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Abstract.

A microscopic theory of the neutron, which consists in a neutron model constructed based
on key relevant experimental observations, and the first principles solutions for the basic
properties of the model neutron, is proposed within a framework consistent with the Standard
Model. The neutron is composed of an electron e and a proton p that are separated at a
distance r1 ∼ 10−18 m, and are in relative orbital angular motion and Thomas precession highly
relativistically, with their reduced mass moving along a quantised l = 1th circular orbit of radius
r1 about their instantaneous mass centre. The associated rotational energy flux or vortex has
an angular momentum 1

2
~ and is identifiable as a (confined) antineutrino. The particles e, p

are attracted with one another predominantly by a central magnetic force produced as result
of the particles’ relative orbital, precessional and intrinsic angular motions. The interaction
force (resembling the weak force), potential (resembling the Higgs’ field), and a corresponding
excitation Hamiltonian (HI ), among others, are derived based directly on first principles
laws of electromagnetism, quantum mechanics and relativistic mechanics within a unified
framework. In particular, the equation for 4

3
πr3

1
HI , which is directly comparablewith the Fermi

constant GF , is predicted as GF = 4

3
πr3

1
HI = AoC01/γeγp, where Ao = e2

~
2/12πε0m0

em0

pc2,
m0

e, m0

p are the e, p rest masses, C01 is a geometric factor, and γe, γp are the Lorentz factors.
Quantitative solution for a stationary meta-stable neutron is found to exist at the extremal
point r1m = 2.513 × 10−18 m, at which the GF is a minimum (whence the neutron lifetime
is a maximum) and is equal to the experimental value. Solutions for the neutron spin ( 1

2
),

apparent magnetic moment, and the intermediate vector boson masses are also given in this
paper.

1. Introduction

The overall observational properties of the neutron, including the neutron spin, β decay reaction
equation, parity, and Fermi constant, among others, are comprehensively summarised in the
Standard Model (SM) for elementary particles [1]. The neutron β decay and a variety of
similar so-termed weak phenomena, most notably the quantitative decay branching ratios in
the decay processes, have been satisfactorily accounted for by the unified renormalisable theories
of weak interaction. The Glashow-Weinberg-Salam (GWS) electroweak theory [2a-c] based on
group SU(2) × U(1) is one of these. This theory in particular predicts the charged and neutral
intermediate vector bosonsW -,W+ and Z0 which were confirmed by the experiments at CERN; its
renormalisability was proven by t’Hooft in 1971 [2d]. All of the current field theories of the neutron
are rested on the original hypothesis of Fermi [2e] that in a β decay reaction (n → p++e-+ν̄e), the
matter particles e-, p+, ν̄e do not exist until the neutron n decays. And upon the neutron decay,
these particles are envisaged as simply emitted by the neutron (as a point entity) in an analogous
way to an accelerated point charge emitting electromagnetic radiation. The current theory of
the neutron remains as a phenomenological one. There remain certain outstanding questions yet
to be resolved. In particular, the origin of the weak interaction force is not well understood,
an equation of the weak force accordingly is yet to be derived, and the Fermi constant (GF )
is not derived based on the interaction force. At a similar significant level, the nature and the
origins of the (anti)neutrino, the intermediate vector bosons, the Weinberg weak mixing angle,
and the Higgs mass are not yet fully well understood. One common feature suggestive of the



A Microscopic Theory of the Neutron (I) 2

nature of the weak phenomena however is readily recognisable from observations, namely that
the weak phenomena present only with the electrons and protons in the baryon (n, Λ, etc) and
meson (π, K, etc.) disintegration processes, but not with the same electrons and protons in free-
particle or bound atomic processes. For a more comprehensive understanding of the nature of the
weak phenomena, a microscopic theory would be indispensable. The purpose of this paper is to
propose a microscopic theory of the neutron based on a realistic real-space model construction of
the neutron, serving as a prototype, such that the fundamental weak force and the variety of weak-
interaction related properties and phenomena can be predicted based on first principles solutions
in terms of the theory within a unified framework of electromagnetism, quantum mechanics, and
special relativity.

Using several key relevant experimental facts, mainly the neutron beta decay reaction
equation n → p+ e+ ν̄e, the neutron spin (1

2 ) and the order of magnitude of the Fermi constant
GF (which combined with the Heisenberg relation indicates a weak interaction distance of order
10−18m) as input information, we propose a real-space model of the neutron as follows: The
neutron is composed of an electron e and a proton p separated at a distance r(= r1) of the
order 10−18 m; see Fig 1a. The e, p are in relative orbital angular motions, and in addition
relative Thomas precessions, at velocities approaching the velocity of light c under a central
force of an electromagnetic origin. The central force is in effect predominantly an attractive
magnetic force produced by the magnetic fields (Be,Bp) resulting from the e, p intrinsic spin
and relative motions. The z-components (Sez , Spz) of the e, p spin angular momenta are aligned
parallel to each other and antiparallel to that of their relative motion (L− z,-1, Figs 1b), so that
the magnetic interaction force is maximally attractive. The e, p relative motion is in such a way
that their reduced mass (M ) moves at a velocity (υυυ1) similarly approaching c along a (quantised
l = 1th) circular orbit of radius r(= r1) about the common instantaneous centre of mass (CM)
of e, p, with a normal (n) at a precession-modified angle (π − θ1) to the z axis; see Fig 1b. The
relative precessional–orbital angular momentum in z direction (L− z,-1) will show to be a half-
integer quantum. The corresponding neutral rotational-energy-flux, or vortex, along the x, y
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Figure 1. Schematic of the model neutron composed of an electron e and a proton p. (a)
The e, p are separated by a distance |r| = |r1| and in relative angular motions and a Thomas
precession; their spins are aligned in the z direction; (b) their reduced mass (M ) moves along a
l = 1th orbit of radius r1 about the CM. (c) The e, p relative angular motions are the differential
results of their non-collinear total motions in circles of radii Re, Rp about the CMN.

plane-projection of the l = 1th circular orbit, which conveys the angular momentum quantum
L− z,-1, resembles a ”confined” antineutrino (ν̄e). Kinematically, the e, p relative angular motions
are the result of their total motions in differing directions along circles of radii Re, Rp about the
centre of mass of the neutron (CMN), at velocities (ue,up) similarly approaching c (Fig 1c).

It is commented that, the proposed e, p-neutron model has a built-in scheme for the strong
force identically on a unified basis with electromagnetism: A proton p will be attracted with a
neutron n(e, p) (mainly) through a Coulomb attraction with the electron e of the neutron at short
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range; at the same order of the short-range Coulomb interaction, two protons will repel, but never
attract with one another. These characteristics are in accordance with the observational fact that
no nucleus made of more than one protons, and only protons without neutrons, exists. Within this
scheme, the observationally-never-isolatable quarks may be compared with the different modes
of spins.

