
by Eq.(20), the gauge potential for charged particles is proposed to be:

A  
v

r

 
    

(21)

The
j
 is the charge sign of the particle, and j / mc  , is the Compton radius.

Since the photon cross section of a particle decreases as the velocity is increased [8], the
mass in  is the relativistic mass, and the function is shown in figure 1.

Figure 1.T Plot of modified charged particle Potential
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The  term in Eq.(21), is the classical electron radius, and it can be noted that at the
center of the particle r 0 , the value of A is not infinite, but the negative of the four-
momentum for that particle, or:

A n n
nr 0

m


 v n p (22)

Thus, the sum of the gauge potentials of a collection of particles, evaluated at a single n
particle:

ncm v A
n

j n
j r 0

c


 
 

 
 P A

n

j
j r 0

 
 
 

 , (23)

This is the canonical momentum for the n particle. The magnitude has the appearance of
a Lagrangian for a particle in a collection of other charged particles. Both terms are
covariant, and thus the sum is covariant. [6]

Noting that the standard classical Lagrangian for a particle in an electromagnetic field is:

 
2 2

2 2
0 02 2

v v
L m c 1 Q A v m c 1

c c
         A v , (24)

This is not a covariant function but is shown to yield a relativistic action.[9]

It is proposed that instead of Eq.(24), an acceptable relativistic Lagrangian for a particle
in a collection of charged particles, which is covariant, is the magnitude of Eq.(23)

n nL c p A j
j
 (25)

The vector function is just the canonical momentum, and the n particle selection can be
the Lagrangian for any of the particles in the system. (See Note 1, for discussion of this
selection)

More explicitly in velocity terms Eq.(25), is:

n n nn
L cm  v j

m
 

v
j jr

 
 
   

  , (26)
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The velocities are geometrical fourspace vectors. (This should not be confused with an
integral of a Lagrange field density.)

D. Total Lifetime Bivector Action

This section will define the total spacetime action of a particle from its initial existence
in the universe to its present event.

Inserting the invariant Lagrangian of Eq.(25), into the spacetime action of Eq.(19), gives
for the action:

 n nS c p A
f

i

3
j

j

t

t
dtd x (27)

As noted in Eq.(22), the center of the n particle is the endpoint.

As was noted for Eq.(17), the action for the particle is to be summed over the interval
from the initiation of the system, (Big Bang) to its current event. This interval is
expanding at c and thus must be a null vector, consistent with our solution for the
amplitude function, EQ.(11). Since the particle is moving at the velocity of light with
respect to the initial event the time and space integrals are on coordinate time and the
sum of the amplitude action is therefore, zero.

    0 0 k
kT T T X         

 
(28)

Where T is the interval time and X is the observed radius of the universe, now 13.8
billion years. Then:

   0 k
n k nS T X p    A j 0

j

S
 

 
 

 (29)

S is the magnitude of the lifetime action of a particle from inception to the current event,
and 0S is the initial value of the action.
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It has been presumed that the particle has followed a path through 4-space that
minimizes the space-time interval from the initial event to the current event and that the
classical vector integral over a flat Minkowski geodesic is that path.

The frame of the action is the frame in which the Big Bang is the zero point, at rest in
space, and the particle is traveling at c. If the action over the life of the particle is to be
calculated, the initial frame has to be the proper starting point. The particle is moving
along the light cone, a null vector, in a direction away from the BB point.
Relativistically the particle is moving at c respect to the BB frame, and proper time and
relative motion is stopped, thus there is no contribution of the local relative velocity to
the action integral. The action can thus be trivially integrated.

Initial value

Without orientation provided by the pseudoscalar of the fourspace, the action of a
particle can have no spin. It is therefore asserted that the initial action at T = 0 must
contain the unit fourspace orientation vector I . The pseudoscalar is represented in
fourspace geometrical algebra by 1 2 3I =    which serves the role of i in complex bivector
spaces. In this case it is a unit orientation vector and not the spin per se. This can be
noted from its role in vector rotation.

   e cos sin    I I (30)

The initial action for a half spin particle should be the spin or 1/2 so 0S will be set as
1/2 the unit bivector,

k
0

1
S

2
I  (0.31)

k is the initial direction.

The total lifetime particle action, S’, then is the complex bivector.

