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Abstract: Employing Dirac’s suggested approach peffect and generalise the mathematical
formalism that forms the existing basis of theaadtphysics,” and thereafter “try to interpret
the new mathematical features in terms of physardities,” we obtain the complete set of
mathematical solutions to the Wu-Yang differengi@liation for Dirac monopoles to find three
general classes of solutions. The first set inetudhe Dirac Quantization Condition but
generalizes to encompass fractional charges alBloe second set includes charge quantization
without any fractionalization, in the absence ofgmetic monopoles. The third set includes
electric and magnetic charges but exhibits a bneglof the electric-magnetic duality symmetry
not only due to the low-energy experimental cogpti/137, but even at the theoretical level.
We then offer some preliminary physical interprietad and suggest a path for experimental
validation based on the fractionalized charge dols which are part of the first solution set.

PACS: 11.15.-q; 14.80.Hv:3.43.Cd; 65.

Contents

1. Introduction: Dirac Monopoles and their Advancemantt Hoof-Polyakov and Wu-Yang;
and Dirac’s Philosophy on the “Steady ProgresshySRS” ..., 1
2. Wu and Yang and the Mathematization of Dirac Mornef®tudy — Constant Electric and
Magnetic Charge StrengtNS............ e 8
3. Summary and CONCIUSION .......uuuiiiie et e e e e e e e e e e e e e e e e eeeeeeeeeenees 21

Appendix A: Magnetic Surface Flux Calculation wih/arying Magnetic Charge Strength .... 24
] (= =T o PRSP 26



Jay R. Yablon
March 7, 2015

1. Introduction: Dirac Monopoles and their Advancenent by ‘t Hoof-
Polyakov and Wu-Yang; and Dirac’s Philosophy on théSteady Progress of
Physics”

Ever since James Clerk Maxwell first unified theparate laws of Gauss, Ampere and
Faraday for electricity and magnetism, the obsemaif electric charges taken together with the
non-observation of magnetic charges has been aesofiintensive theoretical and experimental

pursuit. Making use of gauge potentiaf8’ which subsequently became an indispensable
fixture of quantum electrodynamics (QED), in thedam language of differential forms where

the one formA= A,d)(‘ and the field strength two fornk =dA, the differential equations
governing electricity aré¢J =d* F=d dA where * represents the duality operation (see [1]
section 3.5), while those governing magnetism @redF = ddA. The zeroing out of what
would otherwise be the magnetic charge denbyyidentity is caused by the differential forms

identify dd=0 which is a geometric statement that the “extederivative of an exterior
derivative is zero.” When we apply Gauss’ / S&kbkeorem to obtain the integral formulation

of Maxwell’'s equations, the electricity laws becomejﬂ *J= <ﬁ>* F wheree, often referred to
as the electric charge strength, represents tlad¢ eétgctric charge contained within the three-

dimensional volume, and by Gauss / Stokes, is emquttie net electric field flux through the
two-dimensional surface enclosing that volume cdntrast, the magnetism laws simply become

U= IIIO: <ﬁ> F =0 which states that there is no magnetic chargeagoed within the volume
and therefore no net magnetic field flux over thesed two-dimensional surface around that
volume. These relationships taken together, aedifgally the absence of ~ x interchange
symmetry because# 0 while =0, are often understood to mean that while theresketric
charges in nature, there are no magnetic chargesa.k.a. magnetic monopoles.

In 1931 Dirac [2] discovered magnetic chargeg: were to hypothetically existhen

this would imply that the electric chargemust be quantized. While charge quantization had
been known for several decades based on the ex@eahwork of Thompson [3] and Millikan
[4], Dirac was apparently the first to lay out aspible theoretical imperative for this
guantization. Using a hypothesized solenoid of@iarly-thin width known as the Dirac string
to shunt magnetic field lines out to mathematicdinity, Dirac established that there was a

non-zero magnetic qu>gu:<ﬁ>F across a closed surfaden this would be related to the
electric charge streng#haccording toey = 277 ¢, wheren is an integer. This became known
as the Dirac Quantization Condition (DQC), becatiseuld easily be rearranged iné= ne¢ in
which e, =2mmnc/ 1 defines a unit of electric charge in terms of teeiprocal of the magnetic
charge, and intqu =ng, in which y, =2mhc/e likewise defines a unit of quantized magnetic
charge. Clearly, the DQC is invariant under. g interchange, which Dirac described as “a
symmetry between electricity and magnetism quiteifm to current views,” namely, foreign to
the classical Maxwellian view in which= <J':.f>* F#£0 but = <ﬁ> F =0 and there is n@ - u

symmetry.
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The electric charge strengthn e = 277 ¢ of the DQC is the same one which is related

to the “running” fine structure coupling via = €* / 4rthc, which, at low probe energies / large
impact distance, approaches the numeric vatuee® / 4rmhc01/137.03¢ asymptotically, see,
e.g., equation (1) in Dirac’s [2]#€/ € =137, which uses Gaussian units), and Witten's [5],
pages 27 and 28. Indeedjrac’s original purposefor the derivation in [2] was to “give a
theoretical value foe” thus the number ~137. However, the DQC left thisnber “from the
theoretical standpoint, completely undetermineahd & date, despite many efforts to explain
this number, this still is an experimentally-dedveaumber with no commonly-accepted
theoretical explanation. Dirac perceived it to “bether disappointing to find this reciprocity
between electricity and magnetism, instead of alguelectronic quantum condition, such as
[Dirac’s equation number] (1).” In general, frorar, we shall use the natural unitsiof c =1,
and only restorg:r andc when necessary to illustrate a point.

Of course, given that the magnetic palein ey =27n was found to be anything other
than the zero of the classicpzlzcj':ﬁ F =0, it became important to explalmow this magnetic
pole might exist under some domain of physical itimm$, even though its observation had
never been made experimentally accessibl@irac recognized that the ~ g symmetry of
ey = 27rn in combination with the theoretically-underminegerimental values® / 4/7101/137

meant that the DQC “does not, however, force a ¢et@psymmetry, analogous to the fact that
the symmetry between electrons and protons is amtefl when we adopt Oppenheimer's
interpretation [of filled negative energy “hole’agts].” Specifically, Dirac observed that “if we
insert the experimental value 137 in our theorynjaely into ey =2mn], it introduces

guantitative differences between electricity andyneaism so large that one can understand why
their qualitative similarities have not been dise@d experimentally up to the present.”

Specifically, he said, for there to be a “complsienmetry” between electricity and

magnetism beyond the formal~ w interchange invariance, for the “one-quantum pgohath
n=1, we would have to haves=e numerically whereby the unit DQC would then become
e’ = u*=2m=4mr, which would mean thatr =1, rather than the a 01/137.03¢ actually
observed with low-impact probes. By representing tinit magnetic charge of the DQC as

My :(2n/e2) eD(137/3 € using the empiricalr as observed at low probe energy, Dirac at
page 72 of [2] observed that the force betweentanymagnetic polegs would be larger by an

approximate factor of (137/2)2 = 4692 " than that between any two electric chargesThis

very large force,” Dirac concludes, “may perhapsoant for why poles of opposite sign have
never yet been separated.” This was the firstaggilon ofhow this DQC-predicted quantized

magnetic surface flux irtj'jﬁF = =2rm/e might be able to exist, even though it was not
empirically observed at attainable experimentalgies.

Our understanding of these monopoles substanadiyanced in 1974 when ‘t Hooft and
Polyakov [6], [7] demonstrated how the spontanexyumsmetry breaking of a simply-connected
gauge grougs of a grand unified theory (GUT) down to a smaBebgroup which includes a
U(1) factor would vyield solutions with topologicaltable magnetic monopoles. In the
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asymptotic large-distance limit, these solutiongylhe Schwinger conditiorey =47 for
“magnetic monopoles with twice the flux quantum” embby “two of the original strings,
oriented in the same direction, can now annihitatehe formation of a monopole pair,” see [6]
at 276-277 and equation [2.22] (which uses Gaussits). In these theories, however, if one
includes “isospin; representations of the group SU(2) describinggesire, = Q= e =% ¢
where T? is the third component of the weak isospin gewmesatthen the “monopoles do not
obey Schwinger’s condition&u = 477 but do recover Dirac’s quantization conditiepr = 277n.
Specifically, with the generators establishing tiné chargee, = +1 e, the Schwinger condition
may be rewritten asy =+2eu =4 i.e. e u=%2 i.e. ngu=+2rn. Then with e= ng
describing multiple units of charge and with thesign absorbed intm=0,+1,+2+ 3.., this
becomeseu =27n which recovers the DQC. In these models, the rpolgo quantum is
dependent upon the particular GUT employed. So, eicample, in the Georgi-Glashow
S0(3) ~ SU(2) model [8] used in [6], and “[iln Weinberg's SU(®X(3) the monopole quantum
is the Dirac one and in models where the leptons fan SU(3)xSU(3) octet . . . the monopole
guantum is three times the Dirac value. . . .”