The remainder of this paper, I, gives a first-principles mathematical representation of the
model neutron, mainly in respect to the internal relativistic kinematics, dynamics, and magnetic
structure of the neutron in stationary state (Secs 2, 3), the dynamics upon the neutron β
decay (Secs 4) and the quantitative determination of the dynamical variables (Sec 5). The
(quantitative) predictions of the basic properties of the neutron given in this and separate papers
are subsequently subjected to comparisons with, or constraints by the available experimental
data where in question, so that a critical check of the viability of the neutron model is made.
Other basic aspects regarding the neutron including parity associated with the β decay and
direct derivations of the intermediate vector boson masses and Weinberg mixing angle, and a
corresponding dynamic scheme for the other elementary particles participating weak processes,
will be elucidated in separate papers (II, III).

2. Equations of motion. Coordinate transformations. Solutions

2.1. Transformed Newtonian equations of motion of the mean and instantaneous positions
Consider that an electron e and a proton p comprising a neutron are at time t located with the
probability densities |ψα(Rα, t)|2 (α = e, p) at positions Re,Rp relative to the CMN; see Fig 1c.
(The usual statistical point-particle picture is referred to here.) The observation is made in the
instantaneous CM frame moving relative to the CMN; and the clock used to measure the time
t is fixed at the CM. The particles e, p are in motions at velocities to prove high compared to c
(Sec 5), under a mutual interaction force F and gravity g ; no applied force presents. Their mean
positions, R̄α =

∫

Rα|ψα|2d3Rα, evolve according to the transformed Newtonian equations of

motion
d(mα (dR̄α /dt))

dt =
∫

(mαg±F)|ψα|2d3Rα (the correspondence principle), where me, mp are
the e, p masses. The e, p are assumed to form a bound stationary system until Sec 4 and hence
necessarily move circularly at constant tangential velocities uα = dRα/dt about the CMN (cf
Fig 1c; Secs 2.3,2.5). The equations of motion thus reduce to

me

d2Re

dt2
= meg + F , mp

d2Rp

dt2
= mpg − F . Or M

d2R

dt2
= M g , M

d2r

dt2
= F , (1)

where R =
meRe +mpRp

M
, M = me +mp , r = Re − Rp = re − rp , M =

memp

M
;

Re = R +
mp

M
r, Rp = R − me

M
r; re = Re −R =

mp

M
r, rp = Rp −R = −me

M
r. (2)

M is the total mass (at R); R is the position of the CM (Fig 1c); M is the reduced mass and
is alternatively expressible as 1

M
= 1

me
+ 1

mp
; r is the relative position (Fig 1b); and re , rp are

the e, p positions relative to R. Eqs (1c) are given for the M and M travelling (circularly) at
constant velocities ucm = dR/dt (about the CMN), and υυυ = dr/dt (e relative to p), which are
similarly necessary for a stationary bound e, p system.

The partial–relative and relative velocities of e, p, and the corresponding rotational angular
momenta, follow as, given in terms of the time t,

υυυe =
dre

dt
=
mp

M
υυυ, υυυp =

drp

dt
= −me

M
υυυ, υυυe − υυυp = υυυ =

dr

dt
;

Le = re × (meυυυe) =
mp

M
L, Lp = rp × (mpυυυp) =

me

M
L, L = Le + Le = r × (Mυυυ) (4)

From (2g,h) it follows that the local times te, tp measured by clocks fixed to the moving e, p are
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related to t as te = (mp/M )t, tp = (me/M )t. The partial-relative velocities given in terms of
te, tp are υυυ′e = dre/dte = υυυ, υυυ′p = drp/dtp = −υυυ.

2.2. Lorentz-Einstein transformations The instantaneous rest frame fixed to each rotating
particle (e, p,M or M) may be regarded as an inertial frame for each differential rotation which is
essentially linear. The non-inertial frame effect of a full rotation will be included separately (see
Eqs 5h,i; Sec 2.5). Subsequently, the differentials of the space and time coordinates re,rp,R,r,t
in the CM frame and their counterparts r0

e, r
0

p,R
0, r0, t0 in the respective (instantaneous) rest

frames, and in turn Re,Rp,R, t in the CM frame and RL

e ,R
L

p , RL, tL in the Lab frame, are
related by the Lorentz-Einstein transformations,

γe (dre − υυυedt) = dr0

e, γp (drp −υυυpdt) = dr0

p, γ
cm

(dR − u
cm
dt) = dR0,

γ(dr −υυυdt) = dr0, γ(dt − υυυ · dr/c2) = dt0; γL′
cm

(dRL

e − uL′
cm
dtL) = dRe ,

γL′′
cm

(dRL

p − uL′′
cm
dtL) = dRp , γL

cm
(dRL − uL

cm
dtL) = dR0, γL

cm
(dtL − uL

cm
· dRL/cL2) = dt (5)

where γe = (1 − υ2
e/c

2)−1/2, γp = (1 − υ2
p/c

2)−1/2, γ
cm

= (1 − u2
cm
/c2)−1/2, γ = (1 − υ2/c2)−1/2,

c = drlight/dt; uL

cm
= dRL/dtL, γL

cm
= (1 − uL

cm

2/cL2)−1/2, and cL(= dRL

light/dt
L) is the light

speed measured in the Lab frame. γL′
cm

,γL′′
cm

are the Lorentz factors associated with the CM-frame
velocities at RL

e ,R
L

p , e.g. uL′
cm

= d(RL

e − (mL

p/M
L)rL)/dtL, which in general differ from γL

cm
and

uL

cm
as the CM frame is in rotational, hence non-uniform motion. The CMN has been assumed

at rest in the Lab frame.
Transformations from the scalar distances re, rp, R, r to r0

e, r
0

p, R
0, r0 at fixed t, from the

time t to t0 at fixed r, from the CM-frame masses me, mp,M ,M to the respective rest-frame
counterparts m0

e, m
0

p,M
0(= m0

e +m0

p),M 0(= m0

em
0

p/M
0), and further from a few involved CM-

frame variables, with no suffixes, to the Lab-frame ones, suffixed by a superscript L, follow as

γere = r0

e, γprp = r0

p, γ
cm
R = R0, γr = r0, γt = t0; me = γem

0

e, mp = γpm
0

p, (6.1)

M = γ
cm
M 0, M = γM 0; γL

cm
RL = R0, γL

cm
tL = t, ML = γL

cm
M 0; (6.2)

mL

e = γL
′

cm
me, mL

p = γL
′′

cm
mp; γL

cm,rr
L = ((x − ucmt)

2 + z2)1/2, M
L = γL

cm,rM (6.3)

where γL

cm,r is the r-projection of a Lorentz factor due to the motion of the CM frame in the
direction ucm. If γe, γp > (>>)1, then γ

cm
> (>>)1 based on (6.1f,g), (6.2a). This and Eqs

(6.2a),(6.1c) suggest that M 6= M 0, R 6= R0; i.e. M , R are not the proper rest total-mass and
rest coordinate in the CM frame. Based on (2b), M is the sum of the e, p masses that are moving
relative to the CM, not at rest. However, the CM is not moving relative to itself; all its relativistic
effect results from its motion relative to the Lab frame at the velocity u

cm
= −uL

cm
. We need

therefore to imagine to fix to the Lab frame the proper M 0 and R0, which are now moving with
it against the CM frame. It hence follows at once that γ

cm
= γL

cm
, R = RL, M = ML.

