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Abstract: The purpose of this paper is to explain the pattern of fill factors observed in the
Fractional Quantum Hall Effect (FQHE), which appears to be restricted to odd-integer
denominators as well as the sole even-integer denominator of 2. The method is to use the
mathematics of gauge theory to develop Dirac monopoles without strings as originally taught by
Wu and Yang, while accounting for orientation / entanglement relationships between spinors and
their environment in the physical space of spacetime. We find that the odd-integer denominators
are included and the even-integer denominators are excluded if we regard two fermions as
equivalent only if both their orientation and their entanglement are the same, i.e., only if they are
separated by 4z not 2z. We also find that the even integer denominator of 2 is permitted because
unit charges can pair into boson states which do not have the same entanglement considerations
as fermions, and that all other even-integer denominators are excluded because only integer
charges, and not fractional charges, can be so-paired. We conclude that the observed FQHE fill
factor pattern can be fundamentally explained using nothing other than the mathematics of
gauge theory in view of how orientation / entanglement applies to fermions but not to bosons,
while restricting all but unfractionalized fermions from pairing into bosons.
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1. Introduction: Wu and Yang and the Dirac Monopolewithout Strings

The Fractional Quantum Hall Effect (FQHE) obserwedwo-dimensional systems of
electrons at low temperatures is characterizeddsgmwved filling factors’y =n/m, wheren and
m are each integers, but whereis anodd integer only, with the exception thah may also be
the even integer 2. In other words, the apparent pattern, widelyoreggl and studied in the
literature, for example, [1], [2], [3], [4], [5]si n=0,+1,+2+3.. andm=2,3,5,7,9,11.. Two
guestions arise from this effect: why are the denators in the filling factor odd but not even,
and why is the even denominatme2 an apparent exception? We show that this patiér
filling factor denominators has a fundamental emptaon based solely on using the mathematics
of gauge theory to develop the Dirac Quantizatimndition (DQC) for Dirac monopoles, in
view of how orientation / entanglement appliesanfion spinors but not to bosons.

In 1931 Dirac discovered that the existence of meig monopoles implies that the
electric charge must be quantized [6]. While ckhaggantization had been known for several
decades based on the experimental work of Thompgprand Millikan [8], Dirac was
apparently the first to lay out a possible thecadtimperative for this quantization. Using a
hypothesized solenoid of singularly-thin width knoas the Dirac string to shunt magnetic field
lines out to mathematical infinity, Dirac estabbshthat a magnetic charge strengtivould be
related to the electric charge strengtlaccording toey =27m, wheren is an integer, which
became known as the Dirac Quantization Conditio Q@) Subsequently, Wu and Yang used
gauge potentials, which are locally- but not glbpakact, to obtain the exact same DQC
without strings [9], [10]. Their approach is cosgly summarized by Zee on pages 220-221 of
[11] and will be briefly reviewed here, becauseprbvides the methodological basis for
understanding the pattern of filling factors obsenfor the FQHE. Throughout we use the
natural units ofi =c=1.

Using the differential one formA:Aydx” for the electromagnetic gauge field a.k.a.
potential and the differential two-fornfr =5 F dx* Odx’ =dA=40,A dx” Odx’, a magnetic
chargeu may bedefined as the total net magnetic flux = <ﬂ> F passing through a closed two-

dimensional surfac&® which for convenience and symmetry we may takeébéoa sphere.
Differential exterior calculus in spacetime geomdgaches that the exterior derivative of an
exterior derivative is zerad=0, which means that the three-form equatitbth=ddA=0. Thus,

via Gauss / Stoke#ﬂo:ﬂj dF = <ﬁ> F =u. In classical electrodynamics prior to Diracsthi

was taken to mean that the magnetic charg® But a close consideration of gauge symmetry,
which is locally but not globally exact, tells dfdrent story.

When a spin Y2 fermion wavefunction (which we relgés be that of the electron)
undergoes a local gauge (really, phase) transfamag(x) — ¢'(x) =€"Py(x), the gauge
field one-form transforms as

A A=A+e"de" /ie. (1.1)
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If we represenF in polar coordinate¢r,@,6) as F =(x/4m)d cosddg, then becaus& = dA

anddd=0, we can deduce thak=(u/ 4)cosfdg . However,dg is not defined on the north

and south poles. So we may define a north coaelinpatch over which
A, =(u/4m)(cosf- 3d¢ and a south patch over whick =(u/4m)(cosf+ 3dg. But at

places where these patches overlap, these gaugstipts are not the same, and specifically, the
difference isA; — A, =(u/2m)d¢, or written slightly differently:

A~ A=A =A H(ul2m)dg. (1.2)

So comparing this with (1.1), we may rega#d as a gauge-transformed staté of A, for
which the gauge transformation is simply:

L eingeh = H gg. (1.3)
ie 21T

This equation is satisfied by:

exp(in) = exp{ie,u 2¢ J (1.4)

T

as can be seen simply by pluggig§ from (1.4) into the left hand side of (1.3) andueing.
This relates the azimuth angle which is one of the three spacetime coordinateshe local
gauge (phase) angle, and thereby connects rotations througghn physical space to rotations
through A in the gauge space in a manner that we shall xploee in detail.