In all of these GUT models, the possible existeatdhese ‘t Hooft-Polyakov (TP)
monopoles is reconciled with their empirical norsetvation by virtue of their large predicted

masses, in contrast to Dirac’'s Coulomb force exgian using ‘(137/2)2 = 4692 ." For

example, ‘t Hooft used “Georgi and Glashow [8],dzhen SO(3), [with which] we can construct
monopoles with a mass of the orderM{, , where M,, is the mass of the familiar intermediate

vector boson. In the Georgi-Glashow modél,, <53 GeV /c?,” see [6] at 278-279. ‘t Hooft

points out that “[o]nly in the Georgi-Glashow mod#dr which we did this calculation) is the
parameterM,, . . . really the mass of the conventional interiadvector boson. In other

models it will in general be the mass of that bosshich corresponds to the gauge
transformations of the compact covering group.”

As to the non-observation of monopoles at expertaigrattainable energies, ‘t Hooft
states that “even in [the Georgi-Glashow] modelrtiess is so high that that might explain the
negative experimental evidence so far. If Weinlse8}J(2)xU(1) model wins the race for the
presently observed weak interactions [as it noweapp to have done from a 2015 vantage
point], then we shall have to wait for its extemsto a compact gauge model, and the predicted
monopole mass will be again much higher.”

Weinberg expounds upon this in his definitive tisea[9] at 442:

“The Georgi-Glashow model was ruled out as a theofy weak and
electromagnetic interactions by the discovery aitra currents, but magnetic
monopoles are expected to occur in other theovibgre a simply connected
gauge groupG is spontaneously broken not to U(1), but to sombkgsoup
H’xU(1), whereH’ is simply connected. . . . There are no monoppiesuced
in the spontaneous breaking of the gauge gr8uf2)xU(1) of the standard
electroweak theory, which is not simply connected.. But we do find
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monopoles when the simply connected gauge g@upf theories of unified
strong and electroweak interactions . . . is spwedasly broken to the gauge
groupSU3)xSWU(2)xU(1) of the standard model. . .. The monopolahim case
are expected to have a mass larger by an invetsgesgauge coupling constant
than the vector boson masskb=10"-10° GeV produced by this symmetry
breaking. Such monopoles would have been prodwekeen the universe
underwent a phase transition in which was spontaneously broken to
SU(3)x SU(2)x U(1), at a temperatur€ of orderM.”

Weinberg then points out at 443 that:

“[t]his poses a problem for some cosmological medgAlthough the monopole
number density al = M =10" GeV would have been] smaller than the photon

density . . . by a factor . . . of ord&®®, [iff monopoles did not find each other to
annihilate, then this ratio would remain roughlyhst@ant to the present, but with
at least 1®microwave background photons per nucleon today vibuld give at
least 18 monopoles per nucleon, in gross disagreement wiitat is observed.
This potential paradox was one of the factors legqdb inflationary cosmological
models, in which there was a period of exponengigbansion, which if it
occurred before the monopoles were produced woane lgreatly extended the
horizon [in the early universe], and if it occurredter the production of
monopoles (but before a period of reheating) wdwdde greatly diluted the
monopole density.”

In sum, the Georgi-Glashow SU(2) model which cobkle yielded anM,,-based

monopole mass, possibly accessible with modernlexaters, was ruled out by electroweak
neutral currents. What is left is that all empitig-viable GUT groupss must break down to
SU3)xSU(2)xU(1), and for all such groups the monopole massestleast 18 GeV/? which

is the vewv about which the Higgs scalar fields used for symnynbreaking are expanded via

a(x*)=v+ h(¥'). And indeed, these masses must be even “larganbgverse square gauge
coupling constant,” and so would be not far fror Hanck mass defined iyM_* = 7ic which

is M, =1.220% D" GeV/c®. This, coupled with the view that inflationarystmology diluted

the abundance of these monopoles in the early ts@ve such an extent that the probability of
one ever being observed is vanishingly small, s pihevailing modern view of why these
monopoles a) probably do exist in nature but bateexperimentally observed.

In many ways, especially with the ‘t Hooft-Polyak¢¥P) monopole mass tied to the
GUT mass ~18 GeV/?, the problem of observing monopoles is rootechin same soil as the
problem of observing proton decay. Both magnemnapoles and proton decay are believed to
occur in nature. Both involve exceptionally-higheegies rooted in the GUT energy 110
GeVIc®. Given that our experiments cannot attain anya/mear these energies, detecting either
would require sifting through trillions upon tritihs of empirical collision events in the statidtica
hope of getting lucky with a small few of these mge And given all of this, it has to date
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proven impossible to detect either monopoles otopralecay experimentally. Now let’s return
to Dirac, and his philosophy about what is neededthe steady progress of physics.”

In his monopole paper [2] at 60, Dirac began byeoting on how “modern physical
developments have required a mathematics thatreaily shifts its foundations and gets more
abstract.” He had in mind such things as “[n]orcliElean geometry and non-commutative
algebra, which were at one time considered to brelypdictions of the mind and pastimes for
logical thinkers, [but] have now been found to leeywnecessary for the description of general
facts of the physical world.” And he also had imthiHerman Weyl's then-new formulation of
gauge theory [10], [11] which was a mathematicasti@etion of the collective physical
investigations of Gauss, Ampere, Faraday and Mdxwelo decades later this would be further
abstracted by Yang and Mills [12] into non-Abeliglauge theories for weak and strong
interactions and GUT interactions using non-comimixgaalgebras which had once been the

quaternion playground of Hamilton and had alreadgrined Heisenberg iﬁx‘, p’ ] =ind [13]
and Dirac himself via his gamma matrices which eoeyy”” :%{y”,y’} to reproduce

Minkowski space and commuted as”’ :%i[y”,y’]. Dirac also had in mind the non-
Euclidean geometry of General Relativity [14] ceate on a Reimann tensor defined via
VA E[aﬂ,()v]\{, as a measure of the degree to which spacetimegatigds were non-

commuting. And Dirac would momentarily use thisneamathematical abstraction of gauge
theory derive his DQ@u = 27n.

Reflecting upon all this (except Yang-Mills whiclasvstill in the future), Dirac felt it:

“likely that this process of increasing abstractgiti continue in the future and
that advance in physics is to be associated wittorginual modification and
generalisation of the axioms at the base of thenemahtics rather than with a
logical development of any one mathematical scheme fixed foundation.”

He then concluded that:

“. .. fundamental problems in theoretical phyqwsl require solutions] beyond
the power of human intelligence to get the necgssew ideas by direct attempts
to formulate the experimental data in mathematiahs. . . . The most powerful
method of advance that can be suggested at pressememploy all the resources
of pure mathematics in attempts to perfect and igdise the mathematical
formalism that forms the existing basis of theaadtiphysics,and after each
success in this direction, to try to interpret theav mathematical features in terms
of physical entities. .”

And this finally brings us to Wu and Yang. Not tp@after ‘t Hooft and Polyakov
demonstrated how topologically-stable magnetic npoles having asymptotic large-distance
behaviors matching the DQ€&u =277n could emerge from the spontaneous symmetry brgakin
of a simple compact GUT grou@, Wu and Yang showed how to obtain “Dirac monopoles
without strings.” [15], [16] In fact the TP mondpalid already replace the singular Dirac string
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with a smooth Higgs scalar field = T.¢¢ used in the symmetry breaking whé@fecommuting as
['I’i T ] =if, T, with group structure constantf, are the generators @&. But the Wu-Yang

monopole development eschewed the type of physiogliments involving flux lines and

contours and the physical monopole Lagrangiantdthitherto been used, in favor of a formal
mathematical analysis based on Uglgauge theory alone. This opens up what Dirac @voul
regard as a “most powerful method of advance,” beeawhat Wu and Yang did was to
effectively lay bare the “mathematical formalismattiforms the existing basis of theoretical
physics” for Dirac monopoles.