Using (6) for me, mp,M ,M in (2b),(d) gives (7), and solving gives (8):

γ
cm
M 0 = γem

0

e + γpm
0

p, γ
cm
γ = γeγp ; or M 0 = m†

e +m†

p, where m†

e =
me

γ
cm

= γ†

em
0

e,

m†

p =
mp

γ
cm

= γ†

pm
0

p, γ†

e =
γe

γ
cm

, γ†

p =
γp

γ
cm

; γ†

eγ
†

p =
γeγp

γ
cm

2
=

γ

γ
cm

= γ†; (7)

γe =
γ

cm
(M 0 ± Γ )

2m0

e

, γp =
γ

cm
(M 0 ± Γ )

2m0

p

, Γ =
√

(M 0)2 − 4m0

em
0

pγ
†. (8)

For (8) to have real solutions requires (M 0)2 − 4m0

em
0

pγ
† ≥ 0, or γ† ≤ γ†

max
= (M 0)2/4m0

em
0

p =
459.536, where γ† = γ†

max
if Γ = 0, a special case of the e, p system with γe, γp, γcm >> 1. For

Γ = 0, (8a),(b) reduce to γe = γ
cm
M 0/2m0

e, γp = γ
cm
M 0/2m0

p ' 1
2γcm

. These further give
me = mp, which relation may be judged to hold approximately for a realistic (model) neutron
based on the resultant neutron g factor (Sec 2.6); Eqs (2g),(h) and (4a),(b) for this case become
re = 1

2r, rp = −1
2r and υυυe = 1

2υυυ, υυυp = −1
2υυυ.
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It is clear from Eq (7b), or γeγp = γ2
cm
γ†, that the (proper) Lorentz factors γe , γp contain

each a γ
cm

associated with the motion of the CM-frame. The γ†

e, γ
†

p (which may be < 1) given
after dividing γ

cm
out in (7f),(g) represent ”reduced” Lorentz factors expressed with reference

to the proper M 0 in the CM frame. Mainly for formality, the corresponding dagger-suffixed
quantities of re, rp, r, t,M are written down as, with (7) for γe, γp, γ in Eqs (6.1a,b,d), (2g,h,c),
(6.1e),(6.2b),

γ
cm

re =
r0

e

γ†
e

= r†

e =
m0

p

M 0

r0

γ†
e

=
m†

p

M 0
r†, γ

cm
rp =

r0

p

γ†
p

= r†

p = −m†

e

M 0
r†, γ

cm
(re − rp) = γ

cm
r

= r†

e − r†

p = r† =
r0

γ†
; γ

cm
t =

t0

γ†
= t†,

M

γ
cm

= M
† = γ†

M
0, υυυ(=

dr

dt
) =

dr†

dt†
= υυυ†. (9)

Accordingly υe = υ†

e, υp = υ†

p, L = L† = r† × (M †υ†).
Finally, on transforming from the RL

e ,R
L

p to rL,RL coordinates described now in the
Lab frame, it is taken as a basic requirement that the total energy should be invariant:
mL

e c
L2 + mL

pc
L2 = MLcL2 + M LcL2. This, for mL

e = mL

p , me = mp and hence γL′
cm

= γL′′
cm

(Eqs 6.3a,b), becomes 2γL′
cm
mpc

L2 = 2mpc
L2 + γL

cm,rmpc
L2, or γL′

cm
= 1 + 1

2γ
L

cm,r.
2.3 Feasible trajectories of motions of the e, p of a highly relativistic bound stationary system

We are seeking to establish a system of bound e, p at such a small separation that necessitates the
e, p relative velocity υ to be very close to c (Sec 5), hence γ >> 1. From this and Eqs (7),(8), it
follows that characteristically, γe, γp, γcm >> 1, i.e. the e, p and their centre of mass CM must be
moving at velocities very close to cL in the Lab frame. Furthermore, the quantum condition (Sec
2.5) restricts the e, p relative orbit l(= 1) to be quantised in radius (rl) and in orientation (ϑ∓l).
Thirdly, in representing a single particle neutron, we require the e, p system to be stationary and
that, if not acted by an external force, the CMN is at rest; or more generally the motion of the
system as a whole to be that of the CMN under an external force.

Qualitatively, the simplest if not the only possible trajectories of motions of the e, p having
all the above features is evident: The e, p total motions are along the outer and inner circles
of radii Re, Rp about a Z axis passing the CMN in the lower and upper planes normal to the
Z axis or, parallel to the X, Y plane; the origin of the coordinates X, Y, Z coincides with the
CMN here. Accordingly the CM moves along the co-centred middle circle of radius R in the
X, Y plane. See Fig 1c. All with constant velocities. Kinemetically, the e, p relative motion, with
their reduced mass moving along orbit l, is therefore produced because the velocities ue,up of
their total motions along the circles of radii Re, Rp are at a (fixed) finite angle, not collinear.
(Dynamically, it is the presence of an interaction force which results in the non-collinear total
motions of the e, p.) So, the relative orbit l as a whole must be in circular motion following the
CM along the circle of radius R, in such a way that re, rp end always on the circles of radii Re, Rp;
see Fig 1c. So the e, p separation re − rp = rl as projected in the X, Y plane, (re − rp)XY , rotates
about a z axis passing the CM and paralell with Z. As described in the X, Y, Z coordinates, in
the meantime that the z axis moves along the circle of radius R following the CM, the normal of
the orbit l–plane precesses about the z axis.

For a set of relative coordinates x, y, z we further specify the x, y plane to be parallel with
the X, Y plane, and the x axis to be along the direction of (re − rp)X,Y . So the x, y axes are
re-oriented about the z axis at the rate of the rotation of (re −rp)X,Y continuously, but statically
— no velocity and inertia are attached to the x, y axes. Instead, on a dynamically equivalent
footing, the particle of mass M rotates along the orbit l of radius rl = |re − rp|; the axis of
rotation is at a fixed angle ϑ (equal to ϑ∓l and in turn to ϑ∓l′) to the z axis and lies always in
the x, z plane, as in Fig 1b. That is, relative to the coordinates x, y, z, the axis of rotation of M

along the orbit l has a fixed orientation, no precession. We now have two representations of the
same angular motion.

2.4. Neutron mass Let the neutron be now in slow motion at velocity uL

n in +X direction
in the Lab frame during a time ∆tL in which the neutron mass is measured. At any instant
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of time the neutron thus has a total mass mL′
n = γ′n(uL′

n )M 0 moving at a total velocity
uL′

n = uL

n + uL

cmX
in the X direction, where γ′n = (1 − (uL′

n )2/cL2)−1/2, uL

cmX
= uL

cm
sinΦ,

Φ = ∠(RL, XL). For uL

cm
, uL

n orthogonal and uL2
n /cL2 << 1, γ′n(uL′

n ) ' γL

cmX
(uL

cmX
)γn(uL

n),
where γL

cmX
= (1 − uL2

cmX
/cL2)−1/2, and γn(uL

n) ' 1. With uL

cm
' cL (Sec 5) and the

experimental magnetic radius of neutron 8.6 × 10−16 m for RL, the ML rotation period about
the CMN is estimated TL

cm
= 2πRL/uL

cm
' 2 × 10−23 s, which is << ∆tL typically of nano

seconds or longer. The measurement thus informs the expectation value of mL

n
′ during ∆tL,

mL

n = 〈mL

n
′〉 = 〈γ′n〉M 0 'M 0, where 〈γ′n〉 ' γL

cmX
(〈uL

cmX
〉) = 1, 〈uL

cmX
〉 =

uL
cm

2π

∫ 2π

0
sinΦdΦ = 0.