 0 k
n k nS T X c p    A k

j
j

1
2

I
 

  
 

 (32)

This is the lifetime fourspace action of a charged particle existing at the current time.

In terms of the standard view of action, this would be:
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1
S

2
 S I (33)

For the purposes of the next section it is noted that the invariant magnitude of a velocity-
position bivector AB is:

2
AB ABBA , (34)

For simplicity it will be designated as the square, [7] thus:

   2 0 k
n k niS T X c p    A k

j
j

2
1
2

I
  

   
   

 , (35)

or heuristically can be expressed as:

 2 2 1
S' S iS

4
    
 

(36)

The square of the magnitude defined in Eq.(36), is scalar but not just the square of the
action between two events, but also includes a linear component representing the phase
difference between the initial and final event.

In particle velocity terms the square of the lifetime action of the n particle in the potential
of all the other charged particles, Eq.(35), is:

   2 0 k
k nniS' T X cm     v j

m


 

v
k

j

2
1

r 2
I

  
    

    
 ,

(37)

I. PROPOSED COMPLETE SOLUTION, THE SYSTEMFUNCTION

This section constructs a point solution that properly models both the phase and
amplitude of a particle existing in a collection of other particles originating in an initial
single event, and satisfying both the Klein-Gordon and Dirac equations.
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Focusing on the action path solutions to the Schrödinger equations, Eq.(15), and noting
that a particle can be considered as an energy level or state of the system. It is presumed
that the initial state for a particle in the Big Bang is a constant.  x,T 0,0 .

 1i 1i ni nix , t x , t cons tan t    (38)

Thus the primary constituent of the wavefunction must be the propagator that evolves the
state to the final state. For the classical path Eq.(15), would be:

   
S S

i i

f f Dx tx , t e e     (39)

An observation of Eq.(36), shows an action square which has both the linear phase
relation of the action, and the real square of the action which must be related to the
relativistic mass. It is proposed that the square of this is the basis of a propagator action
that includes more than just the standard first order terms; there are also real terms that
set the value of the amplitude factors of the solutions to the KG equation.

It is proposed that the Systemfunction point solution, , for a particle satisfying Eq.(7),
and Eq.(14), is:

1
4

n

22
r 0 0n n

S iS(S')
rAe Ae

 
  
  

 

  , (40)

Note that the phase part of the function is scalar, linear, and somewhat conventional, but
the 2S , is real, and constitutes the amplitude of the particle function. The nr 0 , indicates
endpoint action evaluated at the center of the n particle.

The Systemfunction then from Eq.(37), for the single n particle is:

2 2 nT X pc

Ae

 
 
 

 

 
A nj

j
pc

 
 
 
  
 

 A k
k

k
T

 
 
 
 
 

   I npc A j
j

      
      


(41)

The function will be shown to be a solution of the KG Eq.(7), and the phase factor is a
solution to Eq.(14), and the amplitude is a solution to Eq. (11).
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Note that the first term, which is the square of the real action, is zero   0 , Making the
real term a ratio of the space and time functions a constant equal to one.

2 nT pc

e
A 

A nj
j

pc
 
 
 
  
 

 A k
k

2 nX c p

e

           



A nj
j

c p
 
 
 
  
 

 A k
k

0 k nk

e

T X cp 
 
 
 

           





 



I  A j
j

 
 
 
 
  
 


(0.42)

Note, also that at the center of the function 2 2T X , the value of the real function is A,
and at a distance x from the center, with the velocity equal to zero the observed
function is:

x

2Mc x
Ae

 
  
 



 
   (0.43)

This function describes a real particle having a spherical Gaussian shape with the proper
dimensions for a classical particle such an electron.

The phase function of Eq.(41), comes from:

 
k

0 k
k nT X c p

2
I

   A nj
j

c p
 

 
 

 A  

 

k
0 k

kk
k

k 0 k
k n

T X
2

T X c p

I

I

     
 

    



 A
j

j

 
 
 


(44)

The first term in the exponent of Eq.(41), is real, scalar, and related to the classical
properties including particle mass ratios. The product   is the square of a null vector
and always zero, and thus the exponential does not run away. The Second term is
imaginary, scalar, and generates the phase or QM properties of the function.
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It is strange that the KG differentials operating on the first term are not also zero, but
since the differentials are a difference between the time and space coordinates, rather
than a sum, it has a value.

