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Abstract:  The purpose of this paper is to explain the pattern of fill factors observed in the 
Fractional Quantum Hall Effect (FQHE), which appears to be restricted to odd-integer 
denominators as well as the sole even-integer denominator of 2.  The method is to use the 
mathematics of gauge theory to develop Dirac monopoles without strings as originally taught by 
Wu and Yang, while accounting for orientation / entanglement relationships between spinors and 
their environment in the physical space of spacetime.  We find that the odd-integer denominators 
are included and the even-integer denominators are excluded if we regard two fermions as 
equivalent only if both their orientation and their entanglement are the same, i.e., only if they are 
separated by 4π not 2π.  We also find that the even integer denominator of 2 is permitted because 
unit charges can pair into boson states which do not have the same entanglement considerations 
as fermions, and that all other even-integer denominators are excluded because only integer 
charges, and not fractional charges, can be so-paired.  We conclude that the observed FQHE fill 
factor pattern can be fundamentally explained using nothing other than the mathematics of 
gauge theory in view of how orientation / entanglement applies to fermions but not to bosons, 
while restricting all but unfractionalized fermions from pairing into bosons.     
 
PACS: 11.15.-q; 73.43.Cd; 14.80.Hv 
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1. Introduction: Wu and Yang and the Dirac Monopole without Strings 
 
 The Fractional Quantum Hall Effect (FQHE) observed in two-dimensional systems of 
electrons at low temperatures is characterized by observed filling factors /n mν = , where n and 
m are each integers, but where m is an odd integer only, with the exception that m may also be 
the even integer 2.  In other words, the apparent pattern, widely reported and studied in the 
literature, for example, [1], [2], [3], [4], [5], is  0, 1, 2, 3...n = ± ± ±  and 2,3,5,7,9,11...m = .  Two 
questions arise from this effect: why are the denominators in the filling factor odd but not even, 
and why is the even denominator m=2 an apparent exception?  We show that this pattern of 
filling factor denominators has a fundamental explanation based solely on using the mathematics 
of gauge theory to develop the Dirac Quantization Condition (DQC) for Dirac monopoles, in 
view of how orientation / entanglement applies to fermion spinors but not to bosons. 
 
 In 1931 Dirac discovered that the existence of magnetic monopoles implies that the 
electric charge must be quantized [6].  While charge quantization had been known for several 
decades based on the experimental work of Thompson [7] and Millikan [8], Dirac was 
apparently the first to lay out a possible theoretical imperative for this quantization.  Using a 
hypothesized solenoid of singularly-thin width known as the Dirac string to shunt magnetic field 
lines out to mathematical infinity, Dirac established that a magnetic charge strength µ would be 
related to the electric charge strength e according to 2e nµ π= , where n is an integer, which 
became known as the Dirac Quantization Condition (DQC).  Subsequently, Wu and Yang used 
gauge potentials, which are locally- but not globally-exact, to obtain the exact same DQC 
without strings [9], [10].  Their approach is concisely summarized by Zee on pages 220-221 of 
[11] and will be briefly reviewed here, because it provides the methodological basis for 
understanding the pattern of filling factors observed for the FQHE.  Throughout we use the 
natural units of 1c= =ℏ . 
 

Using the differential one form A A dxµ
µ=  for the electromagnetic gauge field a.k.a. 

potential and the differential two-form 1
2!F F dx dx dA A dx dxµ ν µ ν

µν µ ν= ∧ = = ∂ ∧ , a magnetic 

charge µ may be defined as the total net magnetic flux Fµ ≡ ∫∫�  passing through a closed two-

dimensional surface S2 which for convenience and symmetry we may take to be a sphere.  
Differential exterior calculus in spacetime geometry teaches that the exterior derivative of an 
exterior derivative is zero, dd=0, which means that the three-form equation 0dF ddA= = .  Thus, 
via Gauss / Stokes, 0 dF F µ= = =∫∫∫ ∫∫∫ ∫∫� .  In classical electrodynamics prior to Dirac, this 

was taken to mean that the magnetic charge µ=0.  But a close consideration of gauge symmetry, 
which is locally but not globally exact, tells a different story. 
 