2.5. Eigenvalue equations. Orbital and precessional angular momenta. Antineutrino In the
absence of applied force and omitting the very weak gravity, M is hence free and not directly
subject to quantisation condition. We thus need only to establish the relativistic Schrödinger
or Klein-Gordon equation (KGE) for the mass M in the CM frame, represented here by the
spherical polar coordinates r, ϑ, φ corresponding directly to the relative coordinates x, y, z. The
KGE has the usual form [(Etotop

− V )2 − M 02c4 − p2
opc

2]ψtot = 0. More relevant to the
highly relativistic system here is the square-root (SQR) form of the KGE: Hopψ = Hψ, where

Hop = (Etotop
− V ) − M 0c2 + V = γ

(γ+1)

p2

op

M
+ V and p2

op = (M υr)
2/M + (L2)op/M r2 are

the Hamiltonian and squared linear momentum operators associated with the kinetic motion of
M . For the e,p interaction potential V being central (Sec 3), whence V (r) = V (r), the wave
function of M , ψ(r, ϑ, φ), may be written as ψ = R(r)Y(ϑ, φ). And either the KGE or SQR-
KGE separates out an eigen value equation for the squared (relative orbital) angular momentum
operator (L2)op,

(L2)opY(ϑ, φ) = L2Y(ϑ, φ), (L2)op = −~
2

(

∂2

∂ϑ2
+ cot ϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂φ2

)

. (10)

(10) may be solved without V (r) being explicitly known. The eigen functions are the spherical
harmonics, Ym

l = Cm
l
Pm

l (cos ϑ)eimφ . The square-root eigen values and their z components are

L
l
= |r

l
× (M υυυtl

)| =
√

l(l + 1) ~, Lz,m = ∓Ll cosϑl = m~, l = 0, 1, . . .;m = 0, . . . ,∓l. (11)

For an lth state, by the expression r
l
×(M υυυtl

), M rotates along a circular orbit l about a rotation
axis at angle ϑm to the z axis.

Owing to their having a finite (radial) acceleration, a
l
= −|d2rl/dt

2|(rl/rl), as a well-known
non-inertial frame effect the e, p with intrinsic spins (1

2) each in addition execute a Thomas
precession—at an angular velocity ωωωT about the z axis. The precession is from the perspective of
the X, Y, Z coordinates, in the same way as M executes orbital angular motion therein but in the
opposite sense. So the orbital tangential and angular velocities, υυυtl = ωωωo×rl and ωωωo = (υtl/rl)ϑ̂m,

are modified to the precessional–orbital ones as υυυl(≡ υυυtl′) = ωωω × rl and ωωω = (ωo − ωT )θ̂m, the
angle ϑm of the normal of the orbit l at the z axis to θm ≡ ϑm′ , and Ll to L− l ≡ Ll′ ; rl is unchanged
because of quantisation. ωωω

T
= (γ2/(γ+1))a

l
×υυυ

l
/c2 according to Thomas and is in the direction

−rl × υυυl = −L− l/M , i.e. opposite to L− l.
For the e, p spin-up state, hence m = −l, the total e, p spin angular momentum relative

to the CM in the z direction is (Eq 16, Sec 2.6) Sz = 1
2~. From the requirement of angular

momentum conservation for the bound e, p subject to no exchange of angular momentum with
the surrounding, it follows that their precessional angular momentum L

T
= r

l
×(M υυυT ) projected

in z direction, LTz = −L
T

cos θm, must be LTz = Sz = 1
2~ for m = −l, θm = θ−l = π − θl; and

LTz = Sz = −1
2~ for m = l, θm = θl. The total relative precessional–orbital angular momenta L−

l

and their z components L− z,m(≡ Lz,m′ ) thus follow to be

L− l = L
l
−L

T
= |r

l
×(M υυυ

l
)| =

√

l′(l′ + 1) ~ =

√
(4l2−1) ~

2 , l′ = l − 1
2 = . . . ,−3

2 ,−1
2 ,

1
2 , . . .; (12a)

L− z,m = L− l cos θm(≡ Ll′ cosϑm′) = ∓L−
l
cos θl = m′

~, m′ = ∓1
2 , . . . ,∓l′. (12b)

For l = 1 (l′ = 1
2 , m′ = ∓1

2 ): L− 1 = |r1 × (Mυυυ1)| =
√

3 ~

2 , L− z,∓1
= r1M υ1 cos θ∓1 = ∓~

2 (13)
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The l = 1 (l′ = 1
2 ) states describe a ground-state neutron (Sec 3). (13a) thus gives the e, p

relative precessional–orbital angular momentum internal of the neutron, and (13b) the two
possible z components associated with a minimum-energy (m = −1, m′ = −1

2) and excitation
(m = 1, m′ = 1

2
) state in an external (applied or random environmental) magnetic field in the +z

direction. By the expression r1 × (M υυυ1) in (13), M moves along a circular orbit of radius vector
r1 about the CM in the x′, y′ plane, where ∠x′, x = θ1, y

′ = y; see Fig 1b. For m′ = −1
2 , the

rotation is in clockwise sense, or, the normal n of the rotation plane is at angle π − θ1 to the z
axis as in Fig 1b. And conversely for m′ = 1

2 . The vectors L− 1 are in the directions of the normals,

i.e. at angles θ-1 = π − θ1 and θ1 to the z axis; θ1 = arccos(L− z,1/L− 1) = arccos(1/
√

3) = 54.7o.

For the next orbital, l = 2 (l′ = 3
2 ), L− z,2/L− 2 = (3/2)/(

√
15/2) = 0.775, θ2 = 39.2o.

Finally, for the neutron existing (in zero applied field) only in a single non-degenerate state
l = 1 and presuming that, in terms of the SQR-KGE here, energies of different l and same n are
degenerate, then N (the radial degree of freedom)= 0 and n = N + l + 1 = 0 + l + 1 = 2. So

= Tr,1 = 0, and the total kinetic energy of M is, with L− 1 for L1, T1 = Tt,1 =
γMυ2

1

(γ+1) =
γL− 2

1

(γ+1)Mr2

1

=

3γ~
2M

4(γ+1)mempr2

1

.