Specifically, up until Wu and Yang, the DQ€&u =27n had been understood as an
algebraic relationinvolving the electric and magnetic chargesnd ¢ and a quantum numbaer

Now, starting with an electron wavefunction tramsfing asg/(x) — ¢'(X) = €"¥y( % where
A(x) is a local gauge (really, phase) angle and whéee field strength two form

F =(u/4m)d cosfdg, Wu and Yang essentially showed the DQC tabealgebraic solution
to the differential equatiore™ dé” / ie= (u/ 277) dp, when this equation is solved using the two

azimuth anglesp =0 and ¢ =277 which of course are the same as one another wiesved
strictly in terms of their geometric orientations.By finding the differential equation
e""de"/ ie=(u/2m) @ “at the base of the mathematics” for which the D&C=277n was
simply a solution, Wu and Yang provided the means — whiehsall exploit in this paper — to
“perfect and generalise the mathematical formaligat forms the existing basis of [the]

theoretical physics” underlying magnetic monopolesnd, once this is achieved, it then
becomes possible “to try to interpret the new mathtecal features in terms of physical entities.”

In this paper, we shall complete the first stephig two-step prescription recommended
by Dirac, as regards the mathematical formalisriofYang that is used to obtain Dirac’s own
DQC as one of its solutions. Specifically, apptoag the problem mathematically, we shall
simply studye™ de" / ie=(u/2m) dp, as amathematicabifferential equation in whictde# 0

anddu #0, i.e., in whiche and ¢ do not have constant values throughout spacetiie aell-

evidenced by the renormalization-based “runningthef electric charge strength as a function of
how spatially close one is able to collide a tdstrge with a charge being tested. As we shall
see, if we allow these charges to run and do npbga anya priori constraint on their running,
we are mathematically required to generalize the-¥Wang differential equation to

e""de" / ie=(u/2m) @+ wheree defines an observable distinctness between tré aod

south gauge field patches of the Wu-Yang analydmschv arise precisely because of this
permitted running.

We then developll of the mathematically-predicted solutions 00 and £ #0, and
for all like-oriented azimuthg = 27im where m=0,1,2,3.. is an integer. In doing so, we do

not restrict ourselves t@ =0,27 azimuths for which the DQC solves tlze=0 differential

equation, becausthere is nothing in the mathematics which requiussto be so restrictive
Indeed, after finding that the non-integrable datikes of the wavefunction phase are
synonymous with the potential of the electromagniid and so “gives us nothing new,” Dirac
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then highlighted “one further fact which must noa/thken into account, namely, that a phase is
always undetermined to the extent of an arbitratggral multiple of27z. This,” he then said,
“requires a reconsideration of the connection betwthe [non-integrable derivatives] and the
potentials and leads to a new physical phenomendméh turned out to be the DQC. In the
Wu-Yang derivation, the azimuth also has a leade rah the differential equation

e de" / ie=(u/2m) dp+¢, and just like the phase, an azimuth is also “gbvandetermined

to the extent of an arbitrary integral multiple 87.” This too “leads to a new physical
phenomenon,” or — since we shall focus here on emadiics — leads to “new mathematical
features” which include electric charge fractionation.

While one might contend that such fractional chargelate the DQC and are therefore
unacceptable, this is a misguided view for two oeas First, the DQC is an algebraic equation
which isa mathematical solutioof the Wu-Yang differential equation, but not thrdy solution.
What Dirac calls the “base of the mathematissiiot the DQC, but is the Wu-Yang differential

equation e dé&" / ie=(u/2m) d+&. The question is not whether something “violatts

DQC, but whether something violates Wu-Yang'$'de" / ie=(u/2m) @ +& as generalized

to running charges with na priori constraints. If the DQC is a solution to the @iéntial
equation, and if fractional charges are also atswluto the same differential equation, then
fractional charges are consistent with the DQC beeahey both solve the same underlying
differential equation.

To use an analogy from general relativity, the Smfaschild solution to the Einstein
equation was found in 1916. The Friedmann solutmrihe same differential equation was
found in1924. To argue that fractional chargeslate the DQC when they are both
mathematical solutions to the same underlying diffgal equation is the same as arguing that
the Friedmann solution violates the Schwarzschotutoon. This is an apples-to-oranges
comparison that does not stand up. And indeedEihg&tein equation is an excellent illustration
of how a deep and general differential equatiomigh more powerful and explains many more
phenomena that any individual solution to thated#htial equation. It is, in fact, highly unlikely
that “the power of human intelligence” could hawenceived of either cosmological or local
gravitationally-collapsed conditions with mathematispecificity, absent having ascertained the
correct differential equation from which these effemay be deduced as solutions. Similar
things may be said of Maxwell’'s equations, andrtlesitension into QED. That is why the

differential equatione™ dé" / ie=(u/2m) dp +& of Wu and Yang, and not one of its algebraic
solutionsew = 277n, must be the starting point for any generalizealyais of Dirac monopoles.

Second, such a contention blurs a clear line betweathematics and physics which
Dirac wisely and accurately articulates. To beesafter one is able to fully “generalise the
mathematical formalism that forms the existing basi theoretical physics” for Dirac
monopoles, namely the Wu-Yang differential equatitere is much room to argue about how
“to interpret the new mathematical features in th physical entities.” One can and should
engage in open, principled and transparent deliatet daow the full set of solutions to the Wu-
Yang differential equation should be physicallyemreted and whether these solutions do or do
not apply to certain phenomena observed in theralatworld. But the solutions to the
mathematics are the solutions to the mathematick aamnot be bent by human will or
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intelligence. How one thinks about the applicatadrthese solutions to physicsiredependent

of what the solutions themselves actually are, die$e must be separated in one’s thinking.
Otherwise one’s preconceptions and wishes aboutdheal world cannot help but stand in the
way of clear and receptive thinking about the redtwiorld, because in modern physics it is often
“beyond the power of human intelligence to get teeessary new ideaother thanthrough pure
mathematical deduction from the “base of the matta® . . . that forms the existing basis of
theoretical physics.” Dirac wisely and correctlyserves thatleriving mathematical solutions
and thermphysically interpreting these solutiorege two completely distinctive aspects of how to
facilitate the “steady progress of physics.” Indsbng he lays out a methodological discipline
which is not nearly as heeded or practiced asghbto be.

With these introductory observations, we shall raarefully enumeratall the available
mathematicakolutions of the Wu-Yang differential equationgagnizing that this may well be
followed by lively debate about how “to interprétetnew mathematical features in terms of
physical entities.” We open that debate by pogqtut along the way, certain aspects of these
mathematical solutions which are strikingly remaeist of certain observed natural phenomena,
especially charge fractionalization because thee fractionalization observed in the Fractional
Quantum Hall Effect (FQHE). But we do so withoutgent claim about whether these
reminiscences will end up being validated or cahtted following critical theoretical and
experimental development and review. To the exieait we offer a few physical observations
amidst the mathematical development, we do so gingpprovide some initial thoughts about
possible approaches to physically interpret theneragtical solutions that will now be laid out.

2. Wu and Yang and the Mathematization of Dirac Momwpole Study —
Constant Electric and Magnetic Charge Strengths

As just stated, we shall now develop mathemats@utions of Wu and Yang’s
differential equatione™ dé" / ie:(,u/27T) @ [15], [16] for electric and magnetic charge
strengths for whictde# 0 anddu # 0 and for which there is na priori constraint imposed on
how de is mathematically related tdz. This is distinct from Dirac’s second step ofirigy to
“interpret the new mathematical features in termgloysical entities,” that is, of studying
whether these solutions map sensibly to phenomdmahware empirically observed in the
natural world. To start, we study solutions forieththe local charge strengths are taken to be
constants such thate= du=0. Then we study expanded solutions in which tloalleharge
strengths are allowed to “run,” i.e., for whiadlez 0 and du #0, with noa priori constraint
betweende and du. As we shall see, the former correspond preciselyy =0 with no
observable difference between the gauge patchds thiei latter correspond with equal precision
to £ #0 in which there is an observable distinctness bnbagout by the running of the charge
strengths. Of course, if we are going to develog then study mathematical solutions to this
Wu-Yang differential equation, it would be good review why this equation is of physical
interest to begin with. Zee at 220-221 of [17] wdes a concise review of the Wu-Yang
approach, which we briefly lay out here.
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Wu and Yang begin with a local gauge (really, ehasansformation on a fermion
wavefunction taken to be that of an electrgr{x) - ¢/'(X) = "®/( ¥ . The one-form for the
gauge fieldA= A dX' transforms asA - A = A+ e” d¥'/ i, wheree™ d¢" / ie= d\/ ¢is a
mathematically-convenient way to represent the eslased one-fornrdA =9 ,Adx’ containing
the phase gradiend A. If we represent the local field strength in spte coordinates

(t,r,¢,0) asF =(u/4m)dcosddg, then usingld=0, with 4 presently assumed to be constant

thus du =0, this will be reproduced viaF =dA by any A=(u/4m)(cosf-K)dg with
constanK.