 When a spin ½ fermion wavefunction (which we regard to be that of the electron) 
undergoes a local gauge (really, phase) transformation ( )( ) ( ) ( )i xx x e xψ ψ ψΛ′→ = , the gauge 
field one-form transforms as 
 

/i iA A A e de ie− Λ Λ′→ = + . (1.1) 
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If we represent F in polar coordinates ( ), ,r ϕ θ  as ( )/ 4 cosF d dµ π θ ϕ= , then because F dA=  

and dd=0, we can deduce that ( )/ 4 cosA dµ π θ ϕ= .  However, dϕ  is not defined on the north 

and south poles.  So we may define a north coordinate patch over which 

( )( )/ 4 cos 1NA dµ π θ ϕ= −  and a south patch over which ( )( )/ 4 cos 1SA dµ π θ ϕ= + .  But at 

places where these patches overlap, these gauge potentials are not the same, and specifically, the 
difference is ( )/ 2S NA A dµ π ϕ− = , or written slightly differently: 

 

( )/ 2N N S NA A A A dµ π ϕ′→ ≡ = + . (1.2) 

 
So comparing this with (1.1), we may regard SA  as a gauge-transformed state NA′  of NA , for 

which the gauge transformation is simply: 
 
1

2
i ie de d

ie

µ ϕ
π

− Λ Λ = . (1.3) 

 
This equation is satisfied by: 

 

( )exp exp
2

i ie
ϕµ
π

 Λ =  
 

,  (1.4) 

 
as can be seen simply by plugging ie Λ  from (1.4) into the left hand side of (1.3) and reducing.  
This relates the azimuth angle ϕ  which is one of the three spacetime coordinates, to the local 
gauge (phase) angle Λ , and thereby connects rotations through ϕ  in physical space to rotations 
through Λ  in the gauge space in a manner that we shall now explore in detail. 
 

In polar coordinates, 0ϕ =  and 2ϕ π=  in (1.4) describe exactly the same orientation 
(but not entanglement) on the surface of S2.  So to make sense of (1.4) at like-orientations, we 
must have: 
 

( ) ( ) ( )exp exp 0 1 exp 1i ie ieµ µΛ = ⋅ = = ⋅ , (1.5) 

 
Specifically, this means that ( )exp 1ieµ = .  Mathematically, the general solution for an equation 

of this form is ( )exp 2 1i nπ =  for any integer 0, 1, 2, 3...n = ± ± ± , which is infinitely degenerate 

but quantized.  As a result, the solution to (1.5) is: 
 

2e nµ πΛ = = . (1.6) 
 
This, of course, is the Dirac Quantization Condition, which may also specified in relation to the 
gauge (phase) parameter Λ  which is seen to be an quantized integer multiple of 2π .  
Specifically, (1.6) with simple rearrangement tells us that the electric charge is quantized 
according to: 
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u

2
e n ne

π
µ µ

Λ= = = , (1.7) 

 
where the n=1 “unit” (u) of electric charge is u 2 /e π µ≡ , defined as 2π  times the inverse of the 

magnetic charge.  If this monopole “exists,” then the electric charge is quantized in units of ue .   

 
 We may then go back to the original definition Fµ ≡ ∫∫�  and use (1.6) to write: 

 

u

2
F n n

e e

πµ µ Λ= = = =∫∫� , (1.8) 

 
where we also define an n=1 unit of magnetic charge u 2 / eµ π≡ .  By appropriate local gauge 

transformation, and specifically by choosing n=0 which is the same as choosing the phase angle 
0Λ = , the nonzero surface integral can be made to vanish, 0F =∫∫� .  But this does not 

invalidate (1.7) and (1.8) nor does it prevent us from seeking to draw physical conclusions from 
these.  It simply means that n=0 with no monopoles and no electric charges is one of the 
permitted states.  But the meaning of the whole range of charges ue ne=  for 0n ≠  has long been 

physically-interpreted as suggesting charge quantization.  In the lowest positive non-zero n=1 
state, from (1.6), we have 2eµ πΛ = = .  If we define a reduced / 2πΛ ≡ Λ , then by (1.6), the 
reduced gauge parameter nΛ =  is simply the charge quantum number n.  So every gauge 
transformation adding an angle of 2π  adds one unit of electric and magnetic charge. 
 
 This is how Wu and Yang obtain Dirac monopoles and the DQC without strings, which 
leads to the quantization of both electric and magnetic charges. 
 