From the trajectory of motion of the reduced mass M of e, p above and the physical
trajectories of the total motions of the e, p (Sec 2.3) combinatorially, it follows that the physical
trajectories of the e, p partial-relative and relative motions are ellipses in the lower, upper and the
x, y planes; the latter is the projection of the l = 1th circular orbit (Fig 1b). Disregarding their
charges, the neutral vortex associated with the e, p relative precessional–orbital motion in the x, y
plane, which carries one unit half-integer quantum of the angular momentum L− z,∓1 = ∓1

2~ and
(paper II) has a positive helicity, resembles directly an antineutrino ν̄e here confined within the
neutron. The spin angular momentum of ν̄e hence is

Sν̄e
= L− z,∓1 = ∓1

2~ = ∓sν̄e
~, sν̄e

= 1
2 . (14)

2.6. Electron, proton and neutron spins Certain external, random environmental in the
case of zero applied, magnetic field would always present and hence sets the (instantaneous) z
axis here. The intrinsic spin angular momenta of α = e, p in their rest frames are S0

α ≡ S0 =
√

sα(sα + 1) ~ =
√

3
2 ~, where sα = 1

2 , and for spin-up states are at angles θ0

α to the direction
of the z axis; the z components are S0

αz = S0

α cos θ0

α = 1
2~. For the e, p separation r1 being

comparable to the sizes of the e, p charges (Secs. 3,5), we need to treat the latter explicitly as
extended objects, here simply as spheres of radii a0

e, a
0

p in the e, p rest frames. Suppose that the
mass of each particle, say m0

e of e, is predominantly located in its charge (thus negligibly in its
wave field) and is distributed throughout the charge sphere with a density ρme

(ξξξ0

e); and its charge
−e along the circular loop at the intersection of the surface of the charge sphere with the plane
normal to the spin axis and containing Re. So S0

e is given rise to by the angular motion of the
sphere at angular and tangential velocities ω0

e = dφ0

e/dt
0

e and υs0

e = a0

eω
0

e about the spin axis ne

passing Re, with mass element dm0

e = m0

eρme
(ξξξ0

e)d
3ξξξ0

e,

S0

e = m0

e

∫

|ξξξ0e ×υυυs0

e |ρme
(ξξξ0

e)d
3ξξξ0

e = 1
ge
a0

e
2ω0

em
0

e =
√

3
2 ~ ; S0

ez = 1
ge
a0

e
2m0

eω
0

e cos θ0

e = 1
2~ (15)

where ge is the Lande g factor.
In the CM frame, the radius of the e charge sphere weighed with respect to the CM at R is

ae =
mp

M
a, where a is related with ae in analogy to r with re (Eq 2g); and a = a0

γa
, where γa is

an effective Lorentz factor (see Appendix A). The distance of a point on the charge sphere of e
to the CMN is Rs

e, and to the CM is rs
e = (Rs

e − R) =
mp

M
r + aaae =

mp

M
(r + aaa). To an observer

rotating with aaae or aaa about the spin axis, r changes direction continuously over a 2π angle in
the rotation plane. So the magnitudes of the time-averages of rs

e and its first derivative in the

rotation plane are |〈rs
e〉| = ae =

mp

M
a, |〈υυυs

e〉| = | d〈r
s
e〉

dt
| = aeωe =

mp

M
aωe, where ωe =

dφe

dt
=

dφe

d(t0/γ)
.

And similarly for p. The z components of the partial spins, Se,cmz , Sp,cmz and of the total spin,
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Sz , of e, p described with respect to the CM are thus formally

Se,cmz = 1
ge
〈rs

e〉2ωeme cos θe = 1
ge
ae(

mp

M
a)ωeme cos θe =

mp

M
Sez, Sez = 1

ge
aeaωeme cos θe

= S0

ez = 1
2~; Sp,cmz =

me

M Spz , Spz = 1
gp
aapωpmp cos θp = S0

pz = 1
2~;

Sz = Se,cmz + Sp,cmz =
meS0

ez+mpS0

pz

M = S0

z = 1
2~ (16)

Spin invariance has been imposed in going from the rest to the CM frame. The detailed
transformation relations for θe (which would approach zero if γe >> 1), φe and θ0

e, φ
0

e, are
not evoked here. The spin (dipole) magnetic moment, µs0

e of e in the rest frame for example, is
accordingly produced by the current loop of charge −e, area πa0

e
2, and angular velocity ω0

e in the
π − θ0

e direction. Its z components corresponding to the Se,cmz, Sez in the CM frame are

µs
e,cmz = e

ωe

2π
π〈rs

e〉2 cos(π − θe) = −
gee(mp/M )Sez

2me

=
mp

M
µez, µs

ez = −geeSez

2me

= −gee~

4me

. (17)

For the e, p to be in a bound, minimum magnetic energy state (Sec 3), apart from
l(= l′ + 1

2) = 1, m(= ∓(m′ + 1
2)) = ∓1 (Sec 2.5), Sez, Spz need be parallel mutually and each

antiparallel to L− z,m (Figs 1a,b). L− z,m, Sez, Spz can therefore assume two possible configurations

(i) L− z,-1 = −1
2~, Sez = 1

2~, Spz = 1
2~; (ii) L− z,1 = 1

2~, Sez = −1
2~, Spz = −1

2~. (18)

The total angular momentum Jl and the z components Jz,m of Jl of the l(= l′ + 1
2 ) = 1 state,

whence the neutron spin angular momentum Sn ≡ −J1 and z components Snz ≡ −Jz,∓1, where
the negative signs are by assignment, based on the vector addition model are

Sn = J
l=1 =

√

j(j + 1)~|l=1 =
√

sn(sn + 1) = (
√

3/2)~, (19)

where sn = j|l=1 = [(se + sp) − l′]l=1 = (1
2

+ 1
2
) − 1

2
= 1

2
, and for the spin- down and up states

Snz = −Jz,m|m=-1 = −[(Spz+ + Sez+) + L− z,-1]= −[(1
2 + 1

2 ) − (1 − 1
2 )]~ = −sn~ = −1

2~,

Snz = −Jz,m|m=1 = −[(Spz- + Sez-) + L− z,1]= −[(−1
2 − 1

2 ) + (1 − 1
2 )]~ = sn~ = 1

2~. (20)

As the L− 1, Sn may be at angle θ-1 = π − θ1 (for m = −1) or θ1 (for m = 1) to the z axis.
By assigning to it the negatives of Jz,∓1 in (20), Snz has the same sign as L− z,∓1 = ∓1

2
~, which

by virtue of its physical role may be identified to be responsible for the (apparent) neutron
magnetic moment (µnz) as manifested in resonance experiment. The corresponding instantaneous
z component of magnetic moment is, e.g. for ml = −1, µz,-1 = −eL− z,-1/(2M ) = e~/(4M ). For

the case me = mp, M =
mp

2 =
γpm0

p

2 =
γ
cm

m0

p

4 (see after Eqs 8). So µz,-1 = 4e~

4γcmm0
p
, and

µnz = 〈µz,-1〉 = 4e~

4〈γcm〉m0
p

= 1
2gnµN , where gn = 4 gives the neutron g factor, which agrees

approximately with the experimental value gexp
n = 3.826; µN = e~

2m0
p

(the nuclear magneton).