Of course, the azimutlp in d¢ is not defined everywhere, and in particular,sit i
undefined — which is to say that the longitudendeterminate — at the north and south poles of
the closed surface iwzﬁ)F. This is an intrinsic feature of closed surfageshree space
dimensions. To remove this indefiniteness, with= +1 respectively, we define a north patch
for the gauge fieldA, =(u/4m)(cosf~ Adg with the south pole undefined and a south patch

A =(pl4m)(cosf+ Jdg with the north pole undefined. These patchesimtearelated by

A= AN+(,U/27T) dg. So if we now “match” these north and south paschy regarding the

south patch to differ from the north by no morentldagauge transformation, i.e., if we define
A, = A and use this to writeA, = A, = A +(u/2m) dp, and if we then combine this with the

gauge transformationy, — A, = A, + €" d&/ ic for the north patch, we obtain the above-
referenced Wu-Yang differential equation:

Lenge =4 @ (2.1)
ie 21T

By making use ofA| = A;, we are making thassumptiorthat the north and south gauge

field patches differ from one another by no morantta gauge transformation and so are not
observably distinct Were there to hypothetically s®me observable distinctness between these

patches, which distinctness we may define byin A =A+& where e=¢,dx’ is a
differential one form and, so-defined must therefore be a four-vector fielthwlimensions of
energy just like the gauge field in= A dX’, then(2.1) would become generalized to:

_ie-moléA =H e, (2.2)
ie 217

The above (2.2) serves in Dirac’s words to “pertend generalise the mathematical formalism”
of (2.1) with an additional offsef, whereby (2.1) is the =0 specialization of (2.1). As we
shall establish shortly, whep ande viewed as mathematical entities are taken to Insteat,

i.e., withdu =0 andde=0, thene =0.
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From here, the remainder of this paper will seekpdy to obtain all mathematical
solutions of (2.1) and (2.2), to lay the foundatiger Dirac, to “try to interpret the new
mathematical features [of these solutions] in teohghysical entities.” We start with (2.1),
which is (2.2) with £ =0, thus with observablirdistinct coordinate patches. This is the
differential equation first developed by Wu and gan

For notational convenience, we define a “reducdhath” ¢ =¢ /2. The solution to
the differential equation (2.1) in terms ¢f is:

exp(in) = exdiend), (2.3)

as is easily seen by pluggirexp(iA) from (2.3) into the left hand side of (2.2) andueing.
For ¢ =0, (2.3) becomesxp(iA) = exfiex0Q = . Becausel=exp(i 2m) in general, this
means thaexp(iA) = 1= exgi 2m), which has the general solution:

A=2m. (2.4)

For similar notational convenience, we also deéirfeeduced phase?- = A/ 277, which enables

us to write the solution (2.4) a&-=n=0,+1,+2+ 3... This solution represents the quantized
number of windings of the phasé through the complex gauge space defined by
€" =cosA +i sif\ = a+ bi.

From (2.3), if we require thaexp(ies) = exr{ien0Q = : for all reduced azimuths in
the quantized seig =¢/27=0,1,2,3.. due to the fact that each of thege hasidentical
geometric orientatior(presently, we neglect so-called “entanglementergby like “versions”
of a fermion have al/r azimuth separation), then in view bf exp(i 27n) the mathematics

enables us to writexp(iA) = exdies) = £ exfi 2n), which has the general solution
N\ =eug =2mnn. (2.5)

The azimuth set¢ =m=0,1,2,3.. used to obtain (2.5) represents the quantized surob
(positive, right-handed) rotations or “windings”eva complete2/r circumference about the z
axis in the physical space of spacetime. ThegErmin ¢ =m is a different integer from the
integern in /A =n obtained from (2.4), the former representing ptalsspace windings and the
latter representing gauge space windings. Asezamtted, Dirac first derived his quantization
condition upon pointing out “that a phase is alwaysletermined to the extent of an arbitrary
integral multiple of277,” which responsible for (2.4). The fact that annauth orientation is
likewise undetermined up to an integer multiple2af is responsible for (2.5).

For the special case of an azimuth windgg-1, (2.5) becomes

10
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N\ =eu=2mn, (2.6)

which is the Dirac Quantization condition. In atheords, the DQGCeu =277n is the ¢ =1 and

£ =0 solution of the Wu and Yang differential equati(h2). Becausee=+4/m@ where
a 01/137 at low probe energies i.e., large distance frobae charge, and because the charge
guantum numberA =n, we may regard a single=1 electron charge quantum as the=1,

A =1, £=0 solution of the differential equation (2.2). Th&hows why (2.1) and its
generalization (2.2) are of such interest. Fornew2.6) is merely amalgebraic equation(2.2) is
the differential equationfor which the DQC of (2.6) is solution, butnot the only solution
Thus, (2.2) provides the means to “generalise tlaghematical formalism” associated with
magnetic monopoles — or to be precise, associatdd the asymptotic behavior of the TP
monopoles which reproduce the DQC at large distadew it is time to examine some of the
other mathematicalsolutions to the differential equation (2.2), begothe specific solution
ey =27rn which is the DQC and the specialization of thdtison to ey = 277 for the A =n=1

unit electron charge.

Immediately, we restructure the generalized 0 solution of (2.2), namely (2.5), into:
e=——=—¢ =Ve, (2.7)

wheree, =277/ 4 continues to define the unit electric charge amljsind where:

N A=Z0£14243. 4= 01,23, (2.8)

é

4

reveals that the solutions to (2.1) also adimgttionalizedcharges. Because the we are only
seeking to obtain mathematical solutions to (249 é2.2) separately from the question of
physical interpretation, we do no more at the mdrttgem make a mental note that the Fractional
Quantum Hall Effect (FQHE) exhibits fractional cpes albeit with denominators more
restricted than those in (2.7), (2.8), and thatRREHE is an ultra-low temperature phenomenon
observed only near OK which therefore requires aispay attention to the variable of
temperature, and thus to thermodynamics.

Becauseg¢ =1 describes quantized solutions of a whole electnarge, any version of

this unit electron with a different azimuth but teame version (i.e., same orientation and
entanglement) as thé =1 will differ from this by a4/ azimuth separation. Thus, the alike

versions of theg =1 electron with a positive azimuth will havg =1,3,5,7..= 2+ : with
1=0,1,2,3.., which ¢ is an odd integer, so that (2.8) for likersions (orientation and
entanglement) of theh =1 electron will become restricted to:

A A=01+243.; = Z1+1)= & +s)= 2= 1,357..1= 0123.5=1.(2.9)

P

4
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Here, the charge fractionalization becomes oddyarteonly, while the¢ =0 denominator
which yields an infinitev is naturally eliminated. With the exception ofathvould have to be
a ¢=2, 1=5, s=3 fraction also observed, this does describe prigcistee FQHE

fractionalization. These thoughts are intendedetyeto help us “to try to interpret the new
mathematical features in terms of physical entitias the second step of the Dirac approach,
and are not intended to make any claim.

So for now, mathematically, we may make the follogviobjective summary of the
solutions we have found:

. The £ =0, ux#0 solution of (2.2) includes fractionalized and qused charges.
. The =0, u#0, ¢ =1 solution of (2.2) is the DQC with quantized chargaly.

. The =0, u#0, ¢ =1, A =1 solution of (2.2) describes a unit electron charge

. The set of solutions which have the same orientadind entanglement as tige=1 unit
electron charge, have a fractional charge denomin¢t:2(l +%) which is an odd
integer only.

. The quantum numbetsands andj defined in (2.9) to characterize the same orientat

and entanglement solutions happen to be idenbcdle Casimir numbers obtained in the
operationsL?|&) =1 (1 +1)|&), S?|¢)=s(s+1)|¢) and J?|¢)=j(j+1)|¢) on a spinor
|E> for orbital, spin and total angular momentum ofetactron in an atomic shell.

Beyond these specific features, we may also obserathematically, that these solutions
to (2.1) aretopologically quantizedinsofar as theynaturally introducethe two quantum
numbers/A and ¢ which specify an integer number of windings, respely, in the two-

dimensional gauge space, and in the three-dimealspdrysical space about the z-axis.