In polar coordinatesg =0 and ¢ =27 in (1.4) describe exactly the sarogentation

(but not entanglement) on the surfaceSof So to make sense of (1.4) at like-orientations,
must have:

exp(in) = exdien 00 = & exfpiexO], (1.5)

Specifically, this means thaxp(ie,u) =1. Mathematically, the general solution for an e
of this form is exp(i Zm) = 1 for any integern =0,+1,+ 2+ 3.., which is infinitely degenerate
but quantized. As a result, the solution to (is5)

N=eu=2m. (1.6)

This, of course, is the Dirac Quantization Conditizvhich may also specified in relation to the
gauge (phase) parametéx which is seen to be an quantized integer multipie 277.
Specifically, (1.6) with simple rearrangement tells that the electric charge is quantized
according to:
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e:nz—”:neU:A, a.7)
H H

where then=1 “unit” (u) of electric charge ig, =277/ i, defined a2/ times the inverse of the
magnetic charge. If this monopole “exists,” thiee electric charge is quantized in unitsepf

We may then go back to the original definitipre # F and use (1.6) to write:

#F :IU:Z_ZTn:nluu:A’ (18)
e e

where we also define am=1 unit of magnetic chargg/, =27r/e. By appropriate local gauge
transformation, and specifically by choosimg0 which is the same as choosing the phase angle
A =0, the nonzero surface integral can be made to IvanﬁaF =0. But this does not
invalidate (1.7) and (1.8) nor does it preventnosnf seeking to draw physical conclusions from

these. It simply means that0 with no monopoles and no electric charges is oh¢he
permitted states. But the meaning of the wholgeaof charge® = ne, for n#0 has long been

physically-interpreted as suggesting charge quatidiz. In the lowest positive non-zensl
state, from (1.6), we havA =eu =2m. If we define a reducedx =A/2m, then by (1.6), the

reduced gauge parametex =n is simply the charge quantum number So every gauge
transformation adding an angle &fr adds one unit of electric and magnetic charge.

This is how Wu and Yang obtain Dirac monopoles @redDQC without strings, which
leads to the quantization of both electric and netigrcharges.

2. Orientation — Entanglement and Odd-Numbered Fratonal Quantum
Hall Denominators

If we closely study this derivation by Wu and Yamg see that there are some additional
guantum states that have not yet been consideRaderring to (1.5), not only dg =0 and

¢ =2 describe exactly the sanwientation (sans entanglement), but so too @o 47,
¢ =6, ¢ =8m, etc. So we now extend (1.5) to:

exp(in) = 1= ex{ieud) = exfieuOP= expen)3 eXpul)4d efipuD)d diguD) €(2.1)

Each of the above is a separate relationship of giweeral form exp(iex[n) =1, where
m=1,2,3,4,5,6.. is an integer not the same as thalready in use. At the same time, as noted
after (1.5), the general solution for an equatibnthes form is exp(i Zm) = 1 with this integer
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n=0,+1+2+3... Comparingexp(iexm)=1with exp(i 2m)= 1means that more generally,
eun=2rm, or, restated:

e=———=—e, =ve,, (2.2)
where we define a “filling factor”

v—; n=0,£1£2+£3...; m= 12,3,4,5,6. (2.3)

n
m

So this tells us that the unit of electric chaggecan be fractionalized into any=n/m fraction
of itself.

Now, while fractional charges are observed in thectfonal Quantum Hall Effect, (2.2)
and (2.3) give usoo many fractional states, because with the exceptionmE2, the only states
which appear to be found experimentally are stat@hichm is anodd integer. So the question
now becomes, whether (2.3) with further developnbentised to explain the FQHE solely on the
basis of gauge symmetry. But to do so, we haWatbout why the denominator is restricted to
only odd integers, with the exception of the everieger 2. That is, (2.3) allows
m=1,2,3,4,5,6., but based on what is observed, we should onlg Ina% 1,2,3,5,7,9., so we
now need to account for this discrepancy. Thighsre we start to consider not only orientation,
but also entanglement.