The  vector is not a field variable as would be the case for a Dirac particle
wavefunction, but is the null location vector of the particle with respect to the initial
event.

II. SEPARATING THE SYSTEMFUNCTION

The Systemfunction  for the n particle defined in Eq.(40), as shown earlier, Eq.(8), can
be separated into a product of amplitude and phase functions, and the single equation can
be separated into amplitude and phase equations.

R I    , (45)

From Eq.(41), the amplitude scalar Systemfunction is:

R

2
0 k nkT X pc

Ae

 
 
 
  

 
A nj

j
pc

 
 
 
  
 

 A k
k

 
 
 
 
 


, (46)

The scalar phase Systemfunction for the n particle and solution to Eq.(14), is:

I

T

Ae



 

I


npc A j

j

 
 
 
  
 


(47)

III THE FIRST ORDER COMPLEX FUNCTION PROPERTIES
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This section shows the phase term is a solution to the first order equation.

Letting iI for familiarity, and T t , be the local time, since the phase is cyclic, the
scalar complex portion of the function of Eq.(47), is then:

I

it

Ae



 
c p n A j

j

 
 
 
  
 


(48)

Noting that:

t      220 1 2 3ct x y z ct r         (49)

t  p m   v Et p r 
 (50)

The free particle part of the exponent in Eq.(48), becomes identical to the Dirac free
particle wavefunction:

  t

I

Et p ri

Ae
 

 




A
j

j

    
     

 
(51)

If the potential term is ignored the form of the phase Systemfunction is identical to the
Dirac wavefunction for a massive free particle. The difference is that the Systemfunction
is the value of the function only at an event in spacetime, at the center of a particle,
whereas the Dirac solution is the probability amplitude throughout spacetime. In the
Dirac case the solution is a function of r, whereas the r in the Systemfunction is the
particle location.

A. Gauge Potential Equivalence

The notable difference in The Systemfunction, Eq.(51), and the Dirac wavefunction is
the presence of the potential in the function. This can be shown to be equivalent to the
Dirac solution of an equation with the potential operator included.

Defining the phase function of Eq., as  I  
a b   , where the potential function

for the j particle is a separate function:

b exp i t    A j 
   , (52)
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Noting the explicit form of the null vector t  Eq.(49), multiplying and taking the
derivative the result is:

 it  A
j

i A     j (53)

(The more conventional form of A would have Q A .)

Applying the chain rule to the scalar Systemfunction:

 I  
a b b        a a     b b      a a b iQ A       (54)

Thus:

b i   A j a 0 a bm     
   , (55)

or:
i  A j a 0 am    

  (56)

The phase Systemfunction with the potential included in the solution has equivalence
with the Dirac wavefunction, as a solution to the Dirac operator, with a potential
operator.

The phase Systemfunction is thus a solution to the first order Dirac equation.

IV OBSERVATION FIELD

It is undisputable that the wave structure associated with the Dirac and Schrodinger first
order equations are associated with probability amplitude, and it is well known that some
of the associated negative wave structures are not related to probability amplitudes. The
following is a presentation of a wave structure associated with the massive point particle
defined here that exhibits the known features and interaction properties

The function value of Eq.(47), at the nr 0 position is can be observed in the future
along the direction of the same null vector locating the particle in the initial event
coordinate system. The direction to the initial event is ubiquitous, meaning that the Big
Bang is at 13.8B light years distant, but the direction is arbitrary over 4 pi steradians. If
an arbitrary null interval is added to the null location vector the, value of the
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Systemfunction event at the particle can be observed at a distant point at a future time,
which is at the time of arrival of light from the event.

T    oT r , (57)

The value depends on the angle, distance, and time from the particle, and can be referred
to as the “observation field” of the point function

Figure 4 shows the n particle with the  event located at the center nr 0 , as observed at
another event. The value of the Systemfunction, which is a point function, is viewed
along the null observation vector  or , and has a different value depending on distance
and direction from the event.

Figure 4. Observed value of I function evaluated at n particle as viewed at or

This is the observation of the value of the function at the  event as transmitted by a
photon. There is no physical field, or any substance defined, at that point. or . This
observation field would represent the interaction of the point particle with another
particle, as communicated by a photon from the point particle.