Now, let’s find the more general solutions to {Z@& both z#0 and £ #0. Because
the one-forme& must be a fielde(x*) = A, (x*) - A(X) with structure and dimensionality
similar to that of the gauge field, see the disamsgrior to (2.2), let us posit a zero-form scalar
field 7(x") related in some to-be-determined way to the one-field £(x*), as a mathematical

means to solve (2.2). In a spherical coordinastesy x* :(t, r,¢,6?) , the azimuthg is one of

the four spacetime coordinates of which thesediale a function. Using thig(x”) in a posited
test expression we write:

exp(in) = ex;(ie,u¢t+ier(t re 6)) (2.10)
If we insert this in (2.2) and reduce, we find ttras does indeed solve (2.#&)and only if

e=dr=¢,dx' =9 ,rdx. (2.11)

12
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Extracting the vectors, this means tlagt=0,7, that is, ¢ ,(x) is the spacetime gradient of the
posited scalar field(x*). Viadd=0, this informs us thatle = ddr =0, and via Gauss / Stokes,
that 955 =0. This means that =dr is a closed exact differential, and tlratmay be thought of
as a state variable.

At the moment, the particular coordinate z'nﬁt,r,gb,@) that piques our interest is the
azimuth ¢ Ot,r,¢,6 and its reduced formg =¢ /2 because this turns out to be the
fractionalization denominator in (2.7) and (2.9o to avoid visual clutter and focus in 0(141)
which is presently of greatest interest, let usindefr, Er(¢) as a shorthand notation to

represent the azimuthal behavior of the scalad fiel With this notation targeted to the
spacetime coordinate presently of greatest intenestewrite (2.10) as:

exp(in) = exr(ie,u¢t+ier¢) : (2.12)

Now, as we did at (2.4), let us first examine wihappens in (2.10) when we sg¢t=0
to obtainexp(iA) = expiex 00+ ier,) = exfpier,). If we multiply through by exp(-ier,) and
then applyl=exp(i 2m), we obtainexp(iA —ier,) = 1= exgi 2m), which has the solutions:

N\ —er, =27mn. (2.13)

Contrasting to (2.4) we see that the reduced gangéesA =n+er, /277 which solve (2.12)
are still quantized, but they also have an offsgt/2/7. Now, while discussing fermion
wavefunctionsy at page 63 of [2], and as is well-understood, ®ipaints out that “[t]he
indeterminacy iny then consists in the possible addition of an eabjtconstant to the phage
[here, A]. Thus the value ofy at a particular point has no physical meaning anly the
difference between the values pfat two different points is of any importance.” ®hile the

guantum numben in (2.13) is an observable because it denotesaagquhifference the offset
er, / 2 has no physical meaning and so can be set tot@aerstablish a “ground” state. Doing

exactly that, welefinea ground state phase:
I,=7(¢p=0)=0. (2.14)

As a result, (2.13) becomes =27m which is the same as (2.4), and we continue toesgmt
this via the reduced phast =n=0,+1,+2+ 3.. which is a topological winding number. With

(2.14), this means that fap. =0, (2.12) becomeexp(ie,u¢t+ ier¢) = exy(igu OO ier,) = -

Next, similarly to (2.5), we require thmp(iew+ier¢): 1in (2.12) for all reduced
azimuths which have the same orientation ¢s=0, again, sans present consideration of
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entanglement. These are all the azimuths in tlentiged setg =¢/27=0,1,2,3... Again,
just like the phase, the azimuth also is “undeteedito the extent of an arbitrary integral
multiple of 27.” Then, (2.12) yields exp(ieuqlt+ier¢): 1= exqi 2m) in view of

exp(i 2m) = 1. This has the solution:
N=eup+ea,=2mA; A=NI27T=n=0x1x2+3.; $=¢ /Z=nm= 0123. (2.15)

This is the full solution to the differential eqioat (2.2), fore =dr #0 (see (2.11)) and, #0
generally with the unobservable ground state phase define(@.14) as7,=0. For the
specializationz, =0 generally, this reduces t = e =277n which is (2.5). Forr, =0 and
¢ =1 this further reduces té\ = ey = 27rn which is the DQC. And for, =0, ¢ =1, A =1
we obtain A =eu =277 for the unit electron charge. For states whichehiie same version as
the ¢ =1 electron, as in (2.9), the quantum numiger 2(1 +4) = 2(1 +s) = 2j = 1,3,5,7. will

be restricted to odd integer values only. Per ®ir@2.15) is how we “generalise the
mathematical formalism that forms the existing axi theoretical physics” for describing the
asymptotic large-distance behavior of DQC magrataopoles.

The solution (2.15) now enables us to examineamaspecialization, namely that of
7, #0 but 4=0. This set of solutions cannot be seen at all jusihg the algebraic

N\ =eu =2mn version of the DQC which fo =0 becomes the trivial\ =2/m=0. But from
(2.15), whenu =0, we still have the non-trivial:

N=er, =2mn. (2.16)
If we then isolate, this becomes:

e:ﬁz—ﬂ: nz—ﬂz ne, (2.17)

Ty Ty

from which we may define a unit electric charge:

2n

Ty

e, (2.18)

This now replaces the usual unit chamges 277/ 4 of the DQC, and still gives us a quantized

electric chargeeven if we seju=0 and so take away all magnetic monopolds contrast to
(2.7), there is no charge fractionalization in @3.1There is only quantization. A simple variant
of (2.16) is to isolate, , and so write:
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r, = A (2.19)

Staying focused on mathematical solutions to (arid) (2.2), we simply regard the=0
solutions as ones in which a mathematical parametéras been set to zero. Of course in the

natural world, this represents a magnetic chargmgth observed to be equal to zero. So the
objective mathematical statements we may make absusolution set are as follows:

. The £ #0, =0 solution of (2.2) includesnly quantized/ =n electric charges with
no fractionalization.

. For thes #0, 1 =0 solution of (2.2), theA- =1 electric charge quantum & = 277/7,, .

. In contrast, for thes =0, x#0 solution of (2.2), the electric charge quantunthis

e, =2/ u of the DQC.

Next, let us spend a few moments examining the tetepsolution (2.15) for the
circumstance where both#0 andz, #0. First it is helpful to isolate the new scalaldi 7,

in (2.15) by itself, thus:

r, :ﬁ%—gﬁ,u. (2.20)

It is also helpful to isolate the electric chargesgth as such:

217

e=A .
K+,

(2.21)

This displays vividly how whenz, =0 and p#0 there is a fractional quantization
e=(A/¢)(2m/ 1) with unit chargee, =277/ 1, see (2.7) and (2.8), while whem=0 and
r, #0 there is a quantization-only with no fractionaliea, in the forme:ﬁ(zmg) with
unit chargee, =27/7,, see (2.17) and (2.18).

As to the physics which we defer until we “try tdarpret the new mathematical features
in terms of physical entities,” we simply make anta¢ note that fractional electric charge
quantization of the sort that solves (2.2) wher 0and 7, =0 has only been observed in nature

near absolute zef6=0, and that electric charge quantization with raeztionalization of the sort
that solves (2.2) whenu=0 and 7, # 0 is observed throughout the natural world when the

temperaturesT >0 are not right near absolute zero. So (2.21) wheta 7, #0 and y#0

reveals a sort of hybrid of these two results incwhheelectric charge is always quantizdalit
the denominatorzg +7, contains a quantized azimuth winding offset with the fieldz,,

15



Jay R. Yablon
March 7, 2015

which can drive a modified form of fractionalizatio Finally, we isolate the magnetic charge
strength in (2.15), as such:

1 2T
ﬂzg(ﬁ?_r¢j. (222)

Here, the magnetic charge is always fractionalizedut this fraction contains a quantized
numerator#(277/€) offset by the scalar field, .

Next, as we examine thg#0 and 7, # 0 solution (2.15), we are mindful of Dirac’s

statement in [2] that his DQC “shows, in fact, ansyetry between electricity and magnetism
quite foreign to current views [but that it doeg]rforce a complete symmetry,” and that “if we
insert the experimental value 137 in our theorynitoduces quantitative differences between
electricity and magnetism so large that one carerstdnd why their qualitative similarities have
not been discovered experimentally up to the ptésenhat is, “[tlhe experimental result . . .
shows that there must be some cause of dissinyilaeitween electricity and magnetism . . . as

the result of which we have, npt = e, but 1, =(137/2)e.”