So far, we have regarded two different fermioiestdo be physically equivalent if their
azimuth anglesp differ by 277. So (2.1) and thus (2.2) and (2.3) were develdperegarding

g=2m, ¢ =4, p =61, ¢ =8, etc. to be equivalent states because they astasdis of like-

orientation.  But let us now return te/(x) — ¢'(x) =€"¥w(x), which is the gauge
transformation with which we originally started (At1). This transformation acts on a Dirac
fermion wavefunction taken to be that of an elettr8ecause Dirac fermions behave as spinors,
they have not only orientation, but also entangl@me relation to their environment in the
physical space of spacetime. One of the most yiarded discussions of this, is that of
Misner, Thorne and Wheeler in [12] at section 41.5.

So let’s start with a Dirac fermion, e.g., electmith a unit of charges, =277/ 1 in the

n=1 state as obtained in the DQC (1.6), which isdfia¢e for which the azimuth ange=277.
Now, let us rotate this electron into an equivakgate which maintains not only orientatidnat
also entanglement. If we start atp = 277 and rotate the fermion wavefunctign(x) to ¢ =4,
the fermion will have been restored to its samerdation but not to its same entanglement.

To keep the entanglement the same, i.e., to maitiai sameersion of the fermion, we
must rotate the fermion through an azimuth4af, not merely27r. This is because of the
double covering whereby arr rotation (a single “winding”) for SU(2) correspatb a 47
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rotation (a double winding) in the O(3) physicaase of the spacetime rotation group in which
the azimuthg coordinate subsists. Consequently, starting fitoenp = 277 state of am=1 unit

chargee, =2/ u, the angles with like-entanglement will lge=677, ¢ =107, ¢ =147 etc.

The angles with opposite-entanglement will be thotk ¢ =47, ¢ =8, ¢ =127, etc. So to

restore the same version of the fermion we musp kbe former but discard the latter set of
azimuth angles.

With this in mind we go back to (2.1), start wittetg = 277 state for then=1 unit charge
e, =2/ u, and rotate this through a successioaf windings, eliminating the intermediate

27T rotations which give the same orientation but posdopposite entanglement. When we
discard these oppositely entangled states, (2\d)bemomes:

exp(in) = 1= exdien )= expieyOp= exfpen)5= exiguD)Z efipul) 9.  (2.4)

Each of the above is now a separate relationeixm(iey( an+ 1)) = 1 wherem is an integer
with the valuesm=0,1,2,3..,, so that 2m+1=1,3,5,7.. is an odd integer. Comparing
exp(ie,u( n+ ])) = Jwith exp(i Zm) = 1 means thaey(2m+1) = 2m, or, restated:

e=———= =ve,, 2.5
1+2m u 1+2meu ! (23)

with a redefined filling factor:

v=—""_. n=0+1+2+3.: m= 0,1,2,3. (2.6)
1+2m

In contrast to (2.3), this filling factowill always have an odd denominator. So the appearance
of odd but not even denominators (other than tlem elenominator 2) in the FQHE appears to be
explained by (2.6), and is the result of requiringt physically-equivalent gauge transformations
be those which, when applied to a fermion, prodtloe same orientatiomnd the same
entanglement.

So now we have a the gauge theory explanationwloy the FQHE filling factor
denominators are restricted to only odd integettsnioti even ones: It is opposite entanglement
which excludes the even denominators. Now we ctontbe next question: Why does nature
also appear to permit the even denominator 2, ditiad to the odd denominatotst 2m in
(2.6), but not permit any other even denominators?
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3. Even-Numbered Fractional Quantum Hall Denominates Restricted to
be Equal to 2

Equation (1.6) for the Dirac Quantization Conditio(1.6) specifies charges
e= n(271/,u) =ne, which are integer multiples of the unit charge=27/ 4. For this set of
integer charges, (1.6) tells us that the gaugenpetexr A =27m. This entire set of integer-
guantized charges corresponds to the single azighat@77, which means that there is a one-to-
infinite quantized mapping ap to A. That is, an infinite set of gauge states 27m can all be
used to equivalently describe the same azimutk gtat277, yielding quantized multiples of the
unit charge.