3. Electron–proton electromagnetic interaction

We shall below derive for the electron e and proton p comprising the model neutron their
interaction force F, the corresponding potential V and stationary-state Hamiltonian H based
on first principles laws of electromagnetism and (the solutions of Sec 2 of) relativistic quantum-
mechanics. We shall continue to work in the CM frame and using the variables with respect to
M , which will directly enter the electromagnetic interactions below, and for simplicity the time
t instead of te, tp; the local time te, tp effect will be included afterward by a projecting factor. In
the current Sec 3, the vector r or rl refers to the e, p separation distance which begins at Rp and
ends at Re (Figs 1a, c); its magnitude is equal to that of r or rl of Sec 2.5, Fig 1b.
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Consider the e, p system in the l(= l′ + 1
2 ), m = −l(= −(l′ + 1

2)) state (Fig 1a); Spz , Sez are
assumed in the +z direction, i.e. antiparallel with L− z,-1 (Figs 1a,b). Firstly the proton of a charge
+e produces at the electron at r = rl apart a (transformed) Coulomb field Ep(r

l
) = (e/4πε0r

2
l
) r̂

(in SI units here and below); r̂ is an unit vector pointing from p to e. Ep is amplified from its rest-
frame value E0

p by a factor ∝ (1/r2)/(1/(r0)2) = γ2 = 1/fc and hence has a narrowed profile at a
point r perpendicular to its motion φ direction by an inverse factor, fc; and so are the magnetic
fields below. Furthermore, the proton is in relative precessional–orbital and spin motions at the
velocities υυυp and, on average in the plane normal to the z axis, 〈υυυs

p〉 cos θp, which projected in the

x′y′ plane is 〈υυυs
p〉′′ = 〈υυυs

p〉 cos θp cos θl. So p produces at e magnetic fields Borb
p (= −υυυp ×Ep) and

Bs
p(= −〈υυυs

p〉′′ × Ep) along the θl direction given as (the transformed Biot-Savart law),

Borb
p =

eυυυp × rl

4πε0c2r3l
= −erl × (

memp

M
)υυυl

4πε0mpc
2r3

l

= −
√

4l2 − 1 e~ θ̂l

8πε0mpc
2r3

l

; Bs
p(r ∓ ā) =

∓1
2e〈ῡυυs

p〉′′ × (rl/rl)

4πε0c2(r ∓ ā)2
,

Bs
p(rl) = Bs

p(rl − ā) + Bs
p(rl + ā) =

−eā〈ῡυυs
p 〉′′ × (rl/rl)

2πε0c2r3l (1 − ā2

r2

l

)2
=

−η2gpe~ cos θlθ̂l

4πε0mpc
2r3

l
C1l

, C1l=
(

1 − ā2

r2

l

)2

(21)

In Eq (21a) we used (4b) for υυυp and (12a) for rl×(
memp

M )υυυl. For writing Eq (21b), we represented
the spin current loop (Sec 2.6) effectively as two-half charges + e

2 ,+
e
2 located at −ā, ā from Rp

on the x′ axis and moving oppositely at velocities −〈ῡs
p 〉′′, 〈ῡs

p 〉′′ in the −y,+y directions, where

ā = ηa, 〈ῡs
p 〉′′ = η〈υs

p〉′′. η = 1/
√

2 so that the moment of inertia with respect to e is equivalent

to the original one. In Eq (21c) we used ā〈ῡs
p〉mp cos θp/gp = η2Spz = η2 ~

2 given after (16d).

In the Ep, Borb
p + Bs

p = Bp fields of the proton (cf Fig 1a), the electron at |r| = rl apart,
with an effective charge qe = −fce, and in precessional–orbital and spin motions at the velocity
υυυe and 〈υυυs

e〉, is acted by an electromagnetic force along the r direction according to the Lorentz
force law,

Fpe(rl
)[≡ Fpe(rl

, te, tp)] = −fceEp(r
l
) + ft[F

orb−orb
pe,m (r

l
, t) + Fs−orb

pe,m (r
l
, t) + Fs−s

pe,m(r
l
, t)], (22)

where Forb−orb
pe,m = −eυυυe × Borb

p = −erl × (
memp

M υυυl)

merl

Borb
p = − (4l2 − 1)e2~

2 r̂

16πε0mempc
2r4

l

, (23)

Fs−orb
pe,m = −eυυυe × Bs

p = −erl × (
memp

M
υυυl)

merl

|Bs
p| =

(2l− 1)η2gpe
2
~
2 r̂

8πε0mempc
2r4

l
C1l

, (24)

Fs−s
pe,m = −

∂V s−s
pe,m

∂rl

r̂ = |µµµs
ez cos θl|

∂|Bs
p|

∂rl

r̂ = −3η2gegpe
2
~
2 cos2 θl r̂

16πε0mempc
2r4

l
C1l

. (25)

fc is the fraction of the e-charge sphere momentarily facing the narrowed Ep profile at rl. Eq (4a)
for υυυe and again (12a) for rl(

memp

M )υl are used in (23),(24). In (25), V s−s
pe,m = −|µµµs

ez||Bs
p| cos θl is

the magnetic potential of the spin-spin interaction; µµµs
ez is an intensive quantity at r, hence not

affected by the Bp profile narrowing, and is given by Eq (17b). Fs−s
m0 = −

∫ 2π

0
eυυυs

e×Bs
pz(rl)dφ

s
e = 0;

∂|Bs
pz|

∂rl
= −3Bs

pz

rl
; ft projects the product of υe, υp contained in each component magnetic force to

that of υ′e, υ
′
p which actually enter the e, p interaction. υ′eυ

′
p = (M/mp)υe(M/me)υp = ftυeυp

(Sec 2.1), so ft = M/M . A short ranged repulsion Frep
pe = Arep r̂/r

N+1
l

may generally also present

but is omitted for the intermediate range of interest here. Given the Sez, Spz, Lz,-1 = 1
2
, 1

2
,−1

2
configuration, all the three component magnetic forces (for l > 0 for F orb−orb

pe,m , F s−orb
pe,m ) acted by

p on e above are in the −r direction and hence attractive. Fpe is therefore in the −r direction
and maximally attractive.

Similarly, e produces at p at r
l
apart the fields Ee(rl

) and Be(rl
), and electromagnetic forces

given as fceEe, ftF
orb−orb
ep,m = −ftF

orb−orb
pe,m , ftF

s−orb
ep,m = −ftF

s−orb
pe,m

ge

gp
, ftF

s−s
ep,m = −ftF

s−s
pe,m. The

action and reaction forces for the e, p in equilibrium must be equal in amplitude and opposite
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in direction (Newton’s third law), and may be here each represented by the geometric mean as

F =
√

|Fpe||Fep| =
∑

λ,λ′

√

|Fλ
pe||Fλ′

ep|δλλ′ , where λ, λ′ indicate the different component forces.

The last equation needs to hold for the action and reaction to maintain detailed balance for any
small variation of the independent variables such as rl. The final total (attractive) force of p
on e in equilibrium in the l, ml = −l state is therefore, suffixing l after F explicitly, Fl(rl) =

−[fce
√

|Ep||Ee| + ft

∑

λ

√

|Fλ
pe,m||Fλ

ep,m|]r̂ = −fceEp + ft[F
orb−orb
pe,m + Fs−orb

pe,m

√
gege

gp
+ Fs−s

pe,m].