With this in mind, we see that the complete sohlutf@.15) of the differential equation
(2.2) does break this duality symmetry, even at the &teal level Specifically, if we take
(2.15) and interchange ~ 4, then this will become\ =eug + ur, =2mn which is not the

sameas the original\ =eug + &, =2mrn. In fact, let us numerically compare (2.15) weéth

e - u interchanged (2.15), using the approximate numeslae a =¢e*/4/rJ1/137 for the

running electric coupling “constant” at low probeeegies, i.e., at large spatial separation of a
test charge from the bare charge being tested (2FbB) itself:

it =eup +a, = qup + 2Nm/137, = gup + 0387, . (2.23)

The final term.0337, is a measure of the degree to which the x4 symmetry is broken,
because were this to be zero, this symmetry woelddstored. On the other hand, if we
explicitly use the low energe 0271137 in (2.22) for the magnetic charge and so write
,L/z(ﬁx/BTT—r¢) /¢, and if we then use this after we intercharge y in (2.15), the
duality-interchanged version of (2.15) becomes:

2 76\_ T 2

A T
27T = ep+ Ut = q@+$\/137m¢ —j = qu(,zwz 20.748, —j. (2.24)

So we see that for the empirical low-impagt=e”/4/701/137, the latter equation
(2.24) will break the duality symmetry to a greatiegree than the former (2.23) so long as
T, <20.746k - .033. For A =¢ =1 this condition becomes, <20.746- .033- 20.71.

While (2.15) does not tell us why this 137 numbas Ithe value it does — which would be the
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“purely electronic quantum condition” Dirac wasgmnally hoping to find with his derivation in
[2] — a comparison of (2.23) with (2.24) does skenhe light on why this numeric value ~1/137
is smaller and not larger: the expressian-eug + e, =27n will generally yield a higher

degree ofe -~ p symmetry tham\ =eug + ur, = 27tn, so long ag — whatever its experimental
value — is generally a smaller number than That is, the smaller the value &fthe closer we

get to duality symmetry. The fact that=€’/4701/137 is smalls tell us that nature tends
toward a duality symmetry, but that this symmesrpiioken to the degree that 1/137 is not zero.

This now begs the next question: when happensigestiution whene= y? Dirac was
certainly thinking about this question when he painout that the “dissimilarity between
electricity and magnetism [causes us to] have,mot e, but 4, =(137/2)e.” Butin 1931 we
were a long way from understanding that these rideand magnetic charge strengths were
“running” charges that were really not “constait,it were rather a function of a renormalization
scaleQ which reflected what would happen if we could @aobore deeply into a charge, that is,
if we could penetrate the polarized charge scremhget a “test” charge closer to the “bare”
charge being tested. Nor was it close to beindetstood in 1931 that there might be GUT
theories using Yang-Mills gauge groups that wowddlre invented for another two decades, and
that a key hallmark of these theories would be #tatiltra-high energies, all of the running
couplingsa merge into the same numerical value, so that #esociated charges would also all
become equal at least up to a Clebsch-Gordon casfti So in 2015, when we ask what
happens where= 1, we know that we are implicitly asking what happet GUT energies, at

which there are also extraordinarily high temperdlassociated with what many regard to be
conditions in the very early universe. So, lesk:avhat happens fog =y ?
Because (2.15) is the most general solution ®) (e simply insere= 4 to obtain:

e€pt+a, =P +ur, =2k . (2.25)

This is quadratic ire= x, and it can be solved to show that:

2e:2y=—%i /%j+877§. (2.26)

Then using this to obtain the running couplimg- €* / 47t = i | 411, we obtain:

r, |[r,°
LA LP AR (2.27)
4T 4 8w 2% 8w\ ¢ /3

Making a mental note once again for when we neé€tryoto interpret the new mathematical
features in terms of physical entities,” we obsenat thecause (2.25) through (2.27) rely upon
setting e= i, these would only be valid under the physical ¢omas of a GUT, which is the
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energy and temperature domain in which the stableodft and Polyakov [6], [7] magnetic
monopoles are expected to become observable athiith energies >10GeV. We should also
keep in mind, because the DQC corresponds with €sdiR monopole solutions asymptotically
at large distance, and because any GUT discusstoessarily entails ultra-short distance
impacts with the “bare” monopole, that the questimises whether the extended relationships
such as (2.26) which arise as solutions to the shffezential equation (2.2) might be shown to
correspond to (some) of tm@n-asymptotid P monopole solutions at closer range.

Finally, much of the development thus far has bpedicated on holding the charge
strengthse and ¢ constant,de= du=0. Let us now explore what needs to change in our

analysis in the event one or both of these chasyeagths is allowed to vary, such thde# 0
and / ordu#0. Physically, we note that a charge strength whadally varies such that

d,e#0 and / oro, #0 is arunning charge strength whereby as one is able to mowsta t

charge spatially closer to the bare charge beistgdepast some of the polarization screen of that
bare charge, such that the effective charge stneisgbbserved to vary as a function of this

collision penetration. For example, based on madization group theoryg =€/ 4 grows
logarithmically as the energy scale is increas@cempirical sampling of this is the observation
that a 01/137.03¢ when the test charge is far from the observedgehaith no penetration at

al, Q*=0, but that this grows to a[1/128 for a closer penetration of
Q*=M,° D(80.385 Ge\)z, see PDG’s [18]. Indeed, the essential purposeadilider is to get

two particles to collide as strongly as possible,,ito penetrate one another as deeply as
possible, and then characterize what is obserndedl an important part of what is observed is
that the charge strength then varies as a funaiae collision depth. For the moment, we
simply represent this local running of the chargergjth via the very elemental mathematical
statement thatle#z 0 and / ordu # 0 in spacetime.

If the charge strength is allowed to run (as ieslin the real world), it first becomes
mathematically important to carefully distinguistglabal equation such ag = [[[dF = f F

from alocal equation such a§ :(/,1/477)d cosddg. The former representstatal magnetic

charge u enclosed within dinite volume which via Gauss / Stokes is equal totttal net
magnetic field flux® , = ¢ across thdinite surface of that same volume, so thatis being

measuredglobally. In the latter,F is alocal field measurednfinitesimally at each event in
spacetime, so thats represents bbcal measure of the charge strength at that same elteist.

only when we assume thaé= du =0, that the appearing in the global: = deF = <ﬁ> F is

identical to they appearing in the locaF :(,Ll/47T)d cosfdg, i.e., thatd, = . If we allow
# to run,du#0, then this is no longer the case. Whigm# 0 over the surfacep , # 1. A

detailed calculation explicitly showing how thiscoes and how this introduces Dirac strings in a
possible novel fashion is included in Appendix A.

As to the particular development here, let usrreta (2.11), where we found that (2.10)
is the solution to the Wu-Yang differential equati@.2)if and only ifthe fieldse(x*) = dr(x*)
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At (2.12) we began focusing on the azimuth coate ¢ (t,r,¢,6, so using the notation
introduced at (2.12) we rewrite (2.11) as=dr,. In (2.15) we found the full solution to (2.2),

which upon isolatingr, in (2.20) became, =(2/e}A - ug-. So if we substitute (2.20) into
&, =dr, in order to obtain an explicit expression foy, then given thatr and ¢ are integer
numbers, and also employing= e’/ 4 and the original definitiore,, = A\, — A;, written to
explicitly highlight the azimuthal dependency, aisb include (2.2), we now find that:

= = - 2_7T — = — i = — :_1 I i —i
e, =dr, =~ AT de-pu=—A_—de g U= p- 4= ¢ Gt @ (229

Because ¢, =dr, defined prior to (2.2) ass=A - A, represents an observable
distinctness between the north and south gaugd fiatches, we now see thahy such
observable distinctness vanishes under one of omditons First, whende= du =0, that is,

when the charge strengths are constant and noinginisecond, when charge strengths do run,
but are constrained to one another according to thdferential equation

£:—+‘c(2ﬂ/e2) de-¢ dqu=0. In (2.7) we found that whenever=0, the solution will be

eul 2=+ 14, which is theg =1 DQC generalized to all other azimuth windings i&e |
orientation. Combining this with (2.28) tells it

N_o_e du_a (2.29)
4 2 de 2m

which reduces from the latter two expressions to:

% = —d_e. (2.30)
Y7, e

This differential equation is solved by aku= K with constantK, and soincludes
eu=2mN /¢ for the ¢ -generalized DQC of (2.7). So the second conditioder which
&4 =0is when the charge strengths are running, butedated byey = K which includes (2.7).