Now, if we take a single fermion e.g. electroritia ¢ = 277 state and do d/7 rotation to
a ¢ =6 state which restores the electron to its origor&ntation and entanglement version,

then exp(iA) = 1= exf{iex 03 is the portion of (2.4) which describes this neates Referring
again to the general relationshgxp(i 2m)= 1, the solution isA =27/m=3eu, restated as
e=A/3u=(n/3)(2r/y)=ne, /3. This specifies integer multiplesof 1/3 of the unit charge

e,. As before, the gauge paramefer 27m, from which we earlier defined a reduced gauge
/- =n after (1.8). Similarly, if we define a reducedimuth ¢ =¢/2m7=3, we see that the
fractional denominatom is equal to the reduced azimuth=¢ =3. It is readily seen that for
the ¢ =107, ¢ =147 etc. states which also maintain te- 277 version of the fermion, that the
odd number denominators in (2.5) and (2.6) may b#gten as ¢ =1+2m. Using this
information and notation, we rewrite the fillingcfar of (2.6) as:

V:%; A=0,x1+2+3...; ¢=% = 1,357,9..m= 0,1,2,. (3.2)

So the fractionalization of charge is determined directly by the number “aindings”
¢ =1+2m in the physical space of spacetime, and the odd numbers in the denominators occur

because one must use two windings, not one, toreeatfermion to its original version. On the
other hand, thguantization of charge into integer multiples of a fractionhboge is related to
the quantized degeneracy of the gauge param®tem which describes an infinite number of
equivalent gauge states, and mathematically tdattethat phase angles which differ from one
another by2/r are degenerately equivalent. Now let’s turn te ¢mly even denominator, 2,
which is phenomenologically-observed in the FQHE.

A denominator of 2 corresponds to a winding numyger 2. The set of quantized states
for the unit charge — not a fractional charge —chhive now write ase =+ (277/ ) = #e,,
corresponds to the winding numbgr=1. So to get from an electron witfh =1 to some state
with ¢ =2 we are only making one turn of the azimuth. Thusile we are restoring
orientation, we are not restoring entanglement.nétloeless,¢ =2 is the only even winding
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number which nature permits, so we have to figuriewhy we observe a state that is only one
turn aboveg =1.

An electron will not be restored to its originarsion at¢ =2, because fermions need

to do two windings to regain their original versio@nly bosons can maintain equivalent version
with one winding, because for bosons, entanglensembt an issue because they are not spinors.
So for an electron to go fromp =1 to ¢ =2, that electron must “disguise” itself as a boson.

How might the electron do that? By finding a setalectron to “conspire” with the first
electron and “pair up” into a single boson systefhen, that pair of electrons can be wound
from ¢ =1 to ¢ =2 without changing its entanglement. And based3){ the filling factor

will now bev =A /¢ =n/2, which yields the denominator of 2.

What does this mean?: it means that while allhef permitted windings of individual
electrons yield fractional charges with the 3, 5,97 etc. odd denominators, the permitted
winding for a bosorpair of electrons yields the one permitted even denominator, nar2ely
While the “Cooper pairs” model of electron pairidg] may well come to mind, for the moment
let us not be that specific. Let us simply talktemms of the requirement that a first electron
needs to find some way to pair together with a sé@ectron if ag =2 winding state and thus

a % unit of charge is to be empirically displayetier the right set of conditions — as it is at
extremely low temperatures in suitable materialdenrexperimentally-replicable circumstances
— while leaving open the mechanism by which thating take place. So, the pairing of

electrons into boson states would appear to explay 2 ispermitted as an even denominator,

and we know that there is some grounding in estadtl theory for such pairing to occur. Now,
we have left to explain why 4, 6, 8 and even demaairsother than 2 arenot permitted.

The next even denominator of coursars4 which we now know corresponds to the
winding azimuth¢ = 4. And we know that this fractionalizatian=n/4 is not observed. So

let us start with an electron in th =3 fractional state for whickv =n/3. These are fractional
fermion charges, so to get them to @=4 winding which would correspond adding one
azimuth turn tog =3. This would result in an oppositely-entangledestavhich is inequivalent
to ¢ =3. So, as we did to get fronp =1 to ¢ =2, we would have to “pair up” two of these
¢ =3 fractional v =n/3 fermions into a boson state to get =4 with a quarter-integer
fraction v=n/4. The fact that we do not obserye =4, nor do we observe any other even
windings ¢ =6,8,10.., is nature’s way of telling us thdtactional charges with cannot be
paired up into boson states. All boson pairs must be constructed from unfractioned charge units
u,=2mle. Given that fractional charges are commonly regdrds quasiparticles while unit
charges are not, this simply means that only “rpalticles, not quasiparticles, can form pairs.