Substituting Eqs (23)–(25) into the foregoing we obtain Fl in explicit and scalar form,

F
l
(r

l
) = − e2

4πε0r2l
(fc + fm) ' − e2fm

4πε0r2l
= − fte

2
~
2C− 0l

16πε0mempc
2r4

l

, (26)

fm =
ft~

2C− 0l

4mempc
2r2

l

, C− 0l = (4l2 − 1) +
(2l− 1)

√
gegp

2C1l

+
3gegpη

2 cos2 θl

C1l

. (27)

The negative sign indicates Fl is attractive. The approximation in Eqs (26) is given for fm >>
fc = 1/γ2. For l = 1, using the solution values from Sec 5 gives fm = ~

2C− 01/mempc
2r21m = 28.2

which is >> fc = 1/γ2 = 5.6× 10−11.
l = 0 yields L0 = 0, Borb

p = 0, and hence zero orbit-orbit and orbit-spin interactions. For
l ≥ 1, the three component magnetic forces are attractive each. l = 1 therefore is the lowest
possible state of the e, p bound by a magnetic force at a separation ∼ 10−18 m (Sec 5) and is
the only state with the correct spin 1

2
(Sec 2.6). (By a more basic consideration, higher l would

lead to much shorter and hence unrealistic interaction distances for the a0

e, a
0

p values prescribed
by nature.) The l = 1 state is therefore an only liable candidate for the neutron. For l = 1, hence
cos θ1 = 1/

√
3, and setting me = mp (see Sec 2.6), hence ft = 4, Eq (26), the corresponding

interaction potential V1 and Hamiltonian H1 are written as, with Eqs (61f,g) for me, mp, and T1

given in Sec 2.5,

F1(r1) = −3AoC− 01

γeγpr
4
1

, Ao =
e2~

2

12πε0m0

em
0

pc
2
, C− 01 = 3 +

√
gegp

2C11
+
η2gegp

C11
; (28)

V1(r1) = −
∫ r1

∞
F1(r)dr =

r1F1(r1)

3
= −AoC− 01

γeγpr
3
1

= − e2~
2C− 01

12πε0mempc
2r3

1

; (29)

T1 = Ck1V1, Ck1 =
9γπε0Mc2r1
(γ + 1)e2C− 01

; H1(r1) = T1 + V1 = V1(1 −Ck1). (30)

4. Neutron disintegration, β decay

Suppose that an afore-described (free) neutron, being in stationary state of a Hamiltonian
H1 at initial time, is now perturbed by an excitation or external-interaction Hamiltonian
HI = H0

I + H1
I = H1

I given in the CM frame; evidently H0

I = 0. So the bound e, p and the
confined ν̄e are in the final (f) state disintegrated into free particles e, p, ν̄e, with the e, p at an
effective infinite separation r∞ such that V1(r∞) = 0, whence a β decay. The reaction equation
straightforwardly is n → p + e + ν̄e. The final-state total Hamiltonian has the general form
H1f = V1(r∞) + T1f = 0 + T1f . On transition to the final state, provided no exchange with
the surrounding, the fore-aft total angular momentum must be conserved. So the same initial-
state L1, and thus T1, are in the final state carried by the same (though now free) ν̄e. Omitting
a translational kinetic energy of the emitted particles, Ttr as converted form the total mass
difference before and after neutron decay and is experimentally known to be of MeV scale that is
<< T1 of GeV scale, so T1f = T1f +Ttr ' T1, and H1f = 0 +T1f ' T1. The energy condition for
the neutron β decay to occur is HI = H1f −H1. Substituting in it the equation for H1f above
and (30c) for H1 gives

HI = T1 − (V1 + T1) = −V1 =
AoC− 01

γeγpr
3
1

, or GF = HI

(

4

3
πr31

)

=
AoC01

γeγp

, C01 =
4πC− 01

3
, (31)
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where
(

4
3πr

3
1

)

is the volume in which the electron is confined about the proton. By virtue of
its physical significance, the product term GF = HI(

4
3πr

3
1) in (31b) is directly identifiable with

the CM-frame counterpart of the Fermi (coupling) constant GL

F
. GL

F
,∝ 1/

√
τL, is experimentally

determined (as Gexp
F ) from the neutron lifetime τL. τL is usually measured in the Lab frame and

in a fixed direction for each neutron decay event (with a probability ∝ 1/τL) over a time interval
>> 2πR/ucm, during which ucm explores all directions, so τL = 〈τ /γL

cm
〉 = τ (cf also Sec 2.4). So

at any instant of time tL, GL

F
(tL)/GF =

√
τ /

√
τL =

√
γcm, whilst a measurement made during a

macroscopic time informs GL

F
= 〈GL

F
(tL)〉 = GF . We shall continue to speak of GF .

In the GWS theory, GF is given the formula GGWS

F
=

g2

w

√
2(~c)2

M2
w

c4 , where g2
w

= e2

8ε0 sin2 θw

.

Equating GGWS

F
with GF of (31b) gives a first-principles microscopic expression for Mw,

Mw =

(

3
√

2 πmemp

2C01 sin2 θw

)1/2

=

(

3
√

2 π

2C01 sin2 θw

)1/2

mp; accordingly Mz = Mw/ cos θw (32)

In terms of the e, p-neutron model, Mw represents a specific vector mass of the e, p moving in the
binding (resistive) potential field V1, and V1 resembles the Higgs field.

5. Numerical evaluation

Equations (28)–(31) are specified effectively by four independent variables ā, r1, υ1, and
γ(υ1 , c)γcm

(= γeγp) or γ (γcm is given if γ is given), to be determined each. We need four
independent constraints for quantitatively solving the dynamical variables of a realistic model
neutron. It may be checked that at a r1 value satisfying the stable-state equation (1d), the
lifetime of the e, p system is not an optimum. This implies that the neutron candidate e, p
system, if opted for a maximum lifetime, is not in stable state, which is on equal footing with the
fact that a real free neutron indeed is ”meta” stable only, with a relatively short lifetime 12 m.