V THE CLASSICAL KG EQUATION



18

Putting the Systemfunction,  into the KG equation, results in the standard coordinate
free equations of motion for a charged particle in the presence of the electromagnetic
field of other particles, and illustrates that the same Systemfunction is not only a solution
to the Dirac Equation but also the Klein Gordon equation.

Putting the complete Systemfunction of Eq.(41):

2 2 nT X cp

Ae

 
 

 




A
N

nj
j 1 j

cp
 
 
 
   

  A
N

0 k
k k

k 1 k
i T X A

 
  
  
  

 
     j

rn 0

 
 
 
 
 
 





’ (58)

into Eq(7),

 2 2
0m 0   , (59)

and executing the differential, gives:

nc p A nj
j

c p
 
 
 

 A 2
0k

k

m    
 

 (60)

Expanding Eq.(60), and using notation in Eq.(35),

ncm v 2

n ncm v  A j
j

A k n n n
k

S cm


v  2
0m

 
  

 
  (61)

Explicitly putting in the potential from Eq.(21), for the m particles this is:

ncm v 2

nn jn j j

2m
r


  v
j
 v 2

0n
m  (62)

Or in more elementary terminology:
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2
2 2 2

n j nn 0 n
2 2n j

n j

m c m c v 2 Q v v
1 1

c m c r c c

                                    
 

 
, (63)

Taking the square root gives the familiar classical linear Lagrangian expression for a
particle the presence of other electrically charged particles. Note that the proper
electromagnetic interaction between the particles could not have been possible without
the square of the action of Eq.(35).

The square root of Eq.(63), is:

2
2 2 2

n j nn0 n
j j

1 Q
m c m c 1 v 1 v v

2 r

                 
  (64)

Note this equation is the particle-particle electromagnetic interaction Lagrangian, and the
classical coordinate free equation of motion for the particle. (See Appendix II) The
amplitude of the function is therefore just the classical mass of a particle in an
electromagnetic field. This equation is the core of the Bohr-Sommerfeld model of the
atom, thus showing that the Systemfunction contains both the Quantum and Classical
descriptions of particles.

The amplitude factor of the solution thus has the proper classical values of the
electromagnetic interactions, but the phase factor of the Systemfunction demonstrated
earlier, sets the quantization rules and values.

It is of interest to note that the next term from the expansion of Eq.(21), in the bracket of
Eq.(64), is:

2
njQ

r r

 
 
 

v j v
2c

 
 
 
 

, (65)

This is the classical value of the coefficient of the Larmor spin orbit interaction energy
interaction which is:

2
e

L
Q 1 v r
r r n vr

      
  

 

SH (66)
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This illustrates that the classical amplitudes do not contain the QM detail available in the
multiple phase solutions of the linear form.

From the foregoing, it has been shown that the real amplitude factor of the
Systemfunction is a solution to the KG equation, and thus the Systemfunction is a
solution to both the quadratic and linear forms of the KGD equation.

CONCLUSION

An alternate point particle solution has been presented that is a solution to both the KG
and Dirac expressions. It is only viable in the context of the particle system as a whole,
with the initial event with T = 0 (Big Bang). The solution defines both classical
(amplitude), and quantum mechanical, (phase) properties of charged particles originating
in a system of similar particles heretofore not connected. This is a straightforward
arithmetical approach in geometric algebra to a solution of the equation in a universe that
is expanding at c. The constructs and observables are outside the normal QM parameters,
and thus do not conflict with standard QM methods or results, but adds another
perspective. It is presumed that the defining the connection between the real amplitude
and the imaginary phase factors of a complete wavefunction can be used in defining
particle mass ratios.
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Appendix I

Definitions, Notation, and Conventions

Feynman slash notation:

A = γ A a
 a 2= a a = a a

 b + b a = 2a b

The radius of particle system 0cT ct    

Four velocity v  = v

Three velocity  k k
k

v v v    
 

Null unit vector   0 1
           

   

Mass in this paper
mc 1

m  
 

Rest mass 0
0

m c
m 


Compton radius

mc



Vector 4 potential A

Most equations c 1 

Charge sign of j particle
j


Derivatives in slash notation
 x

 





     

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Local reference coordinates x

Initial event coordinates X

The Weyl representation of the Dirac gamma matrix:

2 3 0

1 i 1 1
1 i 1 11

1 i 1 1
1 i 1 1

        
                     
        
               



1 1 2 2 3 3 0 01, 1, 1, 1                .