2. Orientation – Entanglement and Odd-Numbered Fractional Quantum 
Hall Denominators 
 
 If we closely study this derivation by Wu and Yang, we see that there are some additional 
quantum states that have not yet been considered.  Referring to (1.5), not only do 0ϕ =  and 

2ϕ π=  describe exactly the same orientation (sans entanglement), but so too do 4ϕ π= , 
6ϕ π= , 8ϕ π= , etc.  So we now extend (1.5) to: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )exp 1 exp 1 exp 2 exp 3 exp 4 exp 5 exp 6 ...i ie ie ie ie ie ieµ µ µ µ µ µΛ = = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ .(2.1) 

 
Each of the above is a separate relationship of the general form ( )exp 1ie mµ ⋅ = , where 

1,2,3,4,5,6...m =  is an integer not the same as the n already in use.  At the same time, as noted 

after (1.5), the general solution for an equation of this form is ( )exp 2 1i nπ =  with this integer 
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0, 1, 2, 3...n = ± ± ± .  Comparing ( )exp 1ie mµ ⋅ =  with ( )exp 2 1i nπ =  means that more generally, 

2e m nµ π⋅ = , or, restated: 
 

u u

2n n
e e e

m m

π ν
µ

= = = , (2.2) 

 
where we define a “filling factor” 
 

; 0, 1, 2, 3...; 1,2,3,4,5,6...
n

n m
m

ν ≡ = ± ± ± = . (2.3) 

 
So this tells us that the unit of electric charge ue  can be fractionalized into any /n mν =  fraction 

of itself. 
 

Now, while fractional charges are observed in the Fractional Quantum Hall Effect, (2.2) 
and (2.3) give us too many fractional states, because with the exception of m=2, the only states 
which appear to be found experimentally are states in which m is an odd integer.  So the question 
now becomes, whether (2.3) with further development be used to explain the FQHE solely on the 
basis of gauge symmetry.  But to do so, we have to find out why the denominator is restricted to 
only odd integers, with the exception of the even integer 2.  That is, (2.3) allows 

1,2,3,4,5,6...m = , but based on what is observed, we should only have 1,2,3,5,7,9...m = , so we 
now need to account for this discrepancy.  This is where we start to consider not only orientation, 
but also entanglement. 
 
 So far, we have regarded two different fermion states to be physically equivalent if their 
azimuth angles ϕ  differ by 2π .   So (2.1) and thus (2.2) and (2.3) were developed by regarding 

2ϕ π= , 4ϕ π= , 6ϕ π= , 8ϕ π= , etc. to be equivalent states because they are all states of like-

orientation.  But let us now return to ( )( ) ( ) ( )i xx x e xψ ψ ψΛ′→ = , which is the gauge 
transformation with which we originally started at (1.1).  This transformation acts on a Dirac 
fermion wavefunction taken to be that of an electron.  Because Dirac fermions behave as spinors, 
they have not only orientation, but also entanglement in relation to their environment in the 
physical space of spacetime.  One of the most widely-regarded discussions of this, is that of 
Misner, Thorne and Wheeler in [12] at section 41.5.   
 

So let’s start with a Dirac fermion, e.g., electron with a unit of charge u 2 /e π µ≡  in the 

n=1 state as obtained in the DQC (1.6), which is the state for which the azimuth angle 2ϕ π= .  
Now, let us rotate this electron into an equivalent state which maintains not only orientation, but 
also entanglement.  If we start at 2ϕ π=  and rotate the fermion wavefunction ( )xψ  to 4ϕ π= , 
the fermion will have been restored to its same orientation, but not to its same entanglement.   
 

To keep the entanglement the same, i.e., to maintain the same version of the fermion, we 
must rotate the fermion through an azimuth of 4π , not merely 2π .  This is because of the 
double covering whereby a 2π  rotation (a single “winding”) for SU(2) corresponds to a 4π  
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rotation (a double winding) in the O(3) physical space of the spacetime rotation group in which 
the azimuth ϕ  coordinate subsists.  Consequently, starting from the 2ϕ π=  state of an n=1 unit 

charge u 2 /e π µ≡ , the angles with like-entanglement will be 6ϕ π= , 10ϕ π= , 14ϕ π=  etc.  

The angles with opposite-entanglement will be those with 4ϕ π= , 8ϕ π= , 12ϕ π= , etc.  So to 
restore the same version of the fermion we must keep the former but discard the latter set of 
azimuth angles. 
 