In all other cases, there is an observable distegss between the north and south patches, and as
we see from (2.28)t is the very fact that eithelez0 or du#0 or both are running in some

relationship other than—ﬁ(Zn/ez)de—4L¢1:0, which is responsible for any observable
distinctnesss = A, — A, # 0 between the north and south gauge patches.

This is what is meant when we say that there isteervable distinctness, =dr, #0
between the two gauge patches whde® 0 or du#0 and there is n@ priori constraint
betweende and dy. When —+‘c(2ﬂ/e2) de-¢ du =0, thisis ana priori constraint. When

—ﬁ(Zn/ez) de-¢ du=¢, # 0 there isnot ana priori constraint, because, does nothing
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more than quantify the independencedeffrom dy . It is also worth noting that if, =0, then
becauseey/ 2rr=+v /4 in (2.7) is a consequence ef =0, and becauseu/ 2=+ /¢ can
be rewritten asA-2rr/e=¢u =0, a comparison with (2.20) tells us that in anyaion where
£, =0 applies, we also have, =0. In other words, the conditioa, =dr, =0 also implies
the integrated conditiom, =0. Sor, #0, like &, #0, is how we may generally characterize
and quantify the absence @friori constraint betweeeand x. Further, because the fractional
charges in (2.7) are &, =0 thus 7, =0 solution to (2.2), and because the only fractional

charges physically observed in nature reveal theesenear a temperatuife=0, we keep in
the back of our mind (for when we turn from math&oah solutions to physical interpretations)
the possibility thate, and 7, which measure the observable distinctness of g patches

and the absence afpriori constraint between the charge strengths might itgmiobservability
by being temperature-dependent, such tha{T =0)=7,(T =0)=0 when the temperature

approaches absolute zero, andT >0)# 0 and 7, (T >0) # 0 otherwise.

Therefore, we may combine the result in (2.28) tioge with (2.2) and the original
definition £, = Ay, - A;,, and explicitly rewrite the most general form dfet Wu-Yang

differential equation (2.2), which is a restructli(@.28), as:

1 —iA A
Zeihdé :idﬁﬂ;ﬁ H - ﬁez de-¢ ¢1_— ¢+g¢_— d+ B- A (231

ie

We see that the commonly-usesl” dé&" / ie=(,u/2ﬂ) @ with no observable gauge patch

distinctness is a special case whdex= du =0 or Where—ﬁ(zmez) de-¢ dgu=0. As Dirac

points out at 67 of [2], because “the wave functi®rtomplex, its vanishing will require two
conditions, so that in general the points at whiclanishes will lie along a line,” which “nodal
line” in x* along which exp(i/\(x”))(/fz(cos(\(x”)ﬂ sinr\(x”))(A+iB)= ( subsequently
became known as the “Dirac String.” In (2.31)jsitthe presence of the transition function
containinge " dé&" / ie= d\/ «which ensures the non-observability of this Ds&ing.

Now, we come to one other important feature ofrtteghematical solutions to the Wu-
Yang differential equation (2.2), namely, energwmpization. We start with equation (2.28) for
the observable distinctness between two gauge gmtekhich becomes non-zero due to the
running of the charge strengtésnd / oru . If we restore the fundamental constamtandc to
dimension everything explicitly in terms of energynd then extract the four-vectors from within
the closed, exact differential forms, (2.28) yields

swzdrw:ﬁ(—@a e}+¢(( J*0,u) =AW, +o W, = E,+E. (232
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Above, we define a pair of energy vectors:

Ex

U

271(he)®
zﬁh/ﬁ,u = nh/ﬁy E-A—[—Maﬂe}
€ (2.33)

B, =#hv,, = miv,, = ¢(~(1 90,4

which relate to frequency / wave vectdm” = hck’ = hv, dA) = Hv, k&) in the usual way.

What we uncover in (2.32) is tlguantization of energin the form of Planck’sE = nhv and
deBroglie’sp =nh/A.

Per (2.32), when there are both running electrit magnetic charge strengtdge and
d,u, we have a superpositiontv, , +¢hv, of two quantized energy harmonics, one being

E,, =7V, , with energy packetdw, = —27T(hc)1'56ﬂe/ € arising from thed e running and
the quantizationAhy, , corresponding to the harmonic series of these giacland the other
being E,, = ¢tv,, with energy packetsw,, = —(hc)l'saﬂ,u arising from thed ,x running and
¢hv,, representing the harmonic series of these packétss superposed form of energy
guantization is topologically established by badtie gauge winding numbefr =n and the

azimuth winding numberg =m. In the specialization of (2.19) where the magneharge
strengthy =0 is set to zero and where we also dgt=0, (2.32) reduces to:

_2n(hc)”

' aﬂeJ =Al,, = E,, (2.34)

e, =dr, =/
du du [ e

and the energy quantization is established by #ugg winding numberx =n alone.

What is fascinating about this is what appearbda@ transmutation ofy =n from an
electricchargequantum number in (2.7) and (2.17) and (2.21}p artenergyquantum number
in (2.32) and (2.34); and a similar transmutation ¢ =m from a magnetic charge

fractionalization quantum number in (2.7) and (2.22), into emergy quantum number for a
second harmonic in (2.32) when the monopole chsirgagth is not zeroed out.

3. Summary and Conclusion

The complete set of mathematical solutions tovtheYang differential equations (2.1)
and (2.2), in Dirac’s words, enables us to “perfaotl generalise the mathematical formalism
that forms the existing basis of theoretical phgsifor Dirac monopoles which are the
asymptotic solution for many important variantstioé ‘t Hooft-Polyakov monopoles. Let us
now summarize these results.
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What we have found is that there are three &fesslutions to the Wu-Yang differential
equation (2.1) generalized to observable difference A, — A, between the gauge patches,

which differences we have shown are synonymous k@l circumstances under which # 0
and / orde#0 and —+‘c(2ﬂ/e2) de-¢ du# 0. The first set hagt#0 and £ =0; the second
set hasy =0 and & #0; and the third has botp# 0 and & Z0.

This first set of solutions are foz#0 and £ =0, the latter of which we now know
means also thatiy = de=0, or that the charge strengths are running but aretr@ned by

—ﬁ(Zn/ez) de-¢ du=0. These solutions are generally given Ay=eug =2n in (2.5)

which yields the quantized, fractionalized charges(A-/¢.)(27/ ) =(# 1 4) g of (2.7). In
the special case wherg =1 this recovers the DQC, and in the further specade where

n=+ =1 this describes a unit electron charge. Amonghireys we learn from this is that the
DQC proper isa specific solution to (2.2ywhen £=0, and when¢ =1. If we restrict

consideration to azimuths which have the same w@ii®m and entanglement a.k.a. version as
¢ =1, then the permitted fractional denominatogs =2(l+1)=2(l +s)=2j=1,3,5,7.
become odd integers only, which a) happen to bet wea observe in the FQHE with the
exception of¢ =2, and b) also happen to have the exact same nuahpattern as the Casimir
numbers obtained in the operationd?|&)=1(1 +1)|&), S|¢)=s(s+1)|¢) and

J?|€)=j(j +1)|¢) for orbital, spin and total angular momentum @foéions in atomic shells.

The second set of solutions occur wherr0 (and dy=0) and € = A, - A, %0, the

latter of which we now know means thaé# 0, which is what yields an observable difference
between the gauge patches. These solutions asajigngiven by A =er, =27n in (2.16),

which in turn vyields electric charge quantizatiowithout fractionalization as in
e=A(271/7,)=#e of (2.18). The related expressiay =4 (277/¢), taken together with

&, =dr, as first found in (2.11), leads in (2.34) to fmeling that e, =Ahv, ,, which means
that the energy-dimensioned four-vectgy, is quantized in units of the energy packet, ,

with A =n also serving as the quantum number for this engu@ntization. That isfx=n
which describes charge quantization &= 7€, transmutes into also describing energy

quantization ing,, =#Ahv, , .