Four velocity v  1 2 3 0
x y z= v v v c      

The product of two unitless four velocities:

v
n

v   1 2 3 0 1 2 3 0
xn yn zn xm ym zmm

= v v v c v v v c             

or
v

n
v    n m n m 4 m nm

v v v v c v v      
      1 2 3    

The inner product:
v

n
v

m
 v

m
v n mn

2 v v

The outer product:

v
n

v
m
 v

m
v    n m 4 m nn

2 v v 2 c v v       
   
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Appendix II (Standard units)

Particle Interaction Lagrangian

From Eq.(64), the interaction of a charged particle in an electromagnetic field of a
charged particle j is:

2
J n2 2 2

nn0 n n n J
J

1 Q v v
m c m c m v 1

2 r c c

 
   

       
   
    

 (1.1)

So the interaction Lagrangian is:

2C C J n
Int n J

J

Q v v
L 1

r c c

   
    
  

  

 (1.2)

From Jackson p407 [6], the interaction Lagrangian for two particles is:

 int
0

Q
L Q

m c
 p A v A  (1.3)

With:
2

0

v
m m 1

c
    
 

(1.4)

From Jackson, [6], the Potentials for the classical electrodynamics interactions are: (not
the quantum electrodynamics interactions ).

Q v
A 

r
(1.5)

Thus

2
0 k 0 kn n J J n

int J
k kJ J

v v Q v Q v v
L Q A Q 1

c c r c r c c
                                              


   , (1.6)
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and is the same as our interaction Lagrangian in the classical particle Eq.(1.2).

Note 1

Alternate Electromagnetic Lagrangian

The Standard classical non-covariant Lagrangian for a particle in an electromagnetic
field is Eq.(24) , and using our defined notation Eq.(21), this is:

 
2 2

2 2
0 02 2

v v
L m c 1 Q A v m c 1

c c
          A v (2.1)

Letting 0 0m / m 1/ m m /     , and expanding:

2 2L mc mv    A v (2.2)

In this proposal, the Lagrangian is the magnitude of the invariant gauge potential
evaluated at the particle.

n nL c p  A j
j
 (2.3)

The first order terms of this are:

2
n nL c p A

2

2
j n

j

c p
2

n2c p jA   2
 A (2.4)

Taking square root of product;

 
2

22 2
n 2

v
L mc 1 2mc

c
 

    
 

v A  2 A (2.5)

 
2

2
n 2 2

v 2
L mc 1

c mc
 

    
 

A nv  
 

2

22mc


A (2.6)

Since most of the terms are small the square root is:
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 
2

2
n 2

1 v
L mc 1

2 c
 

   
 

A nv  2

2

1
2 mc


A

(2.7)

2 2
n

1
L m c m v

2
    A nv  2

22mc


A
(2.8)

Comparing the classical version Eq.(2.2), with the proposed relation Eq.(2.8), we see that
the first order difference in the proposed version is that the kinetic energy enters with the
classical value, whereas in the classical Lagrangian the enters with twice the classical
value of the kinetic energy.

Since multiplying the Lagrangian by a constant or adding a constant, has no effect on the
equations of motion, the difference between the classical and the proposed Lagrangian
should have no effect on the predicted equations of motion.

It is straight forward to show the Lagrange equations of motion resulting from the
proposed Lagrangian produce acceptable equations of motion for a free particle.

Momentum:
L

2p
x




  (2.9)

Acceleration:
d L

0
dt x

     (2.10)

Coordinate dependence:
L

0
x





(2.11)

Note 2

Constraint on Amplitude Function

Starting with the factored expression:

i  0m i  0m 0   , (3.1)



26

Or:
i  0 R Im 0     (3.2)

Applying the chain rule:

i  0 R I Rm i      
I Ii    

R 0 R Im 0       (3.3)

Dividing by R this is:

I

R

i






 R i

 
   

 
  0 Im 0   (3.4)

Thus:
i  0 Im 0   (3.5)

Only if:

 R 0  (3.6)