With this in mind we go back to (2.1), start with the 2ϕ π=  state for the n=1 unit charge 

u 2 /e π µ= , and rotate this through a succession of 4π  windings, eliminating the intermediate 

2π  rotations which give the same orientation but produce opposite entanglement.  When we 
discard these oppositely entangled states, (2.1) now becomes: 

 

( ) ( ) ( ) ( ) ( ) ( )exp 1 exp 1 exp 3 exp 5 exp 7 exp 9 ...i ie ie ie ie ieµ µ µ µ µΛ = = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ . (2.4) 

 

Each of the above is now a separate relationship ( )( )exp 2 1 1ie mµ + =  where m is an integer 

with the values 0,1,2,3...m = , so that 2 1 1,3,5,7...m + =  is an odd integer.  Comparing 

( )( )exp 2 1 1ie mµ + =  with ( )exp 2 1i nπ =  means that ( )2 1 2e m nµ π+ = , or, restated: 

 

u u

2

1 2 1 2

n n
e e e

m m

π ν
µ

= = =
+ +

, (2.5) 

 
with a redefined filling factor: 
 

; 0, 1, 2, 3...; 0,1,2,3...
1 2

n
n m

m
ν = = ± ± ± =

+
. (2.6) 

 
In contrast to (2.3), this filling factor will always have an odd denominator.  So the appearance 
of odd but not even denominators (other than the even denominator 2) in the FQHE appears to be 
explained by (2.6), and is the result of requiring that physically-equivalent gauge transformations 
be those which, when applied to a fermion, produce the same orientation and the same 
entanglement.  
 
 So now we have a the gauge theory explanation for why the FQHE filling factor 
denominators are restricted to only odd integers but not even ones: It is opposite entanglement 
which excludes the even denominators.  Now we come to the next question: Why does nature 
also appear to permit the even denominator 2, in addition to the odd denominators 1 2m+  in 
(2.6), but not permit any other even denominators? 
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3. Even-Numbered Fractional Quantum Hall Denominators Restricted to 
be Equal to 2 
 
 Equation (1.6) for the Dirac Quantization Condition (1.6) specifies charges 

( ) u2 /e n neπ µ= =  which are integer multiples of the unit charge u 2 /e π µ= .  For this set of 

integer charges, (1.6) tells us that the gauge parameter 2 nπΛ = .  This entire set of integer-
quantized charges corresponds to the single azimuth 2ϕ π= , which means that there is a one-to-
infinite quantized mapping of ϕ  to Λ .  That is, an infinite set of gauge states 2 nπΛ =  can all be 
used to equivalently describe the same azimuth state 2ϕ π= , yielding quantized multiples of the 
unit charge. 
 
 Now, if we take a single fermion e.g. electron in the 2ϕ π=  state and do a 4π  rotation to 
a 6ϕ π=  state which restores the electron to its original orientation and entanglement version, 

then ( ) ( )exp 1 exp 3i ieµΛ = = ⋅  is the portion of (2.4) which describes this new state.  Referring 

again to the general relationship ( )exp 2 1i nπ = , the solution is 2 3n eπ µΛ = = , restated as 

( )( ) u/ 3 / 3 2 / / 3e n neµ π µ= Λ = = .  This specifies integer n multiples of 1/3 of the unit charge 

ue .  As before, the gauge parameter 2 nπΛ = , from which we earlier defined a reduced gauge 

nΛ =  after (1.8).   Similarly, if we define a reduced azimuth / 2 3ϕ ϕ π≡ = ,  we see that the 
fractional denominator m is equal to the reduced azimuth, 3m ϕ= = .  It is readily seen that for 
the 10ϕ π= , 14ϕ π=  etc. states which also maintain the 2ϕ π=  version of the fermion, that the 
odd number denominators in (2.5) and (2.6) may be written as 1 2mϕ = + .  Using this 
information and notation, we rewrite the filling factor of (2.6) as: 
 

; 0, 1, 2, 3...; 1 2 1,3,5,7,9...; 0,1,2,3...m mν ϕ
ϕ
Λ= Λ = ± ± ± = + = = . (3.1) 

 
So the fractionalization of charge is determined directly by the number of “windings” 

1 2mϕ = +  in the physical space of spacetime, and the odd numbers in the denominators occur 
because one must use two windings, not one, to restore a fermion to its original version.  On the 
other hand, the quantization of charge into integer multiples of a fractional charge is related to 
the quantized degeneracy of the gauge parameter nΛ =  which describes an infinite number of 
equivalent gauge states, and mathematically to the fact that phase angles which differ from one 
another by 2π  are degenerately equivalent.  Now let’s turn to the only even denominator, 2, 
which is phenomenologically-observed in the FQHE. 
 