The final, third set of solutions occur whgn# 0 and when £ = A, - A, 20, so that
du#0 anddez0 and—+‘c(2ﬂ/e2) de-¢ du# 0. The general solution in this circumstance is
eup+ e, =2mrA in (2.15), which is rewritten as, =4 (27/€)-4u in (2.20), and via
&4, =dr,, found in (2.11), leads us to (2.32). Here to® &mergy is quantized, but in a
superposition of quantum stateshv, , +¢hv, . The gauge angle winding numbe¥ =n
contributes an energy quantization basedoga# 0, and the azimuth angle winding number
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¢ =m of the azimuth further superimposes an energy tigaion based on thé 4 #0. Asin

the second solution sefy =n appears to describe electric charge quantizatd@.R1) as well
as the energy quantizatiary, =Ahv, , in (2.34). Further, the azimuthg = m appears via its

role in (2.22) to describe magnetic charge fract@ation, and viag,, =Ahv,  +¢hv,, in

(2.32), one of the two superimposed harmonic sefiesergy quantization. In the mathematical
circumstance where = i (which doemot mean thatde= du), the charge strengths are related

to 7, and to the winding quanta and ¢ by (2.26) and the electromagnetic coupling striengt

is related to these by (2.27). We again note phgsically, a relationship such &= ¢ would

only be observed under GUT conditions. Becauselimac monopoles describe the long-
distance asymptotic behavior of some TP monopatesjay be worthwhile to see if these
relationships can be shown to correspond to (soofie)he non-asymptoticTP monopole
solutions at the closer range to be expected inGWY.

Perhaps the most important feature of all threthe$e sets of solutions, is that the Wu-
Yang differential equatior™ dé" / ie= (u/2m) dp + ¢ of (2.2) — although it contaires x, A
and ¢ all of which have smooth continuous values in spae — ends up yielding solutions in
which A and ¢ become naturally quantized such that the redufedn and ¢ =m are

topological quantum numbers respectively represgrihe number of gauge space windings and
azimuth windings. And it is also clear that depegdon circumstance, these two topological
guantum numbers participate in solutions which lexhicharge quantization, charge
fractionalization, and energy quantization.

The task from here is to embark on the second dfairac’s program and “try to
interpret the new mathematical features in termghyfsical entities.” It should be very clear
that in so doing, a primary focus will be on whettlee types of topological quantization which
appear in these solutions bear a clear mappingettypes of quantization observed in the natural
world. The most striking correspondence that ndedse studied is that of the fractionalized
charges of (2.9) for electron states that havestrmae orientation and entanglement as a unit
unfractionalized electron charge.

Although the FQHE fractionalization has been apphed to date in terms of the
collective behaviors of electrons and “quasi-p&ttin conductive materials near OK [19], it is
difficult to dismiss the thought that the chargactions 1,2,3,5,7,9... associated with this effect
evidence anything less than another quantum nuthlaérexists in the natural world. If this is
so, then either this is a new quantum number negfare seen until the FQHE was discovered
in which case nature has been a bit more extratdgan may have been anticipated, or it is a
guantum number that is already known from elsewhacksimply takes on a new manifestation
in the FQHE in which case nature has been econdmitae fact that the odd-integer fractions

line up perfectly via¢=2(1+4)=2(1 +s)=2j=13,57. with the Casimir numbers of
electrons in atomic shells at the least requirebustudy an interpretation in which nature has
indeed economized. If this is the case, then rxgatal validation of these results may be

obtainable by a close study correlating each foaeti denominator of the FQHE to its observed
angular momentum states.
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Appendix A: Magnetic Surface Flux Calculation witha Varying Magnetic
Charge Strength

The underlying calculation which best illustratesneection between local charge
strengthy and a total charge / magnetic flux also founddqab is:

[[[aF=dpF :@%Tdcosﬂw :%Tjo”d co[ " o¢:4ﬁﬂ col” ¢ = . (A1)

The implied supposition above is thatis constant, which is highlighted by the fact that4r
is movedoutside the integrafollowing the third equal sign in the above. Bitve now allow
4 to be arunning function 4(¢,6) of ¢ and / or@, then we are no longer allowed to move

145 outside the integral, but must keep this termdi@siith the rest of the integrand. Let us

now examine how this works, so we can tie all @ mhathematics together consistently for the
situation where the magnetic charge does vapy# 0.

We start with A, =(u/47m)(cosf- 3d¢ and A =(u/4m)(cosf+ }dg for the north

and south gauge field patches, which as alwayerdidy A = AN+(,LI/27T) dg. But we no

longer limit ourselves tody =0, but rather, allowdy#0. The field strengthF =dA as
always, and alsajd=0 as always. But now, we obtain non-zero ternth @y, which leads to
two seemingly-differentesults, for each of a north and south field gitennamely:

F, =dA, =+ deosadp+ I copdp -
Liyrg 4T 4T (A2)

_a M du du

F.=dA.="—dcosdp + —— cog dp + —

s = dA 47T & 47T & 47 @

This apparent difference arises because of the sign differencethie final terms with
i(d,u/477) d¢. But let us see how this develops, mathematicalhen we use each of these to

extend the calculation (Al) tady#0. As we shall see, this apparent difference is an
unobservable artifact related to the unobservalmac3trings.

The mathematics is simplified if we first spt= 1, + 7 in each of the local equations
A, =(u14m)(cosf-3dp and A =(ul4m)(cosf+ Jdp, where 4, is defined to be an
arbitrary constantd/, =0, and 7 contains the “spread” (hence the overhead ") about this

constant/,, such thatdfz# 0. So in effect we segregate all running of thergbatrength into
i1 . Using this definition, we can rewrite (A2) as:
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<+

= —dAN_ cos@d¢+—d00§d¢+ CO@@_% @
d“” d (A3)
_dAS_/'I;cosé?d¢+ d00§0¢+4£ C0§d75+ = @

These are still local field equations, but let'&eaheir integralscﬁ:ﬁ dF nﬁ) F and see what
results globally.

First, since we are now aIIowiruj(gzﬁ,H) to run withg andd, the total derivative:

dji(¢,6) = g’; A+ gz . (A4)

Now we follow (Al), and also use (A4), as well he fact thatd¢gdg =0 because in differential
form geometrydx“dx =-dxX dX. The only difference betweeR, and F in (A3) is in the

final term 1(d/7/47'r) d¢, so rather than doing the same calculation twidh just a sign

variation in the last term, we simply us¢' to represent the calculation with a respectiveign
for the final term. Thus, we may calculate:

0, = [z = i = f Jrcosatpr{f f dcowap+ 7 concpa i o

+g‘;j>”dcos.9d¢+ jggde sej s _joae jj”ow

7] " _ "
+<ﬁ>Ed cosdg +— L:O dfi codF jgzo diz (A5)

+#£Tdcosed¢+3(ﬂ(9)cose)\” =~ (o)

=0 2 =0
+<ﬂ'>£Tdcost¢ { (0= )

To simplify this result further, we exploit the fabat 1, in ¢ =, + i1 is a completely

arbitrary constant used merely to help us do thegnals in (A5). What is important is not the
value of 14, , but the fact that this is a constan®o let us now select this arbitrary constartigo

U, =0 so thaty = 1. Then (A5), separated again into north and sauthsimplify to:

o, = [[[dF, =4} F :@%Tdcosew—y(e:n)
:J'”dFN:#FN:#%TdCOSHdgb—u(e: 0 |
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Superficially, it looks like the total fluxes aréfdrent because the formep  contains

u(6= 1) while the latterd ,; containsy(6=0). But =7 defines a semi-infinite line from

the origin through the south pole of the closedama, while §=0 defines a second semi-
infinite line from the origin through the north pol So the north-defined flu® , contains

1(6=m) which is taken at the only place ovéy; which is undefined, namely the south pole,

while the south-defined fluxp ¢ contains(6=0) which is likewise undefined because it is

taken at the north pole. These are precisely tivacDstrings, which are unphysical and
unobservable. These extra terms are unphysiaéast of our coordinate system and are not
observable, so they can be removed from (A6) whikh tesult that the fluxes are the same

irrespective of whether they are obtained using fie dA, or F =dA,. It is of interest that

Dirac strings make an appearance in this way, wdren attempts to relate the local charge
strength to the global field flux for running magjoecharges withd i £ 0.

Consequently, we may now consolidate both of (A6) & single equation:
_ _ _fr H
qaﬂ_jjde_@F_@Edcosedqﬁ (A7)

for the total flux across the close surface of npmie, in the situation whergs in the gauge
patches is allowed to rumly # 0. Of course(4ﬂ)_1@ pdcosfdg is not expressly calculated,
because this depends on the specific variable ctearaf 1(¢,6) . But the form of this equation

is exactly the same whethelz=0 or du#0. The difference is that whedy =0, we also
have® , = u even thought , is globally defined and is locally defined. Butifdu# 0, then

®, # i, and the globatb , is not the same as the logal
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