Pulling together all of these results, we now seiment (3.1) withg@ =2. Thus, the
final result for the overall observed pattern is:

V:%; A=0,x1+x2+3...; ¢=2 -or-¢= %1 @ ;m= 0,12 (3.2)
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The ¢ =1+2m odd-denominator states represent fermions exhgifractional charges; the
¢ =2 state represents a boson pair of unit chargesatieahot fractional; and the absence of
¢ =4,6,8.. states tells us that fractional charges are nmlga of forming into boson pairs. In

Figure 1 below, which is reproduced from [14] ai®][ we have annotated the unit electron
charge, thewv = A/ ¢ =1/3 fractional charge, and the ground state for a paunit electrons

forming a boson withA/ ¢ =1/2. Also added as annotations are appavenb/11, v =6/11
andv =7/9 fractional states.

3 -
25 -

2 L Fractional
c'“_' Unit Electron
@ Electron Charge
E D Chirgs Boson 2/5 13
- 1.5 |- 43 2 1 i State

Q h 3/5 Electron

ac Pair 317

arr 12 4/91

|

i $
k J o LJ |

10 20 30

Magnetic Field (T)
Figure 1: Fractional Quantum Hall Effect, reprodié®m [14], [15], with annotation

It is worthwhile comparing theixr =n=1 ground state of thgg =1, ¢ =2 and ¢ =3
windings, which are the three states annotatedeabdworv =4/ ¢ =1 we of course have a
unit electron charge. For=-A/¢ =1/3 we have 1/3 fractional charge. But for the bogam
with v=4A/¢ =1/2with a ¥ unit of fractional charge, there &argo electrons not one

contributing to the half unit of charge. Therefoeach electron actually contributes a % unit of
charge. Given that electrons naturally repel am&teer so that any pair formation mechanism
must overcome this repulsion, it will be easier f@p electrons to assume charges of % unit
apiece and then pair into a boson, than to stdlgarunit charge state or in the 1/3 charge state
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and then pair up. It is the ¥ charge-per-elecpained state which minimizes the repulsion and
therefore provides the most energetically-favoreafiguration.

Finally, we return to the original definition = <ﬂ> F of the Dirac monopoles. If rewrite

e=ve, :V(ZIT/,U) with the complete filling factor (3.2) in terms @f, then using the “unit” of
magnetic charges, = 277/ e, what we learn about the permitted monopole flugekat:

@F:vyu:(ﬁ/¢)yu; A=0+1+2+3..; =2 --or-4= % @ ;m= 01,273 (3.3

It is often said that the Dirac Quantization Coiitdemonstrates that if magnetic charges exist,
then electric charge is quantized. The existeficpiantized electric charge is then used to infer
the possible existence of Dirac monopoles, evemghahere have apparently been no such
monopoles observed. But when we use Wu and Yajayige theory without strings [9], [10] to
develop the DQC to its logical conclusion, we deat fractional charges of the FQHE emerge
right alongside of quantized charges. So the D@@enclature somewhat misrepresents this
result, because the complete result is really aadiQuantizationand Fractionalization
Condition, DQFC.

This extended understanding of Dirac monopolesilshput into a somewhat different
perspective how one thinks about these monopadidsast based on Dirac’s quantization absent
further developments such as t'Hooft / Polyakov opmies [16], [17] which rely on Yang-Mills
gauge theory which is not needed for Dirac monagpalene. Although the Dirac monopoles
when fully developed using Wu and Yang's gauge @aghn arefractionalized as well as
guantized, these fractional charges are not observed exaeger very limited conditions at
extremely low temperatures in suitable supercondganaterials. Thus, to the degree that the
filling factors (3.2) do describe a feature of thegural world but only under these specialized
conditions, and because (3.3) is integrally relaed3.2), it would appear that the non-zero

magnetic quxesﬁS F =vu, of Dirac monopoles (as distinguished from othg@et/of monopole)
would only evidence themselves in nature under lbguestricted conditions.

4. Conclusion: Dirac Quantization and Fractionalizaion

We conclude that a complete analysis of the gaygeretries of Dirac Monopoles
following the approach pioneered by Wu and Yang [2]D] results in electric and magnetic
charges which are quantizeahd fractionalized in the manner observed in the Fractional
Quantum Hall Effect. Because fermions rotated ugloan azimuth overr regain their
orientation but not their entanglement, tha rotation needed to restore both orientation and
entanglement is responsible for the observationdofinteger denominators and the skipping of
most even-integer denominators. The only obseeved-integer denominator of 2 appears to be
the result of pairing two integer-charged fermiam® a boson, and the absence of any larger
even denominators appears to indicate that onggartcharges, and not fractional charges, can
be so-paired.

10
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