 A denominator of 2 corresponds to a winding number 2ϕ = .  The set of quantized states 

for the unit charge – not a fractional charge – which we now write as ( ) u2 /e eπ µ= Λ = Λ , 

corresponds to the winding number 1ϕ = .  So to get from an electron with 1ϕ =  to some state 
with 2ϕ =  we are only making one turn of the azimuth.  Thus while we are restoring 
orientation, we are not restoring entanglement.  Nonetheless, 2ϕ =  is the only even winding 
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number which nature permits, so we have to figure out why we observe a state that is only one 
turn above 1ϕ = . 
 
 An electron will not be restored to its original version at 2ϕ = , because fermions need 
to do two windings to regain their original version.  Only bosons can maintain equivalent version 
with one winding, because for bosons, entanglement is not an issue because they are not spinors.  
So for an electron to go from 1ϕ =  to 2ϕ = , that electron must “disguise” itself as a boson.  
How might the electron do that?  By finding a second electron to “conspire” with the first 
electron and “pair up” into a single boson system.  Then, that pair of electrons can be wound 
from 1ϕ =  to 2ϕ =  without changing its entanglement.  And based on (3.1), the filling factor 
will now be / / 2nν ϕ= Λ = , which yields the denominator of 2. 
 
 What does this mean?: it means that while all of the permitted windings of individual 
electrons yield fractional charges with the 3, 5, 7, 9, etc. odd denominators, the permitted 
winding for a boson pair of electrons yields the one permitted even denominator, namely 2.  
While the “Cooper pairs” model of electron pairing [13] may well come to mind, for the moment 
let us not be that specific.  Let us simply talk in terms of the requirement that a first electron 
needs to find some way to pair together with a second electron if a 2ϕ =  winding state and thus 
a ½ unit of charge is to be empirically displayed under the right set of conditions – as it is at 
extremely low temperatures in suitable materials under experimentally-replicable circumstances 
– while leaving open the mechanism by which that pairing take place.  So, the pairing of 
electrons into boson states would appear to explain why 2 is permitted as an even denominator, 
and we know that there is some grounding in established theory for such pairing to occur.  Now, 
we have left to explain why 4, 6, 8 and even denominators other than 2 are not permitted.   
 

The next even denominator of course is m=4 which we now know corresponds to the 
winding azimuth 4ϕ = . And we know that this fractionalization / 4nν =  is not observed.   So 
let us start with an electron in the 3ϕ =  fractional state for which / 3nν = .  These are fractional 
fermion charges, so to get them to an 4ϕ =  winding which would correspond adding one 
azimuth turn to 3ϕ = .  This would result in an oppositely-entangled state, which is inequivalent 
to 3ϕ = .  So, as we did to get from 1ϕ =  to 2ϕ = , we would have to “pair up” two of these 

3ϕ =  fractional / 3nν =  fermions into a boson state to get to 4ϕ =  with a quarter-integer 
fraction / 4nν = .  The fact that we do not observe 4ϕ = , nor do we observe any other even 
windings 6,8,10...ϕ = , is nature’s way of telling us that fractional charges with cannot be 
paired up into boson states.  All boson pairs must be constructed from unfractioned charge units 

u 2 / eµ π= .  Given that fractional charges are commonly regarded as quasiparticles while unit 

charges are not, this simply means that only “real” particles, not quasiparticles, can form pairs. 
 
 Pulling together all of these results, we now supplement (3.1) with 2ϕ = .  Thus, the 
final result for the overall observed pattern is: 
 

; 0, 1, 2, 3...; 2   --or--  1 2 ; 0,1,2,3...m mν ϕ ϕ
ϕ
Λ= Λ = ± ± ± = = + = . (3.2) 
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The 1 2mϕ = +  odd-denominator states represent fermions exhibiting fractional charges; the 

2ϕ =  state represents a boson pair of unit charges that are not fractional; and the absence of 
4,6,8...ϕ =  states tells us that fractional charges are not capable of forming into boson pairs.  In 

Figure 1 below, which is reproduced from [14] and [15], we have annotated the unit electron 
charge, the / 1/ 3ν ϕ= Λ =  fractional charge, and the ground state for a pair of unit electrons 
forming a boson with / 1/ 2ϕΛ = .  Also added as annotations are apparent 5 /11ν = , 6 /11ν =  
and 7 / 9ν =  fractional states. 
 