Alternatively, we seek (i) the quantisation condition (13a) for L− 1‡, (ii) the experimental value
of the Fermi constant, Gexp

F , and (iii) a maximum neutron lifetime, hence a minimumGF , as three
basic constraints. These are (re-)written as, after dividing (13a) by r1M

0υ1 for (i), and imposing
the constraint (ii) on (iii),

(i) : γ = γ
cm
γ† =

√
3(~c)c

2M 0c2r1υ1
=
Doc

r1υ1
, Do =

√
3~c

2M 0c2
(33)

(ii) : Gexp
F

= 1.435853× 10−62 Jm3 (data from [1e] ) (34)

(iii) : GF (r1m) = GF .min = Gexp
F

(35)

Since (33) suggests that γ >> 1 for any υ1 not too far below c, and c = cL by the standard

assumption, so υ1 = c
√

γ2 − 1/γ ' c = cL, serving the fourth constraint. With this υ1 value in
(33a), and with (7b) for γeγp(= γ

cm
γ = γ2

cm
γ†) and the resultant γ from (36a) below in (31b),

we obtain, for the case γ† = γ†

max
= 459.536,

γ =
Do

r1
, γ

cm
=

γ

γ†
max

=
Do

γ†
max

r1
, GF =

AoC01

γ2

cm
γ†

max

=
γ†

max
AoC01r

2
1

D2
o

=
459.536AoC01r

2
1

D2
o

. (36)

Do and Ao are constants. For evaluating C01 (Eqs 31c, 28c), we shall use ge = 2, gp = 5.5857; and
η = 1/

√
2 (see after Eq 21). GF of (36c) is then solely dependent on r1,ā. Characteristically, for a

specified ā value, the GF (r1) vs r1 function presents an extremal point at an (uniquely specified)
r1m, at which GF (r1m) is a minimum (as in Fig 2a) but is in general not equal to Gexp

F . GF (r1m)

‡ The eigen solution (13a) for L− 1 directly corresponds to a Heisenberg relation for L− 1 and the angular interval 2π,
or 2T1 = Ck1H1/(Ck1 − 1) and ∆t1. The excitation Hamiltonian HI is not conjugated with the ∆t1, but possibly
with some other time interval ∆t subjecting to a Heisenberg relation depending on the excitation scheme.
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Figure 2. (a) GF = HIr3

1
, C01, Mw (curves 1,2,3), and (b) γ, V1 = −HI , T1 (curves 4,5,6) as

functions of r1 computed from Eqs (36c), (28c), (32), (36a), (29), (30a) for ā = 1.5247×10−18

m. At r1 = r1m = 2.513× 10−18 m, GF = Gexp
F = 1.435853× 10−62 Jm3.

increases monotonically with ā. Computing GF (r1m) as a function of ā over a range of ā values,
a unique ā is found at§ ā = 1.5247× 10−18 m at which GF (r1m) = Gexp

F , r1m = 2.5130× 10−18

m, γ = 1.3316 × 105 (Eq 36a), and C01 = 88.70 (Eqs 31c, 28c). With the ā, r1m, (hence C01),
υ1, γ values obtained, all the remaining dynamical variables and functions may be evaluated.

For the fixed ā = 1.5247 × 10−18 m value, the computed GF , C01, Mw (where the average
experimental value sin2 θw = 0.23 is used), γ, V1(= −HI), and T1 vs. r1 functions (Eqs 31,28a,
32, 33a, 29, 30a) are as shown in Figs 2a,b (curves 1–6). r1 = r1.min lies as expected in the

region where −∂V1(r)
∂r

= F1(r) < 0, and V1(r) < 0. At r1 = r1m, V1 = −HI = −1.35 GeV,
T1(' M c2) = 68.0 GeV, H1(' Etot,1) = 66.65 GeV (Eq 30c), Mw = 77.23 GeV. Furthermore

specifically, with the γ value in (36b),(8a),(b), we obtain γ
cm

= 289.8, γe = γ
cm

M0

2m0
e

= 2.661×105,

and γp = γ
cm

M0

2m0
p
' γ

cm

2 = 145, which are >> 1 each. So the particles e, p and their total mass

M , as M , each travel at velocities ' c in the CM frame. The total kinetic energy of e, p in the
CM frame is Te + Tp = 2 × γmpc

2/(γ + 1) ' 2 × mpc
2 = 2 × 136.0 GeV which apparently is

mainly consumed to contract the size of the system.
The author expresses thanks to colloquium chairman Professor J Van der Jeugt, the

committee and chairman Professor J P Gazeau for providing the opportunity for presenting the
research at the 30th Int Colloq on Group Theo. Meth in Phys, Ghent Univ, Belgium, and for a
grant covering the author’s travel expense to the colloquium, to emeritus scientist P-I Johansson
for his private financial and moral support of the author’s research, and to Kissemiss Johansson
for his joyful companion when the unification researches were carried out. The author enjoyed
very much the enlightening discussions with a number of scientists at the colloquium.

Appendix A. A formal expression for γa

The Lorentz transformation (5d) leads directly to the (Lorentz-Fitzgerald) contraction of the
circumference 2πr1 of the l = 1 orbit of radius r1, by the factor 1/γ along the direction υυυ1. This
is associated with a contraction of the de Broglie wavelength (λd = λ0

d/γ) along the direction
υυυ1, which may be attributed to a source-motion resultant Doppler effect according to the IED

§ The ā value is in accordance with the order of magnitude of the measured neutron charge radius, ∼ 1.4× 10−18

m, from electron-neutron scattering experiment. The structure of the e-p neutron model is in fact also supported
by the neutron structure implied by the experimental scattering length, which is negative and hence suggests an
attractive scattering potential as seen by a scattering electron. An attractive scattering potential for an incident
electron would be precisely as expected in terms of the e-p neutron model, since the incident electron will be
principally scattered by the intrinsically much heavier proton of the neutron. The electron of the neutron has an
equally large relativistic mass but only because it rotates much faster and hence is much more distributed at any
instant of time.
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model. As the induced result only for the bound particles e, p here, the radius or e, p separation
r1 is also contracted by 1/γ (Eq 6.1d) in the direction transverse to υυυ1, which has a one to one
correspondence with a larger e, p attraction (Sec 3). The latter is a secondary manifestation
at the same expense of the particles’ high velocities compared to c as the former. A repulsion
must have been counterbalanced, for otherwise the particles would have approached at closer
distance without the need of higher velocities. The origin of the repulsion may be looked at
in terms of electromagnetism. Given two charged particles e, p brought from infinity to a finite
separation r1, the electrostatic E field lines of their charges, and at closer distance their charges
as extended entities, must now compete to occupy the same space; these are dynamical energy
entities (irrespective of the signs of the charges) and must inevitably repel mutually. This is
apart from the direct e-p Coulomb attraction here. (We would recognise the same origin for the
familiar ”short range” repulsion presenting in relative terms generally between two particles at
either atomic or strong or weak scale.)

Consider that relative to the CM frame not moving with the charge, similarly as the E field
distribution (cf Sec 3), the charge distribution of the moving charge α = e or p becomes narrowed
and intensified at a point transverse to its velocity, along the line joining the e, p here, which
extends its rest-charge radius a0

α by an extra distance b0α in the transverse direction. So the
effective ”radius” of the moving charge is in effect contracted from a0

α + b0α. The charge space of
a moving charge contracts by the same mechanism as the E field space based on the discussion
above, except that a differing contraction efficiency, by a factor χ, should be allowed for the

distinct charge space. Then ae =
mp

M
χ(a0+b0)

γ , ap = me

M
χ(a0+b0)

γ ; χ > 1 indicates a less efficient
contraction for the charge. A formal relation of a and a0 thus follows as

a = (ae + ap) + (be + bp) =
χ(mp +me)(a

0 + b0)

Mγ
=
a0

γa
, γa =

γ

χ(1 + b0/a0)
(A.1)
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