   
Figure 1: Fractional Quantum Hall Effect, reproduced from [14], [15], with annotation 

 
 It is worthwhile comparing the 1nΛ = =  ground state of the 1ϕ = , 2ϕ =  and 3ϕ =  
windings, which are the three states annotated above.  For / 1ν ϕ= Λ =  we of course have a 
unit electron charge.  For / 1/ 3ν ϕ= Λ =  we have 1/3 fractional charge.  But for the boson pair 
with / 1/ 2ν ϕ= Λ = with a ½ unit of fractional charge, there are two electrons not one 
contributing to the half unit of charge.  Therefore, each electron actually contributes a ¼ unit of 
charge.  Given that electrons naturally repel one another so that any pair formation mechanism 
must overcome this repulsion, it will be easier for two electrons to assume charges of ¼ unit 
apiece and then pair into a boson, than to stay in the unit charge state or in the 1/3 charge state 
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and then pair up.  It is the ¼ charge-per-electron paired state which minimizes the repulsion and 
therefore provides the most energetically-favored configuration. 
 
 Finally, we return to the original definition Fµ ≡ ∫∫�  of the Dirac monopoles.  If rewrite 

( )u 2 /e eν ν π µ= =  with the complete filling factor (3.2) in terms of µ , then using the “unit” of 

magnetic charge u 2 / eµ π= , what we learn about the permitted monopole fluxes is that: 

 

( )u u/ ; 0, 1, 2, 3...; 2   --or--  1 2 ; 0,1,2,3...F m mνµ ϕ µ ϕ ϕ= = Λ Λ = ± ± ± = = + =∫∫� . (3.3) 

 
It is often said that the Dirac Quantization Condition demonstrates that if magnetic charges exist, 
then electric charge is quantized.  The existence of quantized electric charge is then used to infer 
the possible existence of Dirac monopoles, even though there have apparently been no such 
monopoles observed.  But when we use Wu and Yang’s gauge theory without strings [9], [10] to 
develop the DQC to its logical conclusion, we see that fractional charges of the FQHE emerge 
right alongside of quantized charges.  So the DQC nomenclature somewhat misrepresents this 
result, because the complete result is really a Dirac Quantization and Fractionalization 
Condition, DQFC. 
 
 This extended understanding of Dirac monopoles should put into a somewhat different 
perspective how one thinks about these monopoles, at least based on Dirac’s quantization absent 
further developments such as t’Hooft / Polyakov monopoles [16], [17] which rely on Yang-Mills 
gauge theory which is not needed for Dirac monopoles alone.  Although the Dirac monopoles 
when fully developed using Wu and Yang’s gauge approach are fractionalized as well as 
quantized, these fractional charges are not observed except under very limited conditions at 
extremely low temperatures in suitable superconducting materials.  Thus, to the degree that the 
filling factors (3.2) do describe a feature of the natural world but only under these specialized 
conditions, and because (3.3) is integrally related to (3.2), it would appear that the non-zero 
magnetic fluxes uF νµ=∫∫�  of Dirac monopoles (as distinguished from other types of monopole) 

would only evidence themselves in nature under equally-restricted conditions. 
 
4. Conclusion: Dirac Quantization and Fractionalization 
 

We conclude that a complete analysis of the gauge symmetries of Dirac Monopoles 
following the approach pioneered by Wu and Yang [9], [10] results in electric and magnetic 
charges which are quantized and fractionalized in the manner observed in the Fractional 
Quantum Hall Effect.  Because fermions rotated through an azimuth over 2π  regain their 
orientation but not their entanglement, the 4π  rotation needed to restore both orientation and 
entanglement is responsible for the observation of odd-integer denominators and the skipping of 
most even-integer denominators.  The only observed even-integer denominator of 2 appears to be 
the result of pairing two integer-charged fermions into a boson, and the absence of any larger 
even denominators appears to indicate that only integer charges, and not fractional charges, can 
be so-paired. 
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